1
|
Acar D, Ozcelik EU, Baykan B, Bebek N, Demiralp T, Bayram A. Diffusion tensor imaging in photosensitive and nonphotosensitive juvenile myoclonic epilepsy. Seizure 2024; 115:36-43. [PMID: 38183826 DOI: 10.1016/j.seizure.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
INTRODUCTION/BACKGROUND Juvenile myoclonic epilepsy (JME) syndrome is known to cause alterations in brain structure and white matter integrity. The study aimed to determine structural white matter changes in patients with JME and to reveal the differences between the photosensitive (PS) and nonphotosensitive (NPS) subgroups by diffusion tensor imaging (DTI) using the tract-based spatial statistics (TBSS) method. METHODS This study included data from 16 PS, 15 NPS patients with JME, and 41 healthy participants. The mean fractional anisotropy (FA) values of these groups were calculated, and comparisons were made via the TBSS method over FA values in the whole-brain and 81 regions of interest (ROI) obtained from the John Hopkins University White Matter Atlas. RESULTS In the whole-brain TBSS analysis, no significant differences in FA values were observed in pairwise comparisons of JME patient group and subgroups with healthy controls (HCs) and in comparison between JME subgroups. In ROI-based TBSS analysis, an increase in FA values of right anterior corona radiata and left corticospinal pathways was found in JME patient group compared with HC group. When comparing JME-PS patients with HCs, an FA increase was observed in the bilateral anterior corona radiata region, whereas when comparing JME-NPS patients with HCs, an FA increase was observed in bilateral corticospinal pathway. Moreover, in subgroup comparison, an increase in FA values was noted in corpus callosum genu region in JME-PS compared with JME-NPS. CONCLUSIONS Our results support the disruption in thalamofrontal white matter integrity in JME, and subgroups and highlight the importance of using different analysis methods to show the underlying microstructural changes.
Collapse
Affiliation(s)
- Dilan Acar
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Türkiye
| | - Emel Ur Ozcelik
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye; Department of Neurology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye.
| | - Betül Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye; Department of Neurology, Istanbul EMAR Medical Center, Istanbul, Türkiye
| | - Nerses Bebek
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Tamer Demiralp
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Stasenko A, Lin C, Bonilha L, Bernhardt BC, McDonald CR. Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption. Neuroscientist 2024; 30:105-131. [PMID: 35193421 PMCID: PMC9393207 DOI: 10.1177/10738584221076133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes.
Collapse
Affiliation(s)
- Alena Stasenko
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Christine Lin
- School of Medicine, University of California, San Diego, CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Boris C Bernhardt
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, CA, USA
- Center for Multimodal Imaging and Genetics (CMIG), University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Deng D, Sun H, Wang Y, Guo X, Yuan Y, Wang J, Qiu L. Structural and functional abnormalities in first-episode drug-naïve pediatric idiopathic generalized epilepsy. Cereb Cortex 2024; 34:bhae021. [PMID: 38314605 DOI: 10.1093/cercor/bhae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
The aim of this study was to investigate brain structure and corresponding static and dynamic functional connectivity (sFC & dFC) abnormalities in untreated, first-episode pediatric idiopathic generalized epilepsy (IGE), with the goal of better understanding the underlying pathological mechanisms of IGE. Thirty-one children with IGE and 31 age-matched healthy controls (HC) were recruited. Structural magnetic resonance imaging (sMRI) data were acquired, and voxel-based morphometry (VBM) analysis were performed to reveal abnormal gray matter volume (GMV). Moreover, sFC and dFC analyses were conducted using the brain areas exhibiting abnormal GMV as seed regions to explore abnormal functional couplings. Compared to HC, the IGE group exhibited increased GMV in left middle cingulate cortex (MCC) and right parahippocampus (ParaHipp). In addition, the analyses of dFC and sFC with MCC and ParaHipp as seeds revealed more extensive functional connectivity (FC) changes in dFC. Notably, the structurally and functionally abnormal brain areas were primarily localized in the default mode network (DMN). However, our study did not find any significant associations between these altered neuroimaging measurements and clinical outcomes. This study uncovered microstructural changes as well as corresponding sFC and dFC changes in patients with new-onset, untreated pediatric IGE. The affected brain regions were primarily located within the DMN, highlighting the DMN's crucial role in the development of pediatric IGE.
Collapse
Affiliation(s)
- Dingmei Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, South Section 3, First Ring Road, Wuhou District, Chengdu 610041, China
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, No. 24, South Section 1, First Ring Road, Wuhou District, Chengdu 610065, China
| | - Yuting Wang
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Xin Guo
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Yizhi Yuan
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No.7, Zhiyuan Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No.7, Zhiyuan Road, Chenggong District, Kunming 650500, China
| | - Lihua Qiu
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, No. 24, South Section 1, First Ring Road, Wuhou District, Chengdu City, Sichuan Province, Chengdu 610065, China
| |
Collapse
|
4
|
Roshandel D, Sanders EJ, Shakeshaft A, Panjwani N, Lin F, Collingwood A, Hall A, Keenan K, Deneubourg C, Mirabella F, Topp S, Zarubova J, Thomas RH, Talvik I, Syvertsen M, Striano P, Smith AB, Selmer KK, Rubboli G, Orsini A, Ng CC, Møller RS, Lim KS, Hamandi K, Greenberg DA, Gesche J, Gardella E, Fong CY, Beier CP, Andrade DM, Jungbluth H, Richardson MP, Pastore A, Fanto M, Pal DK, Strug LJ. SLCO5A1 and synaptic assembly genes contribute to impulsivity in juvenile myoclonic epilepsy. NPJ Genom Med 2023; 8:28. [PMID: 37770509 PMCID: PMC10539321 DOI: 10.1038/s41525-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.
Collapse
Affiliation(s)
- Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Eric J Sanders
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, The University of Toronto, Toronto, Canada
| | - Amy Shakeshaft
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Naim Panjwani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Fan Lin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Amber Collingwood
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anna Hall
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katherine Keenan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Celine Deneubourg
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Filippo Mirabella
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simon Topp
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jana Zarubova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Rhys H Thomas
- Newcastle upon Tyne NHS Foundation Trust, Newcastle, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Oslo, Norway
| | - Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Anna B Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kaja K Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Guido Rubboli
- Danish Epilepsy Centre, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Orsini
- Pediatric Neurology, Azienda Ospedaliero-Universitaria Pisana, Pisa University Hospital, Pisa, Italy
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Rikke S Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Kheng Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology Cardiff & Vale University Health Board, Cardiff, UK
- Department of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | | | | | - Elena Gardella
- Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Choong Yi Fong
- Division of Paediatric Neurology, Department of Pediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Danielle M Andrade
- Adult Epilepsy Genetics Program, Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's College Hospital, London, UK
| | - Annalisa Pastore
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Manolis Fanto
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- King's College Hospital, London, UK.
| | - Lisa J Strug
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.
- Division of Biostatistics, Dalla Lana School of Public Health, The University of Toronto, Toronto, Canada.
- Departments of Statistical Sciences and Computer Science, The University of Toronto, Toronto, Canada.
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
5
|
Rahman MM, Abdulla E, Rahman S, Moscote-Salazar LR. Tremor as a symptom of degenerative cervical myelopathy: a systematic review. Br J Neurosurg 2023; 37:245. [PMID: 35531870 DOI: 10.1080/02688697.2022.2072809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Md Moshiur Rahman
- Holy Family Red Crescent Medical College, Neurosurgery, Dhaka, Bangladesh
| | | | - Sabrina Rahman
- Independent University-Bangladesh, Public Health, Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Maidan I, Yam M, Glatt S, Nosatzki S, Goldstein L, Giladi N, Hausdorff JM, Mirelman A, Fahoum F. Abnormal gait and motor cortical processing in drug-resistant juvenile myoclonic epilepsy. Brain Behav 2023; 13:e2872. [PMID: 36602919 PMCID: PMC9927833 DOI: 10.1002/brb3.2872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Juvenile myoclonic epilepsy (JME) is characterized by generalized seizures. Nearly 30% of JME patients are drug-resistant (DR-JME), indicating a widespread cortical dysfunction. Walking is an important function that necessitates orchestrated coordination of frontocentral cortical regions. However, gait alterations in JME have been scarcely investigated. Our aim was to assess changes in gait and motor-evoked responses in DR-JME patients. METHODS Twenty-nine subjects (11 JME drug-responder, 8 DR-JME, and 10 healthy controls) underwent a gait analyses during usual walking and dual-task walking. Later, subjects underwent 64-channel EEG recordings while performing a simple motor task. We calculated the motor-evoked current source densities (CSD) at a priori chosen cortical regions. Gait and CSD measures were compared between groups and tasks using mixed model analysis. RESULTS DR-JME patients demonstrated an altered gait pattern that included slower gait speed (p = .018), reduced cadence (p = .003), and smaller arm-swing amplitude (p = .011). The DR-JME group showed higher motor-evoked CSD in the postcentral gyri compared to responders (p = .049) and both JME groups showed higher CSD in the superior frontal gyri compared to healthy controls (p < .011). Moreover, higher CSD in the superior frontal gyri correlated with worse performance in dual-task walking (r > |-0.494|, p < .008). CONCLUSIONS These alterations in gait and motor-evoked responses in DRE-JME patients reflect a more severe dysfunction of motor-cognitive neural processing in frontocentral regions, leading to poorer gait performance. Further studies are needed to investigate the predictive value of altered gait and cortical motor processing as biomarkers for poor response to treatment in JME and other epilepsy syndromes.
Collapse
Affiliation(s)
- Inbal Maidan
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mor Yam
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Glatt
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Nosatzki
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lilach Goldstein
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel.,Rush Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Brain Electrophysiology and Epilepsy Lab, Epilepsy Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Adan GH, de Bézenac C, Bonnett L, Pridgeon M, Biswas S, Das K, Richardson MP, Laiou P, Keller SS, Marson T. Protocol for an observational cohort study investigating biomarkers predicting seizure recurrence following a first unprovoked seizure in adults. BMJ Open 2022; 12:e065390. [PMID: 36576179 PMCID: PMC9723849 DOI: 10.1136/bmjopen-2022-065390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION A first unprovoked seizure is a common presentation, reliably identifying those that will have recurrent seizures is a challenge. This study will be the first to explore the combined utility of serum biomarkers, quantitative electroencephalogram (EEG) and quantitative MRI to predict seizure recurrence. This will inform patient stratification for counselling and the inclusion of high-risk patients in clinical trials of disease-modifying agents in early epilepsy. METHODS AND ANALYSIS 100 patients with first unprovoked seizure will be recruited from a tertiary neuroscience centre and baseline assessments will include structural MRI, EEG and a blood sample. As part of a nested pilot study, a subset of 40 patients will have advanced MRI sequences performed that are usually reserved for patients with refractory chronic epilepsy. The remaining 60 patients will have standard clinical MRI sequences. Patients will be followed up every 6 months for a 24-month period to assess seizure recurrence. Connectivity and network-based analyses of EEG and MRI data will be carried out and examined in relation to seizure recurrence. Patient outcomes will also be investigated with respect to analysis of high-mobility group box-1 from blood serum samples. ETHICS AND DISSEMINATION This study was approved by North East-Tyne & Wear South Research Ethics Committee (20/NE/0078) and funded by an Association of British Neurologists and Guarantors of Brain clinical research training fellowship. Findings will be presented at national and international meetings published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NIHR Clinical Research Network's (CRN) Central Portfolio Management System (CPMS)-44976.
Collapse
Affiliation(s)
- Guleed H Adan
- Institute of Systems, Molecular, Integrated Biology, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Christophe de Bézenac
- Institute of Systems, Molecular, Integrated Biology, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Laura Bonnett
- University of Liverpool Department of Biostatistics, Liverpool, UK
| | | | | | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Petroula Laiou
- Department of Basic and Clinical Neuroscience, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Simon S Keller
- Institute of Systems, Molecular, Integrated Biology, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Tony Marson
- Institute of Systems, Molecular, Integrated Biology, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
8
|
Kim KM, Hwang H, Sohn B, Park K, Han K, Ahn SS, Lee W, Chu MK, Heo K, Lee SK. Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy. Korean J Radiol 2022; 23:1281-1289. [PMID: 36447416 PMCID: PMC9747272 DOI: 10.3348/kjr.2022.0539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. MATERIALS AND METHODS A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. RESULTS The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. CONCLUSION Radiomic models using MRI were able to differentiate JME from HCs.
