1
|
Banack SA, Dunlop RA, Mehta P, Mitsumoto H, Wood SP, Han M, Cox PA. A microRNA diagnostic biomarker for amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae268. [PMID: 39280119 PMCID: PMC11398878 DOI: 10.1093/braincomms/fcae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Blood-based diagnostic biomarkers for amyotrophic lateral sclerosis will improve patient outcomes and positively impact novel drug development. Critical to the development of such biomarkers is robust method validation, optimization and replication with adequate sample sizes and neurological disease comparative blood samples. We sought to test an amyotrophic lateral sclerosis biomarker derived from diverse samples to determine if it is disease specific. Extracellular vesicles were extracted from blood plasma obtained from individuals diagnosed with amyotrophic lateral sclerosis, primary lateral sclerosis, Parkinson's disease and healthy controls. Immunoaffinity purification was used to create a neural-enriched extracellular vesicle fraction. MicroRNAs were measured across sample cohorts using real-time polymerase chain reaction. A Kruskal-Wallis test was used to assess differences in plasma microRNAs followed by post hoc Mann-Whitney tests to compare disease groups. Diagnostic accuracy was determined using a machine learning algorithm and a logistic regression model. We identified an eight-microRNA diagnostic signature for blood samples from amyotrophic lateral sclerosis patients with high sensitivity and specificity and an area under the curve calculation of 98% with clear statistical separation from neurological controls. The eight identified microRNAs represent disease-related biological processes consistent with amyotrophic lateral sclerosis. The direction and magnitude of gene fold regulation are consistent across four separate patient cohorts with real-time polymerase chain reaction analyses conducted in two laboratories from diverse samples and sample collection procedures. We propose that this diagnostic signature could be an aid to neurologists to supplement current clinical metrics used to diagnose amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MND/ALS Research Center, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Moon Han
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | | |
Collapse
|
2
|
Nakamura T, Kawarabayashi T, Shibata M, Kasahara H, Makioka K, Sugawara T, Oka H, Ishizawa K, Amari M, Ueda T, Kinoshita S, Miyamoto Y, Kaito K, Takatama M, Ikeda Y, Shoji M. High levels of plasma neurofilament light chain correlated with brainstem and peripheral nerve damage. J Neurol Sci 2024; 463:123137. [PMID: 39032446 DOI: 10.1016/j.jns.2024.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood neurofilament light chain (NfL) is a minimally invasive, but highly sensitive biomarker of neurological diseases. However, diseases and neurological damage associated with increased NfL remain unclear. Therefore, the present study investigated factors associated with increased plasma NfL levels in various neurological diseases, focal lesions and pathological processes. METHODS This was a retrospective cohort study on 410 participants with various neurological diseases and 17 healthy and cognitively unimpaired controls (HCU). Plasma samples were analyzed to measure NfL using ECL immunoassay. The focal lesions were classified as the cerebrum, cerebellum, brainstem, meninges, spinal cord, peripheral nerves, neuromuscular junction, and muscles based on medical records. A multiple regression analysis and receiver operating characteristic curve (ROC) analysis were performed to investigate whether plasma NfL levels predict specific diseases and focal lesions. RESULTS Plasma NfL levels discriminated between the HCU and all disease groups (area under the curve (AUC), 0.97), with a cut-off value of 63.4 pg/mL. A multiple regression analysis of focal lesions adjusted by pathogenic processes showed that brainstem and peripheral nerve involvement was associated with higher plasma NfL levels. A cut-off value of 53.8 pg/mL of NfL discriminated between the HCU and neurological disease group except for brainstem or peripheral disorders (AUC 0.962), while a cut-off value of 208.0 pg/mL distinguished this group from brainstem or peripheral nervous system disorders (AUC 0.716). DISCUSSION These results demonstrate that plasma NfL has a potential to be a highly sensitive biomarker for neurological diseases and focal lesions.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | - Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takashi Sugawara
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Hironori Oka
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Kunihiko Ishizawa
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Masakuni Amari
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, Mediford Corporation, Tokyo, Japan
| | | | - Yuka Miyamoto
- Bioanalysis Department, Mediford Corporation, Tokyo, Japan
| | - Kozue Kaito
- Bioanalysis Department, Mediford Corporation, Tokyo, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Mikio Shoji
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| |
Collapse
|
3
|
Wolff A, Demleitner AF, Feneberg E, Lingor P. [Smell the smoke before one sees the fire-The oligosymptomatic prodromal phase of neurodegenerative diseases]. DER NERVENARZT 2024; 95:689-696. [PMID: 38630299 DOI: 10.1007/s00115-024-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND With the increasing development of disease-modifying causative treatment, the importance of early diagnosis and detection of asymptomatic or oligosymptomatic early stages of neurodegenerative diseases is increasing. OBJECTIVE Presentation of early stages of neurodegenerative diseases, diagnostic procedures for the early detection and possible treatment consequences. MATERIAL AND METHODS Selective literature search, discussion of basic research and expert recommendations. RESULTS Many neurodegenerative diseases have a prodromal phase preceding the manifest disease that can be diagnosed with current criteria. In this prodromal phase, those affected are often oligosymptomatic but in some cases can already be identified using biomarkers. These developments are already taken into account in diagnostic criteria for some of these prodromal phases. The prodromal phase, in turn, is preceded by an asymptomatic phase which, however, already shows molecular changes and can be identified by biomarkers in some diseases. The early identification and stratification of patients is particularly important when planning studies for disease-modifying treatment, and biomarkers are already being used in clinical trials for this purpose. DISCUSSION Biomarker-based identification of individuals in the prodromal phase of neurodegenerative diseases is already possible for some entities. People who show the first signs of a neurodegenerative disease can be referred to centers for clinical trials and observational studies.
