1
|
Wang X, Bakulski KM, Karvonen‐Gutierrez CA, Park SK, Morgan D, Albin RL, Paulson HL. Blood-based biomarkers for Alzheimer's disease and cognitive function from mid- to late life. Alzheimers Dement 2024; 20:1807-1814. [PMID: 38126555 PMCID: PMC10984504 DOI: 10.1002/alz.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION We investigated associations of Alzheimer's disease (AD) serum biomarkers with longitudinal changes in cognitive function from mid- to late life among women. METHODS The study population included 192 women with the median age of 53.3 years at baseline, from the Study of Women's Health Across the Nation Michigan Cohort, followed up over 14 years. Associations between baseline serum amyloid β (Aβ)42, the Aβ42/40 ratio, phosphorylated tau181 (p-tau181), and total tau with longitudinal changes in cognition were evaluated using linear mixed effects models. RESULTS After adjusting for confounders, lower Aβ42/40 ratios were associated with faster declines in the Digit Span Backward Test. Higher p-tau181 also showed a borderline statistically significant association with more rapid decline in the Symbol Digit Modalities Test. DISCUSSION Our findings suggest that mid-life serum AD biomarkers could be associated with accelerated cognitive decline from mid- to late life in women. Future studies with larger samples are needed to validate and extend our findings. HIGHLIGHTS This study investigates midlife serum AD biomarkers on longitudinal cognitive function changes in women. Mid-life serum AD biomarkers are associated with accelerated cognitive decline. A decrease in the Aβ42/40 ratio was associated with a faster decline in the DSB score. A higher p-tau181 concentration was associated with a faster decline in the SDMT score.
Collapse
Affiliation(s)
- Xin Wang
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Kelly M. Bakulski
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Michigan Alzheimer's Disease CenterUniversity of MichiganAnn ArborMichiganUSA
| | | | - Sung Kyun Park
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Department of Environmental Health SciencesSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - David Morgan
- Department of Translational NeuroscienceCollege of Human MedicineGrand Rapids Research CenterMichigan State UniversityGrand RapidsMichiganUSA
| | - Roger L. Albin
- Michigan Alzheimer's Disease CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Neurology Service & GRECCVAAAHSAnn ArborMichiganUSA
| | - Henry L. Paulson
- Michigan Alzheimer's Disease CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Zheng HT, Wu Z, Mielke MM, Murray AM, Ryan J. Plasma Biomarkers of Alzheimer's Disease and Neurodegeneration According to Sociodemographic Characteristics and Chronic Health Conditions. J Prev Alzheimers Dis 2024; 11:1189-1197. [PMID: 39350363 PMCID: PMC11436401 DOI: 10.14283/jpad.2024.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/23/2024] [Indexed: 10/04/2024]
Abstract
Ultrasensitive assays have been developed which enable biomarkers of Alzheimer's disease pathology and neurodegeneration to be measured in blood. These biomarkers can aid in diagnosis, and have been used to predict risk of cognitive decline and Alzheimer's disease. The ease and cost-effectiveness of blood collections means that these biomarkers could be applied more broadly in population-based screening, however it is critical to first understand what other factors could affect blood biomarker levels. The aim of this review was to determine the extent that sociodemographic, lifestyle and health factors have been associated with blood biomarkers of Alzheimer's disease and neuropathology. Of the 32 studies included in this review, all but one measured biomarker levels in plasma, and age and sex were the most commonly investigated factors. The most consistent significant findings were a positive association between age and neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP), and females had higher GFAP than men. Apolipoprotein ε4 allele carriers had lower Aβ42 and Aβ42/40 ratio. Body mass index was negatively associated with GFAP and NfL, and chronic kidney disease with higher levels of all biomarkers. Too few studies have investigated other chronic health conditions and this requires further investigation. Given the potential for plasma biomarkers to enhance Alzheimer's disease diagnosis in primary care, it is important to understand how to interpret the biomarkers in light of factors that physiologically impact blood biomarker levels. This information will be critical for the establishment of reference ranges and thus the correct interpretation of these biomarkers in clinical screening.
