1
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Tourtourikov I, Todorov T, Angelov T, Chamova T, Tournev I, Mitev V, Todorova A. Genetic Modifiers of ALS: The Impact of Chromogranin B P413L in a Bulgarian ALS Cohort. Genes (Basel) 2024; 15:1197. [PMID: 39336788 PMCID: PMC11431727 DOI: 10.3390/genes15091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the role of the CHGB P413L variant (rs742710) in sporadic amyotrophic lateral sclerosis (sALS) within the Bulgarian population. We analyzed 150 patients with sALS (85 male and 65 female) for the presence of this variant, its potential impact on disease susceptibility, and age of onset. Genotyping was performed using PCR amplification and direct Sanger sequencing. Statistical analyses included comparisons with control data from GnomAD v2.1.1, one-way ANOVA, and Kaplan-Meier survival analysis. Results revealed a higher frequency of the minor T allele in patients with sALS compared to all control groups and a statistically significant increase in carrier genotypes compared to non-Finnish Europeans (χ2 = 15.4572, p = 0.000440). However, the impact on age of onset was less clear, with no statistically significant differences observed across genotypes or between carriers and non-carriers of the T allele. Kaplan-Meier analysis suggested a potential 2.5-year-earlier onset in T allele carriers, but the small sample size of carriers limits the reliability of this finding. Our study provides evidence for an association between the CHGB P413L variant and sALS susceptibility in the Bulgarian population, while its effect on age of onset remains uncertain, highlighting the need for further research in larger, diverse cohorts.
Collapse
Affiliation(s)
- Ivan Tourtourikov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Teodor Angelov
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Teodora Chamova
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Clinic of Nervous Diseases, Medical University of Sofia, UMBAL Aleksandrovska, 1431 Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| |
Collapse
|
3
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
4
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Raymond J, Nair T, Gwathmey KG, Larson T, Horton DK, Mehta P. Racial Disparities in the Diagnosis and Prognosis of ALS Patients in the United States. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02099-6. [PMID: 39060854 DOI: 10.1007/s40615-024-02099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with largely unknown etiology. This study compares racial differences in clinical characteristics of ALS patients enrolled in the National ALS Registry (Registry). METHODS Data from ALS patients who completed the Registry's online clinical survey during 2013-2022 were analyzed to determine characteristics such as site of onset, associated symptoms, time of symptom onset to diagnosis, and pharmacological and non-pharmacological interventions for White, Black, and other race patients. RESULTS Surveys were completed by 4242 participants. Findings revealed that Black ALS patients were more likely to be diagnosed at a younger age, to have arm or hand initial site of onset, and to experience pneumonia than were White ALS patients. ALS patients of other races were more likely than White ALS patients to be diagnosed at a younger age and to experience twitching. The mean interval between the first sign of weakness and an ALS diagnosis for Black patients was almost 24 months, statistically greater than that of White (p = 0.0374; 16 months) and other race patients (p = 0.0518; 15.8 months). The mean interval between problems with speech until diagnosis was shorter for White patients (6.3 months) than for Black patients (17.7 months) and other race patients (14.8 months). CONCLUSIONS AND RELEVANCE Registry data shows racial disparities still exist in the diagnosis and clinical characteristics of ALS patients. Increased recruitment of non-White ALS patients and better characterization of symptom onset between races might aid clinicians in diagnosing ALS sooner, leading to earlier therapeutic interventions.