Collapse
Affiliation(s)
| | | | | | - Paul Lingor
- Klinik und Poliklinik für Neurologie, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Deutschland.
- Munich Cluster for Systems Neurology (SyNergy), München, Deutschland.
| |
Collapse
|
4
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Benatar M, Wuu J, Huey ED, McMillan CT, Petersen RC, Postuma R, McHutchison C, Dratch L, Arias JJ, Crawley A, Houlden H, McDermott MP, Cai X, Thakur N, Boxer A, Rosen H, Boeve BF, Dacks P, Cosentino S, Abrahams S, Shneider N, Lingor P, Shefner J, Andersen PM, Al-Chalabi A, Turner MR. The Miami Framework for ALS and related neurodegenerative disorders: an integrated view of phenotype and biology. Nat Rev Neurol 2024; 20:364-376. [PMID: 38769202 PMCID: PMC11216694 DOI: 10.1038/s41582-024-00961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Edward D Huey
- Department of Psychiatry and Human Behaviour, Alpert Medical School of Brown University, Providence, RI, USA
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Ronald Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Laynie Dratch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jalayne J Arias
- Department of Health Policy & Behavioral Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | | | - Henry Houlden
- UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xueya Cai
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Adam Boxer
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Penny Dacks
- Association for Frontotemporal Degeneration, King of Prussia, PA, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Neil Shneider
- Department of Neurology, Columbia University, New York, NY, USA
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Cousins KAQ, Phillips JS, Das SR, O'Brien K, Tropea TF, Chen‐Plotkin A, Shaw LM, Nasrallah IM, Mechanic‐Hamilton D, McMillan CT, Irwin DJ, Lee EB, Wolk DA. Pathologic and cognitive correlates of plasma biomarkers in neurodegenerative disease. Alzheimers Dement 2024; 20:3889-3905. [PMID: 38644682 PMCID: PMC11180939 DOI: 10.1002/alz.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION We investigate pathological correlates of plasma phosphorylated tau 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) across a clinically diverse spectrum of neurodegenerative disease, including normal cognition (NormCog) and impaired cognition (ImpCog). METHODS Participants were NormCog (n = 132) and ImpCog (n = 461), with confirmed β-amyloid (Aβ+/-) status (cerebrospinal fluid, positron emission tomography, autopsy) and single molecule array plasma measurements. Logistic regression and receiver operating characteristic (ROC) area under the curve (AUC) tested how combining plasma analytes discriminated Aβ+ from Aβ-. Survival analyses tested time to clinical dementia rating (global CDR) progression. RESULTS Multivariable models (p-tau+GFAP+NfL) had the best performance to detect Aβ+ in NormCog (ROCAUC = 0.87) and ImpCog (ROCAUC = 0.87). Survival analyses demonstrated that higher NfL best predicted faster CDR progression for both Aβ+ (hazard ratio [HR] = 2.94; p = 8.1e-06) and Aβ- individuals (HR = 3.11; p = 2.6e-09). DISCUSSION Combining plasma biomarkers can optimize detection of Alzheimer's disease (AD) pathology across cognitively normal and clinically diverse neurodegenerative disease. HIGHLIGHTS Participants were clinically heterogeneous, with autopsy- or biomarker-confirmed Aβ. Combining plasma p-tau181, GFAP, and NfL improved diagnostic accuracy for Aβ status. Diagnosis by plasma biomarkers is more accurate in amnestic AD than nonamnestic AD. Plasma analytes show independent associations with tau PET and post mortem Aβ/tau. Plasma NfL predicted longitudinal cognitive decline in both Aβ+ and Aβ- individuals.
Collapse
Affiliation(s)
- Katheryn A. Q. Cousins
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jeffrey S. Phillips
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kyra O'Brien
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas F. Tropea
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alice Chen‐Plotkin
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dawn Mechanic‐Hamilton
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David J. Irwin
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Evans LJ, O'Brien D, Shaw PJ. Current neuroprotective therapies and future prospects for motor neuron disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:327-384. [PMID: 38802178 DOI: 10.1016/bs.irn.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Four medications with neuroprotective disease-modifying effects are now in use for motor neuron disease (MND). With FDA approvals for tofersen, relyvrio and edaravone in just the past year, 2022 ended a quarter of a century when riluzole was the sole such drug to offer to patients. The acceleration of approvals may mean we are witnessing the beginning of a step-change in how MND can be treated. Improvements in understanding underlying disease biology has led to more therapies being developed to target specific and multiple disease mechanisms. Consideration for how the pipeline of new therapeutic agents coming through in clinical and preclinical development can be more effectively evaluated with biomarkers, advances in patient stratification and clinical trial design pave the way for more successful translation for this archetypal complex neurodegenerative disease. While it must be cautioned that only slowed rates of progression have so far been demonstrated, pre-empting rapid neurodegeneration by using neurofilament biomarkers to signal when to treat, as is currently being trialled with tofersen, may be more effective for patients with known genetic predisposition to MND. Early intervention with personalized medicines could mean that for some patients at least, in future we may be able to substantially treat what is considered by many to be one of the most distressing diseases in medicine.
