1
|
Wagner M, Berecki G, Fazeli W, Nussbaum C, Flemmer AW, Frizzo S, Heer F, Heinen F, Horton R, Jacotin H, Motel W, Spar B, Klein C, Siegel C, Hübener C, Stöcklein S, Paolini M, Staudt M, Tacke M, Wolff M, Petrou S, Souza M, Borggraefe I. Antisense oligonucleotide treatment in a preterm infant with early-onset SCN2A developmental and epileptic encephalopathy. Nat Med 2025:10.1038/s41591-025-03656-0. [PMID: 40263630 DOI: 10.1038/s41591-025-03656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
Early-onset SCN2A developmental and epileptic encephalopathy is caused by SCN2A gain-of-function variants. Here we describe the clinical experience with intrathecally administered elsunersen, a gapmer antisense oligonucleotide targeting SCN2A, in a female preterm infant with early-onset SCN2A developmental and epileptic encephalopathy, in an expanded access program. Before elsunersen treatement, the patient was in status epilepticus for 7 weeks with a seizure frequency of 20-25 per hour. Voltage-clamp experiments confirmed impaired channel inactivation and increased persistent current consistent with a gain-of-function mechanism. Elsunersen treatment demonstrated a favorable safety profile with no severe or serious adverse events reported after 19 intrathecal administrations over 20 months. After administration in combination with sodium channel blockers, status epilepticus was interrupted intermittently and ultimately ceased after continued dosing. A >60% reduction in seizure frequency corresponding to five to seven seizures per hour was observed, which has been sustained during follow-up until the age of 22 months. These data provide preliminary insights on the safety and efficacy of elsunersen in a preterm infant. Additional investigation on the benefits of elsunersen in clinical trials is warranted.
Collapse
Affiliation(s)
- Matias Wagner
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics and Comprehensive Epilepsy Center, Munich University Center for Children with Medical and Developmental Complexity - MUC iSPZ Hauner, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Centre Munich, German Research Center for Health and Environment, Munich, Germany
| | - Géza Berecki
- Ion Channels and Human Diseases Group, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Walid Fazeli
- Department of Pediatric Neurology, Children's Hospital, University Hospital Bonn, Bonn, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
| | | | - Farina Heer
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics and Comprehensive Epilepsy Center, Munich University Center for Children with Medical and Developmental Complexity - MUC iSPZ Hauner, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics and Comprehensive Epilepsy Center, Munich University Center for Children with Medical and Developmental Complexity - MUC iSPZ Hauner, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
| | | | | | | | - Brian Spar
- Praxis Precision Medicines, Boston, MA, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
| | | | - Christoph Hübener
- Department of Obstetrics and Gynecology, Ludwig Maximilians University Hospital, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, Ludwig Maximilians University Hospital, Munich, Germany
| | - Marco Paolini
- Department of Radiology, Ludwig Maximilians University Hospital, Munich, Germany
| | - Martin Staudt
- Department of Pediatric Palliative Care, Ludwig Maximilians University Hospital, Munich, Germany
| | - Moritz Tacke
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics and Comprehensive Epilepsy Center, Munich University Center for Children with Medical and Developmental Complexity - MUC iSPZ Hauner, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany
| | - Markus Wolff
- Swiss Epilepsy Center, Klinik Lengg AG, Zurich, Switzerland
| | - Steven Petrou
- Ion Channels and Human Diseases Group, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Praxis Precision Medicines, Boston, MA, USA
| | | | - Ingo Borggraefe
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics and Comprehensive Epilepsy Center, Munich University Center for Children with Medical and Developmental Complexity - MUC iSPZ Hauner, Dr. v. Hauner Children's Hospital, Ludwig Maximilians University Hospital, Munich, Germany.
| |
Collapse
|
2
|
Kim J, Shaker B, Ko A, Yoo S, Na D, Kang HC. Precision medicine approach for in vitro modeling and computational screening of anti-epileptic drugs in pediatric epilepsy patients with SCN2A (R1629L) mutation. Comput Biol Med 2025; 191:110100. [PMID: 40198980 DOI: 10.1016/j.compbiomed.2025.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to develop personalized anti-epileptic drugs for pediatric patients with an SCN2A (R1629L) mutation, which is unresponsive to conventional sodium channel blockers. The mutation was identified using genomic DNA sequencing, and patient-derived induced pluripotent stem cells (iPSCs) were differentiated into the neuronal network to mimic seizure activity. A total of 1.6 million compounds were screened using computational methods, identifying five candidates with high affinity to the mutant SCN2A protein, low potential toxicity, and high blood-brain barrier permeability. These compounds were pharmacologically evaluated using the patient-derived in vitro seizure model, which replicated the abnormal electrophysiological characteristics of epilepsy. Two of the five candidate compounds effectively modulated electrophysiological activities; moreover, these compounds were 100 times more potent than phenytoin. Therefore, this study demonstrates the feasibility of precision medicine in epilepsy treatment, emphasizing the benefits of patient-derived in vitro seizure models and computational drug screening. Additionally, this study highlights the potential of targeted therapeutic development for patients unresponsive to conventional therapies, showcasing a promising approach for personalized medical interventions in epilepsy.
Collapse
Affiliation(s)
- Jihun Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, 03722, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, 03722, Republic of Korea; Hanim Precision Medicine Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sunggon Yoo
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, 03722, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, 03722, Republic of Korea; Hanim Precision Medicine Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Jia L, Li M, Pachernegg S, Sedo A, Jancovski N, Burbano LE, Dalby K, Nemiroff A, Reid C, Maljevic S, Petrou S. Variant-specific in vitro neuronal network phenotypes and drug sensitivity in SCN2A developmental and epileptic encephalopathy. J Neurochem 2024; 168:3950-3961. [PMID: 38544375 DOI: 10.1111/jnc.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/27/2024]
Abstract
De novo variants in the NaV1.2 voltage-gated sodium channel gene SCN2A are among the major causes of developmental and epileptic encephalopathies (DEE). Based on their biophysical impact on channel conductance and gating, SCN2A DEE variants can be classified into gain-of-function (GoF) or loss-of-function (LoF). Clinical and functional data have linked early seizure onset DEE to the GoF SCN2A variants, whereas late seizure onset DEE is associated with the loss of SCN2A function. This study aims to assess the impact of GoF and LoF SCN2A variants on cultured neuronal network activity and explore their modulation by selected antiseizure medications (ASM). To this end, primary cortical cultures were generated from two knock-in mouse lines carrying variants corresponding to human GoF SCN2A p.R1882Q and LoF p.R853Q DEE variant. In vitro neuronal network activity and responses to ASM were analyzed using multielectrode array (MEA) between 2 and 4 weeks in culture. The SCN2A p.R1882Q neuronal cultures showed significantly greater mean firing and burst firing. Their network synchronicity was also higher. In contrast, the SCN2A p.R853Q cultures showed lower mean firing rate, and burst firing events were less frequent. The network synchronicity was also lower. Phenytoin and levetiracetam reduced the excitability of GoF cultures, while retigabine showed differential and potentially beneficial effects on cultures with both GoF and LoF variants. We conclude that in vitro neuronal networks harboring SCN2A GoF or LoF DEE variants present with distinctive phenotypes and responses to ASM.
Collapse
Affiliation(s)
- Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Svenja Pachernegg
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelley Dalby
- RogCon Biosciences, San Diego, California, USA
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Alex Nemiroff
- RogCon Biosciences, San Diego, California, USA
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Christopher Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- RogCon Biosciences, San Diego, California, USA
- Praxis Precision Medicines, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Brunetti S, Muda A, Conti C, Gazzina S, Accorsi P, Giordano L. Are SCN2A-related BFNISs also responsible for seizures in adulthood? A case report opens new scenarios. Am J Med Genet A 2024; 194:e63813. [PMID: 38975734 DOI: 10.1002/ajmg.a.63813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Large cohort studies and variant-specific electrophysiology have enabled the delineation of different SCN2A-epilepsy phenotypes, phenotype-genotype correlations, prediction of pharmacosensitivity to sodium channel blockers, and long-term prognostication for clinicians and families. One of the most common clinical presentations of SCN2A pathological variants is benign familial neonatal-infantile seizures (BFNIS), which are characterized by seizure onset between the first day of life and 23 months of age and typically resolve, either spontaneously or with the aid of sodium channel blockers, within the first 2 years of life. In 2004, Berkovic et al. reported the case of a young boy affected by SCN2A-related BFNIS whose mother, who carried the same pathological variant, had also presented with BFNIS in infancy. Our case report focuses on the aforementioned woman who, more than 40 years later, presented two additional seizures, therefore opening the possibility of a role for SCN2A-related seizures in adulthood.