Collapse
Affiliation(s)
- Kyung Min Kim
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Heewon Hwang
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Beomseok Sohn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Kisung Park
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Wonwoo Lee
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Min Kyung Chu
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Heo
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Patrikelis P, Giovagnoli AR, Messinis L, Fasilis T, Malefaki S, Verentzioti A, Stefanatou M, Alexoudi A, Korfias S, Mitsikostas DD, Kimiskidis V, Gatzonis S. Understanding frontal lobe function in epilepsy: Juvenile myoclonic epilepsy vs. frontal lobe epilepsy. Epilepsy Behav 2022; 134:108850. [PMID: 35933958 DOI: 10.1016/j.yebeh.2022.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
AIM To compare neuropsychological function in juvenile myoclonic epilepsy (JME) and frontal lobe epilepsy (FLE) since frontal circuitry is involved in both conditions. By drawing on previously theory-guided hypotheses and findings, a particular emphasis is placed on the way different cognitive-pathophysiological mechanisms act upon to produce frontal dysfunction in JME (frontal-executive and attention-related problems: vigilance, reaction times, processing speed, and response inhibition) and in FLE (reflecting the coproduct of the functional deficit zone), respectively. METHODS A total of 16 patients with JME, 34 patients with FLE, and 48 normal controls, all matched for age and education, were administered a comprehensive battery of tests to assess frontal-executive functions, as well as attention, memory, and learning domains. Participants did not take medications other than antiepileptics or have a psychiatric history. RESULTS Patients with FLE overall showed worse neuropsychological performance compared to both JME and HCs. With respect to JME, patients with FLE did significantly worse in measures of verbal and nonverbal executive function, short-term-, and long-term- auditory-verbal memory and learning, immediate and delayed episodic recall, visual attention and motor function, visuo-motor coordination and psychomotor speed, speed of visual information processing, and vocabulary. Patients with JME performed significantly worse compared to FLE only in associative semantic processing, while the former outperformed all groups in vocabulary, visuomotor coordination, and psychomotor speed. CONCLUSION We suggest that selective impairments of visual- and mostly auditory-speed of information processing, vigilance, and response inhibition may represent a salient neuropsychological feature in JME. These findings suggest the existence of an aberrantly working executive-attention system, secondary to pathological reticulo-thalamo-cortical dynamics. Contrariwise, cortically (frontal and extra-frontal) and subcortically induced malfunction in FLE is determined by the functional deficit zone i.e., the ensemble of cortical and subcortical areas that are functionally abnormal between seizures.
Collapse
Affiliation(s)
- Panayiotis Patrikelis
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece; Laboratory of Cognitive Neuroscience, Department of Psychology, Aristotle University of Thessaloniki, Greece.
| | - Anna-Rita Giovagnoli
- Laboratory of Cognitive Behavioral Neurology, Neurology and Neuropathology Unit, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Lambros Messinis
- Laboratory of Cognitive Neuroscience, Department of Psychology, Aristotle University of Thessaloniki, Greece
| | - Theodoros Fasilis
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece
| | - Sonia Malefaki
- Department of Mechanical Engineering and Aeronautics, University of Patras School of Engineering, Rio Patras, Greece
| | - Anastasia Verentzioti
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece
| | - Maria Stefanatou
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece
| | - Athanasia Alexoudi
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece
| | - Stefanos Korfias
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece
| | - Dimos D Mitsikostas
- 1st Neurology Department, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vasileios Kimiskidis
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Gatzonis
- 1st Department of Neurosurgery, National & Kapodistrian University of Athens, Greece
| |
Collapse
|
10
|
Sánchez-Zapata P, Zapata-Berruecos JF, Peláez-Sánchez RG. [Structural changes to the brain in drug-resistant juvenile myoclonic epilepsy]. Rev Neurol 2022; 75:23-30. [PMID: 35822568 PMCID: PMC10186721 DOI: 10.33588/rn.7502.2022066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The aim of this research is to determine the changes in brain structures, both cortical and subcortical, in patients with drug-resistant juvenile myoclonic epilepsy (JME), in order to contribute to the understanding of the characteristics of the drug-resistant syndrome and to offer possible answers and hypotheses for further studies and more adequate treatments. SUBJECTS AND METHODS Observational case-control study. A convenience sample size of four cases and 16 healthy controls was defined to ensure the feasibility of the project (ratio of 4:1). The data collected for patients with drug-resistant JME came from 1.5T MRI equipment. FreeSurfer software was used to determine cortical and subcortical areas in both drug-resistant JME patients and healthy controls. RESULTS A total of 20 participants were included in the study, of whom four (20%) were drug-resistant JME patients and 16% (80%) were healthy controls. The clusters with statistically significant differences in cortical thickness are located in the precentral gyrus, superior temporal gyrus, transverse temporal gyrus, medial temporal gyrus and supramarginal gyrus, predominantly in the left hemisphere. CONCLUSIONS Structural brain changes are observed in patients with drug-resistant JME that may go undetected by the conventional processing techniques used in magnetic resonance imaging.
Collapse
Affiliation(s)
| | - J F Zapata-Berruecos
- Instituto Neurológico de Colombia, Medellín, Colombia
- Universidad CES, Medellín, Colombia
| | - R G Peláez-Sánchez
- Universidad de Antioquia, Medellín, Colombia
- Universidad CES, Medellín, Colombia
| |
Collapse
|
11
|
Yang T, Zhang Y, Zhang T, Zhou H, Yang M, Ren J, Li L, Lei D, Gong Q, Zhou D. Altered dynamic functional connectivity of striatal-cortical circuits in Juvenile Myoclonic Epilepsy. Seizure 2022; 101:103-108. [DOI: 10.1016/j.seizure.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
|
12
|
Zhang J, Wu D, Yang H, Lu H, Ji Y, Liu H, Zang Z, Lu J, Sun W. Correlations Between Structural Brain Abnormalities, Cognition and Electroclinical Characteristics in Patients With Juvenile Myoclonic Epilepsy. Front Neurol 2022; 13:883078. [PMID: 35651335 PMCID: PMC9149597 DOI: 10.3389/fneur.2022.883078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the structural brain abnormality and its relationship with neuropsychological disorders and electroclinical characteristics in juvenile myoclonic epilepsy (JME) patients. Methods Sixty-seven patients diagnosed with JME and 56 healthy controls were enrolled. All subjects underwent MRI using T1-weighted 3D brain structural images with 1 mm thickness. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) analyses were performed. They also underwent a series of neuropsychological tests to assess cognitive function. The correlation analyses were conducted between structural changes, neuropsychological outcomes, and electroclinical features. Results The gray matter concentration (GMC) was decreased in the bilateral pre-central and post-central gyrus, right anterior cingulate gyrus, left posterior orbital region, bilateral occipital regions, bilateral hippocampus and bilateral caudate nucleus in the JME groups (corrected P < 0.05). The evaluation of gray matter volume (GMV) showed significant decrease respectively in bilateral pre-central and post-central gyrus, left paracentral lobule, left orbital gyrus, left amygdala, left basal ganglia and left thalamus of JME patients (P < 0.05). The cortex thicknesses of the right inferior temporal gyrus, right insular gyrus, and right cingulate gyrus had negative correlations with the disease duration significantly. At the same time, the whole-brain white matter volume was positively associated with the course of the disease (P < 0.05). Patients with persistent abnormal EEG discharges had significantly less whole-brain gray matter volume than JME patients with normal EEG (P = 0.03). Correlation analyses and linear regression analyses showed that, in addition to the gray matter volumes of frontal and parietal lobe, the temporal lobe, as well as the basal ganglia and thalamus, were also significantly correlated with neuropsychological tests' results (P < 0.05). Conclusion The JME patients showed subtle structural abnormalities in multiple brain regions that were not only limited to the frontal lobe but also included the thalamus, basal ganglia, parietal lobe, temporal lobe and some occipital cortex, with significant involvement of the primary somatosensory cortex and primary motor cortex. And we significantly demonstrated a correlation between structural abnormalities and cognitive impairment. In addition, the course of disease and abnormal discharges had a specific negative correlation with the structural changes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Dan Wu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Haoran Yang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Hongjuan Lu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yichen Ji
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Huixin Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Rodriguez-Cruces R, Royer J, Larivière S, Bassett DS, Caciagli L, Bernhardt BC. Multimodal connectome biomarkers of cognitive and affective dysfunction in the common epilepsies. Netw Neurosci 2022; 6:320-338. [PMID: 35733426 PMCID: PMC9208009 DOI: 10.1162/netn_a_00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological conditions, traditionally defined as a disorder of recurrent seizures. Cognitive and affective dysfunction are increasingly recognized as core disease dimensions and can affect patient well-being, sometimes more than the seizures themselves. Connectome-based approaches hold immense promise for revealing mechanisms that contribute to dysfunction and to identify biomarkers. Our review discusses emerging multimodal neuroimaging and connectomics studies that highlight network substrates of cognitive/affective dysfunction in the common epilepsies. We first discuss work in drug-resistant epilepsy syndromes, that is, temporal lobe epilepsy, related to mesiotemporal sclerosis (TLE), and extratemporal epilepsy (ETE), related to malformations of cortical development. While these are traditionally conceptualized as ‘focal’ epilepsies, many patients present with broad structural and functional anomalies. Moreover, the extent of distributed changes contributes to difficulties in multiple cognitive domains as well as affective-behavioral challenges. We also review work in idiopathic generalized epilepsy (IGE), a subset of generalized epilepsy syndromes that involve subcortico-cortical circuits. Overall, neuroimaging and network neuroscience studies point to both shared and syndrome-specific connectome signatures of dysfunction across TLE, ETE, and IGE. Lastly, we point to current gaps in the literature and formulate recommendations for future research. Epilepsy is increasingly recognized as a network disorder characterized by recurrent seizures as well as broad-ranging cognitive difficulties and affective dysfunction. Our manuscript reviews recent literature highlighting brain network substrates of cognitive and affective dysfunction in common epilepsy syndromes, namely temporal lobe epilepsy secondary to mesiotemporal sclerosis, extratemporal epilepsy secondary to malformations of cortical development, and idiopathic generalized epilepsy syndromes arising from subcortico-cortical pathophysiology. We discuss prior work that has indicated both shared and distinct brain network signatures of cognitive and affective dysfunction across the epilepsy spectrum, improves our knowledge of structure-function links and interindividual heterogeneity, and ultimately aids screening and monitoring of therapeutic strategies.
Collapse
Affiliation(s)
- Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Wang H, Zhao P, Zhao J, Zhong J, Pan P, Wang G, Yi Z. Theory of Mind and Empathy in Adults With Epilepsy: A Meta-Analysis. Front Psychiatry 2022; 13:877957. [PMID: 35573343 PMCID: PMC9093035 DOI: 10.3389/fpsyt.2022.877957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mounting evidence suggests that social cognitive abilities [including theory of mind (ToM) and empathy] are impaired in adult patients with epilepsy. Although the deficits in overall ToM in epilepsy have been documented well, the effects of epilepsy on empathic ability and specific subcomponents of ToM remain unclear. The primary aim of this study was to provide the first meta-analytic integration of ToM and empathy in adult patients with epilepsy, and to decompose these constructs to clearly differentiate their distinct (cognitive ToM and affective empathy) and overlapping (affective ToM/cognitive empathy) components. This meta-analysis included 28 studies. Adult patients with temporal lobe epilepsy (TLE) and frontal lobe epilepsy (FLE) showed impairments in cognitive ToM and affective ToM/cognitive empathy compared to the healthy controls (HCs); no group differences were identified for affective empathy. Besides, cognitive ToM was impaired in adult patients with idiopathic generalized epilepsy (IGE) and focal seizures (caused by epileptogenic foci) outside the temporal and frontal lobes (extra-TLE/FLE) and no group differences were evident for affective ToM/cognitive empathy compared to the HCs. Moreover, relative to the HCs, no group differences were identified for affective empathy in adult patients with IGE. Additionally, no (statistically) significant difference was observed between the magnitude of ToM/empathy impairment in adult patients who underwent and those who did not undergo epilepsy surgery. These quantitative findings suggest differential impairment of the core aspects of social cognitive processing in adult patients with epilepsy, which may contribute to the development of structured cognitive interventions (i.e., social cognitive training) for adult patients with epilepsy.