Collapse
Affiliation(s)
- H T Zheng
- Joanne Ryan, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia,
| | | | | | | | | |
Collapse
|
3
|
Paulsen AJ, Pinto AA, Schubert CR, Chappell RJ, Chen Y, Engelman CD, Ferrucci L, Hancock LM, Johnson SC, Merten N. Midlife sensory and motor functions improve prediction of blood-based measures of neurodegeneration and Alzheimer's disease in late middle-age. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12564. [PMID: 38476637 PMCID: PMC10927920 DOI: 10.1002/dad2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We assessed whether midlife sensory and motor functions added to prediction models using the Cardiovascular Risk Factors, Aging, and Incidence of Dementia Score (CAIDE) and Framingham Risk Score (FRS) improve risk predictions of 10-year changes in biomarkers of neurodegeneration and Alzheimer's disease. METHODS Longitudinal data of N = 1529 (mean age 49years) Beaver Dam Offspring Study participants from baseline, 5-year, and 10-year follow-up were included. We tested whether including baseline sensory (hearing, vision, olfactory) impairment and motor function measures improves CAIDE or FRS risk predictions of 10-year incidence of biomarker positivity of serum-based neurofilament light chain (NfL) and amyloid beta (Aβ)42/Aβ40 using logistic regression. RESULTS Adding sensory and motor measures to CAIDE-only and FRS-only models significantly improved NfL and Aβ42/Aβ40 positivity predictions in adults above the age of 55. DISCUSSION Including midlife sensory and motor function improved long-term biomarker positivity predictions. Non-invasive sensory and motor assessments could contribute to cost-effective screening tools that identify individuals at risk for neurodegeneration early to target interventions and preventions. Highlights Sensory and motor measures improve risk prediction models of neurodegenerative biomarkersSensory and motor measures improve risk prediction models of AD biomarkersPrediction improvements were strongest in late midlife (adults >55 years of age)Sensory and motor assessments may help identify high-risk individuals early.
Collapse
Affiliation(s)
- Adam J. Paulsen
- Department of Population Health SciencesSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A. Alex Pinto
- Department of Biostatistics and Medical InformaticsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Carla R. Schubert
- Department of Population Health SciencesSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Richard J. Chappell
- Department of Biostatistics and Medical InformaticsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of StatisticsSchool of ComputerData & Information SciencesUniversity of Wisconsin ‐ MadisonMadisonWisconsinUSA
| | - Yanjun Chen
- Department of Ophthalmology and Visual SciencesSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Corinne D. Engelman
- Department of Population Health SciencesSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Luigi Ferrucci
- Longitudinal Study Section, Intramural Research ProgramNational Institute on Aging, NIHGaithersburgMarylandUSA
| | - Laura M. Hancock
- Neurological InstituteSection of NeuropsychologyCleveland ClinicClevelandOhioUSA
| | - Sterling C. Johnson
- Division of Geriatrics and GerontologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Natascha Merten
- Department of Population Health SciencesSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Geriatrics and GerontologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
4
|
Jiang X, Bahorik AL, Graff-Radford NR, Yaffe K. Association of Plasma Amyloid-β and Dementia Among Black and White Older Adults. J Alzheimers Dis 2024; 99:787-797. [PMID: 38701147 DOI: 10.3233/jad-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Plasma amyloid-β (Aβ) has emerged as an important tool to detect risks of Alzheimer's disease and related dementias, although research in diverse populations is lacking. Objective We compared plasma Aβ42/40 by race with dementia risk over 15 years among Black and White older adults. Methods In a prospective cohort of 997 dementia-free participants (mean age 74±2.9 years, 55% women, 54% Black), incident dementia was identified based on hospital records, medication, and neurocognitive test over 15 years. Plasma Aβ42/40 was measured at Year 2 and categorized into low, medium, and high tertile. We used linear regression to estimate mean Aβ42/40 by race and race-stratified Cox proportional hazards models to assess the association between Aβ42/40 tertile and dementia risk. Results Black participants had a lower age-adjusted mean Aβ 42/40 compared to White participants, primarily among APOE ɛ4 non-carriers (Black: 0.176, White: 0.185, p = 0.035). Among Black participants, lower Aβ 42/40 was associated with increased dementia risk: 33% in low (hazard ratios [HR] = 1.77, 95% confidence interval 1.09-2.88) and 27% in medium tertile (HR = 1.67, 1.01-2.78) compared with 18% in high Aβ 42/40 tertile; Increased risks were attenuated among White participants: 21% in low (HR = 1.43, 0.81-2.53) and 23% in medium tertile (HR = 1.27, 0.68-2.36) compared with 15% in high Aβ 42/40 tertile. The interaction by race was not statistically significant. Conclusions Among community-dwelling, non-demented older adults, especially APOE ɛ4 non-carriers, Black individuals had lower plasma Aβ 42/40 and demonstrated a higher dementia risk with low Aβ42/40 compared with White individuals.