Collapse
Affiliation(s)
- Sara Brunetti
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alice Muda
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Chiara Conti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Gazzina
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Patrizia Accorsi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lucio Giordano
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Yang YL, Lee HF, Chi CS, Tsai CR, Wu PY, Liu SN. Cerebellar atrophy in genetic epileptic encephalopathies: A cohort study and a systematic review. Seizure 2024; 120:41-48. [PMID: 38897163 DOI: 10.1016/j.seizure.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To analyze cerebellar atrophy in genetic epileptic encephalopathies (EEs). METHODS This research included a retrospective cohort study conducted from January 2016 to December 2023 and a systematic review on cerebellar atrophy in genetic EEs. Pediatric individuals who were diagnosed with EEs based on electroclinical features, carried causative gene variants, and exhibited cerebellar atrophy were recruited. Electroclinical features, neuroimaging findings, and causative variants of eligible individuals were analyzed. RESULTS The cohort study showed 10 of 67 pediatric individuals (10/67; 15 %) who were diagnosed with genetic EEs had cerebellar atrophy; and 6 of the 10 individuals (6/10; 60 %) exhibited cerebellar signs. Diagnostic delay between the detection of cerebellar atrophy and the identification of genetic diagnosis existed in 6 individuals (6/10; 60 %) and the median duration was 4.4 years. A total of 32 genes, including 31 genes from the literature review and a newly identified SCN2A gene in this cohort, were reported associated with cerebellar atrophy in genetic EEs. Twenty-six genes (26/32; 81 %) accounted for cerebellar atrophy associated with other brain anomalies and 6 genes (6/32; 19 %) caused isolated cerebellar atrophy. Twenty-five genes (25/32; 78 %) showed late-onset cerebellar atrophy identified after the age of 1 year old. CONCLUSION Cerebellar atrophy is not uncommon in genetic EEs and may serve as an indicator for molecular diagnosis in clinical practice. To shorten the diagnostic delay, follow-up neuroimaging study is crucial because of high rate of clinico-radiological dissociation and late-onset cerebellar atrophy in this patient group.
Collapse
Affiliation(s)
- Yao-Lun Yang
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Chi-Ren Tsai
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Pei-Yu Wu
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| | - Shu-Ning Liu
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan
| |
Collapse
|
6
|
Berg AT, Thompson CH, Myers LS, Anderson E, Evans L, Kaiser AJE, Paltell K, Nili AN, DeKeyser JML, Abramova TV, Nesbitt G, Egan SM, Vanoye CG, George AL. Expanded clinical phenotype spectrum correlates with variant function in SCN2A-related disorders. Brain 2024; 147:2761-2774. [PMID: 38651838 PMCID: PMC11292900 DOI: 10.1093/brain/awae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.
Collapse
Affiliation(s)
- Anne T Berg
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- FamilieSCN2A Foundation, Longmeadow, MA 10116, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Erica Anderson
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Lindsey Evans
- Department of Psychology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ariela J E Kaiser
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60616, USA
| | - Katherine Paltell
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60616, USA
| | - Amanda N Nili
- Department of Medical and Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc L DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Shawn M Egan
- FamilieSCN2A Foundation, Longmeadow, MA 10116, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Suzuki T, Hattori S, Mizukami H, Nakajima R, Hibi Y, Kato S, Matsuzaki M, Ikebe R, Miyakawa T, Yamakawa K. Inversed Effects of Nav1.2 Deficiency at Medial Prefrontal Cortex and Ventral Tegmental Area for Prepulse Inhibition in Acoustic Startle Response. Mol Neurobiol 2024; 61:622-634. [PMID: 37650965 DOI: 10.1007/s12035-023-03610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Numerous pathogenic variants of SCN2A gene, encoding voltage-gated sodium channel α2 subunit Nav1.2 protein, have been identified in a wide spectrum of neuropsychiatric disorders including schizophrenia. However, pathological mechanisms for the schizophrenia-relevant behavioral abnormalities caused by the variants remain poorly understood. Here in this study, we characterized mouse lines with selective Scn2a deletion at schizophrenia-related brain regions, medial prefrontal cortex (mPFC) or ventral tegmental area (VTA), obtained by injecting adeno-associated viruses (AAV) expressing Cre recombinase into homozygous Scn2a-floxed (Scn2afl/fl) mice, in which expression of the Scn2a was locally deleted in the presence of Cre recombinase. The mice lacking Scn2a in the mPFC exhibited a tendency for a reduction in prepulse inhibition (PPI) in acoustic startle response. Conversely, the mice lacking Scn2a in the VTA showed a significant increase in PPI. We also found that the mice lacking Scn2a in the mPFC displayed increased sociability, decreased locomotor activity, and increased anxiety-like behavior, while the mice lacking Scn2a in the VTA did not show any other abnormalities in these parameters except for vertical activity which is one of locomotor activities. These results suggest that Scn2a-deficiencies in mPFC and VTA are inversely relevant for the schizophrenic phenotypes in patients with SCN2A variants.
Collapse
Affiliation(s)
- Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Research Creation Support Center, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ryuichi Nakajima
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yurina Hibi
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Saho Kato
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Mahoro Matsuzaki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ryu Ikebe
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
9
|
Hadjipanteli A, Theodosiou A, Papaevripidou I, Evangelidou P, Alexandrou A, Salameh N, Kallikas I, Kakoullis K, Frakala S, Oxinou C, Marnerides A, Kousoulidou L, Anastasiadou VC, Sismani C. Sodium Channel Gene Variants in Fetuses with Abnormal Sonographic Findings: Expanding the Prenatal Phenotypic Spectrum of Sodium Channelopathies. Genes (Basel) 2024; 15:119. [PMID: 38255008 PMCID: PMC10815715 DOI: 10.3390/genes15010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in the brain and muscle. Pathogenic variants in genes encoding VGSCs have been associated with severe disorders including epileptic encephalopathies and congenital myopathies. In this study, we identified pathogenic variants in genes encoding the α subunit of VGSCs in the fetuses of two unrelated families with the use of trio-based whole exome sequencing, as part of a larger cohort study. Sanger sequencing was performed for variant confirmation as well as parental phasing. The fetus of the first family carried a known de novo heterozygous missense variant in the SCN2A gene (NM_001040143.2:c.751G>A p.(Val251Ile)) and presented intrauterine growth retardation, hand clenching and ventriculomegaly. Neonatally, the proband also exhibited refractory epilepsy, spasms and MRI abnormalities. The fetus of the second family was a compound heterozygote for two parentally inherited novel missense variants in the SCN4A gene (NM_000334.4:c.4340T>C, p.(Phe1447Ser), NM_000334.4:c.3798G>C, p.(Glu1266Asp)) and presented a severe prenatal phenotype including talipes, fetal hypokinesia, hypoplastic lungs, polyhydramnios, ear abnormalities and others. Both probands died soon after birth. In a subsequent pregnancy of the latter family, the fetus was also a compound heterozygote for the same parentally inherited variants. This pregnancy was terminated due to multiple ultrasound abnormalities similar to the first pregnancy. Our results suggest a potentially crucial role of the VGSC gene family in fetal development and early lethality.
Collapse
Affiliation(s)
- Andrea Hadjipanteli
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Athina Theodosiou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Ioannis Papaevripidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Paola Evangelidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Angelos Alexandrou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Nicole Salameh
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | | | | | - Christina Oxinou
- Christina Oxinou Histopathology/Cytology Laboratory, 1065 Nicosia, Cyprus
| | | | - Ludmila Kousoulidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| |
Collapse
|
10
|
Asadollahi R, Delvendahl I, Muff R, Tan G, Rodríguez DG, Turan S, Russo M, Oneda B, Joset P, Boonsawat P, Masood R, Mocera M, Ivanovski I, Baumer A, Bachmann-Gagescu R, Schlapbach R, Rehrauer H, Steindl K, Begemann A, Reis A, Winkler J, Winner B, Müller M, Rauch A. Pathogenic SCN2A variants cause early-stage dysfunction in patient-derived neurons. Hum Mol Genet 2023; 32:2192-2204. [PMID: 37010102 PMCID: PMC10281746 DOI: 10.1093/hmg/ddad048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023] Open
Abstract
Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)] and compared them with neurons from an epileptic encephalopathy (EE) patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. In contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations.