Collapse
Affiliation(s)
- HongZhou Wang
- Department of Neurology, Anting Hospital, Shanghai, China
| | - PanWen Zhao
- Department of Central Laboratory, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jing Zhao
- Department of Central Laboratory, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - JianGuo Zhong
- Department of Neurology, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - PingLei Pan
- Department of Central Laboratory, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China.,Department of Neurology, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - GenDi Wang
- Department of Neurology, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - ZhongQuan Yi
- Department of Central Laboratory, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
15
|
Gray Matter Changes in Juvenile Myoclonic Epilepsy. A Voxel-Wise Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111136. [PMID: 34833354 PMCID: PMC8620511 DOI: 10.3390/medicina57111136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
Background and Objectives. Juvenile myoclonic epilepsy (JME) is an idiopathic generalized epileptic syndrome, with a genetic basis clinically identified by myoclonic jerks of the upper limbs upon awaking, generalized tonic-clonic seizures and less frequent absences. Although the brain magnetic resonance imaging (MRI) is by definition normal, computer-based Voxel-Based morphometry studies have shown a number of volumetric changes in patients with juvenile myoclonic epilepsy. Thus, the aim of the present Voxel-Wise Meta-Analysis was to determine the most consistent regional differences of gray matter volume between JME patients and healthy controls. Materials and Methods. The initial search returned 31 studies. After excluding reviews and studies without control groups or without detailed peak coordinates, 12 studies were finally included in the present meta-analysis. The total number of JME patients was 325, and that of healthy controls was 357. Results. Our study showed a statistically significant increase of the gray matter in the left median cingulate/paracingulate gyri, the right superior frontal gyrus, the left precentral gyrus, the right supplementary motor area and left supplementary motor area. It also showed a decrease in the gray matter volume in the left thalamus, and in the left insula. Conclusions. Our findings could be related to the functional deficits and changes described by previous studies in juvenile myoclonic epilepsy. In this way, the volumetric changes found in the present study could be related to the impaired frontal lobe functions, the emotional dysfunction and impaired pain empathy, and to the disrupted functional connectivity of supplementary motor areas described in JME. It additionally shows changes in the volume of the left thalamus, supporting the theory of thalamocortical pathways being involved in the pathogenesis of juvenile myoclonic epilepsy.
Collapse
|
16
|
Zhang Y, Huang G, Liu M, Li M, Wang Z, Wang R, Yang D. Functional and structural connective disturbance of the primary and default network in patients with generalized tonic-clonic seizures. Epilepsy Res 2021; 174:106595. [PMID: 33993017 DOI: 10.1016/j.eplepsyres.2021.106595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The present study aims to investigate the disturbance of functional and structural profiles of patients with generalized tonic-clonic seizures (GTCS). METHODS Resting-state fMRI and diffusion tensor imaging (DTI) data was collected from fifty-six patients and sixty-two healthy controls. Degree centrality (DC) of functional connectivity was first calculated and compared between groups using a two-sample t-test. Furthermore, the regions with significant alteration of DC in patients with GTCS were used as nodes to construct the brain network. Functional connectivity (FC) network was constructed using the Person's correlation analysis and structural connectivity (SC) network was obtained using deterministic tractography technology. Gray matter volume (GMV) and cortical thickness (CT) were computed and correlated with connective profiles. RESULTS The patients with GTCS showed increased DC in the primary network (PN), including bilateral precentral gyrus, supplementary motor areas (SMA), and visual cortex, and decreased DC in core regions of default mode network (DMN), bilateral anterior insular, and supramarginal gyrus. In the present study, 14 regions were identified to construct networks. In patients, the FC and SC were increased within the sensorimotor network (mainly linking with SMA) and decreased within DMN (mainly linking with the posterior cingulate cortex (PCC)). Except for the decreased FC and SC between cerebellum and SMA, patients demonstrated increased connectivity between DMN and PN. Besides, the insula demonstrated decreased FC with DMN and increased FC with PN, without significant SC alterations in patients with GTCS. Decreased GMV in bilateral thalamus and increased GMV in frontoparietal regions were found in patients. The decreased GMV of thalamus and increased GMV of SMA positively and negatively correlated with the FC between PCC and left superior frontal cortex, the FC between SMA and left precuneus respectively. CONCLUSION Hyper-connectivity within PN helps to understand the disturbance of primary functions, especially the motor abnormality in GTCS. The hypo-connectivity within DMN suggested abnormal network organization possibly related to epileptogenesis. Moreover, over-interaction between DMN and PN and unbalanced connectivity between them and insula provided potential evidence reflecting abnormal interactions between primary and high-order function systems.
Collapse
Affiliation(s)
- Yaodan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine Affiliated Fifth People's Hospital, Chengdu, PR China
| | - Gengzhen Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Meijun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Mao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhiqiang Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Rongyu Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dongdong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
17
|
Smith A, Syvertsen M, Pal DK. Meta-analysis of response inhibition in juvenile myoclonic epilepsy. Epilepsy Behav 2020; 106:107038. [PMID: 32240946 DOI: 10.1016/j.yebeh.2020.107038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Patients with juvenile myoclonic epilepsy (JME) show evidence of cognitive impulsivity that may be linked to later adverse psychosocial outcomes. Here, we quantify the strength of association and estimate effect size (ES) of response inhibition by pooling available evidence in a meta-analysis. METHODS We conducted a systematic review of the literature using Ovid MEDLINE and Ovid EMBASE databases (covering 2001-2019) with a search strategy using combinations of the specific Medical Subject Headings (MeSH) terms 'juvenile myoclonic epilepsy, cognitive impulsivity, response inhibition, Stroop, cognition, personality, traits' using the 'explode' feature where possible. We also searched within references of retrieved articles. We included studies reporting ESs describing established measures of response inhibition in teenage and adult patients with JME. RESULTS Using the ESs pooled from 16 studies comprising 1047 patients and controls, we found ESs for response inhibition to be homogeneous with a significant moderate mean ES of d = 0.50 (95% confidence interval [CI]: 0.37-0.63). CONCLUSIONS We confirm that reduced response inhibition is a consistently observed homogeneous trait in patients with JME.
Collapse
Affiliation(s)
- Anna Smith
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; King's College Hospital, London, United Kingdom; Evelina London Children's Hospital, London, United Kingdom.
| |
Collapse
|
18
|
Raatikainen M, Kälviäinen R, Jutila L, Äikiä M. Cognitive functioning in new-onset juvenile myoclonic epilepsy. Epilepsy Behav 2020; 106:107015. [PMID: 32179503 DOI: 10.1016/j.yebeh.2020.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Juvenile myoclonic epilepsy (JME) is a common genetic generalized epilepsy syndrome. Adult patients with JME have shown a neuropsychological profile suggestive of subtle frontal dysfunction, but studies of cognitive functioning in the early phases of JME are rare. We analyzed the cognitive performance data of 18 patients who had undergone a neuropsychological assessment either at the time of JME diagnosis and before the initiation of an antiepileptic drug (AED) treatment (11 patients) or during the first 6 years after JME diagnosis (seven patients). METHODS The cognitive performance of the18 patients with JME (mean age: 18.1, range: 15-33 years) and 18 healthy controls (mean age: 18.7, range: 15-25 years) was compared in a retrospective study. The assessed cognitive domains were visuomotor speed, attention, executive function, and verbal memory. RESULTS The patients with JME and the healthy controls did not differ in any of the assessed cognitive domains. The clinical variables did not correlate to cognitive performance. Furthermore, cognitive performance did not differ between the patients evaluated at the time of diagnosis and before the initiation of AEDs and the patients evaluated during the first 6 years after diagnosis and with an AED treatment. CONCLUSIONS The cognitive performance of patients with new-onset JME was similar to healthy controls. We could not detect the frontal dysfunction that has been suggested to be associated with JME. Patients were in adolescence or early adulthood with a short duration of epilepsy, which may have contributed to the discovery of no cognitive impairments.
Collapse
Affiliation(s)
- Maria Raatikainen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network EpiCARE, Kuopio, Finland.
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network EpiCARE, Kuopio, Finland; Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Jutila
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network EpiCARE, Kuopio, Finland
| | - Marja Äikiä
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network EpiCARE, Kuopio, Finland
| |
Collapse
|
19
|
Krzemiński D, Masuda N, Hamandi K, Singh KD, Routley B, Zhang J. Energy landscape of resting magnetoencephalography reveals fronto-parietal network impairments in epilepsy. Netw Neurosci 2020; 4:374-396. [PMID: 32537532 PMCID: PMC7286306 DOI: 10.1162/netn_a_00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) is a form of idiopathic generalized epilepsy. It is yet unclear to what extent JME leads to abnormal network activation patterns. Here, we characterized statistical regularities in magnetoencephalograph (MEG) resting-state networks and their differences between JME patients and controls by combining a pairwise maximum entropy model (pMEM) and novel energy landscape analyses for MEG. First, we fitted the pMEM to the MEG oscillatory power in the front-oparietal network (FPN) and other resting-state networks, which provided a good estimation of the occurrence probability of network states. Then, we used energy values derived from the pMEM to depict an energy landscape, with a higher energy state corresponding to a lower occurrence probability. JME patients showed fewer local energy minima than controls and had elevated energy values for the FPN within the theta, beta, and gamma bands. Furthermore, simulations of the fitted pMEM showed that the proportion of time the FPN was occupied within the basins of energy minima was shortened in JME patients. These network alterations were highlighted by significant classification of individual participants employing energy values as multivariate features. Our findings suggested that JME patients had altered multistability in selective functional networks and frequency bands in the fronto-parietal cortices.
Collapse
Affiliation(s)
- Dominik Krzemiński
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Naoki Masuda
- Department of Engineering Mathematics, University of Bristol, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Bethany Routley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| |
Collapse
|
20
|
Dysfunctional personality beliefs and executive performance in patients with juvenile myoclonic epilepsy. Epilepsy Behav 2020; 105:106958. [PMID: 32097884 DOI: 10.1016/j.yebeh.2020.106958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND This article intends to verify the association of dysfunctional beliefs of personality disorders with the executive performance in people with juvenile myoclonic epilepsy (JME). METHODS Fifty-two patients (35 women, 67.3%) with JME aged 18-50 yrs. (32.3 ± 9.7) were evaluated between May 2017 and April 2018 and compared with controls. All subjects were submitted to the Personality Beliefs Questionnaire (PBQ) (Beck & Beck, 1991; Savoia et al., 2006), Dysexecutive Questionnaire (DQ; Wilson et al., 1996; Macuglia et al., 2016), estimated intelligence quotient (IQ) using Vocabulary and Block Design tests, attention and executive functions evaluation (Controlled Oral Word Association (COWA), Digit Span, Trail Making Tests (TMT) A and B, Stroop and Wisconsin Card Sorting Test (WCST)). The inclusion criteria were as follows: diagnosis of JME (ILAE, 1989); age ≥18 yrs., schooling ≥ 11 yrs. and IQ ≥70. The inclusion criteria for the control group were the same except diagnosis of epilepsy. RESULTS Compared with controls, patients presented higher scores in PBQ for personality disorders, namely Narcissistic (z = -0.79; p < 0.001), Borderline (z = -0.58; p = 0.002), Paranoid (z = -0.43; p = 0.017), and Histrionic (z = -0.39; p = 0.041). Executive functions were impaired when compared with controls in TMT A (z = -0.97; p = 0.038), TMT B (z = -0.65; p = 0.023), and COWA (z = -0.51; p = 0.001). Patients showed higher WCST scores for Errors (z = -1.62; p ≤ 0.001), Perseverative Errors (z = -0.77; p = 0.001), Non-Perseverative Errors (z = -1.01; p = 0.001), Conceptual Level Response (z = -1.56; p ≤ 0.001), Completed Categories (z = -2.12; p = 0.002), and Failure to Maintain Context (z = -0.49; p = 0.015). Personality Beliefs Questionnaire results showed correlation with lower values in TMT A, Antisocial (r = -0.298; p = 0.032), Narcissistic (r = -0.303; p = 0.029), Schizoid (r = - 0.410; p = 0.003), Histrionic (r = -0.341; p = 0.013), Passive-aggressive (r = -0.341; p = 0.015), and Obsessive-compulsive (r = -0.319; p = 0.021); TMT B results showed a trend for Obsessive-compulsive traits (r = -0.261; p = 0.052); COWA was correlated to Dependent (r = 0.319; p = 0.021); and Digit Span to Passive-aggressive (r = 0.287; p = 0.039). On WCST, Failure to Maintain Context was correlated to Avoidant (r = 0.335; p = 0.017). The DQ was not correlated with PBQ. CONCLUSION People with JME presented dysfunctional beliefs of personality disorder that were correlated with executive dysfunction. These findings reinforce the need for psychological rehabilitation in these patients.