Collapse
Affiliation(s)
- Xiaqing Jiang
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amber L Bahorik
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Kristine Yaffe
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- San Francisco VA Health Care System, San Francisco, CA, USA
| |
Collapse
|
5
|
Johnson EL, Sullivan KJ, Schneider ALC, Simino J, Mosley TH, Kucharska-Newton A, Knopman DS, Gottesman RF. Association of Plasma Aβ 42/Aβ 40 Ratio and Late-Onset Epilepsy: Results From the Atherosclerosis Risk in Communities Study. Neurology 2023; 101:e1319-e1327. [PMID: 37541842 PMCID: PMC10558158 DOI: 10.1212/wnl.0000000000207635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to determine the relationship between plasma β-amyloid (Aβ), specifically the ratio of 2 Aβ peptides (the Aβ42/Aβ40 ratio, which correlates with increased accumulation of Aβ in the CNS), and late-onset epilepsy (LOE). METHODS We used Medicare fee-for-service claims codes from 1991 to 2018 to identify cases of LOE among 1,424 Black and White men and women enrolled in the Atherosclerosis Risk in Communities (ARIC) study cohort. The Aβ42/Aβ40 ratio was calculated from plasma samples collected from ARIC participants in 1993-1995 (age 50-71 years) and 2011-2013 (age 67-90 years). We used survival analysis accounting for the competing risk of death to determine the relationship between late-life plasma Aβ42/Aβ40, and its change from midlife to late life, and the subsequent development of epilepsy. We adjusted for demographics, the apolipoprotein e4 genotype, and comorbidities, including stroke, dementia, and head injury. A low plasma ratio of 2 Aβ peptides, the Aβ42/Aβ40 ratio, correlates with low CSF Aβ42/Aβ40 and with increased accumulation of Aβ in the CNS. RESULTS Decrease in plasma Aβ42/Aβ40 ratio from midlife to late life, but not an isolated measurement of Aβ42/Aβ40, was associated with development of epilepsy in later life. For every 50% reduction in Aβ42/Aβ40, there was a 2-fold increase in risk of epilepsy (adjusted subhazard ratio 2.30, 95% CI 1.27-4.17). DISCUSSION A reduction in plasma Aβ42/Aβ40 is associated with an increased risk of subsequent epilepsy. Our observations provide a further validation of the link between Aβ, hyperexcitable states, and LOE.
Collapse
Affiliation(s)
- Emily L Johnson
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD.