Collapse
Affiliation(s)
- R Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
- Faculty of Engineering and Science, University of Greenwich London, Medway Campus, Chatham Maritime ME4 4TB, UK
| | - I Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
| | - R Muff
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - G Tan
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - D G Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - S Turan
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - M Russo
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - B Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - P Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - P Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - R Masood
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - M Mocera
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - I Ivanovski
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - A Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - R Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - R Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - H Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - K Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - A Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
| | - A Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - J Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen 91054, Germany
| | - B Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen 91054, Germany
| | - M Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
- University of Zurich Clinical Research Priority Program (CRPP) Praeclare – Personalized prenatal and reproductive medicine, Zurich 8006, Switzerland
- University of Zurich Research Priority Program (URPP) AdaBD: Adaptive Brain Circuits in Development and Learning, Zurich 8006, Switzerland
| | - A Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich 8952, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8057, Switzerland
- University of Zurich Clinical Research Priority Program (CRPP) Praeclare – Personalized prenatal and reproductive medicine, Zurich 8006, Switzerland
- University of Zurich Research Priority Program (URPP) AdaBD: Adaptive Brain Circuits in Development and Learning, Zurich 8006, Switzerland
- University of Zurich Research Priority Program (URPP) ITINERARE: Innovative Therapies in Rare Diseases, Zurich 8006, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
- University Children's Hospital Zurich, University of Zurich, Zurich 8032, Switzerland
| |
Collapse
|
11
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Tzialla C, Arossa A, Mannarino S, Orcesi S, Veggiotti P, Fiandrino G, Zuffardi O, Errichiello E. SCN2A and arrhythmia: A potential correlation? A case report and literature review. Eur J Med Genet 2022; 65:104639. [DOI: 10.1016/j.ejmg.2022.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022]
|
13
|
Thouta S, Waldbrook MG, Lin S, Mahadevan A, Mezeyova J, Soriano M, Versi P, Goodchild SJ, Parrish RR. Pharmacological determination of the fractional block of Nav channels required to impair neuronal excitability and ex vivo seizures. Front Cell Neurosci 2022; 16:964691. [PMID: 36246527 PMCID: PMC9557217 DOI: 10.3389/fncel.2022.964691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are essential for the initiation and propagation of action potentials in neurons. Of the nine human channel subtypes, Nav1.1, Nav1.2 and Nav1.6 are prominently expressed in the adult central nervous system (CNS). All three of these sodium channel subtypes are sensitive to block by the neurotoxin tetrodotoxin (TTX), with TTX being almost equipotent on all three subtypes. In the present study we have used TTX to determine the fractional block of Nav channels required to impair action potential firing in pyramidal neurons and reduce network seizure-like activity. Using automated patch-clamp electrophysiology, we first determined the IC50s of TTX on mouse Nav1.1, Nav1.2 and Nav1.6 channels expressed in HEK cells, demonstrating this to be consistent with previously published data on human orthologs. We then compared this data to the potency of block of Nav current measured in pyramidal neurons from neocortical brain slices. Interestingly, we found that it requires nearly 10-fold greater concentration of TTX over the IC50 to induce significant block of action potentials using a current-step protocol. In contrast, concentrations near the IC50 resulted in a significant reduction in AP firing and increase in rheobase using a ramp protocol. Surprisingly, a 20% reduction in action potential generation observed with 3 nM TTX resulted in significant block of seizure-like activity in the 0 Mg2+ model of epilepsy. Additionally, we found that approximately 50% block in pyramidal cell intrinsic excitability is sufficient to completely block all seizure-like events. Furthermore, we also show that the anticonvulsant drug phenytoin blocked seizure-like events in a manner similar to TTX. These data serve as a critical starting point in understanding how fractional block of Nav channels affect intrinsic neuronal excitability and seizure-like activity. It further suggests that seizures can be controlled without significantly compromising intrinsic neuronal activity and determines the required fold over IC50 for novel and clinically relevant Nav channel blockers to produce efficacy and limit side effects.
Collapse
Affiliation(s)
- Samrat Thouta
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Matthew G. Waldbrook
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Sophia Lin
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Arjun Mahadevan
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Janette Mezeyova
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Maegan Soriano
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Pareesa Versi
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - R. Ryley Parrish
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
14
|
Bielopolski N, Heyman E, Bassan H, BenZeev B, Tzadok M, Ginsberg M, Blumkin L, Michaeli Y, Sokol R, Yosha-Orpaz N, Hady-Cohen R, Banne E, Lev D, Lerman-Sagie T, Wald-Altman S, Nissenkorn A. "Virtual patch clamp analysis" for predicting the functional significance of pathogenic variants in sodium channels. Epilepsy Res 2022; 186:107002. [PMID: 36027690 DOI: 10.1016/j.eplepsyres.2022.107002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Opening of voltage-gated sodium channels is crucial for neuronal depolarization. Proper channel opening and influx of Na+ through the ion pore, is dependent upon binding of Na+ ion to a specific amino-acid motif (DEKA) within the pore. In this study we used molecular dynamic simulations, an advanced bioinformatic tool, to research the dysfunction caused by pathogenic variants in SCN1a, SCN2a and SCN8a genes. METHOD Molecular dynamic simulations were performed in six patients: three patients with Dravet syndrome (p.Gly177Ala,p.Ser259Arg and p.Met1267Ile, SCN1a), two patients with early onset drug resistant epilepsy(p.Ala263Val, SCN2a and p.Ile251Arg, SCN8a), and a patient with autism (p.Thr155Ala, SCN2a). After predicting the 3D-structure of mutated proteins by homology modeling, time dependent molecular dynamic simulations were performed, using the Schrödinger algorithm. The opening of the sodium channel, including the detachment of the sodium ion to the DEKA motif and pore diameter were assessed. Results were compared to the existent patch clamp analysis in four patients, and consistency with clinical phenotype was noted. RESULTS The Na+ ion remained attached to DEKA filter longer when compared to wild type in the p.Gly177Ala, p.Ser259Arg,SCN1a, and p.Thr155Ala, SCN2a variants, consistent with loss-of-function. In contrast, it detached quicker from DEKA than wild type in the p.Ala263Val,SCN2a variant, consistent with gain-of-function. In the p.Met1267Ile,SCN1a variant, detachment from DEKA was quicker, but pore diameter decreased, suggesting partial loss-of-function. In the p.Leu251Arg,SCN8a variant, the pore remained opened longer when compared to wild type, consistent with a gain-of-function. The molecular dynamic simulation results were consistent with the existing patch-clamp analysis studies, as well as the clinical phenotype. SIGNIFICANCE Molecular dynamic simulation can be useful in predicting pathogenicity of variants and the disease phenotype, and selecting targeted treatment based on channel dysfunction. Further development of these bioinformatic tools may lead to "virtual patch-clamp analysis".
Collapse
Affiliation(s)
| | - E Heyman
- Pediatric Epilepsy Department, Shamir Medical Center, Asaf Ha Rofeh, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - H Bassan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Shamir Medical Center, Asaf HaRofeh, Israel.
| | - B BenZeev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.
| | - M Tzadok
- Pediatric Neurology Unit, Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.
| | - M Ginsberg
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - L Blumkin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - Y Michaeli
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - R Sokol
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - N Yosha-Orpaz
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | - R Hady-Cohen
- Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel.
| | - E Banne
- Pediatric Epilepsy Department, Shamir Medical Center, Asaf Ha Rofeh, Israel; Genetics Institute, Edith Wolfson Medical Center, Holon, Israel
| | - D Lev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Genetics Institute, Edith Wolfson Medical Center, Holon, Israel.
| | - T Lerman-Sagie
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| | | | - A Nissenkorn
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Rare Diseases Institute-Magen, Edith Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel.
| |
Collapse
|
15
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
16
|
Echevarria-Cooper DM, Hawkins NA, Misra SN, Huffman AM, Thaxton T, Thompson CH, Ben-Shalom R, Nelson AD, Lipkin AM, George AL, Bender KJ, Kearney JA. Cellular and behavioral effects of altered NaV1.2 sodium channel ion permeability in Scn2aK1422E mice. Hum Mol Genet 2022; 31:2964-2988. [PMID: 35417922 PMCID: PMC9433730 DOI: 10.1093/hmg/ddac087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in SCN2A, encoding the NaV1.2 voltage-gated sodium channel, are associated with a range of neurodevelopmental disorders with overlapping phenotypes. Some variants fit into a framework wherein gain-of-function missense variants that increase neuronal excitability lead to developmental and epileptic encephalopathy, while loss-of-function variants that reduce neuronal excitability lead to intellectual disability and/or autism spectrum disorder (ASD) with or without co-morbid seizures. One unique case less easily classified using this framework is the de novo missense variant SCN2A-p.K1422E, associated with infant-onset developmental delay, infantile spasms and features of ASD. Prior structure–function studies demonstrated that K1422E substitution alters ion selectivity of NaV1.2, conferring Ca2+ permeability, lowering overall conductance and conferring resistance to tetrodotoxin (TTX). Based on heterologous expression of K1422E, we developed a compartmental neuron model incorporating variant channels that predicted reductions in peak action potential (AP) speed. We generated Scn2aK1422E mice and characterized effects on neurons and neurological/neurobehavioral phenotypes. Cultured cortical neurons from heterozygous Scn2aK1422E/+ mice exhibited lower current density with a TTX-resistant component and reversal potential consistent with mixed ion permeation. Recordings from Scn2aK1442E/+ cortical slices demonstrated impaired AP initiation and larger Ca2+ transients at the axon initial segment during the rising phase of the AP, suggesting complex effects on channel function. Scn2aK1422E/+ mice exhibited rare spontaneous seizures, interictal electroencephalogram abnormalities, altered induced seizure thresholds, reduced anxiety-like behavior and alterations in olfactory-guided social behavior. Overall, Scn2aK1422E/+ mice present with phenotypes similar yet distinct from other Scn2a models, consistent with complex effects of K1422E on NaV1.2 channel function.