Collapse
Affiliation(s)
- Laura J Evans
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - David O'Brien
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
8
|
Rotem RS, Bellavia A, Paganoni S, Weisskopf MG. Medication use and risk of amyotrophic lateral sclerosis: using machine learning for an exposome-wide screen of a large clinical database. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:367-375. [PMID: 38426489 PMCID: PMC11075178 DOI: 10.1080/21678421.2024.2320878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Accumulating evidence suggests that non-genetic factors have important etiologic roles in amyotrophic lateral sclerosis (ALS), yet identification of specific culprit factors has been challenging. Many medications target biological pathways implicated in ALS pathogenesis, and screening large pharmacologic datasets for signals could greatly accelerate the identification of risk-modulating pharmacologic factors for ALS. METHOD We conducted a high-dimensional screening of patients' history of medication use and ALS risk using an advanced machine learning approach based on gradient-boosted decision trees coupled with Bayesian model optimization and repeated data sampling. Clinical and medication dispensing data were obtained from a large Israeli health fund for 501 ALS cases and 4,998 matched controls using a lag period of 3 or 5 years prior to ALS diagnosis for ascertaining medication exposure. RESULTS Of over 1,000 different medication classes, we identified 8 classes that were consistently associated with increased ALS risk across independently trained models, where most are indicated for control of symptoms implicated in ALS. Some suggestive protective effects were also observed, notably for vitamin E. DISCUSSION Our results indicate that use of certain medications well before the typically recognized prodromal period was associated with ALS risk. This could result because these medications increase ALS risk or could indicate that ALS symptoms can manifest well before suggested prodromal periods. The results also provide further evidence that vitamin E may be a protective factor for ALS. Targeted studies should be performed to elucidate the possible pathophysiological mechanisms while providing insights for therapeutics design.
Collapse
Affiliation(s)
- Ran S Rotem
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
- KSM Research and Innovation Institute, Maccabi Healthcare Services, Israel
| | - Andrea Bellavia
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Vaage AM, Benth JŠ, Meyer HE, Holmøy T, Nakken O. Premorbid lipid levels and long-term risk of ALS-a population-based cohort study. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:358-366. [PMID: 38117120 DOI: 10.1080/21678421.2023.2295455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE To assess the temporal relationship between premorbid lipid levels and long-term amyotrophic lateral sclerosis (ALS) risk. METHODS From Norwegian cardiovascular health surveys (1974-2003), we collected information on total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glucose, and other cardiovascular risk factors. ALS incidence and mortality were identified through validated Norwegian health registries. The relation between premorbid lipid levels and ALS risk was assessed by Cox regression models. RESULTS Out of 640,066 study participants (51.5% females), 974 individuals (43.5% females) developed ALS. Mean follow-up time was 23.7 (SD 7.1) years among ALS cases. One mmol/l increase in LDL-C was associated with 6% increase in risk for ALS (hazard ratio 1.06 [95% CI: 1.01-1.09]). Higher levels of TC and TG were also associated with increased ALS risk, but only within the last 6-7 years prior to ALS diagnosis or death. No association between HDL-C and ALS risk was found. Adjusting for body mass index, birth cohort, smoking, and physical activity did not alter the results. CONCLUSIONS Higher levels of LDL-C are associated with increased ALS risk over 40 years later, compatible with a causal relationship. The temporal relationship between TG, TC, and ALS risk suggests that increased levels of these lipid biomarkers represent consequences of ALS.
Collapse
Affiliation(s)
- Anders Myhre Vaage
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Haakon E Meyer
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway, and
- Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola Nakken
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
10
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Caggiano C, Morselli M, Qian X, Celona B, Thompson M, Wani S, Tosevska A, Taraszka K, Heuer G, Ngo S, Steyn F, Nestor P, Wallace L, McCombe P, Heggie S, Thorpe K, McElligott C, English G, Henders A, Henderson R, Lomen-Hoerth C, Wray N, McRae A, Pellegrini M, Garton F, Zaitlen N. Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305503. [PMID: 38645132 PMCID: PMC11030489 DOI: 10.1101/2024.04.08.24305503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cell-free DNA (cfDNA) is increasingly recognized as a promising biomarker candidate for disease monitoring. However, its utility in neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS), remains underexplored. Existing biomarker discovery approaches are tailored to a specific disease context or are too expensive to be clinically practical. Here, we address these challenges through a new approach combining advances in molecular and computational technologies. First, we develop statistical tools to select tissue-informative DNA methylation sites relevant to a disease process of interest. We then employ a capture protocol to select these sites and perform targeted methylation sequencing. Multi-modal information about the DNA methylation patterns are then utilized in machine learning algorithms trained to predict disease status and disease progression. We applied our method to two independent cohorts of ALS patients and controls (n=192). Overall, we found that the targeted sites accurately predicted ALS status and replicated between cohorts. Additionally, we identified epigenetic features associated with ALS phenotypes, including disease severity. These findings highlight the potential of cfDNA as a non-invasive biomarker for ALS.