| | - Kevin J Sullivan
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| | - Andrea Lauren Christman Schneider
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| | - Jeannette Simino
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| | - Tom H Mosley
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| | - Anna Kucharska-Newton
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| | - David S Knopman
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| | - Rebecca F Gottesman
- From the Department of Neurology (E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (K.J.S., T.H.M.), University of Mississippi Medical Center, Jackson; Departments of Neurology (A.L.C.S.) and Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Philadelphia; Department of Data Science and Memory Impairment and Neurodegenerative Dementia (MIND) Center (J.S.), University of Mississippi Medical Center, Jackson, MD; Department of Epidemiology (A.K.-N.), University of North Carolina Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; and National Institute for Neurologic Disorders and Stroke Intramural Research Program (R.F.G.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Tin A, Sullivan KJ, Walker KA, Bressler J, Talluri R, Yu B, Simino J, Gudmundsdottir V, Emilsson V, Jennings LL, Launer L, Mei H, Boerwinkle E, Windham BG, Gottesman R, Gudnason V, Coresh J, Fornage M, Mosley TH. Proteomic Analysis Identifies Circulating Proteins Associated With Plasma Amyloid-β and Incident Dementia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:490-499. [PMID: 37519456 PMCID: PMC10382706 DOI: 10.1016/j.bpsgos.2022.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background Plasma amyloid-β (Aβ) (Aβ42, Aβ40, and Aβ42/Aβ40), biomarkers of the Alzheimer's form of dementia, are under consideration for clinical use. The associations of these peptides with circulating proteins may identify novel plasma biomarkers of dementia and inform peripheral factors influencing the levels of these peptides. Methods We analyzed the association of these 3 plasma Aβ measures with 4638 circulating proteins among a subset of the participants of the Atherosclerosis Risk in Communities (ARIC) study (midlife: n = 1955; late life: n = 2082), related the Aβ-associated proteins with incident dementia in the overall ARIC cohort (midlife: n = 11,069, late life: n = 4110) with external replication in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study (n = 4973), estimated the proportion of Aβ variance explained, and conducted enrichment analyses to characterize the proteins associated with the plasma Aβ peptides. Results At midlife, of the 296 Aβ-associated proteins, 8 were associated with incident dementia from midlife and late life in the ARIC study, and NPPB, IBSP, and THBS2 were replicated in the AGES-Reykjavik Study. At late life, of the 34 Aβ-associated proteins, none were associated with incident dementia at midlife, and kidney function explained 10%, 12%, and 0.2% of the variance of Aβ42, Aβ40, and Aβ42/Aβ40, respectively. Aβ42-associated proteins at midlife were found to be enriched in the liver, and those at late life were found to be enriched in the spleen. Conclusions This study identifies circulating proteins associated with plasma Aβ levels and incident dementia and informs peripheral factors associated with plasma Aβ levels.
Collapse
Affiliation(s)
- Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kevin J. Sullivan
- Memory Impairment and Neurodegenerative Dementia (MIND) Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, Maryland
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rajesh Talluri
- Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeanette Simino
- Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik
- Heart Association, Kopavogur, Iceland
| | | | - Lori L. Jennings
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - B. Gwen Windham
- Memory Impairment and Neurodegenerative Dementia (MIND) Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Rebecca Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Program, National Institutes of Health, Bethesda, Maryland
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik
- Heart Association, Kopavogur, Iceland
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science at Houston, Houston, Texas
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
8
|
Anwar MM, Mabrouk AA. Hepatic and cardiac implications of increased toxic amyloid-beta serum level in lipopolysaccharide-induced neuroinflammation in rats: new insights into alleviating therapeutic interventions. Inflammopharmacology 2023; 31:1257-1277. [PMID: 37017850 DOI: 10.1007/s10787-023-01202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
Neuroinflammation is a devastating predisposing factor for Alzheimer's disease (AD). A number of clinical findings have reported peripheral disorders among AD patients. Amyloid beta (Aβ) is a toxic physiological aggregate that serves as a triggering factor for hepatic and cardiac disorders related to neurotoxicity. As a drawback of Aβ excessive accumulation in the brain, part of Aβ is believed to readily cross the blood-brain barrier (BBB) into the peripheral circulation resulting in serious inflammatory and toxic cascades acting as a direct bridge to cardiac and hepatic pathophysiology. The main aim is to find out whether neuroinflammation-related AD may result in cardiac and liver dysfunctions. Potential therapeutic interventions are also suggested to alleviate AD's cardiac and hepatic defects. Male rats were divided into: control group I, lipopolysaccharide (LPS)-neuroinflammatory-induced group II, LPS-neuroinflammatory-induced group treated with sodium hydrogen sulphide donor (NaHS) (group III), and LPS-neuroinflammatory-induced group treated with mesenchymal stem cells (MSCs) (group IV). Behavior and histopathological studies were conducted in addition to the estimation of different biological biomarkers. It was revealed that the increased toxic Aβ level in blood resulted in cardiac and hepatic malfunctions as a drawback of exaggerated inflammatory cascades. The administration of NaHS and MSCs proved their efficiency in combating neuroinflammatory drawbacks by hindering cardiac and hepatic dysfunctions. The consistent direct association of decreased heart and liver functions with increased Aβ levels highlights the direct involvement of AD in other organ complications. Thereby, these findings will open new avenues for combating neuroinflammatory-related AD and long-term asymptomatic toxicity.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.