Collapse
Affiliation(s)
- Dennis M Echevarria-Cooper
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| | - Nicole A Hawkins
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Sunita N Misra
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA 60611
| | - Alexandra M Huffman
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Tyler Thaxton
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Christopher H Thompson
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Roy Ben-Shalom
- Mind Institute and Department of Neurology, University of California, Davis, Sacramento, CA, United States 95817
| | - Andrew D Nelson
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158
| | - Anna M Lipkin
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158.,Neuroscience Graduate Program, University of California, San Francisco, CA, USA 94158
| | - Alfred L George
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| | - Kevin J Bender
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158
| | - Jennifer A Kearney
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| |
Collapse
|
17
|
Heighway J, Sedo A, Garg A, Eldershaw L, Perreau V, Berecki G, Reid CA, Petrou S, Maljevic S. Sodium channel expression and transcript variation in the developing brain of human, Rhesus monkey, and mouse. Neurobiol Dis 2022; 164:105622. [PMID: 35031483 DOI: 10.1016/j.nbd.2022.105622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic variation in voltage-gated sodium (NaV) channels is a significant contributor to neurodevelopmental disorders. NaV channel alpha subunits are encoded by the SCNxA family and four are predominately expressed in the brain: SCN1A, SCN2A, SCN3A, and SCN8A. Gene expression is developmentally regulated, and they are known to express functionally distinct transcript variants. Precision therapies targeting these genes and their transcript variants are currently in preclinical development, yet the developmental expression of these transcripts in the human brain is yet to be fully understood. Additionally, the functional consequences of some mutations differ depending on the studied channel isoform, suggesting differential transcript variant expression can affect disease prognoses. We characterise the expression of the four SCNxAs and their transcript variants in human, Rhesus monkey and mouse brain using publicly available RNA-sequencing data and analysis tools, demonstrating that this approach can be used to answer important biological questions of gene and transcript developmental regulation. We find that gene expression and transcript variant regulation are conserved across species at similar developmental stages and determine the developmental milestones for transcript variant expression. Our study provides a guide to researchers testing therapies and clinicians advising prognoses based on the expression of channel isoforms.
Collapse
Affiliation(s)
- Jacqueline Heighway
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Anjali Garg
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lauren Eldershaw
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Victoria Perreau
- Melbourne Bioinformatics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Géza Berecki
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA; Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia.
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
18
|
Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur J Med Genet 2022; 65:104450. [DOI: 10.1016/j.ejmg.2022.104450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
|
19
|
Wongkittichote P, Kondis JS, Peglar LM, Strahle JM, Miller-Thomas M, Abell KB. Pathogenic variant in NFIA associated with subdural hematomas mimicking nonaccidental trauma. Am J Med Genet A 2022; 188:1538-1544. [PMID: 35006644 DOI: 10.1002/ajmg.a.62647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 12/26/2021] [Indexed: 11/09/2022]
Abstract
Subdural hematoma (SDH) in infants raises the concern for nonaccidental trauma (NAT), especially when presenting with associated injuries. However, isolated SDH could be caused by multiple etiologies. NFIA (MIM# 600727) encodes nuclear factor I A protein (NFI-A), a transcription factor which plays important roles in gliogenesis. Loss-of-function variants in NFIA are associated with autosomal dominant brain malformations with or without urinary tract defects (MIM# 613735). Intracranial hemorrhage of various types besides SDH has been reported in patients with this condition. Here, we report a patient with a heterozygous novel NFIA pathogenic variant affecting splicing who initially presented with SDH concerning for NAT. We also review previous NFIA-related disorder cases with intracranial hemorrhage. This report emphasizes the importance of genetic evaluation in infants presenting with isolated SDH.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jamie S Kondis
- Child Abuse Pediatrics, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lindsay M Peglar
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michelle Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Katherine B Abell
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
20
|
Chen K, Palagashvili T, Hsu W, Chen Y, Tabakoff B, Hong F, Shih AT, Shih JC. Brain injury and inflammation genes common to a number of neurological diseases and the genes involved in the genesis of GABAnergic neurons are altered in monoamine oxidase B knockout mice. Brain Res 2022; 1774:147724. [PMID: 34780749 PMCID: PMC8638699 DOI: 10.1016/j.brainres.2021.147724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Monoamine oxidase B (MAO B) oxidizes trace amine phenylethylamine (PEA), and neurotransmitters serotonin and dopamine in the brain. We reported previously that PEA levels increased significantly in all brain regions, but serotonin and dopamine levels were unchanged in MAO B knockout (KO) mice. PEA and dopamine are both synthesized from phenylalanine by aromatic L-amino acid decarboxylase in dopaminergic neurons in the striatum. A high concentration of PEA in the striatum may cause dopaminergic neuronal death in the absence of MAO B. We isolated the RNA from brain tissue of MAO B KO mice (2-month old) and age-matched wild type (WT) male mice and analyzed the altered genes by Affymetrix microarray. Differentially expressed genes (DEGs) in MAO B KO compared to WT mice were analyzed by Partek Genomics Suite, followed by Ingenuity Pathway Analysis (IPA) to assess their functional relationships. DEGs in MAO B KO mice are involved in brain inflammation and the genesis of GABAnergic neurons. The significant DEGs include four brain injury or inflammation genes (upregulated: Ido1, TSPO, AVP, Tdo2), five gamma-aminobutyric acid (GABA) receptors (down-regulated: GABRA2, GABRA3, GABRB1, GABRB3, GABRG3), five transcription factors related to adult neurogenesis (upregulated: Wnt7b, Hes5; down-regulated: Pax6, Tcf4, Dtna). Altered brain injury and inflammation genes in MAO B knockout mice are involved in various neurological disorders: attention deficit hyperactive disorder, panic disorder, obsessive compulsive disorder, autism, amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's disease, bipolar affective disorder. Many were commonly involved in these disorders, indicating that there are overlapping molecular pathways.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Tamara Palagashvili
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - W Hsu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO, USA
| | - Frank Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Abigail T Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles CA, USA.
| |
Collapse
|
21
|
Layer N, Sonnenberg L, Pardo González E, Benda J, Hedrich UBS, Lerche H, Koch H, Wuttke TV. Dravet Variant SCN1A A1783V Impairs Interneuron Firing Predominantly by Altered Channel Activation. Front Cell Neurosci 2021; 15:754530. [PMID: 34776868 PMCID: PMC8581729 DOI: 10.3389/fncel.2021.754530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Dravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in inhibitory interneurons. Recently, a new conditional mouse model expressing the recurrent human p.(Ala1783Val) missense variant has become available. In this study, we provided an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Based on these data, simulated interneuron (IN) firing properties in a conductance-based single-compartment model suggested surprisingly similar firing deficits for NaV1.1A1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaV1.1A1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1aA1783V mice. Pan-neuronal activation of the p.Ala1783V in vitro confirmed a predicted IN firing deficit and revealed an accompanying reduction of interneuronal input resistance while demonstrating normal excitability of pyramidal neurons. Altered input resistance was fed back into the model for further refinement. Taken together these data demonstrate that primary loss of function (LOF) gating properties accompanied by altered membrane characteristics may match effects of full haploinsufficiency on the neuronal level despite maintaining physiological peak current density, thereby causing DS.