Collapse
Affiliation(s)
- C Caggiano
- Department of Neurology, UCLA, Los Angeles, California
- Institute of Genomic Health, Icahn School of Medicine at Mt Sinai, New York, New York
| | - M Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - X Qian
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - B Celona
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - M Thompson
- Department of Neurology, UCLA, Los Angeles, California
- Systems and Synthetic Biology, Centre for Genomic Regulation, Barcelona, Spain
| | - S Wani
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - A Tosevska
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - K Taraszka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - G Heuer
- Computational and Systems Biology Interdepartmental Program, UCLA, Los Angeles, California
| | - S Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - F Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - P Nestor
- Queensland Brain Institute, Unviversity of Queensland, Brisbane, Australia
- Mater Public Hospital, Brisbane, Australia
| | - L Wallace
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - P McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S Heggie
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - K Thorpe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - G English
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A Henders
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - R Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - C Lomen-Hoerth
- Department of Neurology, UCSF, San Francisco, California
| | - N Wray
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A McRae
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - M Pellegrini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - F Garton
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - N Zaitlen
- Department of Neurology, UCLA, Los Angeles, California
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
12
|
Berthiaume AA, Reda SM, Kleist KN, Setti SE, Wu W, Johnston JL, Taylor RW, Stein LR, Moebius HJ, Church KJ. ATH-1105, a small-molecule positive modulator of the neurotrophic HGF system, is neuroprotective, preserves neuromotor function, and extends survival in preclinical models of ALS. Front Neurosci 2024; 18:1348157. [PMID: 38389786 PMCID: PMC10881713 DOI: 10.3389/fnins.2024.1348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disorder, primarily affects the motor neurons of the brain and spinal cord. Like other neurodegenerative conditions, ongoing pathological processes such as increased inflammation, excitotoxicity, and protein accumulation contribute to neuronal death. Hepatocyte growth factor (HGF) signaling through the MET receptor promotes pro-survival, anti-apoptotic, and anti-inflammatory effects in multiple cell types, including the neurons and support cells of the nervous system. This pleiotropic system is therefore a potential therapeutic target for treatment of neurodegenerative disorders such as ALS. Here, we test the effects of ATH-1105, a small-molecule positive modulator of the HGF signaling system, in preclinical models of ALS. Methods In vitro, the impact of ATH-1105 on HGF-mediated signaling was assessed via phosphorylation assays for MET, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Neuroprotective effects of ATH-1105 were evaluated in rat primary neuron models including spinal motor neurons, motor neuron-astrocyte cocultures, and motor neuron-human muscle cocultures. The anti-inflammatory effects of ATH-1105 were evaluated in microglia- and macrophage-like cell systems exposed to lipopolysaccharide (LPS). In vivo, the impact of daily oral treatment with ATH-1105 was evaluated in Prp-TDP43A315T hemizygous transgenic ALS mice. Results In vitro, ATH-1105 augmented phosphorylation of MET, ERK, and AKT. ATH-1105 attenuated glutamate-mediated excitotoxicity in primary motor neurons and motor neuron- astrocyte cocultures, and had protective effects on motor neurons and neuromuscular junctions in motor neuron-muscle cocultures. ATH-1105 mitigated LPS-induced inflammation in microglia- and macrophage-like cell systems. In vivo, ATH-1105 treatment resulted in improved motor and nerve function, sciatic nerve axon and myelin integrity, and survival in ALS mice. Treatment with ATH-1105 also led to reductions in levels of plasma biomarkers of inflammation and neurodegeneration, along with decreased pathological protein accumulation (phospho-TDP-43) in the sciatic nerve. Additionally, both early intervention (treatment initiation at 1 month of age) and delayed intervention (treatment initiation at 2 months of age) with ATH-1105 produced benefits in this preclinical model of ALS. Discussion The consistent neuroprotective and anti-inflammatory effects demonstrated by ATH-1105 preclinically provide a compelling rationale for therapeutic interventions that leverage the positive modulation of the HGF pathway as a treatment for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wu
- Athira Pharma, Inc., Bothell, WA, United States
| | | | | | | | | | | |
Collapse
|
13
|
Smith EN, Lee J, Prilutsky D, Zicha S, Wang Z, Han S, Zach N. Plasma neurofilament light levels show elevation two years prior to diagnosis of amyotrophic lateral sclerosis in the UK Biobank. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:170-176. [PMID: 38013452 DOI: 10.1080/21678421.2023.2285428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease with profound unmet need. In patients carrying genetic mutations, elevations in neurofilament light (NfL) have been shown to precede symptom onset, however, the natural history of NfL in general ALS patients is less characterized. METHODS We performed a secondary analysis of the UK Biobank Pharma Proteomics Project (UKB-PPP), a subset of the UK Biobank, a population-based cohort study in the United Kingdom, to examine plasma NfL levels in 237 participants subsequently diagnosed with ALS. We applied logistic and Cox proportional hazards regression to compare cases to 42,752 population-based and 948 age and sex-matched controls. Genetic information was obtained from exome and genotype array data.Results and Conclusions: We observed that NfL was 1.42-fold higher in cases vs population-based controls. At two to three years pre-diagnosis, NfL levels in patients exceeded the 95th percentile of age and sex-matched controls. A time-to-diagnosis analysis showed that a 2-fold increase in NfL levels was associated with a 3.4-fold risk of diagnosis per year, with NfL being most predictive of case status at two years (AUC = 0.96). Participants with genetic variation that might put them at risk for familial disease (N = 46) did not show a different pattern of association than those without (N = 191). DISCUSSION Our findings show that NfL is elevated and discriminative of future ALS diagnosis up to two years prior to diagnosis in patients with and without genetic risk variants.