Collapse
|
21
|
Ratcliffe C, Wandschneider B, Baxendale S, Thompson P, Koepp MJ, Caciagli L. Cognitive Function in Genetic Generalized Epilepsies: Insights From Neuropsychology and Neuroimaging. Front Neurol 2020; 11:144. [PMID: 32210904 PMCID: PMC7076110 DOI: 10.3389/fneur.2020.00144] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic generalized epilepsies (GGE), previously called idiopathic generalized epilepsies, constitute about 20% of all epilepsies, and include childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone (CAE, JAE, JME, and GGE-GTCS, respectively). GGE are characterized by high heritability, likely underlain by polygenetic mechanisms, which may relate to atypical neurodevelopmental trajectories. Age of onset ranges from pre-school years, for CAE, to early adulthood for GGE-GTCS. Traditionally, GGE have been considered benign, a belief contrary to evidence from neuropsychology studies conducted over the last two decades. In JME, deficits in executive and social functioning are common findings and relate to impaired frontal lobe function. Studies using neuropsychological measures and cognitive imaging paradigms provide evidence for hyperconnectivity between prefrontal and motor cortices, aberrant fronto-thalamo-cortical connectivity, and reduced fronto-cortical and subcortical gray matter volumes, which are associated with altered cognitive performance. Recent research has also identified associations between abnormal hippocampal morphometry and fronto-temporal activation during episodic memory. Longitudinal studies on individuals with newly diagnosed JME have observed cortical dysmaturation, which is paralleled by delayed cognitive development compared to the patients' peers. Comorbidities and cognitive deficits observed in other GGE subtypes, such as visuo-spatial and language deficits in both CAE and JAE, have also been correlated with atypical neurodevelopment. Although it remains unclear whether cognitive impairment profiles differ amongst GGE subtypes, effects may become more pronounced with disease duration, particularly in absence epilepsies. Finally, there is substantial evidence that patients with JME and their unaffected siblings share patterns of cognitive deficits, which is indicative of an underlying genetic etiology (endophenotype), independent of seizures and anti-epileptic medication.
Collapse
Affiliation(s)
- Corey Ratcliffe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Pamela Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Abstract
Common genetic generalised epilepsy syndromes encountered by clinicians include childhood and juvenile absence epilepsies, juvenile myoclonic epilepsy and generalised tonic-clonic seizures on awakening. Treatment of these syndromes involves largely the use of broad-spectrum antiseizure drugs. Those effective for the generalised epilepsies include sodium valproate, phenobarbital, ethosuximide, clobazam, clonazepam, lamotrigine, levetiracetam, topiramate, zonisamide and, more recently, perampanel and brivaracetam. Results from the few rigorous studies comparing outcomes with drugs for genetic generalised epilepsies show valproate to be the most effective. The majority of patients with genetic generalised epilepsy syndromes will become seizure free on antiseizure monotherapy; those for whom control proves elusive may benefit from combination regimens. Early counselling regarding management may assist the patient to come to terms with their diagnosis and improve long-term outcomes. Treatment can be lifelong in some individuals, although others may remain seizure free without medication. Choice of antiseizure medication depends on the efficacy for specific seizure types, as well as tolerability. For patients prescribed comedication, drug interactions should be considered. In particular, for young women taking oral hormonal contraceptives, ≥ 200 mg/day of topiramate can decrease the circulating concentration of ethinylestradiol and ≥ 12 mg/day of perampanel can induce levonorgestrel metabolism. The use of valproate in women of childbearing potential is limited by associated teratogenic and neurodevelopmental effects in offspring. Given that valproate is often the antiseizure drug of choice for genetic generalised epilepsies, this creates a dilemma for patients and clinicians. Decision making can be aided by comprehensive assessment and discussion of treatment options. Psychiatric comorbidities are common in adolescents and adults with genetic generalised epilepsies. These worsen the prognosis, both in terms of seizure control and quality of life. Attendant lifestyle issues can impact significantly on the individual and society. Frontal lobe dysfunction, which can present in patients with juvenile myoclonic epilepsy, can adversely affect the long-term outlook, regardless of the nature of seizure control. Ongoing management requires consideration of psychosocial and behavioural factors that can complicate diagnosis and treatment. An assured supportive attitude by the neurologist can be an important contributor to a positive outcome. The mechanisms underlying genetic generalised epilepsies, including genetic abnormalities, are unclear at present. As the pathophysiology is unravelled, this may lead to the development of novel therapies and improved outcomes for patients with these syndromes.
Collapse
Affiliation(s)
- Linda J Stephen
- West Glasgow Ambulatory Care Hospital, Dalnair St, Glasgow, G3 8SJ, UK.
| | | |
Collapse
|
23
|
MacEachern SJ, Santoro JD, Hahn KJ, Medress ZA, Stecher X, Li MD, Hahn JS, Yeom KW, Forkert ND. Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala. Neuroradiology 2019; 62:389-397. [PMID: 31853588 DOI: 10.1007/s00234-019-02332-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite evidence for macrostructural alteration in epilepsy patients later in life, little is known about the underlying pathological or compensatory mechanisms at younger ages causing these alterations. The aim of this work was to investigate the impact of pediatric epilepsy on the central nervous system, including gray matter volume, cerebral blood flow, and water diffusion, compared with neurologically normal children. METHODS Inter-ictal magnetic resonance imaging data was obtained from 30 children with epilepsy ages 1-16 (73% F, 27% M). An atlas-based approach was used to determine values for volume, cerebral blood flow, and apparent diffusion coefficient in the cerebral cortex, hippocampus, thalamus, caudate, putamen, globus pallidus, amygdala, and nucleus accumbens. These values were then compared with previously published values from 100 neurologically normal children using a MANCOVA analysis. RESULTS Most brain volumes of children with epilepsy followed a pattern similar to typically developing children, except for significantly larger putamen and amygdala. Cerebral blood flow was also comparable between the groups, except for the putamen, which demonstrated decreased blood flow in children with epilepsy. Diffusion (apparent diffusion coefficient) showed a trend towards higher values in children with epilepsy, with significantly elevated diffusion within the thalamus in children with epilepsy compared with neurologically normal children. CONCLUSION Children with epilepsy show statistically significant differences in volume, diffusion, and cerebral blood flow within their thalamus, putamen, and amygdala, suggesting that epilepsy is associated with structural changes of the central nervous system influencing brain development and potentially leading to poorer neurocognitive outcomes.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Santoro
- Division of Neurology, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kara J Hahn
- Department of Neurology, Division of Child Neurology, Stanford University, Stanford, CA, USA
| | | | - Ximena Stecher
- Radiology Department, Universidad del Desarrollo, Santiago, Chile.,Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Matthew D Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jin S Hahn
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Nils D Forkert
- Department of Radiology, Cumming School of Medicine, Universityof Calgary, Calgary, AB, Canada. .,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
24
|
Guida M, Caciagli L, Cosottini M, Bonuccelli U, Fornai F, Giorgi FS. Social cognition in idiopathic generalized epilepsies and potential neuroanatomical correlates. Epilepsy Behav 2019; 100:106118. [PMID: 30824176 DOI: 10.1016/j.yebeh.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Social cognition allows us to elaborate mental representations of social relationships and use them appropriately in a social environment. One of its main attributes is the so-called Theory of Mind (ToM), which consists of the ability to attribute beliefs, intentions, emotions, and feelings to self and others. Investigating social cognition may help understand the poor social outcome often experienced by persons with Idiopathic Generalized Epilepsies (IGE), who otherwise present with normal intelligence. In recent years, several studies have addressed social cognition in subjects with focal epilepsies, while literature on social cognition in IGE is scarce, and findings are often conflicting. Some studies on samples of patients with mixed IGE showed difficulties in emotion attribution tasks, which were not replicated in a homogeneous population of patients with Juvenile Myoclonic Epilepsy alone. Impairment of higher order social skills, such as those assessed by Strange Stories Test and Faux Pas Tasks, were consistently found by different studies on mixed IGE, suggesting that this may be a more distinctive IGE-associated trait, irrespective of the specific syndrome subtype. Though an interplay between social cognition and executive functions (EF) was suggested by several authors, and their simultaneous impairment was shown in several epilepsy syndromes including IGE, no formal correlations among the two domains were identified in most studies. People with IGE exhibit subtle brain structural alterations in areas potentially involved in sociocognitive functional networks, including mesial prefrontal and temporoparietal cortices, which may relate to impairment in social cognition. Heterogeneity in patient samples, mostly consisting of groups with mixed IGE, and lack of analyses in specific IGE subsyndromes, represent evident limitations of the current literature. Larger studies, focusing on specific subsyndromes and implementing standardized test batteries, will improve our understanding of sociocognitive processing in IGE. Concomitant high-resolution structural and functional neuroimaging may aid the identification of its neural correlates. This article is part of the Special Issue "Epilepsy and social cognition across the lifespan".
Collapse
Affiliation(s)
- Melania Guida
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, United Kingdom
| | - Mirco Cosottini
- Neuroradiology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Pisa University Hospital, Pisa, Italy; Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; I.R.C.C.S. I.N.M. Neuromed, Pozzilli, Isernia, Italy
| | | |
Collapse
|
25
|
Gilsoul M, Grisar T, Delgado-Escueta AV, de Nijs L, Lakaye B. Subtle Brain Developmental Abnormalities in the Pathogenesis of Juvenile Myoclonic Epilepsy. Front Cell Neurosci 2019; 13:433. [PMID: 31611775 PMCID: PMC6776584 DOI: 10.3389/fncel.2019.00433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME), a lifelong disorder that starts during adolescence, is the most common of genetic generalized epilepsy syndromes. JME is characterized by awakening myoclonic jerks and myoclonic-tonic-clonic (m-t-c) grand mal convulsions. Unfortunately, one third of JME patients have drug refractory m-t-c convulsions and these recur in 70-80% who attempt to stop antiepileptic drugs (AEDs). Behavioral studies documented impulsivity, but also impairment of executive functions relying on organization and feedback, which points to prefrontal lobe dysfunction. Quantitative voxel-based morphometry (VBM) revealed abnormalities of gray matter (GM) volumes in cortical (frontal and parietal) and subcortical structures (thalamus, putamen, and hippocampus). Proton magnetic resonance spectroscopy (MRS) found evidence of dysfunction of thalamic neurons. White matter (WM) integrity was disrupted in corpus callosum and frontal WM tracts. Magnetic resonance imaging (MRI) further unveiled anomalies in both GM and WM structures that were already present at the time of seizure onset. Aberrant growth trajectories of brain development occurred during the first 2 years of JME diagnosis. Because of genetic origin, disease causing variants were sought, first by positional cloning, and most recently, by next generation sequencing. To date, only six genes harboring pathogenic variants (GABRA1, GABRD, EFHC1, BRD2, CASR, and ICK) with Mendelian and complex inheritance and covering a limited proportion of the world population, are considered as major susceptibility alleles for JME. Evidence on the cellular role, developmental and cell-type expression profiles of these six diverse JME genes, point to their pathogenic variants driving the first steps of brain development when cell division, expansion, axial, and tangential migration of progenitor cells (including interneuron cortical progenitors) sculpture subtle alterations in brain networks and microcircuits during development. These alterations may explain "microdysgenesis" neuropathology, impulsivity, executive dysfunctions, EEG polyspike waves, and awakening m-t-c convulsions observed in JME patients.