Collapse
Affiliation(s)
- Nikolas Layer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Institute for Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Emilio Pardo González
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute for Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Eberhard Karls Universitat, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Epileptology, Neurology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Sahly AN, Shevell M, Sadleir LG, Myers KA. SUDEP risk and autonomic dysfunction in genetic epilepsies. Auton Neurosci 2021; 237:102907. [PMID: 34773737 DOI: 10.1016/j.autneu.2021.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
The underlying pathophysiology of sudden unexpected death in epilepsy (SUDEP) remains unclear. This phenomenon is likely multifactorial, and there is considerable evidence that genetic factors play a role. There are certain genetic causes of epilepsy in which the risk of SUDEP appears to be increased relative to epilepsy overall. For individuals with pathogenic variants in genes including SCN1A, SCN1B, SCN8A, SCN2A, GNB5, KCNA1 and DEPDC5, there are varying degrees of evidence to suggest an increased risk for sudden death. Why the risk for sudden death is higher is not completely clear; however, in many cases pathogenic variants in these genes are also associated with autonomic dysfunction, which is hypothesized as a contributing factor to SUDEP. We review the evidence for increased SUDEP risk for patients with epilepsy due to pathogenic variants in these genes, and also discuss what is known about autonomic dysfunction in these contexts.
Collapse
Affiliation(s)
- Ahmed N Sahly
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Michael Shevell
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Lauxmann S, Sonnenberg L, Koch NA, Bosselmann C, Winter N, Schwarz N, Wuttke TV, Hedrich UBS, Liu Y, Lerche H, Benda J, Kegele J. Therapeutic Potential of Sodium Channel Blockers as a Targeted Therapy Approach in KCNA1-Associated Episodic Ataxia and a Comprehensive Review of the Literature. Front Neurol 2021; 12:703970. [PMID: 34566847 PMCID: PMC8459024 DOI: 10.3389/fneur.2021.703970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in KCNA1, the gene coding for KV1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia. Standard treatment has not yet been developed, and different treatment efforts need to be systematically evaluated. Objective and Methods: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome limitations in therapy. Toward this aim, we (i) reviewed all available clinical reports on treatment response and functional consequences of KCNA1 variants causing EA1, (ii) examined the potential effects on neuronal excitability of all variants using a single compartment conductance-based model and set out to assess the potential of two sodium channel blockers (SCBs: carbamazepine and riluzole) to restore the identified underlying pathophysiological effects of KV1.1 channels, and (iii) provide a comprehensive review of the literature considering all types of episodic ataxia. Results: Reviewing the treatment efforts of EA1 patients revealed moderate response to acetazolamide and exhibited the strength of SCBs, especially carbamazepine, in the treatment of EA1 patients. Biophysical dysfunction of KV1.1 channels is typically based on depolarizing shifts of steady-state activation, leading to an LOF of KCNA1 variant channels. Our model predicts a lowered rheobase and an increase of the firing rate on a neuronal level. The estimated concentration dependent effects of carbamazepine and riluzole could partially restore the altered gating properties of dysfunctional variant channels. Conclusion: These data strengthen the potential of SCBs to contribute to functional compensation of dysfunctional KV1.1 channels. We propose riluzole as a new drug repurposing candidate and highlight the role of personalized approaches to develop standard care for EA1 patients. These results could have implications for clinical practice in future and highlight the need for the development of individualized and targeted therapies for episodic ataxia and genetic paroxysmal disorders in general.
Collapse
Affiliation(s)
- Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Nils A. Koch
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Natalie Winter
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Ulrike B. S. Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Yang R, Qian R, Chen K, Yi W, Sima X. Genetic polymorphisms in SCN2A are not associated with epilepsy risk and AEDs response: evidence from a meta-analysis. Neurol Sci 2021; 42:2705-2711. [PMID: 33914194 DOI: 10.1007/s10072-021-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Previous studies have investigated the association between rs2304016 and rs17183814 polymorphisms in sodium voltage-gated channel alpha subunit 2 (SCN2A) and epilepsy risk and responsiveness to antiepileptic drugs (AEDs) but with conflicting results. Our aim was to reevaluate the relationship by performing a systematic review and meta-analysis. METHODS By searching PubMed, Medline, and CNKI, 14 studies were selected. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were computed to measure the association between rs17183814 and rs2304016 polymorphisms and the risk of epilepsy and AEDs response using the fixed-effects model or the random-effects model. RESULTS No significant association between the rs17183814 in SCN2A and the risk of epilepsy was observed (heterozygous comparison: OR = 0.78, 95% CI: 0.61-1.00; homozygous comparison: OR = 1.34, 95% CI: 0.63-2.86; dominant model: OR = 0.82, 95% CI: 0.64-1.04; recessive model: OR = 1.44, 95% CI: 0.68-3.05; allele comparison: OR = 0.88, 95%CI: 0.71-1.10). Moreover, neither the rs17183814 nor the rs2304016 was associated with AEDs response. CONCLUSION This meta-analysis suggests that the rs17183814 and rs2304016 polymorphisms in SCN2A are not associated with the risk of epilepsy and response to AEDs.
Collapse
Affiliation(s)
- Ruiqing Yang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiyi Qian
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kerun Chen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yi
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
26
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
de Gusmão CM, Garcia L, Mikati MA, Su S, Silveira-Moriyama L. Paroxysmal Genetic Movement Disorders and Epilepsy. Front Neurol 2021; 12:648031. [PMID: 33833732 PMCID: PMC8021799 DOI: 10.3389/fneur.2021.648031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Paroxysmal movement disorders include paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and episodic ataxias. In recent years, there has been renewed interest and recognition of these disorders and their intersection with epilepsy, at the molecular and pathophysiological levels. In this review, we discuss how these distinct phenotypes were constructed from a historical perspective and discuss how they are currently coalescing into established genetic etiologies with extensive pleiotropy, emphasizing clinical phenotyping important for diagnosis and for interpreting results from genetic testing. We discuss insights on the pathophysiology of select disorders and describe shared mechanisms that overlap treatment principles in some of these disorders. In the near future, it is likely that a growing number of genes will be described associating movement disorders and epilepsy, in parallel with improved understanding of disease mechanisms leading to more effective treatments.
Collapse
Affiliation(s)
- Claudio M. de Gusmão
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Lucas Garcia
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
| | - Mohamad A. Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samantha Su
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
- Education Unit, University College London Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
29
|
Crawford K, Xian J, Helbig KL, Galer PD, Parthasarathy S, Lewis-Smith D, Kaufman MC, Fitch E, Ganesan S, O'Brien M, Codoni V, Ellis CA, Conway LJ, Taylor D, Krause R, Helbig I. Computational analysis of 10,860 phenotypic annotations in individuals with SCN2A-related disorders. Genet Med 2021; 23:1263-1272. [PMID: 33731876 PMCID: PMC8257493 DOI: 10.1038/s41436-021-01120-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype–phenotype correlations are often anecdotal, and the available phenotypic data have not been systematically analyzed. Methods We extracted phenotypic information from primary descriptions of SCN2A-related disorders in the literature between 2001 and 2019, which we coded in Human Phenotype Ontology (HPO) terms. With higher-level phenotype terms inferred by the HPO structure, we assessed the frequencies of clinical features and investigated the association of these features with variant classes and locations within the NaV1.2 protein. Results We identified 413 unrelated individuals and derived a total of 10,860 HPO terms with 562 unique terms. Protein-truncating variants were associated with autism and behavioral abnormalities. Missense variants were associated with neonatal onset, epileptic spasms, and seizures, regardless of type. Phenotypic similarity was identified in 8/62 recurrent SCN2A variants. Three independent principal components accounted for 33% of the phenotypic variance, allowing for separation of gain-of-function versus loss-of-function variants with good performance. Conclusion Our work shows that translating clinical features into a computable format using a standardized language allows for quantitative phenotype analysis, mapping the phenotypic landscape of SCN2A-related disorders in unprecedented detail and revealing genotype–phenotype correlations along a multidimensional spectrum.