Collapse
Affiliation(s)
- Erin N Smith
- Human Genetics and Systems Biology, Takeda Development Center Americas, Inc. San Diego, CA, USA
| | - Jonghun Lee
- Human Genetics and Systems Biology, Takeda Development Center Americas, Inc. Cambridge, MA, USA
| | - Daria Prilutsky
- Human Genetics and Systems Biology, Takeda Development Center Americas, Inc. Cambridge, MA, USA
| | - Stephen Zicha
- Neuroscience Translational Medicine, Takeda Development Center Americas, Inc. Cambridge, MA, USA, and
| | - Zemin Wang
- Neuroscience Translational Medicine, Takeda Development Center Americas, Inc. Cambridge, MA, USA, and
| | - Steve Han
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas, Inc. Cambridge, MA, USA
| | - Neta Zach
- Neuroscience Translational Medicine, Takeda Development Center Americas, Inc. Cambridge, MA, USA, and
| |
Collapse
|
14
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
15
|
Kutlubaev MA. [Promising approaches to the pathogenetic therapy of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:13-21. [PMID: 38676672 DOI: 10.17116/jnevro202412404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis is a severe incurable disease of the nervous system. Currently only methods of palliative care for the patients with this disease are available. Few medications for the pathogenetic therapy are registered in some countries, i.e. riluzole, edaravon, sodium phenylbutyrate/taurursodiol as well as tofersen (conditionally). Their efficacy is relatively low. The main directions in the development of pathogenetic therapy of ALS include gene therapy, use of stem cells, immunomodulators, agents affecting gut microbiota. A search is also underway for low-molecular compounds with neuroprotective and antioxidant properties. Perspective direction is prevention of ALS. This will be possible when biomarkers for identification of patients in pre-manifest/prodromal stage are detected.
Collapse
|
16
|
Martinelli I, Zucchi E, Simonini C, Gianferrari G, Bedin R, Biral C, Ghezzi A, Fini N, Carra S, Mandrioli J. SerpinA1 levels in amyotrophic lateral sclerosis patients: An exploratory study. Eur J Neurol 2024; 31:e16054. [PMID: 37679868 PMCID: PMC11235621 DOI: 10.1111/ene.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND SerpinA1, a serine protease inhibitor, is involved in the modulation of microglial-mediated inflammation in neurodegenerative diseases. We explored SerpinA1 levels in cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients to understand its potential role in the pathogenesis of the disease. METHODS SerpinA1, neurofilament light (NfL) and heavy (NfH) chain, and chitinase-3-like protein-1 (CHI3L1) were determined in CSF and serum of ALS patients (n = 110) and healthy controls (n = 10) (automated next-generation ELISA), and correlated with clinical parameters, after identifying three classes of progressors (fast, intermediate, slow). Biomarker levels were analyzed for diagnostic power and association with progression and survival. RESULTS SerpinA1serum was significantly decreased in ALS (median: 1032 μg/mL) compared with controls (1343 μg/mL) (p = 0.02). SerpinA1CSF was elevated only in fast progressors (8.6 μg/mL) compared with slow (4.43 μg/mL, p = 0.01) and intermediate (4.42 μg/mL, p = 0.03) progressors. Moreover, SerpinA1CSF correlated with neurofilament and CHI3L1 levels in CSF. Contrarily to SerpinA1CSF , neurofilament and CHI3L1 concentrations in CSF correlated with measures of disease progression in ALS, while SerpinA1serum mildly related with time to generalization (rho = 0.20, p = 0.04). In multivariate analysis, the ratio between serum and CSF SerpinA1 (SerpinA1 ratio) and NfHCSF were independently associated with survival. CONCLUSIONS Higher SerpinA1CSF levels are found in fast progressors, suggesting SerpinA1 is a component of the neuroinflammatory mechanisms acting upon fast-progressing forms of ALS. Both neurofilaments or CHI3L1CSF levels outperformed SerpinA1 at predicting disease progression rate in our cohort, and so the prognostic value of SerpinA1 alone as a measure remains inconclusive.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly
| | - Elisabetta Zucchi
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Neuroscience PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly
| | - Cecilia Simonini
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Roberta Bedin
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Chiara Biral
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nicola Fini
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Jessica Mandrioli
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
17
|
Cotet C, Alarcan H, Hérault O, Corcia P, Vourc’h P, Andres CR, Blasco H, Veyrat-Durebex C. Neutrophil to Lymphocyte Ratio as a Prognostic Marker in Amyotrophic Lateral Sclerosis. Biomolecules 2023; 13:1689. [PMID: 38136561 PMCID: PMC10741910 DOI: 10.3390/biom13121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative motor neuron disease and remains misunderstood with a difficult diagnosis and prognosis. The implication of the immune system is recognized in ALS pathophysiology, hence the interest in leucocyte count as lymphocytes and neutrophils. The neutrophil-to-lymphocyte ratio (NLR) has recently been used as a prognosis factor to assess the progression of ALS. Thus, the aim of this study was to analyze the evolution of the NLR during disease evolution in a French cohort of ALS patients and its relation with survival. In this monocentric retrospective study, clinical parameters and NLR were collected in ALS patients followed at the University Hospital of Tours (France). ALS patients were subdivided into three groups regarding their NLR value at inclusion: group 1 (NLR < 2); group 2 (NLR: 2-3); group 3 (NLR > 3). A comparison of qualitative and quantitative clinical and biological variables between NLR groups was performed. Then, Cox regressions were carried out to determine the association of NLR with survival. We observed a significant correlation of NLR with ALSFRS-r score (p < 0.0001) and with vital forced capacity (p = 0.0004) at inclusion. We observed that increased NLR at diagnosis is associated with decreased ALS patients' survival.