Collapse
Affiliation(s)
- Maxime Gilsoul
- GIGA-Stem Cells, University of Liège, Liège, Belgium
- GIGA-Neurosciences, University of Liège, Liège, Belgium
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thierry Grisar
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Antonio V. Delgado-Escueta
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Epilepsy Genetics/Genomics Lab, Neurology and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Laurence de Nijs
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Bernard Lakaye
- GIGA-Stem Cells, University of Liège, Liège, Belgium
- GIGA-Neurosciences, University of Liège, Liège, Belgium
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Caciagli L, Wandschneider B, Xiao F, Vollmar C, Centeno M, Vos SB, Trimmel K, Sidhu MK, Thompson PJ, Winston GP, Duncan JS, Koepp MJ. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain 2019; 142:2670-2687. [PMID: 31365054 PMCID: PMC6776114 DOI: 10.1093/brain/awz215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
Juvenile myoclonic epilepsy is the most common genetic generalized epilepsy syndrome, characterized by a complex polygenetic aetiology. Structural and functional MRI studies demonstrated mesial or lateral frontal cortical derangements and impaired fronto-cortico-subcortical connectivity in patients and their unaffected siblings. The presence of hippocampal abnormalities and associated memory deficits is controversial, and functional MRI studies in juvenile myoclonic epilepsy have not tested hippocampal activation. In this observational study, we implemented multi-modal MRI and neuropsychological data to investigate hippocampal structure and function in 37 patients with juvenile myoclonic epilepsy, 16 unaffected siblings and 20 healthy controls, comparable for age, gender, handedness and hemispheric dominance as assessed with language laterality indices. Automated hippocampal volumetry was complemented by validated qualitative and quantitative morphological criteria to detect hippocampal malrotation, assumed to represent a neurodevelopmental marker. Neuropsychological measures of verbal and visuo-spatial learning and an event-related verbal and visual memory functional MRI paradigm addressed mesiotemporal function. We detected a reduction of mean left hippocampal volume in patients and their siblings compared with controls (P < 0.01). Unilateral or bilateral hippocampal malrotation was identified in 51% of patients and 50% of siblings, against 15% of controls (P < 0.05). For bilateral hippocampi, quantitative markers of verticalization had significantly larger values in patients and siblings compared with controls (P < 0.05). In the patient subgroup, there was no relationship between structural measures and age at disease onset or degree of seizure control. No overt impairment of verbal and visual memory was identified with neuropsychological tests. Functional mapping highlighted atypical patterns of hippocampal activation, pointing to abnormal recruitment during verbal encoding in patients and their siblings [P < 0.05, familywise error (FWE)-corrected]. Subgroup analyses indicated distinct profiles of hypoactivation along the hippocampal long axis in juvenile myoclonic epilepsy patients with and without malrotation; patients with malrotation also exhibited reduced frontal recruitment for verbal memory, and more pronounced left posterior hippocampal involvement for visual memory. Linear models across the entire study cohort indicated significant associations between morphological markers of hippocampal positioning and hippocampal activation for verbal items (all P < 0.05, FWE-corrected). We demonstrate abnormalities of hippocampal volume, shape and positioning in patients with juvenile myoclonic epilepsy and their siblings, which are associated with reorganization of function and imply an underlying neurodevelopmental mechanism with expression during the prenatal stage. Co-segregation of abnormal hippocampal morphology in patients and their siblings is suggestive of a genetic imaging phenotype, independent of disease activity, and can be construed as a novel endophenotype of juvenile myoclonic epilepsy.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| |
Collapse
|
27
|
Tangwiriyasakul C, Perani S, Centeno M, Yaakub SN, Abela E, Carmichael DW, Richardson MP. Dynamic brain network states in human generalized spike-wave discharges. Brain 2019; 141:2981-2994. [PMID: 30169608 PMCID: PMC6158757 DOI: 10.1093/brain/awy223] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/15/2018] [Indexed: 12/21/2022] Open
Abstract
Generalized spike-wave discharges in idiopathic generalized epilepsy are conventionally assumed to have abrupt onset and offset. However, in rodent models, discharges emerge during a dynamic evolution of brain network states, extending several seconds before and after the discharge. In human idiopathic generalized epilepsy, simultaneous EEG and functional MRI shows cortical regions may be active before discharges, and network connectivity around discharges may not be normal. Here, in human idiopathic generalized epilepsy, we investigated whether generalized spike-wave discharges emerge during a dynamic evolution of brain network states. Using EEG-functional MRI, we studied 43 patients and 34 healthy control subjects. We obtained 95 discharges from 20 patients. We compared data from patients with discharges with data from patients without discharges and healthy controls. Changes in MRI (blood oxygenation level-dependent) signal amplitude in discharge epochs were observed only at and after EEG onset, involving a sequence of parietal and frontal cortical regions then thalamus (P < 0.01, across all regions and measurement time points). Examining MRI signal phase synchrony as a measure of functional connectivity between each pair of 90 brain regions, we found significant connections (P < 0.01, across all connections and measurement time points) involving frontal, parietal and occipital cortex during discharges, and for 20 s after EEG offset. This network prominent during discharges showed significantly low synchrony (below 99% confidence interval for synchrony in this network in non-discharge epochs in patients) from 16 s to 10 s before discharges, then ramped up steeply to a significantly high level of synchrony 2 s before discharge onset. Significant connections were seen in a sensorimotor network in the minute before discharge onset. This network also showed elevated synchrony in patients without discharges compared to healthy controls (P = 0.004). During 6 s prior to discharges, additional significant connections to this sensorimotor network were observed, involving prefrontal and precuneus regions. In healthy subjects, significant connections involved a posterior cortical network. In patients with discharges, this posterior network showed significantly low synchrony during the minute prior to discharge onset. In patients without discharges, this network showed the same level of synchrony as in healthy controls. Our findings suggest persistently high sensorimotor network synchrony, coupled with transiently (at least 1 min) low posterior network synchrony, may be a state predisposing to generalized spike-wave discharge onset. Our findings also show that EEG onset and associated MRI signal amplitude change is embedded in a considerably longer period of evolving brain network states before and after discharge events.
Collapse
Affiliation(s)
- Chayanin Tangwiriyasakul
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Suejen Perani
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria Centeno
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Siti Nurbaya Yaakub
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Eugenio Abela
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - David W Carmichael
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,King's College Hospital, London, UK
| |
Collapse
|
28
|
Coan AC. Brain morphological abnormalities in genetic generalized epilepsies: The starting point? Epilepsia 2019; 60:1279-1280. [PMID: 31233212 DOI: 10.1111/epi.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Ana Carolina Coan
- Child Neurology Unit, Department of Neurology, University of Campinas, Campinas, Brazil
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, University of Campinas, Campinas, Brazil
| |
Collapse
|
29
|
Boss N, Abela E, Weisstanner C, Schindler K, Wiest R. Local thalamic atrophy associates with large-scale functional connectivity alterations of fronto-parietal cortices in genetic generalized epilepsies. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2019. [DOI: 10.1177/2514183x19850325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Genetic generalized epilepsies (GGEs) are a group of seizure syndromes that start in childhood and adolescence. Although generally viewed as benign, large-scale epidemiological studies suggest that a significant proportion of GGE patients suffer from drug-resistant seizures, cognitive impairment and social problems. This motivates further research into their pathophysiology, which is still incompletely understood. GGE is characterized clinically and on the encephalogram by seizures that seem to involve both hemispheres simultaneously – hence the idea of a ‘generalized’ process. However, findings from experimental animal studies suggest that seizures in GGE arise due to complex functional alterations within a network that involves fronto-parietal cortex and midline thalamus. In line with these results, neuroimaging studies have found metabolic changes in midline frontal and posterior parietal cortices during GGE seizures and atrophy of both frontal lobe structures and thalamus in GGE patients. Pathology of fronto-thalamic networks seems therefore to be a core feature of GGE. It is unknown how alterations of structure and function between different sites of the network influence each other. Given that the thalamus exerts widespread influence on cortical function, we hypothesized that thalamic atrophy in GGE patients would lead to functional impairment in cortical networks. To test this hypothesis, we performed a case–control study on patients with GGE and healthy controls (HCs), using computational neuroanatomical and functional connectivity techniques. Confirming our hypothesis, we found atrophy in midline thalamic regions preferentially connected to midline (pre-) frontal cortex, and correlated functional disconnection between midline frontal and posterior parietal cortex. Of note, we found increased functional connectivity between the left-sided thalamus and the left medial prefrontal cortex, and a decrease in interhemispheric functional connectivity between bilateral parietal cortex in patients compared to HCs. Taken together, our results suggest that even highly localized subcortical structural changes might lead to large-scale network effects in GGE.
Collapse
Affiliation(s)
- Nicolas Boss
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital Bern, Switzerland
| | - Eugenio Abela
- Maurice Wohl Clinical Neuroscience Institute, Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King’s Kollege Hospital, London, UK
| | | | | | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital Bern, Switzerland
| |
Collapse
|
30
|
Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, Alhusaini S, Alvim MKM, Auvinen P, Bartolini E, Bergo FPG, Bernardes T, Blackmon K, Braga B, Caligiuri ME, Calvo A, Carr SJ, Chen J, Chen S, Cherubini A, David P, Domin M, Foley S, França W, Haaker G, Isaev D, Keller SS, Kotikalapudi R, Kowalczyk MA, Kuzniecky R, Langner S, Lenge M, Leyden KM, Liu M, Loi RQ, Martin P, Mascalchi M, Morita ME, Pariente JC, Rodríguez-Cruces R, Rummel C, Saavalainen T, Semmelroch MK, Severino M, Thomas RH, Tondelli M, Tortora D, Vaudano AE, Vivash L, von Podewils F, Wagner J, Weber B, Yao Y, Yasuda CL, Zhang G, Bargalló N, Bender B, Bernasconi N, Bernasconi A, Bernhardt BC, Blümcke I, Carlson C, Cavalleri GL, Cendes F, Concha L, Delanty N, Depondt C, Devinsky O, Doherty CP, Focke NK, Gambardella A, Guerrini R, Hamandi K, Jackson GD, Kälviäinen R, Kochunov P, Kwan P, Labate A, McDonald CR, Meletti S, O'Brien TJ, Ourselin S, Richardson MP, Striano P, Thesen T, Wiest R, Zhang J, Vezzani A, Ryten M, Thompson PM, Sisodiya SM. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 2019; 141:391-408. [PMID: 29365066 PMCID: PMC5837616 DOI: 10.1093/brain/awx341] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/24/2017] [Indexed: 12/02/2022] Open
Abstract
Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen’s d = −0.24 to −0.73; P < 1.49 × 10−4), and lower thickness in the precentral gyri bilaterally (d = −0.34 to −0.52; P < 4.31 × 10−6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = −1.73 to −1.91, P < 1.4 × 10−19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = −0.36 to −0.52; P < 1.49 × 10−4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = −0.29 to −0.54; P < 1.49 × 10−4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = −0.27 to −0.51; P < 1.49 × 10−4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < −0.0018; P < 1.49 × 10−4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.
Collapse
Affiliation(s)
- Christopher D Whelan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA.,Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andre Altmann
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Juan A Botía
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marina K M Alvim
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Pia Auvinen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Emanuele Bartolini
- Pediatric Neurology Unit, Children's Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Felipe P G Bergo
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Tauana Bernardes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George's University, Grenada, West Indies
| | - Barbara Braga
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Maria Eugenia Caligiuri
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Sarah J Carr
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, USA
| | - Shuai Chen
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | - Andrea Cherubini
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Philippe David
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Domin
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Wales, UK
| | - Wendy França
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Gerrit Haaker
- Department of Neurosurgery, University Hospital, Freiburg, Germany.,Department of Neuropathology, University Hospital Erlangen, Germany
| | - Dmitry Isaev
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Magdalena A Kowalczyk
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Ruben Kuzniecky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Soenke Langner
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Matteo Lenge
- Pediatric Neurology Unit, Children's Hospital A. Meyer-University of Florence, Italy
| | - Kelly M Leyden
- Multimodal Imaging Laboratory, University of California San Diego, San Diego, California, USA.,Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Min Liu
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, Mcgill University, Montreal, Quebec, Canada
| | - Richard Q Loi
- Multimodal Imaging Laboratory, University of California San Diego, San Diego, California, USA.,Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mario Mascalchi
- Neuroradiology Unit, Children's Hospital A. Meyer, Florence, Italy.,"Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Marcia E Morita
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Raul Rodríguez-Cruces
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Taavi Saavalainen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Central Finland Central Hospital, Medical Imaging Unit, Jyväskylä, Finland
| | - Mira K Semmelroch
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Mariasavina Severino
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Rhys H Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Domenico Tortora
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Lucy Vivash
- Melbourne Brain Centre, Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Wagner
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Department of Neurology, Philips University of Marburg, Marburg Germany
| | - Bernd Weber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Department of Neurocognition / Imaging, Life&Brain Research Centre, Bonn, Germany
| | - Yi Yao
- The Affiliated Chenggong Hospital of Xiamen University, Xiamen, China
| | | | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, USA
| | - Nuria Bargalló
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain.,Centre de Diagnostic Per la Imatge (CDIC), Hospital Clinic, Barcelona, Spain
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, Mcgill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, Mcgill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, Mcgill University, Montreal, Quebec, Canada.,Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Germany
| | - Chad Carlson
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Medical College of Wisconsin, Department of Neurology, Milwaukee, WI, USA
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Colin P Doherty
- FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Neurology Department, St. James's Hospital, Dublin 8, Ireland
| | - Niels K Focke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University "Magna Græcia", Catanzaro, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit, Children's Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Khalid Hamandi
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Reetta Kälviäinen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Maryland, USA
| | - Patrick Kwan
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Angelo Labate
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University "Magna Græcia", Catanzaro, Italy
| | - Carrie R McDonald
- Multimodal Imaging Laboratory, University of California San Diego, San Diego, California, USA.,Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Terence J O'Brien
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Neurology, King's College Hospital, London, UK
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George's University, Grenada, West Indies
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | - Annamaria Vezzani
- Dept of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy
| | - Mina Ryten
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.,Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
31
|
Cortical morphologic changes in recent-onset, drug-naïve idiopathic generalized epilepsy. Magn Reson Imaging 2019; 61:137-142. [PMID: 31129280 DOI: 10.1016/j.mri.2019.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Only a few studies have investigated the brain morphology abnormalities in structural MRI in patients with drug-naïve idiopathic generalized epilepsy (IGE) and mainly focused on brain volume changes. In the present study, we aimed to investigate the changes in three morphologic measurement differences including cortical thickness, cortical volume, and surface area using FreeSurfer in a pediatric cohort of recent-onset, drug-naïve IGE. METHODS Forty-five recent-onset, drug-naïve patients diagnosed with IGE and 32 demographically matched healthy controls were recruited. All participants underwent structural MRI scans with a 3.0 T MR system. FreeSurfer, an automated cortical surface reconstruction toolbox, was applied to compare the cortical morphology between patients and controls. The brain regions with significant group differences after multiple comparison correction were extracted in common space for each patient, and then correlated with their clinical characteristics (including onset age, duration of epilepsy, and mini-mental state examination (MMSE)) using partial correlation analysis with age, sex and intracranial volume as covariates. RESULTS Compared with controls, IGE patients showed decreased cortical thickness in the left rostral middle frontal gyrus, decreased cortical volume in the right cuneus and left superior frontal gyrus that extended to the precentral gyrus, and decreased surface area in the right cuneus and right inferior parietal gyrus. None of these regions showed significant relationships with clinical measurements in the patient group. CONCLUSION Our findings suggest that cortical thickness, cortical volume, and surface area changes occurred in the early stage of IGE. These findings provide structural neuroimaging evidence underlying the pathology of IGE.