Collapse
Affiliation(s)
- Katherine Crawford
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Genetic Counseling, Arcadia University, Glenside, PA, USA
| | - Julie Xian
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Neuroscience Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter D Galer
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biology, The College of New Jersey, Ewing Township, NJ, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Michael C Kaufman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eryn Fitch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret O'Brien
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Codoni
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura J Conway
- Genetic Counseling, Arcadia University, Glenside, PA, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
31
|
MicroRNA-96 is required to prevent allodynia by repressing voltage-gated sodium channels in spinal cord. Prog Neurobiol 2021; 202:102024. [PMID: 33636225 DOI: 10.1016/j.pneurobio.2021.102024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
Abstract
Voltage-gated sodium channels (Navs) 1.7, 1.8, and 1.9 are predominately expressed in peripheral sensory neurons and are critical for action potential propagation in nociceptors. Unexpectedly, we found that expression of SCN9A, SCN10A, SCN11A, and SCN2A, the alpha subunit of Nav1.7, Nav1.8, Nav1.9 and Nav1.2, respectively, are up-regulated in spinal dorsal horn (SDH) neurons of miR-96 knockout mice. These mice also have de-repression of CACNA2D1/2 in DRG and display thermal and mechanical allodynia that could be attenuated by intrathecal or intraperitoneal injection of Nav1.7 or Nav1.8 blockers or Gabapentin. Moreover, Gad2::CreERT2 conditional miR-96 knockout mice phenocopied global knockout mice, implicating inhibitory neurons; nerve injury induced significant loss of miR-96 in SDH GABAergic and Glutamatergic neurons in mice which negatively correlated to up-regulation of Nav1.7, Nav1.8, Nav1.9 and Scn2a, this dis-regulation of miR-96 and Navs in SDH neurons contributed to neuropathic pain which can be alleviated by intrathecal injection of Nav1.7 or Nav1.8 blockers. In conclusion, miR-96 is required to avoid allodynia through limiting the expression of VGCCs and Navs in DRG and Navs in SDH in naïve and nerve injury-induced neuropathic pain mice. Our findings suggest that central nervous system penetrating Nav1.7 and Nav1.8 blockers may be efficacious for pain relief.
Collapse
|
32
|
Abstract
Voltage-gated sodium channels (VGSCs) are foundational to excitable cell function: Their coordinated passage of sodium ions into the cell is critical for the generation and propagation of action potentials throughout the nervous system. The classical paradigm of action potential physiology states that sodium passes through the membrane only transiently (1-2 milliseconds), before the channels inactivate and cease to conduct sodium ions. However, in reality, a small fraction of the total sodium current (1%-2%) remains at steady state despite prolonged depolarization. While this persistent sodium current (INaP) contributes to normal physiological functioning of neurons, accumulating evidence indicates a particularly pathogenic role for an elevated INaP in epilepsy (reviewed previously1). Due to significant advances over the past decade of epilepsy research concerning the importance of INaP in sodium channelopathies, this review seeks to summarize recent evidence and highlight promising novel anti-seizure medication strategies through preferentially targeting INaP.
Collapse
Affiliation(s)
- Eric R. Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
33
|
Passi GR, Mohammad SS. Dominant SCN2A mutation with variable phenotype in two generations. Brain Dev 2021; 43:166-169. [PMID: 32893078 DOI: 10.1016/j.braindev.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND SCN2A mutations are some of the commonest causes of neurodevelopmental disorders including epilepsy, movement disorders, autism spectrum disorder, intellectual disability and rarely episodic ataxia. CASE REPORT We present a patient with a dominantly inherited SCN2A mutation presenting as episodic ataxia in a boy and episodic hemiplegia in his father. We have briefly reviewed the literature of SCN2A mutations presenting with episodic ataxia. CONCLUSION Our report has expanded the phenotype for SCN2A mutations.
Collapse
Affiliation(s)
- Gouri Rao Passi
- Department of Pediatrics, Choithram Hospital & Research Centre, Indore, India.
| | - Shekeeb S Mohammad
- Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, University of Sydney, Australia.
| |
Collapse
|
34
|
Bai Q, Cao J, Dong T, Tao F. Transcriptome Analysis of Dorsal Root Ganglion in Rats with Knee Joint Inflammation. J Pain Res 2020; 13:2709-2720. [PMID: 33149663 PMCID: PMC7604464 DOI: 10.2147/jpr.s278474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) leads to pain through alteration of gene expression. Although gene expression alteration in knee cartilage or peripheral blood from RA patients has been identified using microarray, it remains unclear whether long non-coding RNA (lncRNA)-mediated gene regulation occurs in primary sensory neurons of dorsal root ganglia (DRG) during RA-like joint inflammation. In the present study, we aimed to analyze lncRNA and related mRNA profiles in the DRG in a knee joint inflammation rat model. METHODS Complete Freund's adjuvant (CFA) was injected in the rat knee joint for preparing the joint inflammation model. A lncRNA-mRNA microarray of rat DRG was employed for transcriptome analysis. Functional roles of differentially expressed lncRNAs and their related mRNAs in the injured DRG were delineated by bioinformatic analysis. RESULTS We observed that expression levels of 9000 lncRNAs were altered on day 7 post-CFA, of which 45.17% were up-regulated and 54.83% were down-regulated. Specifically, 69 lncRNAs (42 up and 27 down) were significantly regulated. We also observed that expression levels of 13,744 mRNAs were altered on day 7 post-CFA, of which 49.67% were up-regulated and 50.33% were down-regulated. Specifically, 102 mRNAs (51 up and 51 down) were significantly regulated. Using quantitative real-time PCR, we verified the changes in differentially expressed lncRNAs in the injured DRG. CONCLUSION These results suggest that microarray-based RNA sequencing can be used to identify altered lncRNAs and relevant mRNAs in the DRG of rats with knee joint inflammation.
Collapse
Affiliation(s)
- Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, People’s Republic of China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
35
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
36
|
Chow CY, Absalom N, Biggs K, King GF, Ma L. Venom-derived modulators of epilepsy-related ion channels. Biochem Pharmacol 2020; 181:114043. [PMID: 32445870 DOI: 10.1016/j.bcp.2020.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kimberley Biggs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
37
|
Muller GK. The neonatal SCN2A mutant channel mimics adult channel properties. J Gen Physiol 2020; 152:151655. [PMID: 32291436 PMCID: PMC7201879 DOI: 10.1085/jgp.201912468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Grace K Muller
- Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
38
|
Hedrich UBS, Lauxmann S, Lerche H. SCN2A channelopathies: Mechanisms and models. Epilepsia 2020; 60 Suppl 3:S68-S76. [PMID: 31904120 DOI: 10.1111/epi.14731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023]
Abstract
Variants in the SCN2A gene, encoding the voltage-gated sodium channel NaV 1.2, cause a variety of neuropsychiatric syndromes with different severity ranging from self-limiting epilepsies with early onset to developmental and epileptic encephalopathy with early or late onset and intellectual disability (ID), as well as ID or autism without seizures. Functional analysis of channel defects demonstrated a genotype-phenotype correlation and suggested effective treatment options for one group of affected patients carrying gain-of-function variants. Here, we sum up the functional mechanisms underlying different phenotypes of patients with SCN2A channelopathies and present currently available models that can help in understanding SCN2A-related disorders.
Collapse
Affiliation(s)
- Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Wolff M, Brunklaus A, Zuberi SM. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia 2020; 60 Suppl 3:S59-S67. [PMID: 31904126 DOI: 10.1111/epi.14935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Pathogenic variants in the SCN2A gene are associated with a variety of neurodevelopmental phenotypes, defined in recent years through multicenter collaboration. Phenotypes include benign (self-limited) neonatal and infantile epilepsy and more severe developmental and epileptic encephalopathies also presenting in early infancy. There is increasing evidence that an important phenotype linked to the gene is autism and intellectual disability without epilepsy or with rare seizures in later childhood. Other associations of SCN2A include the movement disorders chorea and episodic ataxia. It is likely that as genetic testing enters mainstream practice that new phenotypic associations will be identified. Some missense, gain of function variants tend to present in early infancy with epilepsy, whereas other missense or truncating, loss of function variants present with later-onset epilepsies or intellectual disability only. Knowledge of both mutation type and functional consequences can guide precision therapy. Sodium channel blockers may be effective antiepileptic medications in gain of function, neonatal and infantile presentations.
Collapse
Affiliation(s)
- Markus Wolff
- Pediatric Neurology, Vivantes Hospital Neukoelln, Berlin, Germany
| | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children & School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children & School of Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Mason ER, Cummins TR. Differential Inhibition of Human Nav1.2 Resurgent and Persistent Sodium Currents by Cannabidiol and GS967. Int J Mol Sci 2020; 21:ijms21072454. [PMID: 32244818 PMCID: PMC7177867 DOI: 10.3390/ijms21072454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Many epilepsy patients are refractory to conventional antiepileptic drugs. Resurgent and persistent currents can be enhanced by epilepsy mutations in the Nav1.2 channel, but conventional antiepileptic drugs inhibit normal transient currents through these channels, along with aberrant resurgent and persistent currents that are enhanced by Nav1.2 epilepsy mutations. Pharmacotherapies that specifically target aberrant resurgent and/or persistent currents would likely have fewer unwanted side effects and be effective in many patients with refractory epilepsy. This study investigated the effects of cannbidiol (CBD) and GS967 (each at 1 μM) on transient, resurgent, and persistent currents in human embryonic kidney (HEK) cells stably expressing wild-type hNav1.2 channels. We found that CBD preferentially inhibits resurgent currents over transient currents in this paradigm; and that GS967 preferentially inhibits persistent currents over transient currents. Therefore, CBD and GS967 may represent a new class of more targeted and effective antiepileptic drugs.