Collapse
Affiliation(s)
- Camille Cotet
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France (H.A.); (P.V.); (C.R.A.); (H.B.)
| | - Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France (H.A.); (P.V.); (C.R.A.); (H.B.)
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France;
| | - Olivier Hérault
- Service d’Hématologie Biologique, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France;
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France;
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc’h
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France (H.A.); (P.V.); (C.R.A.); (H.B.)
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France;
| | - Christian R. Andres
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France (H.A.); (P.V.); (C.R.A.); (H.B.)
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France;
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France (H.A.); (P.V.); (C.R.A.); (H.B.)
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France;
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France (H.A.); (P.V.); (C.R.A.); (H.B.)
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France;
| |
Collapse
|
18
|
Thompson AG, Marsden R, Talbot K, Turner MR. Primary care blood tests show lipid profile changes in pre-symptomatic amyotrophic lateral sclerosis. Brain Commun 2023; 5:fcad211. [PMID: 37577380 PMCID: PMC10412752 DOI: 10.1093/braincomms/fcad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/04/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Multiple sources of evidence suggest that changes in metabolism may precede the onset of motor symptoms in amyotrophic lateral sclerosis. This study aimed to seek evidence for alterations in the levels of blood indices collected routinely in the primary care setting prior to the onset of motor symptoms in amyotrophic lateral sclerosis. Premorbid data, measured as part of routine health screening, for total cholesterol, high-density and low-density lipoprotein cholesterol, triglyceride, glycated haemoglobin A1c and creatinine were collected retrospectively from (i) a cohort of amyotrophic lateral sclerosis patients attending a specialist clinic (n = 143) and (ii) from primary care-linked data within UK Biobank. Data were fitted using linear mixed effects models with linear b-splines to identify inflection points, controlling for age and sex. In specialist amyotrophic lateral sclerosis clinic cases, models indicated decreasing levels of total and low-density lipoprotein cholesterol prior to an inflection point in the years before symptom onset (total cholesterol 3.25 years, low-density lipoprotein cholesterol 1.25 years), after which they stabilized or rose. A similar pattern was observed in amyotrophic lateral sclerosis cases within UK Biobank, occurring several years prior to diagnosis (total cholesterol 7 years, low-density lipoprotein cholesterol 7.25 years), differing significantly from matched controls. High-density lipoprotein cholesterol followed a similar pattern but was less robust to sensitivity analyses. Levels of triglyceride remained stable throughout. Glycated haemoglobin temporal profiles were not consistent between the clinic and biobank cohorts. Creatinine level trajectories prior to amyotrophic lateral sclerosis did not differ significantly from controls but decreased significantly in the symptomatic period after an inflection point of 0.25 years after symptom onset (clinic cohort) or 0.5 years before diagnosis (UK Biobank). These data provide further evidence for a pre-symptomatic period of dynamic metabolic change in amyotrophic lateral sclerosis, consistently associated with alterations in blood cholesterols. Such changes may ultimately contribute to biomarkers applicable to population screening and for pathways guiding the targeting of preventative therapy.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Rachael Marsden
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
19
|
Faber J, Berger M, Carlo W, Hübener-Schmid J, Schaprian T, Santana MM, Grobe-Einsler M, Onder D, Koyak B, Giunti P, Garcia-Moreno H, Gonzalez-Robles C, Lima M, Raposo M, Melo ARV, de Almeida LP, Silva P, Pinto MM, van de Warrenburg BP, van Gaalen J, de Vries J, Jeroen, Oz G, Joers JM, Synofzik M, Schöls L, Riess O, Infante J, Manrique L, Timmann D, Thieme A, Jacobi H, Reetz K, Dogan I, Onyike C, Povazan M, Schmahmann J, Ratai EM, Schmid M, Klockgether T. Stage-dependent biomarker changes in spinocerebellar ataxia type 3. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.21.23287817. [PMID: 37163081 PMCID: PMC10168503 DOI: 10.1101/2023.04.21.23287817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.