Collapse
|
32
|
Qin Y, Jiang S, Zhang Q, Dong L, Jia X, He H, Yao Y, Yang H, Zhang T, Luo C, Yao D. BOLD-fMRI activity informed by network variation of scalp EEG in juvenile myoclonic epilepsy. NEUROIMAGE-CLINICAL 2019; 22:101759. [PMID: 30897433 PMCID: PMC6425117 DOI: 10.1016/j.nicl.2019.101759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/22/2019] [Accepted: 03/10/2019] [Indexed: 01/14/2023]
Abstract
Epilepsy is marked by hypersynchronous bursts of neuronal activity, and seizures can propagate variably to any and all areas, leading to brain network dynamic organization. However, the relationship between the network characteristics of scalp EEG and blood oxygenation level-dependent (BOLD) responses in epilepsy patients is still not well known. In this study, simultaneous EEG and fMRI data were acquired in 18 juvenile myoclonic epilepsy (JME) patients. Then, the adapted directed transfer function (ADTF) values between EEG electrodes were calculated to define the time-varying network. The variation of network information flow within sliding windows was used as a temporal regressor in fMRI analysis to predict the BOLD response. To investigate the EEG-dependent functional coupling among the responding regions, modulatory interactions were analyzed for network variation of scalp EEG and BOLD time courses. The results showed that BOLD activations associated with high network variation were mainly located in the thalamus, cerebellum, precuneus, inferior temporal lobe and sensorimotor-related areas, including the middle cingulate cortex (MCC), supplemental motor area (SMA), and paracentral lobule. BOLD deactivations associated with medium network variation were found in the frontal, parietal, and occipital areas. In addition, modulatory interaction analysis demonstrated predominantly directional negative modulation effects among the thalamus, cerebellum, frontal and sensorimotor-related areas. This study described a novel method to link BOLD response with simultaneous functional network organization of scalp EEG. These findings suggested the validity of predicting epileptic activity using functional connectivity variation between electrodes. The functional coupling among the thalamus, frontal regions, cerebellum and sensorimotor-related regions may be characteristically involved in epilepsy generation and propagation, which provides new insight into the pathophysiological mechanisms and intervene targets for JME.
Collapse
Affiliation(s)
- Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiqi Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaoyan Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yutong Yao
- Faculty of natural science, University of Stirling, Stirling, United Kingdom
| | - Huanghao Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
33
|
Sinha N, Wang Y, Dauwels J, Kaiser M, Thesen T, Forsyth R, Taylor PN. Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy. NEUROIMAGE-CLINICAL 2019; 21:101655. [PMID: 30685702 PMCID: PMC6356007 DOI: 10.1016/j.nicl.2019.101655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence diagnosis based on MRI is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging technique for investigating localised changes in white-matter tissues in vivo. Analysing white matter structures of 32 subjects we incorporated our in vivo findings in a computational model of seizure dynamics to suggest a plausible mechanism of epileptogenesis. Patients with IGE have significant bilateral alterations in major white-matter fascicles. In the cingulum, fornix, and superior longitudinal fasciculus, tract integrity is compromised, whereas in specific parts of tracts between thalamus and the precentral gyrus, tract integrity is enhanced in patients. Combining these alterations in a logistic regression model, we computed the decision boundary that discriminated patients and controls. The computational model, informed with the findings on the tract abnormalities, specifically highlighted the importance of enhanced cortico-reticular connections along with impaired cortico-cortical connections in inducing pathological seizure-like dynamics. We emphasise taking directionality of brain connectivity into consideration towards understanding the pathological mechanisms; this is possible by combining neuroimaging and computational modelling. Our imaging evidence of structural alterations suggest the loss of cortico-cortical and enhancement of cortico-thalamic fibre integrity in IGE. We further suggest that impaired connectivity from cortical regions to the thalamic reticular nucleus offers a therapeutic target for selectively modifying the brain circuit for reversing the mechanisms leading to epileptogenesis. Significant focal alterations along major white-matter fascicles in IGE patients are characterised. Increased white matter integrity found in thalamo-cortical connections. Decreased white matter integrity found in cortico-cortical connections. Disease mechanism is investigated by combining the neuroimaging findings with a dynamical model of seizure activity. Model implicates cortical projections to the thalamic reticular nucleus in IGE.
Collapse
Affiliation(s)
- Nishant Sinha
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
| | - Yujiang Wang
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK
| | - Justin Dauwels
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Marcus Kaiser
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Thesen
- Department of Neurology, School of Medicine, New York University, NY, USA; Department of Physiology and Neuroscience, St. Georges University, Grenada, West Indies
| | - Rob Forsyth
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Neal Taylor
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK.
| |
Collapse
|
34
|
Alonazi BK, Keller SS, Fallon N, Adams V, Das K, Marson AG, Sluming V. Resting-state functional brain networks in adults with a new diagnosis of focal epilepsy. Brain Behav 2019; 9:e01168. [PMID: 30488645 PMCID: PMC6346674 DOI: 10.1002/brb3.1168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Newly diagnosed focal epilepsy (NDfE) is rarely studied, particularly using advanced neuroimaging techniques. Many patients with NDfE experience cognitive impairments, particularly with respect to memory, sustained attention, mental flexibility, and executive functioning. Cognitive impairments have been related to alterations in resting-state functional brain networks in patients with neurological disorders. In the present study, we investigated whether patients with NDfE had altered connectivity in large-scale functional networks using resting-state functional MRI. METHODS We recruited 27 adults with NDfE and 36 age- and sex-matched healthy controls. Resting-state functional MRI was analyzed using the Functional Connectivity Toolbox (CONN). We investigate reproducibly determined large-scale functional networks, including the default mode, salience, fronto-parietal attention, sensorimotor, and language networks using a seed-based approach. Network comparisons between patients and controls were thresholded using a FDR cluster-level correction approach. RESULTS We found no significant differences in functional connectivity between seeds within the default mode, salience, sensorimotor, and language networks and other regions of the brain between patients and controls. However, patients with NDfE had significantly reduced connectivity between intraparietal seeds within the fronto-parietal attention network and predominantly frontal and temporal cortical regions relative to controls; this finding was demonstrated including and excluding the patients with brain lesions. No common alteration in brain structure was observed in patients using voxel-based morphometry. Findings were not influenced by treatment outcome at 1 year. CONCLUSIONS Patients with focal epilepsy have brain functional connectivity alterations at diagnosis. Functional brain abnormalities are not necessarily a consequence of the chronicity of epilepsy and are present when seizures first emerge.
Collapse
Affiliation(s)
- Batil K Alonazi
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK.,Department of Radiology and Medical Imaging, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,The Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Valerie Adams
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC), University of Liverpool, Liverpool, UK
| | - Kumar Das
- The Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Vanessa Sluming
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Syvertsen M, Selmer K, Enger U, Nakken KO, Pal DK, Smith A, Koht J. Psychosocial complications in juvenile myoclonic epilepsy. Epilepsy Behav 2019; 90:122-128. [PMID: 30530133 DOI: 10.1016/j.yebeh.2018.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Juvenile myoclonic epilepsy (JME) constitutes about 10% of all epilepsies. Because of executive dysfunction, people with JME may be prone to impulsivity and risk-taking behavior. Our aim was to investigate whether psychosocial issues associated with impulsivity are more prominent in people with JME than in those with other types of genetic generalized epilepsy (GGE). Patients with GGE were recruited retrospectively through the Drammen Hospital records in Buskerud County, Norway, 1999-2013. They were invited to a semi-structured interview, either at the hospital or at home. Ninety-two patients with JME and 45 with other types of GGE were interviewed. Variables were evaluated in terms of their association with JME versus other GGE diagnosis using a logistic regression model. Juvenile myoclonic epilepsy was associated with use of illicit recreational drugs and police charges, although with borderline significance (odds ratio [OR] 3.4, p = 0.087 and OR 4.2, p = 0.095); JME was also associated with being examined for attention-deficit hyperactivity disorder (ADHD) in females (OR 15.5, p = 0.015), a biological parent with challenges like addiction or violent behavior (OR 3.5, p = 0.032), and use of levetiracetam (OR 5.1, p = 0.014). After controlling for group differences, we found psychosocial complications to be associated with JME, potentially influencing the lives of the individuals and their families to a greater extent than the seizures per se. Thus, JME should be considered a disorder of the brain in a broader sense than a condition with seizures only.
Collapse
Affiliation(s)
- Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; National Center for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Ulla Enger
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Karl O Nakken
- National Center for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; King's College Hospital, London, United Kingdom; Evelina London Children's Hospital, London, United Kingdom
| | - Anna Smith
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jeanette Koht
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Garcia-Ramos C, Dabbs K, Lin JJ, Jones JE, Stafstrom CE, Hsu DA, Meyerand ME, Prabhakaran V, Hermann BP. Progressive dissociation of cortical and subcortical network development in children with new-onset juvenile myoclonic epilepsy. Epilepsia 2018; 59:2086-2095. [PMID: 30281148 PMCID: PMC6334640 DOI: 10.1111/epi.14560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Structural and functional magnetic resonance imaging (MRI) studies have consistently documented cortical and subcortical abnormalities in patients with juvenile myoclonic epilepsy (JME). However, little is known about how these structural abnormalities emerge from the time of epilepsy onset and how network interactions between and within cortical and subcortical regions may diverge in youth with JME compared to typically developing children. METHODS We examined prospective covariations of volumetric differences derived from high-resolution structural MRI during the first 2 years of epilepsy diagnosis in a group of youth with JME (n = 21) compared to healthy controls (n = 22). We indexed developmental brain changes using graph theory by computing network metrics based on the correlation of the cortical and subcortical structural covariance near the time of epilepsy and 2 years later. RESULTS Over 2 years, normally developing children showed modular cortical development and network integration between cortical and subcortical regions. In contrast, children with JME developed a highly correlated and less modular cortical network, which was atypically dissociated from subcortical structures. Furthermore, the JME group also presented higher clustering and lower modularity indices than controls, indicating weaker modules or communities. The local efficiency in JME was higher than controls across the majority of cortical nodes. Regarding network hubs, controls presented a higher number than youth with JME that were spread across the brain with ample representation from the different modules. In contrast, children with JME showed a lower number of hubs that were mainly from one module and comprised mostly subcortical structures. SIGNIFICANCE Youth with JME prospectively developed a network of highly correlated cortical regions dissociated from subcortical structures during the first 2 years after epilepsy onset. The cortical-subcortical network dissociation provides converging insights into the disparate literature of cortical and subcortical abnormalities found in previous studies.