Collapse
Affiliation(s)
- Emily R. Mason
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IUPUI campus, Indianapolis, IN 46202, USA
- Correspondence:
| | - Theodore R. Cummins
- Department of Biology, Purdue School of Science, IUPUI campus, Indianapolis, IN 46202, USA;
| |
Collapse
|
41
|
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, Schorge S, Baez-Nieto D, Wang HR, Allen A, Pan JQ, Lerche H, Heyne H, Symonds JD, Zuberi SM, Sanders S, Sheidley BR, Craiu D, Olson HE, Weckhuysen S, DeJonge P, Helbig I, Van Esch H, Busa T, Milh M, Isidor B, Depienne C, Poduri A, Campbell AJ, Dimidschstein J, Møller RS, Lal D. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020; 61:387-399. [PMID: 32090326 DOI: 10.1111/epi.16438] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Felix Steckler
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Ismael I Ghanty
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Katrine M Johannesen
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Amplexa Genetics, Odense, Denmark
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Henrike Heyne
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Pediatric Neurology Discipline, Bucharest, Romania.,Alexandru Obregia Hospital, Pediatric Neurology Clinic, Bucharest, Romania
| | - Heather E Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter DeJonge
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neuropediatrics, University of Kiel, Kiel, Germany
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, Leuven, Belgium
| | - Tiffany Busa
- Genetics Department, Timone Enfants University Hospital Center, Public Assistance-Marseille Hospitals, Marseille, France
| | - Matthieu Milh
- Medical Genetics and Functional Genomics, National Institute of Health and Medical Research, Mixed Unit of Research S910, Aix-Marseille University, Marseille, France.,Hematology Laboratory, Le Mans Hospital Center, Le Mans, France
| | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital Center, Nantes, France
| | - Christel Depienne
- Institute of Human Genetics, Essen University Hospital, Essen, Germany.,Brain and Spinal Cord Institute, National Institute of Health and Medical Research, Unit 1127, National Center for Scientific Research, Mixed Unit of Research 7225, Sorbonne Universities, Pierre and Marie Curie University, Mixed Unit of Research S 1127, Brain & Spine Institute, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Rikke S Møller
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
42
|
Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders-the history and future of a diagnostic concept
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:65-72. [PMID: 32699506 PMCID: PMC7365295 DOI: 10.31887/dcns.2020.22.1/macrocq] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article describes the history of the diagnostic class of neurodevelopmental disorders (NDDs) up to DSM-5. We further analyze how the development of genetics will transform the classification and diagnosis of NDDs. In DSM-5, NDDs include intellectual disability (ID), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD). Physicians in German-, French- and English-speaking countries (eg, Weikard, Georget, Esquirol, Down, Asperger, and Kanner) contributed to the phenomenological definitions of these disorders throughout the 18th and 20th centuries. These diagnostic categories show considerable comorbidity and phenotypic overlap. NDDs are one of the chapters of psychiatric nosology most likely to benefit from the approach advocated by the National Institute of Mental Health's Research Domain Criteria project. Genetic research supports the hypothesis that ID, ASD, ADHD, schizophrenia, and bipolar disorder lie on a neurodevelopmental continuum. The identification of recurrently observed copy number variants and disruptive gene variants in ASD (eg, CDH8, 16p11.2, SCN2A) led to the adoption of the genotype-first approach to characterize individuals at the etiological level.
.
Collapse
Affiliation(s)
- Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK; NHLI, Imperial College London, UK
| | - Marc-Antoine Crocq
- Centre Hospitalier, Rouffach, France; CAMUHA, Université de Haute-Alsace, Mulhouse, France
| |
Collapse
|
43
|
Horishita T, Ogata Y, Horishita R, Fukui R, Moriwaki K, Ueno S, Yanagihara N, Uezono Y, Sudo Y, Minami K. Carvacrol inhibits the neuronal voltage-gated sodium channels Na v1.2, Na v1.6, Na v1.3, Na v1.7, and Na v1.8 expressed in Xenopus oocytes with different potencies. J Pharmacol Sci 2020; 142:140-147. [PMID: 31982332 DOI: 10.1016/j.jphs.2019.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Carvacrol is the predominant monoterpene in essential oils from many aromatic plants. Several animal studies showing analgesic effects of carvacrol indicate potential of carvacrol as a new medication for patients with refractory pain. Voltage-gated sodium channels (Nav) are thought to have crucial roles in the development of inflammatory and neuropathic pain, but there is limited information about whether the analgesic mechanism of carvacrol involves Nav. We used whole-cell, two-electrode, voltage-clamp techniques to examine the effects of carvacrol on sodium currents in Xenopus oocytes expressing α subunits of Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8. Carvacrol dose-dependently suppressed sodium currents at a holding potential that induced half-maximal current. The half-maximal inhibitory concentration values for Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8 were 233, 526, 215, 367, and 824 μmol/L, respectively, indicating that carvacrol had more potent inhibitory effects towards Nav1.2 and Nav1.6 than Nav1.3, Nav1.7, and Nav1.8. Gating analysis showed a depolarizing shift of the activation curve and a hyperpolarizing shift of the inactivation curve in all five α subunits following carvacrol treatment. Furthermore, carvacrol exhibits a use-dependent block for all five α Nav subunits. These findings provide a better understanding of the mechanisms associated with the analgesic effect of carvacrol.
Collapse
Affiliation(s)
- Takafumi Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Yuichi Ogata
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Reiko Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryo Fukui
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kuniaki Moriwaki
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobuyuki Yanagihara
- Laboratory of Pharmacology, Faculty of Food and Nutrition, Kyushu Nutrition Welfare University, Kitakyushu, Japan
| | - Yasuhito Uezono
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuka Sudo
- Department of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | | |
Collapse
|
44
|
Reynolds C, King MD, Gorman KM. The phenotypic spectrum of SCN2A-related epilepsy. Eur J Paediatr Neurol 2020; 24:117-122. [PMID: 31924505 DOI: 10.1016/j.ejpn.2019.12.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Pathogenic variants in SCN2A are reported in a spectrum of neurodevelopmental disorders including developmental and epileptic encephalopathies, benign familial neonatal-infantile seizures, episodic ataxia, and autism spectrum disorder and intellectual disability with and without seizures. To date, more than 300 patients with SCN2A variants have been published, the majority presenting with epilepsy. Large cohort studies and variant-specific electrophysiology, have enabled the delineation of different SCN2A-epilepsy phenotypes, phenotype-genotype correlations, prediction of pharmacosensitivity to sodium channel blockers and long-term prognostication for clinicians and families. Herein, we summarise the core phenotypes of SCN2A-related epilepsy, genotype-phenotype correlations, response to medication and future research.