Collapse
Affiliation(s)
- Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology
| | - Wilke Carlo
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tamara Schaprian
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marcus Grobe-Einsler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Dement Onder
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Berkan Koyak
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mafalda Raposo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Patrick Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria M Pinto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bart P. van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center
- Department of Neurology, Rinjstate Hospital, Arnhem, The Netherlands
| | | | - Jeroen
- University Medical Center Groningen, Neurology
| | - Gulin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jon Infante
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Centro de investigación biomédica en red de enfermedades neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Spain
| | - Leire Manrique
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen
| | - Heike Jacobi
- Department of Neurology, University Hospital of Heidelberg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Chiadikaobi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Michal Povazan
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School
| | - Eva-Maria Ratai
- Massachusetts General Hospital, Department of Radiology, A. A. Martinos Center for Biomedical Imaging and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
21
|
Cousins KAQ, Shaw LM, Shellikeri S, Dratch L, Rosario L, Elman LB, Quinn C, Amado DA, Wolk DA, Tropea TF, Chen-Plotkin A, Irwin DJ, Grossman M, Lee EB, Trojanowski JQ, McMillan CT. Elevated Plasma Phosphorylated Tau 181 in Amyotrophic Lateral Sclerosis. Ann Neurol 2022; 92:807-818. [PMID: 35877814 PMCID: PMC9588516 DOI: 10.1002/ana.26462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Plasma phosphorylated tau (p-tau181 ) is reliably elevated in Alzheimer's disease (AD), but less explored is its specificity relative to other neurodegenerative conditions. Here, we find novel evidence that plasma p-tau181 is elevated in amyotrophic lateral sclerosis (ALS), a neurodegenerative condition typically lacking tau pathology. We performed a detailed evaluation to identify the clinical correlates of elevated p-tau181 in ALS. METHODS Patients were clinically or pathologically diagnosed with ALS (n = 130) or AD (n = 79), or were healthy non-impaired controls (n = 26). Receiver operating characteristic (ROC) curves were analyzed and area under the curve (AUC) was used to discriminate AD from ALS. Within ALS, Mann-Whitney-Wilcoxon tests compared analytes by presence/absence of upper motor neuron and lower motor neuron (LMN) signs. Spearman correlations tested associations between plasma p-tau181 and postmortem neuron loss. RESULTS A Wilcoxon test showed plasma p-tau181 was higher in ALS than controls (W = 2,600, p = 0.000015), and ROC analyses showed plasma p-tau181 poorly discriminated AD and ALS (AUC = 0.60). In ALS, elevated plasma p-tau181 was associated with LMN signs in cervical (W = 827, p = 0.0072), thoracic (W = 469, p = 0.00025), and lumbosacral regions (W = 851, p = 0.0000029). In support of LMN findings, plasma p-tau181 was associated with neuron loss in the spinal cord (rho = 0.46, p = 0.017), but not in the motor cortex (p = 0.41). Cerebrospinal spinal fluid p-tau181 and plasma neurofilament light chain were included as reference analytes, and demonstrate specificity of findings. INTERPRETATION We found strong evidence that plasma p-tau181 is elevated in ALS and may be a novel marker specific to LMN dysfunction. ANN NEUROL 2022;92:807-818.