Collapse
Affiliation(s)
- Jaime Raymond
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA.
| | - Theresa Nair
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| | | | - Theodore Larson
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| | - D Kevin Horton
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| | - Paul Mehta
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| |
Collapse
|
6
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
7
|
Domi T, Schito P, Sferruzza G, Russo T, Pozzi L, Agosta F, Carrera P, Riva N, Filippi M, Quattrini A, Falzone YM. Unveiling the SOD1-mediated ALS phenotype: insights from a comprehensive meta-analysis. J Neurol 2024; 271:1342-1354. [PMID: 37930481 DOI: 10.1007/s00415-023-12074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis associated with mutations in SOD1 (SOD1-ALS) might be susceptible to specific treatment. The aim of the study is to outline the clinical features of SOD1-ALS patients by comparing them to patients without ALS major gene variants and patients with variants in other major ALS genes. Defining SOD1-ALS phenotype may assist clinicians in identifying patients who should be prioritized for genetic testing. METHODS We performed an extensive literature research including original studies which reported the clinical features of SOD1-ALS and at least one of the following patient groups: C9ORF72 hexanucleotide repeat expansion (C9-ALS), TARDBP (TARDBP-ALS), FUS (FUS-ALS) or patients without a positive test for a major-ALS gene (N-ALS). A random effects meta-analytic model was applied to clinical data extracted encompassing sex, site and age of onset. To reconstruct individual patient survival data, the published Kaplan-Meier curves were digitized. Data were measured as odds ratio (OR) or standardized mean difference (SMD) as appropriate. Median survival was compared between groups. RESULTS Twenty studies met the inclusion criteria. We identified 721 SOD1-ALS, 470 C9-ALS, 183 TARDBP-ALS, 113 FUS-ALS and 2824 N-ALS. SOD1-ALS showed a higher rate of spinal onset compared with N-ALS and C9-ALS (OR = 4.85, 95% CI = 3.04-7.76; OR = 10.47, 95% CI = 4.32-27.87) and an earlier onset compared with N-ALS (SMD = - 0.45, 95% CI = - 0.72 to - 0.18). SOD1-ALS had a similar survival compared with N-ALS (p = 0.14), a longer survival compared with C9-ALS (p < 0.01) and FUS-ALS (p = 0.019) and a shorter survival compared with TARDBP-ALS (p < 0.01). DISCUSSION This study indicates the presence of a specific SOD1-ALS phenotype. Insights in SOD1-ALS clinical features are important in genetic counseling, disease prognosis and support patients' stratification in clinical trials.
Collapse
Affiliation(s)
- Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Russo
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, Laboratory of Clinical Molecular Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neuroimaging Research Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
8
|
Ducharme S, Pijnenburg Y, Rohrer JD, Huey E, Finger E, Tatton N. Identifying and Diagnosing TDP-43 Neurodegenerative Diseases in Psychiatry. Am J Geriatr Psychiatry 2024; 32:98-113. [PMID: 37741764 PMCID: PMC11270911 DOI: 10.1016/j.jagp.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
Neuropsychiatric symptoms (NPS) are common manifestations of neurodegenerative disorders and are often early signs of those diseases. Among those neurodegenerative diseases, TDP-43 proteinopathies are an increasingly recognized cause of early neuropsychiatric manifestations. TDP-43-related diseases include frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE). The majority of TDP-43-related diseases are sporadic, but a significant proportion is hereditary, with progranulin (GRN) mutations and C9orf72 repeat expansions as the most common genetic etiologies. Studies reveal that NPS can be the initial manifestation of those diseases or can complicate disease course, but there is a lack of awareness among clinicians about TDP-43-related diseases, which leads to common diagnostic mistakes or delays. There is also emerging evidence that TDP-43 accumulations could play a role in late-onset primary psychiatric disorders. In the absence of robust biomarkers for TDP-43, the diagnosis remains primarily based on clinical assessment and neuroimaging. Given the association with psychiatric symptoms, clinical psychiatrists have a key role in the early identification of patients with TDP-43-related diseases. This narrative review provides a comprehensive overview of the pathobiology of TDP-43, resulting clinical presentations, and associated neuropsychiatric manifestations to help guide clinical practice.