| | - Abeer A Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
9
|
Gorelick PB. Blood and Cerebrospinal Fluid Biomarkers in Vascular Dementia and Alzheimer's Disease: A Brief Review. Clin Geriatr Med 2023; 39:67-76. [PMID: 36404033 DOI: 10.1016/j.cger.2022.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Maintenance of brain health is a lifelong process whereby potentially deleterious exposures such as cardiovascular risks, amyloid beta, and phosphorylated tau may adversely affect the brain decades before there are clinical manifestations. Thus, the early structural and neuropathological foundation for the development of cognitive impairment and its allied features later in life may provide precursor targets such that interventions may be applied to prevent or slow cognitively impairing processes if the underlying mechanism(s) can be addressed in time.
Collapse
Affiliation(s)
- Philip B Gorelick
- Section of Stroke and Neurocritical Care, Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 North Michigan Avenue Suite 1150, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Sedaghat S, Ji Y, Hughes TM, Coresh J, Grams ME, Folsom AR, Sullivan KJ, Murray AM, Gottesman RF, Mosley TH, Lutsey PL. The Association of Kidney Function with Plasma Amyloid-β Levels and Brain Amyloid Deposition. J Alzheimers Dis 2023; 92:229-239. [PMID: 36710673 PMCID: PMC10124796 DOI: 10.3233/jad-220765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Reduced kidney function is related to brain atrophy and higher risk of dementia. It is not known whether kidney impairment is associated with higher levels of circulating amyloid-β and brain amyloid-β deposition, which could contribute to elevated risk of dementia. OBJECTIVE To investigate whether kidney impairment is associated with higher levels of circulating amyloid-β and brain amyloid-β deposition. METHODS This cross-sectional study was performed within the community-based Atherosclerosis Risk in Communities (ARIC) Study cohort. We used estimated glomerular filtration rate (eGFR) based on serum creatinine and cystatin C levels and urine albumin-to-creatinine ratio (ACR) to assess kidney function. Amyloid positivity was defined as a standardized uptake value ratios > 1.2 measured with florbetapir positron emission tomography (PET) (n = 340). Plasma amyloid-β1 - 40 and amyloid-β1 - 42 were measured using a fluorimetric bead-based immunoassay (n = 2,569). RESULTS Independent of demographic and cardiovascular risk factors, a doubling of ACR was associated with 1.10 (95% CI: 1.01,1.20) higher odds of brain amyloid positivity, but not eGFR (odds ratio per 15 ml/min/1.73 m2 lower eGFR: 1.08; 95% CI: 0.95,1.23). A doubling of ACR was associated with a higher level of plasma amyloid-β1 - 40 (standardized difference: 0.12; 95% CI: 0.09,0.14) and higher plasma amyloid-β1 - 42 (0.08; 95% CI: 0.05,0.10). Lower eGFR was associated with higher plasma amyloid-β1 - 40 (0.36; 95% CI: 0.33,0.39) and higher amyloid-β1 - 42 (0.32; 95% CI: 0.29,0.35). CONCLUSION Low clearance of amyloid-β and elevated brain amyloid positivity may link impaired kidney function with elevated risk of dementia. kidney function should be considered in interpreting amyloid biomarker results in clinical and research setting.