Collapse
Affiliation(s)
- Katheryn A Q Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sanjana Shellikeri
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Laynie Dratch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luis Rosario
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lauren B Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Colin Quinn
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Cousins KAQ, Shaw LM, Chen-Plotkin A, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Grossman M, Irwin DJ. Distinguishing Frontotemporal Lobar Degeneration Tau From TDP-43 Using Plasma Biomarkers. JAMA Neurol 2022; 79:1155-1164. [PMID: 36215050 PMCID: PMC9552044 DOI: 10.1001/jamaneurol.2022.3265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
Importance Biomarkers are lacking that can discriminate frontotemporal lobar degeneration (FTLD) associated with tau (FTLD-tau) or TDP-43 (FTLD-TDP). Objective To test whether plasma biomarkers glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), or their ratio (GFAP/NfL) differ between FTLD-tau and FTLD-TDP. Design, Setting, and Participants This retrospective cross-sectional study included data from 2009 to 2020 from the University of Pennsylvania Integrated Neurodegenerative Disease Database, with a median (IQR) follow-up duration of 2 (0.3-4.2) years. The training sample was composed of patients with autopsy-confirmed and familial FTLD; nonimpaired controls were included as a reference group. The independent validation sample included patients with FTD with a clinical diagnosis of progressive supranuclear palsy syndrome (PSPS) associated with tau (PSPS-tau) or amytrophic lateral sclerosis (ALS) associated with TDP-43 (ALS-TDP). In patients with FTLD with autopsy-confirmed or variant-confirmed pathology, receiver operating characteristic (ROC) curves tested the GFAP/NfL ratio and established a pathology-confirmed cut point. The cut point was validated in an independent sample of patients with clinical frontotemporal dementia (FTD). Data were analyzed from February to July 2022. Exposures Clinical, postmortem histopathological assessments, and plasma collection. Main Outcomes and Measures ROC and area under the ROC curve (AUC) with 90% CIs evaluated discrimination of pure FTLD-tau from pure FTLD-TDP using plasma GFAP/NfL ratio; the Youden index established optimal cut points. Sensitivity and specificity of cut points were assessed in an independent validation sample. Results Of 349 participants with available plasma data, 234 met inclusion criteria (31 controls, 141 in the training sample, and 62 in the validation sample). In the training sample, patients with FTLD-tau were older than patients with FTLD-TDP (FTLD-tau: n = 46; mean [SD] age, 65.8 [8.29] years; FTLD-TDP: n = 95; mean [SD] age, 62.3 [7.82] years; t84.6 = 2.45; mean difference, 3.57; 95% CI, 0.67-6.48; P = .02) but with similar sex distribution (FTLD-tau: 27 of 46 [59%] were male; FTLD-TDP: 51 of 95 [54%] were male; χ21 = 0.14; P = .70). In the validation sample, patients with PSPS-tau were older than those with ALS-TDP (PSPS-tau: n = 31; mean [SD] age, 69.3 [7.35] years; ALS-TDP: n = 31; mean [SD] age, 54.6 [10.17] years; t54.6 = 6.53; mean difference, 14.71; 95% CI, 10.19-19.23; P < .001) and had fewer patients who were male (PSPS-tau: 9 of 31 [29%] were male; ALS-TDP: 22 of 31 [71%] were male; χ21 = 9.3; P = .002). ROC revealed excellent discrimination of FTLD-tau from FTLD-TDP by plasma GFAP/NfL ratio (AUC = 0.89; 90% CI, 0.82-0.95; sensitivity = 0.73; 90% CI, 0.65-0.89; specificity = 0.89; 90% CI, 0.78-0.98), which was higher than either GFAP level alone (AUC = 0.65; 90% CI, 0.54-0.76) or NfL levels alone (AUC = 0.75; 90% CI, 0.64-0.85). In the validation sample, there was sensitivity of 0.84 (90% CI, 0.66-0.94) and specificity of 0.81 (90% CI, 0.62-0.91) when applying the autopsy-derived plasma GFAP/NfL threshold. Conclusions and Relevance The plasma ratio of GFAP/NfL may discriminate FTLD-tau from FTLD-TDP.
Collapse
Affiliation(s)
- Katheryn A. Q. Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Corey T. McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
23
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
24
|
Sturmey E, Malaspina A. Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta Neurol Scand 2022; 146:375-388. [PMID: 36156207 PMCID: PMC9828487 DOI: 10.1111/ane.13698] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease among adults. With diagnosis reached relatively late into the disease process, extensive motor cell loss narrows the window for therapeutic opportunities. Clinical heterogeneity in ALS and the lack of disease-specific biomarkers have so far led to large-sized clinical trials with long follow-up needed to define clinical outcomes. In advanced ALS patients, there is presently limited scope to use imaging or invasive cerebrospinal fluid (CSF) collection as a source of disease biomarkers. The development of more patient-friendly and accessible blood biomarker assays is hampered by analytical hurdles like the matrix effect of blood components. However, blood also provides the opportunity to identify disease-specific adaptive changes of the stoichiometry and conformation of target proteins and the endogenous immunological response to low-abundance brain peptides, such as neurofilaments (Nf). Among those biomarkers under investigation in ALS, the change in concentration before or after diagnosis of Nf has been shown to aid prognostication and to allow the a priori stratification of ALS patients into smaller sized and clinically more homogeneous cohorts, supporting more affordable clinical trials. Here, we discuss the technical hurdles affecting reproducible and sensitive biomarker measurement in blood. We also summarize the state of the art of non-CSF biomarkers in the study of prognosis, disease progression, and treatment response. We will then address the potential as disease-specific biomarkers of the newly discovered cryptic peptides which are formed down-stream of TDP-43 loss of function, the hallmark of ALS pathobiology.
Collapse
Affiliation(s)
- Ellie Sturmey
- Centre of Neuroscience, Surgery and Trauma, Queen Mary University of London, London, UK
| | - Andrea Malaspina
- Centre of Neuroscience, Surgery and Trauma, Queen Mary University of London, London, UK.,Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
25
|
Petri S. Major research advances in amyotrophic lateral sclerosis in 2021. Lancet Neurol 2021; 21:14-15. [PMID: 34942124 DOI: 10.1016/s1474-4422(21)00420-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|