Collapse
Affiliation(s)
- Simon Ducharme
- Department of Psychiatry (SD), Douglas Mental Health University Institute, McGill University, Montreal, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (YP), Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease (JDR), UCL Queen Square Institute of Neurology, London, UK
| | - Edward Huey
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Psychiatry (EH), Columbia University, New York, NY
| | - Elizabeth Finger
- London Health Sciences Centre Parkwood Institute (EF), London, ON, Canada
| | | |
Collapse
|
9
|
Martinelli I, Zucchi E, Simonini C, Gianferrari G, Bedin R, Biral C, Ghezzi A, Fini N, Carra S, Mandrioli J. SerpinA1 levels in amyotrophic lateral sclerosis patients: An exploratory study. Eur J Neurol 2024; 31:e16054. [PMID: 37679868 PMCID: PMC11235621 DOI: 10.1111/ene.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND SerpinA1, a serine protease inhibitor, is involved in the modulation of microglial-mediated inflammation in neurodegenerative diseases. We explored SerpinA1 levels in cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients to understand its potential role in the pathogenesis of the disease. METHODS SerpinA1, neurofilament light (NfL) and heavy (NfH) chain, and chitinase-3-like protein-1 (CHI3L1) were determined in CSF and serum of ALS patients (n = 110) and healthy controls (n = 10) (automated next-generation ELISA), and correlated with clinical parameters, after identifying three classes of progressors (fast, intermediate, slow). Biomarker levels were analyzed for diagnostic power and association with progression and survival. RESULTS SerpinA1serum was significantly decreased in ALS (median: 1032 μg/mL) compared with controls (1343 μg/mL) (p = 0.02). SerpinA1CSF was elevated only in fast progressors (8.6 μg/mL) compared with slow (4.43 μg/mL, p = 0.01) and intermediate (4.42 μg/mL, p = 0.03) progressors. Moreover, SerpinA1CSF correlated with neurofilament and CHI3L1 levels in CSF. Contrarily to SerpinA1CSF , neurofilament and CHI3L1 concentrations in CSF correlated with measures of disease progression in ALS, while SerpinA1serum mildly related with time to generalization (rho = 0.20, p = 0.04). In multivariate analysis, the ratio between serum and CSF SerpinA1 (SerpinA1 ratio) and NfHCSF were independently associated with survival. CONCLUSIONS Higher SerpinA1CSF levels are found in fast progressors, suggesting SerpinA1 is a component of the neuroinflammatory mechanisms acting upon fast-progressing forms of ALS. Both neurofilaments or CHI3L1CSF levels outperformed SerpinA1 at predicting disease progression rate in our cohort, and so the prognostic value of SerpinA1 alone as a measure remains inconclusive.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly
| | - Elisabetta Zucchi
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Neuroscience PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly
| | - Cecilia Simonini
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Roberta Bedin
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Chiara Biral
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nicola Fini
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Jessica Mandrioli
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
10
|
Wang Y, Liu L, Chen H, Yang Y, Mu C, Ren H, Liu Y, Yu L, Fang Q, Wang G, Hao Z. Disrupted phase behavior of FUS underlies poly-PR-induced DNA damage in amyotrophic lateral sclerosis. Hum Mol Genet 2023; 33:64-77. [PMID: 37756636 DOI: 10.1093/hmg/ddad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liu Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan 410005, China
| | - Hui Chen
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yinxue Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haigang Ren
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Lualdi M, Casale F, Rizzone MG, Zibetti M, Monti C, Colugnat I, Calvo A, De Marco G, Moglia C, Fuda G, Comi C, Chiò A, Lopiano L, Fasano M, Alberio T. Shared and Unique Disease Pathways in Amyotrophic Lateral Sclerosis and Parkinson's Disease Unveiled in Peripheral Blood Mononuclear Cells. ACS Chem Neurosci 2023; 14:4240-4251. [PMID: 37939393 DOI: 10.1021/acschemneuro.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Recent evidence supports an association between amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Indeed, prospective population-based studies demonstrated that about one-third of ALS patients develop parkinsonian (PK) signs, even though different neuronal circuitries are involved. In this context, proteomics represents a valuable tool to identify unique and shared pathological pathways. Here, we used two-dimensional electrophoresis to obtain the proteomic profile of peripheral blood mononuclear cells (PBMCs) from PD and ALS patients including a small cohort of ALS patients with parkinsonian signs (ALS-PK). After the removal of protein spots correlating with confounding factors, we applied a sparse partial least square discriminant analysis followed by recursive feature elimination to obtain two protein classifiers able to discriminate (i) PD and ALS patients (30 spots) and (ii) ALS-PK patients among all ALS subjects (20 spots). Functionally, the glycolysis pathway was significantly overrepresented in the first signature, while extracellular interactions and intracellular signaling were enriched in the second signature. These results represent molecular evidence at the periphery for the classification of ALS-PK as ALS patients that manifest parkinsonian signs, rather than comorbid patients suffering from both ALS and PD. Moreover, we confirmed that low levels of fibrinogen in PBMCs is a characteristic feature of PD, also when compared with another movement disorder. Collectively, we provide evidence that peripheral protein signatures are a tool to differentially investigate neurodegenerative diseases and highlight altered biochemical pathways.