Collapse
Affiliation(s)
- Sanaz Sedaghat
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Yuekai Ji
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Kevin J Sullivan
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Anne M Murray
- Department of Medicine, Geriatrics Division, Hennepin HealthCare, and Hennepin HealthCare Institute, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, NIH, Bethesda, Maryland
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| |
Collapse
|
11
|
Dong Y, Hou T, Li Y, Liu R, Cong L, Liu K, Liu C, Han X, Ren Y, Tang S, Winblad B, Blennow K, Wang Y, Du Y, Qiu C. Plasma Amyloid-β, Total Tau, and Neurofilament Light Chain Across the Alzheimer's Disease Clinical Spectrum: A Population-Based Study. J Alzheimers Dis 2023; 96:845-858. [PMID: 37899059 PMCID: PMC10657676 DOI: 10.3233/jad-230932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Plasma biomarkers have emerged as a promising approach for characterizing pathophysiology in mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE We aimed to characterize plasma biomarkers for AD and neurodegeneration across the AD clinical continuum, and to assess their ability to differentiate between AD, MCI, and normal cognition. METHODS This population-based study engaged 1,446 rural-dwelling older adults (age ≥60 years, 61.0% women) derived from MIND-China; of these, 402 were defined with MCI and 142 with AD. Plasma amyloid-β (Aβ), total tau (t-tau), and neurofilament light chain (NfL) concentrations were analyzed using the Simoa platform. Data were analyzed using linear and logistic regression models, and receiver operating characteristic (ROC) analysis. RESULTS Across the AD clinical spectrum, plasma Aβ40 and NfL increased, whereas Aβ42/Aβ40 ratio decreased. Plasma t-tau was higher in people with AD dementia than those with MCI or normal cognition. Plasma NfL outperformed other biomarkers in differentiating AD from normal cognition (area under the ROC curve [AUC] = 0.75), but all plasma biomarkers performed poorly to distinguish MCI from normal cognition (AUC <0.60). Plasma NfL in combination with age, sex, education, and APOE genotype yielded the AUC of 0.87 for differentiating between AD and normal cognition, 0.79 between AD and MCI, and 0.64 between MCI and normal cognition. CONCLUSIONS In this Chinese population, AD plasma biomarkers vary by age, sex, and APOE genotype. Plasma Aβ, t-tau, and NfL differ across the AD clinical spectrum, and plasma NfL appears to be superior to plasma Aβ and t-tau for defining the clinical spectrum.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Merten N, Pinto AA, Paulsen AJ, Chen Y, Engelman CD, Hancock LM, Johnson SC, Schubert CR. Associations of Midlife Lifestyle and Health Factors with Long-Term Changes in Blood-Based Biomarkers of Alzheimer's Disease and Neurodegeneration. J Alzheimers Dis 2023; 94:1381-1395. [PMID: 37393497 PMCID: PMC10461414 DOI: 10.3233/jad-221287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pathological biomarkers of Alzheimer's disease (AD) and other dementias can change decades before clinical symptoms. Lifestyle and health factors might be relevant modifiable risk factors for dementia. Many previous studies have been focusing on associations of lifestyle and health-related factors with clinical outcomes later in life. OBJECTIVE We aimed to determine to what extent midlife factors of lifestyle, inflammation, vascular, and metabolic health were associated with long-term changes in blood-based biomarkers of AD (amyloid beta (Aβ)) and neurodegeneration (neurofilament light chain (NfL); total tau(TTau)). METHODS In 1,529 Beaver Dam Offspring Study (BOSS) participants (mean age 49 years, standard deviation (SD) = 9; 54% were women), we applied mixed-effects models with baseline risk factors as determinants and 10-year serum biomarker change as outcomes. RESULTS We found that education and inflammatory markers were associated with levels and/or change over time across all three markers of AD and neurodegeneration in the blood. There were baseline associations of measures of cardiovascular health with lower Aβ42/Aβ40. TTau changed little over time and was higher in individuals with diabetes. Individuals with lower risk in a number of cardiovascular and metabolic risk factors, including diabetes, hypertension, and atherosclerosis had slower accumulation of neurodegeneration over time, as determined by NfL levels. CONCLUSION Various lifestyle and health factors, including education and inflammation, were associated with longitudinal changes of neurodegenerative and AD biomarker levels in midlife. If confirmed, these findings could have important implications for developing early lifestyle and health interventions that could potentially slow processes of neurodegeneration and AD.