Collapse
Affiliation(s)
- Camille Garcia-Ramos
- Departments of Medical Physics,University of Wisconsin
School of Medicine and Public Health, Madison WI
| | - Kevin Dabbs
- Departments of Neurology, University of Wisconsin School of
Medicine and Public Health, Madison WI
| | - Jack J. Lin
- Department of Neurology, University of California, Irvine,
Irvine CA
| | - Jana E. Jones
- Departments of Neurology, University of Wisconsin School of
Medicine and Public Health, Madison WI
| | | | - David A. Hsu
- Departments of Neurology, University of Wisconsin School of
Medicine and Public Health, Madison WI
| | - M. Elizabeth Meyerand
- Departments of Biomedical Engineering, University of
Wisconsin School of Medicine and Public Health, Madison WI
| | - Vivek Prabhakaran
- Departments of Medical Physics,University of Wisconsin
School of Medicine and Public Health, Madison WI
- Departments of Radiology, University of Wisconsin School of
Medicine and Public Health, Madison WI
| | - Bruce P. Hermann
- Departments of Medical Physics,University of Wisconsin
School of Medicine and Public Health, Madison WI
| |
Collapse
|
37
|
Analysis of fractional anisotropy and mean diffusivity in refractory and non-refractory idiopathic generalized epilepsies. Seizure 2018; 62:33-37. [DOI: 10.1016/j.seizure.2018.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
|
38
|
Garibotto V, Wissmeyer M, Giavri Z, Goldstein R, Seimbille Y, Seeck M, Ratib O, Haller S, Picard F. Nicotinic receptor abnormalities as a biomarker in idiopathic generalized epilepsy. Eur J Nucl Med Mol Imaging 2018; 46:385-395. [PMID: 30269157 DOI: 10.1007/s00259-018-4175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Mutations of cholinergic neuronal nicotinic receptors have been identified in the autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), associated with changes on PET images using [18F]-F-85380-A (F-A-85380), an α4β2 nicotinic receptor ligand. The aim of the present study was to evaluate potential changes in nicotinic receptor availability in other types of epilepsy. METHODS We included 34 male participants, 12 patients with idiopathic generalized epilepsy (IGE), 10 with non-lesional diurnal focal epilepsy, and 12 age-matched healthy controls. All patients underwent PET/CT using F-A-85380 and [18F]-fluorodeoxyglucose (FDG), 3D T1 MRI and diffusion tensor imaging (DTI). F-A-85380 and FDG images were compared with the control group using a voxel-wise (SPM12) and a volumes of interest (VOI) analysis. RESULTS In the group of patients with IGE, the voxel-wise and VOI analyses showed a significant increase of F-A-85380 ratio index of binding potential (BPRI, corresponding to the receptor availability) in the anterior cingulate cortex (ACC), without structural changes on MRI. At an individual level, F-A-85380 BPRI increase in the ACC could distinguish IGE patients from controls and from patients with focal epilepsy with good accuracy. CONCLUSIONS We observed focal changes of density/availability of nicotinic receptors in IGE, namely an increase in the ACC. These data suggest that the modulation of α4β2 nicotinic receptors plays a role not only in ADNFLE, but also in other genetic epileptic syndromes such as IGE and could serve as a biomarker of epilepsy syndromes with a genetic background.
Collapse
Affiliation(s)
- Valentina Garibotto
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland. .,Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland.
| | - Michael Wissmeyer
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Zoi Giavri
- Advantis Medical Imaging, Eindhoven, The Netherlands
| | - Rachel Goldstein
- EEG and Epilepsy Unit, Department of Neurology, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Yann Seimbille
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Margitta Seeck
- Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland.,EEG and Epilepsy Unit, Department of Neurology, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Osman Ratib
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Sven Haller
- Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland.,CIRD - Centre d'Imagerie Rive Droite, Rue Chantepoulet 21, 1201, Genève, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Fabienne Picard
- Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland. .,EEG and Epilepsy Unit, Department of Neurology, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.
| |
Collapse
|
39
|
Sezikli S, Pulat TA, Tekin B, Ak PD, Keskinkılıç C, Ataklı D. Frontal lobe cognitive functions and electroencephalographic features in juvenile myoclonic epilepsy. Epilepsy Behav 2018; 86:102-107. [PMID: 30017834 DOI: 10.1016/j.yebeh.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The study aimed to examine the relationship between frontal lobe functions and interictal electroencephalography (EEG) discharge characteristics of patients with juvenile myoclonic epilepsy (JME). METHOD Thirty patients with JME who had EEG with asymmetrical generalized discharge (aEEG), 15 patients with JME who had EEG with symmetrical generalized discharge (sEEG), and 15 healthy controls were included in the study. To evaluate attention, the digit span and Corsi block tests were used; to evaluate memory, we applied verbal and visual memory tests; to evaluate frontal lobe functions, we used clock drawing, verbal fluency, the Stroop test, trail making, mental control, and antisaccadic eye movement tests as well as the continuous performance (CPT) tests. ETHICAL CONSIDERATIONS The research was approved by the Research Ethics Committee of the Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, with protocol number: 41340010/4891-262, date: 05.02.2013. RESULTS The mean age of the 45 patients with JME was 22.89 ± 6.77 years, and 34 (75.6%) were female. The age at onset of seizures and disease duration of the patients with JME was 15.56 ± 4.06 years (range, 9-26 years) and 7.20 ± 5.59 years (range, 1-25 years), respectively. All patients were under valproate (VPA) treatment, and the mean VPA dosage was 783.33 ± 379.14 mg/day. Patients with JME scored worse than the control group in attention, memory, and frontal lobe functions. In patients with aEEG, scores of attention, memory, and frontal lobe function tests were lower than in patients with sEEG; however, with the exception of CPT, they were not statistically significant. CONCLUSION Cognitive functions in JME have been shown to be impaired. Furthermore, we concluded that the frontal lobe cognitive functions may be worse in patients with aEEG than in patients with sEEG. Further studies in patients with JME with aEEG abnormalities may lead to a better understanding of the pathophysiology of JME.
Collapse
Affiliation(s)
- Senem Sezikli
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| | - Tuğba Argün Pulat
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey.
| | - Betül Tekin
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| | - Pelin Doğan Ak
- Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Cahit Keskinkılıç
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| | - Dilek Ataklı
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| |
Collapse
|
40
|
Domin M, Bartels S, Geithner J, Wang ZI, Runge U, Grothe M, Langner S, von Podewils F. Juvenile Myoclonic Epilepsy Shows Potential Structural White Matter Abnormalities: A TBSS Study. Front Neurol 2018; 9:509. [PMID: 30008695 PMCID: PMC6033991 DOI: 10.3389/fneur.2018.00509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023] Open
Abstract
Background: Several studies on patients with juvenile myoclonic epilepsy (JME) showed widespread white matter (WM) abnormalities in the brain. The aim of this study was to investigate potential structural abnormalities in JME patients (1) compared to healthy controls, (2) among JME subgroups with or without photoparoxysmal responses (PPR), and (3) in correlation with clinical variables. Methods: A selection of 31 patients with JME (12 PPR positive) and 27 age and gender matched healthy controls (HC) were studied at a tertiary epilepsy center. Fractional anisotropy (FA) was calculated and intergroup differences analyzed using Tract Based Spatial Statistics (TBSS). Results: Compared to HC the JME group showed reduced FA widespread and bilateral in the longitudinal fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, anterior and posterior thalamic radiation, corona radiata, corpus callosum, cingulate gyrus and external capsule (p < 0.01). Subgroup analysis revealed no significant differences of WM alterations between PPR positive and negative patients and with clinical and epilepsy-related factors. Conclusions: Widespread microstructural abnormalities among patients with JME have been identified.Prior findings of frontal and thalamofrontal microstructural abnormalities have been confirmed. Additionally, microstructural abnormalities were found in widespread extra-frontal regions that may help to validate pathophysiological concepts of JME.
Collapse
Affiliation(s)
- Martin Domin
- Functional Imaging Unit, Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Bartels
- Department of Neurology, Epilepsy Center, University Medicine Greifswald, Greifswald, Germany
| | - Julia Geithner
- Epilepsy Center Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Zhong I Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Uwe Runge
- Department of Neurology, Epilepsy Center, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Grothe
- Department of Neurology, Epilepsy Center, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Diagnostic and Interventional Neuroradiology, University Medicine Rostock, Rostock, Germany
| | - Felix von Podewils
- Department of Neurology, Epilepsy Center, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Ke M, Jin B, Liu G, Yang X. Impairments of cingulated cortex in the generalized tonic-clonic seizure epilepsy by combining morphological and functional connectivity magnetic resonance imaging. J Integr Neurosci 2018; 16:429-439. [PMID: 28891522 DOI: 10.3233/jin-170026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies suggested that the patients with generalized tonic-clonic seizure had structural abnormalities in the thalamus, cingulated cortex and some other specific brain regions. Concurrently, the abnormality in thalamocortical network and basal ganglia network has been found in idiopathic generalized epilepsy. The cingulated cortex, a nexus of information processing and regulation in human brain, is implicated in the propagation of generalized spike in IGE and the previous studies have suggested that the structural features and functional connectivity of the cingulated cortex have been changed. The aim of this study was to demonstrate the alterations in the cingulated cortex in generalized tonic-clonic seizure by combining morphological and functional connectivity magnetic resonance imaging. 19 patients with generalized tonic-clonic seizure and 19 age-and gender-matched healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted magnetic resonance imaging data were acquired for voxel-based morphometry analysis, two-sample t-test run on the T1-weighted structural images revealed clusters exhibiting significant decreases in grey-matter volume in the generalized tonic-clonic seizure group, located within the cingulated cortex, thalamus, frontal lobe, temporal lobe, and cerebellum. The decreased gray matter volume in the cingulated cortex indicating that the cingulated cortex has structural impairments in generalized tonic-clonic seizure patients. The bilateral cingulated cortex, as detected with decreased gray matter volume in patients with generalized tonic-clonic seizure through voxel-based morphometry analysis, was selected as seed regions for functional connectivity analysis. Compared with controls, we found decreased functional connectivity to left anterior cingulated cortex (ROI1) in the cuneus, frontal lobe and precentral gyrus. There was no significant result when seeding at the right anterior cingulum gyrus (ROI2). The results of the ROI3 (left middle cingulum) revealed the significantly decreased functional connectivity in the parietal lobe and frontal lobe. Seeding at the ROI4 (right middle cingulum), decreased functional connectivity showed in the occipital lobe, temporal lobe, frontal lobe. Seeding at the ROI5 (left posterior cingulum), decreased functional connectivity showed in the temporal lobe and frontal lobe. Seeding at the ROI6 (right posterior cingulum), decreased functional connectivity showed in the cuneus and frontal lobe. We did not find any increased functional connectivity of the posterior cingulated cortex (ROI3-ROI6) for the generalized tonic-clonic seizure patients in comparison to the controls (p<0.001). Our findings demonstrated that the abnormalities of the functional connectivity were likely to be related to the decreased gray matter volume in the cingulated cortex.
Collapse
Affiliation(s)
- Ming Ke
- College of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Bixia Jin
- College of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Guangyao Liu
- Department of Nuclear magnetic resonance, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 733000, China
| | - Xiaoping Yang
- Department of Imaging Diagnosis, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu, 730050, China
| |
Collapse
|
42
|
Wu Q, Zhao CW, Long Z, Xiao B, Feng L. Anatomy Based Networks and Topology Alteration in Seizure-Related Cognitive Outcomes. Front Neuroanat 2018; 12:25. [PMID: 29681801 PMCID: PMC5898178 DOI: 10.3389/fnana.2018.00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
Epilepsy is a paroxysmal neurological disorder characterized by recurrent and unprovoked seizures affecting approximately 50 million people worldwide. Cognitive dysfunction induced by seizures is a severe comorbidity of epilepsy and epilepsy syndromes and reduces patients’ quality of life. Seizures, along with accompanying histopathological and pathophysiological changes, are associated with cognitive comorbidities. Advances in imaging technology and computing allow anatomical and topological changes in neural networks to be visualized. Anatomical components including the hippocampus, amygdala, cortex, corpus callosum (CC), cerebellum and white matter (WM) are the fundamental components of seizure- and cognition-related topological networks. Damage to these structures and their substructures results in worsening of epilepsy symptoms and cognitive dysfunction. In this review article, we survey structural, network changes and topological alteration in different regions of the brain and in different epilepsy and epileptic syndromes, and discuss what these changes may mean for cognitive outcomes related to these disease states.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Charlie W Zhao
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Zhe Long
- Sydney Medical School and the Brain & Mind Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Unterberger I, Zamarian L, Prieschl M, Bergmann M, Walser G, Luef G, Javor A, Ransmayr G, Delazer M. Risky Decision Making in Juvenile Myoclonic Epilepsy. Front Neurol 2018; 9:195. [PMID: 29632513 PMCID: PMC5879545 DOI: 10.3389/fneur.2018.00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
It is not known whether patients with juvenile myoclonic epilepsy (JME) differ from healthy people in decision making under risk, i.e., when the decision-making context offers explicit information about options, probabilities, and consequences already from the beginning. In this study, we adopted the Game of Dice Task-Double to investigate decision making under risk in a group of 36 patients with JME (mean age 25.25/SD 5.29 years) and a group of 38 healthy controls (mean age 26.03/SD 4.84 years). Participants also underwent a comprehensive neuropsychological assessment focused on frontal executive functions. Significant group differences were found in tests of psychomotor speed and divided attention, with the patients scoring lower than the controls. Importantly, patients made risky decisions more frequently than controls. In the patient group, poor decision making was associated with poor executive control, poor response inhibition, and a short interval since the last seizure episode. Executive control and response inhibition could predict 42% of variance in the frequency of risky decisions. This study indicates that patients with JME with poorer executive functions are more likely to make risky decisions than healthy controls. Decision making under risk is of major importance in every-day life, especially with regard to treatment decisions and adherence to long-term medical therapy. Since even a single disadvantageous decision may have long-lasting consequences, this finding is of high relevance.