Collapse
Affiliation(s)
- Marta Lualdi
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Federico Casale
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Mario Giorgio Rizzone
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Maurizio Zibetti
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Chiara Monti
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Ilaria Colugnat
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Andrea Calvo
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Giovanni De Marco
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Cristina Moglia
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Giuseppe Fuda
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, University of Piemonte Orientale, and Sant'Andrea Hospital, I-13100 Vercelli, Italy
| | - Adriano Chiò
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Leonardo Lopiano
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Mauro Fasano
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Tiziana Alberio
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| |
Collapse
|
12
|
Martinelli I, Ghezzi A, Zucchi E, Gianferrari G, Ferri L, Moglia C, Manera U, Solero L, Vasta R, Canosa A, Grassano M, Brunetti M, Mazzini L, De Marchi F, Simonini C, Fini N, Vinceti M, Pinti M, Chiò A, Calvo A, Mandrioli J. Predictors for progression in amyotrophic lateral sclerosis associated to SOD1 mutation: insight from two population-based registries. J Neurol 2023; 270:6081-6092. [PMID: 37668704 DOI: 10.1007/s00415-023-11963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Uncovering distinct features and trajectories of amyotrophic lateral sclerosis (ALS) associated with SOD1 mutations (SOD1-ALS) can provide valuable insights for patient' counseling and stratification for trials, and interventions timing. Our study aims to pinpoint distinct clinical characteristics of SOD1-ALS by delving into genotype-phenotype correlations and factors that potentially impact disease progression. METHODS This is a retrospective observational study of a SOD1-ALS cohort from two Italian registers situated in the regions of Emilia-Romagna, Piedmont and Valle d'Aosta. RESULTS Out of 2204 genotyped ALS patients, 2.5% carried SOD1 mutations, with a M:F ratio of 0.83. SOD1-ALS patients were younger, and more frequently reported a family history of ALS and/or FTD. SOD1-ALS had a longer survival compared to patients without ALS-associated gene mutations. However, here was considerable variability in survival across distinct SOD1 mutations, with an average survival of less than a year for the L39V, G42S, G73S, D91N mutations. Among SOD1-ALS, multivariate analysis showed that, alongside established clinical prognostic factors such as advanced age at onset and high progression rate at diagnosis, mutations located in exon 2 or within highly conserved gene positions predicted worse survival. Conversely, among comorbidities, cancer history was independently associated with longer survival. INTERPRETATION Within the context of an overall slower disease, SOD1-ALS exhibits some degree of heterogeneity linked to the considerable genetic diversity arising from the multitude of potential mutations sites and specific clinical prognostic factors, including cancer history. Revealing the factors that modulate the phenotypic heterogeneity of SOD1-ALS could prove advantageous in improving the efficacy of upcoming therapeutic approaches.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
| | - Giulia Gianferrari
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Ferri
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Moglia
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Umberto Manera
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Luca Solero
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Rosario Vasta
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Antonio Canosa
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maurizio Grassano
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maura Brunetti
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Letizia Mazzini
- Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Science of Public Health, Research Centre in Environmental, Genetic and Nutritional Epidemiology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adriano Chiò
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Andrea Calvo
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