Collapse
Affiliation(s)
- Natascha Merten
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - A Alex Pinto
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Adam J Paulsen
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Yanjun Chen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Laura M Hancock
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- William S Middleton Memorial Veterans Hospital, WI, USA
| | - Sterling C Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Carla R Schubert
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
13
|
Paulsen AJ, Schubert CR, Pinto AA, Chappell RJ, Chen Y, Cruickshanks KJ, Engelman CD, Ferrucci L, Hancock LM, Johnson SC, Merten N. Associations of sensory and motor function with blood-based biomarkers of neurodegeneration and Alzheimer's disease in midlife. Neurobiol Aging 2022; 120:177-188. [PMID: 36209638 PMCID: PMC9613601 DOI: 10.1016/j.neurobiolaging.2022.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Pathological biomarkers of dementia and Alzheimer's disease (AD) change decades before clinical symptoms. Common sensory and motor changes in aging adults may be early markers of neurodegeneration. We investigated if midlife sensory and motor functions in Beaver Dam Offspring Study (BOSS) participants (N = 1529) were associated with longitudinal changes in blood-based biomarkers of neurodegeneration (neurofilament light chain (NfL); total tau (TTau)) and AD (amyloid beta (Aβ)). Mixed-effects models with baseline sensory and motor function as determinants and 10-year biomarker change as outcome were used. Participants with hearing impairment and worse motor function (among women) showed faster increases in NfL level over time (0.8% per year; 0.3% per year, respectively). There were no significant associations with TTau or Aβ. We found consistent relationships between worse baseline hearing and motor function with a faster increase in neurodegeneration, specifically serum NfL level. Future studies with longer follow-up should determine if sensory and motor changes are more reflective of general neurodegeneration than AD-specific pathology and whether sensory and motor tests may be useful screening tools for neurodegeneration risk.
Collapse
Affiliation(s)
- Adam J Paulsen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Carla R Schubert
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Alex A Pinto
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics and Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - Yanjun Chen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Karen J Cruickshanks
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Luigi Ferrucci
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Laura M Hancock
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sterling C Johnson
- Alzheimer's Disease Research Center and Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Natascha Merten
- Department of Geriatrics and Adult Development, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
14
|
Aschenbrenner AJ, Li Y, Henson RL, Volluz K, Hassenstab J, Verghese P, West T, Meyer MR, Kirmess KM, Fagan AM, Xiong C, Holtzman D, Morris JC, Bateman RJ, Schindler SE. Comparison of plasma and CSF biomarkers in predicting cognitive decline. Ann Clin Transl Neurol 2022; 9:1739-1751. [PMID: 36183195 PMCID: PMC9639639 DOI: 10.1002/acn3.51670] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Concentrations of amyloid-β peptides (Aβ42/Aβ40) and neurofilament light (NfL) can be measured in plasma or cerebrospinal fluid (CSF) and are associated with Alzheimer's disease brain pathology and cognitive impairment. This study directly compared plasma and CSF measures of Aβ42/Aβ40 and NfL as predictors of cognitive decline. METHODS Participants were 65 years or older and cognitively normal at baseline with at least one follow-up cognitive assessment. Analytes were measured with the following types of assays: plasma Aβ42/Aβ40, immunoprecipitation-mass spectrometry; plasma NfL, Simoa; CSF Aβ42/Aβ40, automated immunoassay; CSF NfL plate-based immunoassay. Mixed effects models evaluated the global cognitive composite score over a maximum of 6 years as predicted by the fluid biomarkers. RESULTS Analyses included 371 cognitively normal participants, aged 72.7 ± 5.2 years (mean ± standard deviation) with an average length of follow-up of 3.9 ± 1.6 years. Standardized concentrations of biomarkers were associated with annualized cognitive change: plasma Aβ42/Aβ40, 0.014 standard deviations (95% confidence intervals 0.002 to 0.026); CSF Aβ42/Aβ40, 0.020 (0.008 to 0.032); plasma Nfl, -0.018 (-0.030 to -0.005); and CSF NfL, -0.024 (-0.036 to -0.012). Power analyses estimated that 266 individuals in each treatment arm would be needed to detect a 50% slowing of decline if identified by abnormal plasma measures versus 229 for CSF measures. INTERPRETATION Both plasma and CSF measures of Aβ42/Aβ40 and NfL predicted cognitive decline. A clinical trial that enrolled individuals based on abnormal plasma Aβ42/Aβ40 and NfL levels would require only a marginally larger cohort than if CSF measures were used.
Collapse
Affiliation(s)
- Andrew J. Aschenbrenner
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | - Yan Li
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMOUSA
| | - Rachel L. Henson
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | - Katherine Volluz
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | - Jason Hassenstab
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| | | | | | | | | | - Anne M. Fagan
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMOUSA
| | - David Holtzman
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - John C. Morris
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMOUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
15
|
Xu C, Zhao L, Dong C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:495-512. [DOI: 10.3233/jad-220673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ 42 and Aβ 40). The cerebrospinal fluid (CSF) biomarker Aβ 42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ 42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ 42/40 ratio and plasma Aβ 42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|