Collapse
Affiliation(s)
- Claire Reynolds
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
45
|
Wengert ER, Saga AU, Panchal PS, Barker BS, Patel MK. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology 2019; 158:107699. [PMID: 31278928 DOI: 10.1016/j.neuropharm.2019.107699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
SCN8A epileptic encephalopathy is a severe genetic epilepsy syndrome caused by de novo gain-of-function mutations of SCN8A encoding the voltage-gated sodium (Na) channel (VGSC) NaV1.6. Therapeutic management is difficult in many patients, leading to uncontrolled seizures and risk of sudden unexpected death in epilepsy (SUDEP). There is a need to develop novel anticonvulsants that can specifically target aberrant VGSC activity associated with SCN8A gain-of-function mutations. In this study, we investigate the effects of Prax330, a novel VGSC inhibitor, on the biophysical properties of wild-type (WT) NaV1.6 and the patient mutation p.Asn1768Asp (N1768D) in ND7/23 cells. The effects of Prax330 on persistent (INaP) and resurgent (INaR) Na currents and neuronal excitability in subiculum neurons from a knock-in mouse model of the Scn8a-N1768D mutation (Scn8aD/+) were also examined. In ND7/23 cells, Prax330 reduced INaP currents recorded from cells expressing Scn8a-N1768D and hyperpolarized steady-state inactivation curves. Recordings from brain slices demonstrated elevated INaP and INaR in subiculum neurons from Scn8aD/+ mutant mice and abnormally large action potential (AP) burst-firing events in a subset of neurons. Prax330 (1 μM) reduced both INaP and INaR and suppressed AP bursts, with a smaller effect on AP waveforms that had similar morphology to WT neurons. Prax330 (1 μM) also reduced synaptically-evoked APs in Scn8aD/+ subiculum neurons but not in WT neurons. Our results highlight the efficacy of targeting INaP and INaR and inactivation parameters in controlling subiculum excitability and suggest Prax330 as a promising novel therapy for SCN8A epileptic encephalopathy.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Anusha U Saga
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
46
|
AlSaif S, Umair M, Alfadhel M. Biallelic SCN2A Gene Mutation Causing Early Infantile Epileptic Encephalopathy: Case Report and Review. J Cent Nerv Syst Dis 2019; 11:1179573519849938. [PMID: 31205438 PMCID: PMC6537489 DOI: 10.1177/1179573519849938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/20/2019] [Indexed: 01/13/2023] Open
Abstract
The voltage-gated sodium channel neuronal type 2 alpha subunit (Navα1.2) encoded by the SCN2A gene causes early infantile epileptic encephalopathy (EIEE) inherited in an autosomal dominant manner. Clinically, it has variable presentations, ranging from benign familial infantile seizures (BFIS) to severe EIEE. Diagnosis is achieved through molecular DNA testing of the SCN2A gene. Herein, we report on a 30-month-old Saudi girl who presented on the fourth day of life with EIEE, normal brain magnetic resonance imaging (MRI), normal electroencephalography (EEG), and well-controlled seizures. Genetic investigation revealed a novel homozygous missense mutation (c.5242A > G; p.Asn1748Asp) in the SCN2A gene (NM_001040142.1). This is the first reported autosomal recessive inheritance of a disease allele in the SCN2A and therefore expands the molecular and inheritance spectrum of the SCN2A gene defects.
Collapse
Affiliation(s)
- Shahad AlSaif
- College of Medicine, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Schwarz N, Bast T, Gaily E, Golla G, Gorman KM, Griffiths LR, Hahn A, Hukin J, King M, Korff C, Miranda MJ, Møller RS, Neubauer B, Smith RA, Smol T, Striano P, Stroud B, Vaccarezza M, Kluger G, Lerche H, Fazeli W. Clinical and genetic spectrum of SCN2A-associated episodic ataxia. Eur J Paediatr Neurol 2019; 23:438-447. [PMID: 30928199 DOI: 10.1016/j.ejpn.2019.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pathogenic variants in SCN2A are associated with various neurological disorders including epilepsy, autism spectrum disorder and intellectual disability. Few reports have recently described SCN2A-associated episodic ataxia (EA). Our study identifies its broader clinical and genetic spectrum, and describes pharmacological approaches. RESULTS We report 21 patients with SCN2A-associated EA, of which 9 are unpublished cases. The large majority of patients present with epileptic seizures (18/21, 86%), often starting within the first three months of life (12/18, 67%). In contrast, onset of episodic ataxia ranged from 10 months to 14 years of age. The frequency of EA episodes ranged from brief, daily events up to 1-2 episodes per year each lasting several weeks. Potential triggers include minor head traumas and sleep deprivation. Cognitive outcome is favorable in most patients with normal or mildly impaired cognitive development in 17/21 patients (81%). No clear genotype-phenotype correlations were identified in this cohort. However, two mutational hotspots were identified, i.e. 7/21 patients (33%) harbor the identical pathogenic variant p.A263V, whereas 5/21 (24%) carry pathogenic variants that affect the S4 segment and its cytoplasmic loop within the domain IV. In addition, we identified six novel pathogenic variants in SCN2A. While acetazolamide was previously reported as beneficial in SCN2A-associated EA in one case, our data show a conflicting response in 8 additional patients treated with acetazolamide: three of them profited from acetazolamide treatment, while 5/8 did not. CONCLUSIONS Our study describes the heterogeneous clinical spectrum of SCN2A-associated EA, identifies two mutational hotspots and shows positive effects of acetazolamide in about 50%.
Collapse
Affiliation(s)
- N Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - T Bast
- Epilepsy Center Kork, Kehl, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E Gaily
- Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - G Golla
- Klinik für Kinder- und Jugendmedizin, Klinikum Lippe GmbH, Detmold, Germany
| | - K M Gorman
- Children's University Hospital, Temple Street, Dublin, Ireland
| | - L R Griffiths
- Institute of Health and Biomedical Innovation, QUT, Queensland, Australia
| | - A Hahn
- Department of Neuropediatrics, University Medical Center Giessen and Marburg, Giessen, Germany
| | - J Hukin
- British Columbia Children's Hospital, 4480 Oak St, Vancouver, BC, Canada
| | - M King
- Children's University Hospital, Temple Street, Dublin, Ireland
| | - C Korff
- Pediatric Neurology, University Hospitals Geneva, Geneva, Switzerland
| | - M J Miranda
- Herlev University Hospital, Department of Pediatrics, Copenhagen, Denmark
| | - R S Møller
- The Danish Epilepsy Centre, Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - B Neubauer
- Department of Neuropediatrics, University Medical Center Giessen and Marburg, Giessen, Germany
| | - R A Smith
- Institute of Health and Biomedical Innovation, QUT, Queensland, Australia
| | - T Smol
- Institut de Genetique Medicale, CHRU Lille, Université de Lille, Lille, France
| | - P Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS "G. Gaslini" Institute, Genova, Italy
| | - B Stroud
- Golisano Children's Hospital of Southwest Florida, Fort Myers, FL, USA
| | - M Vaccarezza
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - G Kluger
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Klinik, Vogtareuth, Germany; Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - H Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - W Fazeli
- Pediatric Neurology, Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute for Molecular and Behavioral Neuroscience, Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
48
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
49
|
Begemann A, Acuña MA, Zweier M, Vincent M, Steindl K, Bachmann-Gagescu R, Hackenberg A, Abela L, Plecko B, Kroell-Seger J, Baumer A, Yamakawa K, Inoue Y, Asadollahi R, Sticht H, Zeilhofer HU, Rauch A. Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol Med 2019; 25:6. [PMID: 30813884 PMCID: PMC6391808 DOI: 10.1186/s10020-019-0073-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. METHODS To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. RESULTS The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. CONCLUSIONS Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants.
Collapse
Affiliation(s)
- Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | - Mario A Acuña
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | - Marie Vincent
- Service de génétique médicale, CHU Nantes, 44093, Nantes, France
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | | | - Annette Hackenberg
- Division of Child Neurology, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Lucia Abela
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Division of Child Neurology, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Barbara Plecko
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Division of Child Neurology, University Children's Hospital Zurich, 8032, Zurich, Switzerland.,Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036, Graz, Austria
| | - Judith Kroell-Seger
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, 8008, Zurich, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Yushi Inoue
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, 420-8688, Japan
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Hanns Ulrich Zeilhofer
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zürich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland. .,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
50
|
Yang Z, Tan Q, Cheng D, Zhang L, Zhang J, Gu EW, Fang W, Lu X, Liu X. The Changes of Intrinsic Excitability of Pyramidal Neurons in Anterior Cingulate Cortex in Neuropathic Pain. Front Cell Neurosci 2018; 12:436. [PMID: 30519160 PMCID: PMC6258991 DOI: 10.3389/fncel.2018.00436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular mechanisms should be illuminated. Central sensitization is a generator of pain hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway. Neuronal excitability depends on two components, the synaptic inputs and the intrinsic excitability. Previous studies have focused on the synaptic plasticity in different forms of pain. But little is known about the changes of neuronal intrinsic excitability in neuropathic pain. To address this question, whole-cell patch clamp recordings were performed to study the synaptic transmission and neuronal intrinsic excitability 1 week after spared nerve injury (SNI) or sham operation in male C57BL/6J mice. We found increased spontaneous excitatory postsynaptic currents (sEPSC) frequency in layer II/III pyramidal neurons of anterior cingulate cortex (ACC) from mice with neuropathic pain. Elevated intrinsic excitability of these neurons after nerve injury was also picked up, which was reflected in gain of input-output curve, inter-spike interval (ISI), spike threshold and Refractory period (RP). Besides firing rate related to neuronal intrinsic excitability, spike timing also plays an important role in neural information processing. The precision of spike timing measured by standard deviation of spike timing (SDST) was decreased in neuropathic pain state. The electrophysiological studies revealed the elevated intrinsic excitation in layer II/III pyramidal neurons of ACC in mice with neuropathic pain, which might contribute to central excitation.
Collapse
Affiliation(s)
- Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qilian Tan
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dan Cheng
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Er-Wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Weiping Fang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xianfu Lu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|