Collapse
Affiliation(s)
- Iris Unterberger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Zamarian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuela Prieschl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Bergmann
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Walser
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Luef
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrija Javor
- Department of Neurology 2, Kepler University Hospital, Linz, Austria
| | - Gerhard Ransmayr
- Department of Neurology 2, Kepler University Hospital, Linz, Austria
| | - Margarete Delazer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
Altered Structural and Functional Connectivity of Juvenile Myoclonic Epilepsy: An fMRI Study. Neural Plast 2018; 2018:7392187. [PMID: 29681927 PMCID: PMC5846383 DOI: 10.1155/2018/7392187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/16/2017] [Accepted: 12/25/2017] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the structural and functional connectivity (FC) of juvenile myoclonic epilepsy (JME) using resting state functional magnetic resonance imaging (rs-fMRI). High-resolution T1-weighted magnetic resonance imaging (MRI) and rs-fMRI data were collected in 25 patients with JME and in 24 control subjects. A FC analysis was subsequently performed, with seeding at the regions that demonstrated between-group differences in gray matter volume (GMV). Then, the observed structural and FCs were associated with the clinical manifestations. The decreased GMV regions were found in the bilateral anterior cerebellum, the right orbital superior frontal gyrus, the left middle temporal gyrus, the left putamen, the right hippocampus, the bilateral caudate, and the right thalamus. The changed FCs were mainly observed in the motor-related areas and the cognitive-related areas. The significant findings of this study revealed an important role for the cerebellum in motor control and cognitive regulation in JME patients, which also have an effect on the activity of the occipital lobe. In addition, the changed FCs were related to the clinical features of JME patients. The current observations may contribute to the understanding of the pathogenesis of JME.
Collapse
|
45
|
Frank L, Lüpke M, Kostic D, Löscher W, Tipold A. Grey matter volume in healthy and epileptic beagles using voxel-based morphometry - a pilot study. BMC Vet Res 2018; 14:50. [PMID: 29463250 PMCID: PMC5819682 DOI: 10.1186/s12917-018-1373-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/14/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND One of the most common chronic neurological disorders in dogs is idiopathic epilepsy (IE) diagnosed as epilepsy without structural changes in the brain. In the current study the hypothesis should be proven that subtle grey matter changes occur in epileptic dogs. Therefore, magnetic resonance (MR) images of one dog breed (Beagles) were used to obtain an approximately uniform brain shape. Local differences in grey matter volume (GMV) were compared between 5 healthy Beagles and 10 Beagles with spontaneously recurrent seizures (5 dogs with IE and 5 dogs with structural epilepsy (SE)), using voxel-based morphometry (VBM). T1W images of all dogs were prepared using Amira 6.3.0 for brain extraction, FSL 4.1.8 for registration and SPM12 for realignment. After creation of tissue probability maps of cerebrospinal fluid, grey and white matter from control images to segment all extracted brains, GM templates for each group were constructed to normalize brain images for parametric statistical analysis, which was achieved using SPM12. RESULTS Epileptic Beagles (IE and SE Beagles) displayed statistically significant reduced GMV in olfactory bulb, cingulate gyrus, hippocampus and cortex, especially in temporal and occipital lobes. Beagles with IE showed statistically significant decreased GMV in olfactory bulb, cortex of parietal and temporal lobe, hippocampus and cingulate gyrus, Beagles with SE mild statistically significant GMV reduction in temporal lobe (p < 0.05; family- wise error correction). CONCLUSION These results suggest that, as reported in epileptic humans, focal reduction in GMV also occurs in epileptic dogs. Furthermore, the current study shows that VBM analysis represents an excellent method to detect GMV differences of the brain between a healthy dog group and dogs with epileptic syndrome, when MR images of one breed are used.
Collapse
Affiliation(s)
- Lisa Frank
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany.
| | - Matthias Lüpke
- Department of General Radiology and Medical Physics, University of Veterinary Medicine, Hannover, Germany
| | - Draginja Kostic
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
46
|
The "Cinderella Syndrome": A narrative study of social curfews and lifestyle restrictions in juvenile myoclonic epilepsy. Epilepsy Behav 2018; 78:104-108. [PMID: 29179101 DOI: 10.1016/j.yebeh.2017.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022]
Abstract
Several factors are thought to contribute to inadequate seizure control in patients with juvenile myoclonic epilepsy (JME), including drug resistance, neuropsychiatric comorbidity, and poor lifestyle choices. Recent evidence supports the existence of frontal lobe microstructural deficits and behavioral changes that may contribute to poor seizure control in a minority of patients. Counseling patients on the importance of adequate sleep hygiene and alcohol restriction is an important part of the management strategy for patients with JME. However, information is lacking on how these lifestyle restrictions impact on patients with JME. We conducted a qualitative descriptive analysis of the social impact of JME on 12 patients, from their own perspective. We identified four prominent themes: the importance of alcohol use as a social "norm", how JME affected relationships, decision making (risk versus consequences), and knowledge imparting control. Given that these restrictions were interpreted by patients as social "curfews", we suggest that the term "Cinderella Syndrome" encapsulates the perceived imperative to be home before midnight. Our findings underscore the importance for clinicians to recognize that in counseling patients with JME about lifestyle adjustments, there may be a significant social consequence unique to this patient group.
Collapse
|
47
|
Kim JH. Grey and White Matter Alterations in Juvenile Myoclonic Epilepsy: A Comprehensive Review. J Epilepsy Res 2017; 7:77-88. [PMID: 29344465 PMCID: PMC5767493 DOI: 10.14581/jer.17013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) has been classified as a syndrome of idiopathic generalized epilepsy and is characterized by a strong genetic basis, age-specific onset of seizures, specific types of seizures, generalized spike-wave discharges on electroencephalography, and a lack of focal abnormality on magnetic resonance imaging (MRI). Recently, a wide range of advanced neuroimaging techniques have been utilized to elucidate the neuroanatomical substrates and pathophysiological mechanisms underlying JME. Specifically, a number of quantitative MRI studies have reported focal or regional abnormalities of the subcortical and cortical grey matter, particularly the thalamus and frontal cortex, in JME patients. In addition, diffusion tensor imaging studies have pointed to disrupted microstructural integrity of the corpus callosum and multiple frontal white matter tracts as well as thalamofrontal dysconnectivity in JME patients. Converging evidence from neuroimaging studies strongly suggests that JME is a predominantly thalamofrontal network epilepsy, challenging the traditional concept of JME as a generalized epilepsy. There is also limited evidence indicating extrafrontal and extrathalamic involvement in JME. This systematic review outlines the main findings from currently available MRI studies focusing on grey and white matter alterations, and discusses their contributions to the etiology and pathophysiology of JME. The clinical utility, advantages, and drawbacks of each imaging modality are briefly described as well.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Perani S, Tierney TM, Centeno M, Shamshiri EA, Yaakub SN, O'Muircheartaigh J, Carmichael DW, Richardson MP. Thalamic volume reduction in drug-naive patients with new-onset genetic generalized epilepsy. Epilepsia 2017; 59:226-234. [PMID: 29150855 PMCID: PMC5813228 DOI: 10.1111/epi.13955] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 01/23/2023]
Abstract
Objective Patients with genetic generalized epilepsy (GGE) have subtle morphologic abnormalities of the brain revealed with magnetic resonance imaging (MRI), particularly in the thalamus. However, it is unclear whether morphologic abnormalities of the brain in GGE are a consequence of repeated seizures over the duration of the disease, or are a consequence of treatment with antiepileptic drugs (AEDs), or are independent of these factors. Therefore, we measured brain morphometry in a cohort of AED‐naive patients with GGE at disease onset. We hypothesize that drug‐naive patients at disease onset have gray matter changes compared to age‐matched healthy controls. Methods We performed quantitative measures of gray matter volume in the thalamus, putamen, caudate, pallidum, hippocampus, precuneus, prefrontal cortex, precentral cortex, and cingulate in 29 AED‐naive patients with new‐onset GGE and compared them to 32 age‐matched healthy controls. We subsequently compared the shape of any brain structures found to differ in gray matter volume between the groups. Results The thalamus was the only structure to show reduced gray matter volume in AED‐naive patients with new‐onset GGE compared to healthy controls. Shape analysis revealed that the thalamus showed deflation, which was not uniformly distributed, but particularly affected a circumferential strip involving anterior, superior, posterior, and inferior regions with sparing of medial and lateral regions. Significance Structural abnormalities in the thalamus are present at the initial onset of GGE in AED‐naive patients, suggesting that thalamic structural abnormality is an intrinsic feature of GGE and not a consequence of AEDs or disease duration.
Collapse
Affiliation(s)
- Suejen Perani
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tim M Tierney
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maria Centeno
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elhum A Shamshiri
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siti N Yaakub
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - David W Carmichael
- Developmental Imaging and Biophysics Section, Developmental Neurosciences Program, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Kim JH, Kim JB, Suh SI, Kim DW. Subcortical grey matter changes in juvenile myoclonic epilepsy. NEUROIMAGE-CLINICAL 2017; 17:397-404. [PMID: 29159052 PMCID: PMC5683808 DOI: 10.1016/j.nicl.2017.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
Recent neuroimaging studies have provided converging evidence of structural and functional abnormalities of the thalamus in patients with juvenile myoclonic epilepsy (JME). There has also been limited evidence indicating involvement of the subcortical grey matter structures other than thalamus in JME, but with inconsistent findings across the studies. In the present study, we combined volumetric MRI and diffusion tensor imaging analyses to investigate macrostructural and microstructural alterations of the subcortical grey matter in 64 JME patients compared to 58 matched control subjects. Raw volume, fractional anisotropy (FA), and mean diffusivity (MD) of 6 subcortical grey matter structures (amygdala, hippocampus, caudate, pallidum, putamen, thalamus) were measured in both hemispheres. Between-group (controls versus patients) comparisons of normalized volume, FA, and MD, as well as within-group (patients) correlation analyses between structural changes and clinical variables were carried out. Compared to controls, JME patients exhibited significant volume reductions in left pallidum and bilateral putamen and thalamus. Duration of epilepsy negatively correlated with bilateral putamen volumes. Patients and controls did not differ in FA values of all structures. Compared to controls, JME patients showed significant MD increases in left pallidum and bilateral hippocampus, putamen, and thalamus. Significant positive correlations were found between duration of epilepsy and MD values of bilateral hippocampus and thalamus. We have provided evidence that macrostructural and microstructural abnormalities may not only be confined to the thalamus but also affect basal ganglia and hippocampus in JME. Our findings could further support the pathophysiological hypothesis of striato-thalamo-frontal network abnormality underlying JME, and may implicate disease progression. Reduced volumes of left pallidum and bilateral putamen and thalamus in JME patients Negative correlation between disease duration and putamen volumes Increased MD of left pallidum and bilateral hippocampus, putamen, and thalamus in JME patients Positive correlation between disease duration and MD of bilateral hippocampus and thalamus Structural changes may not only be confined to the thalamus but also affect basal ganglia and hippocampus in JME.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jung Bin Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Microstructural white matter changes and their relation to neuropsychological deficits in patients with juvenile myoclonic epilepsy. Epilepsy Behav 2017; 76:56-62. [PMID: 28927715 DOI: 10.1016/j.yebeh.2017.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is the most common idiopathic generalized epilepsy syndrome. Neuropsychological, electrophysiological, and neuroimaging studies have led to the hypothesis that JME is related to dysfunction of frontal brain regions and mainly frontal thalamocortical networks. METHODS We investigated possible microstructural white matter abnormalities of 20 patients with JME as compared with 20 healthy control subjects using diffusion tensor imaging (DTI). We analyzed whole-head DTI scans without an a-priori hypothesis using Tract-Based Spatial Statistics (TBSS). To analyze associated gray matter changes, we applied voxel-based morphometry (VBM) to a 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequence. Neuropsychological testing and personality trait tests were performed to bridge the gap between structure and function. RESULTS In patients, DTI revealed microstructural white matter changes in anterior parts of the Corpus callosum, anterior parts of the cingulate gyrus, and widespread frontal white matter bilaterally as well as in anterior parts of the right thalamus, which were not accompanied by gray matter changes in VBM. Microstructural changes in the cingulum correlated with personality traits. Neuropsychological test results showed impaired attention and executive functions and reduced short-term memory in the patient group. Also, there was a tendency toward alexithymia and significantly higher scores on depression. SIGNIFICANCE The present study results showed neuropsychological deficits including frontal lobe cognitive performance and a tendency toward alexithymia as well as accompanying microstructural neuroimaging changes in patients with JME, which all point to alterations in frontal brain regions and frontal thalamocortical networks in these patients.
Collapse
|