De Oliveira HM, Soma A, Baker MR, Turner MR, Talbot K, Williams TL. A survey of current practice in genetic testing in amyotrophic lateral sclerosis in the UK and Republic of Ireland: implications for future planning. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:405-413. [PMID: 36458618 DOI: 10.1080/21678421.2022.2150556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Objective: To determine the current practice in genetic testing for patients with apparently sporadic motor neurone disease/amyotrophic lateral sclerosis (MND/ALS) and asymptomatic at-risk relatives of familial MND/ALS patients seen in specialized care centers in the UK. Methods: An online survey with 10 questions distributed to specialist healthcare professionals with a role in requesting genetic testing working at MND/ALS care centers. Results: Considerable variation in practice was found. Almost 30% of respondents reported some discomfort in discussing genetic testing with MND/ALS patients and a majority (77%) did not think that all patients with apparently sporadic disease should be routinely offered genetic testing at present. Particular concerns were identified in relation to testing asymptomatic at-risk individuals and the majority view was that clinical genetics services should have a role in supporting genetic testing in MND/ALS, especially in asymptomatic individuals at-risk of carrying pathogenic variants. Conclusions: Variation in practice in genetic testing among MND/ALS clinics may be driven by differences in experience and perceived competence, compounded by the increasing complexity of the genetic underpinnings of MND/ALS. Clear and accessible guidelines for referral pathways between MND/ALS clinics and clinical genetics may be the best way to standardize and improve current practice, ensuring that patients and relatives receive optimal and geographically equitable support.
Collapse
Affiliation(s)
- Hugo M De Oliveira
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Arunachalam Soma
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Baker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK, and
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences. Level 6, John Radcliffe Hospital, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences. Level 6, John Radcliffe Hospital, Oxford, UK
| | - Timothy L Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Manera U, D'Ovidio F, Cabras S, Torrieri MC, Canosa A, Vasta R, Palumbo F, Grassano M, De Marchi F, Mazzini L, Mora G, Moglia C, Calvo A, Chiò A. Amyotrophic lateral sclerosis regional progression intervals change according to time of involvement of different body regions. Eur J Neurol 2023; 30:872-880. [PMID: 36617536 DOI: 10.1111/ene.15674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE The prediction of disease course is one of the main targets of amyotrophic lateral sclerosis (ALS) research, particularly considering its wide phenotypic heterogeneity. Despite many attempts to classify patients into prognostic categories according to the different spreading patterns at diagnosis, a precise regional progression rate and the time of involvement of each region has yet to be clarified. The aim of our study was to evaluate the functional decline in different body regions according to their time of involvement during disease course. METHODS In a population-based dataset of ALS patients, we analysed the functional decline in different body regions according to time and order of regional involvement. We calculated the regional progression intervals (RPIs) between initial involvement and severe functional impairment using the ALS Functional Rating Scale revised (ALSFRS-r) subscores for the bulbar, upper limb, lower limb and respiratory/thoracic regions. Time-to-event analyses, adjusted for age, sex, ALSFRS-r pre-slope (ΔALSFRS-R), cognitive status, and mutational status were performed. RESULTS The duration of RPI differed significantly among ALS phenotypes, with the RPI of the first region involved being significantly longer than the RPIs of regions involved later. Cox proportional hazard models showed that in fact a longer time between disease onset and initial regional involvement was related to a reduced duration of the RPI duration in each different body region (bulbar region: hazard ratio [HR] 1.11, 95% confidence interval [CI] 1.06-1.16, p < 0.001; upper limb region: HR 1.16, 95% CI 1.06-1.28, p = 0.002; lower limb region: HR 1.11, 95% CI 1.03-1.19, p = 0.009; respiratory/thoracic region: HR 1.10, 95% CI 1.06-1.14, p = 0.005). CONCLUSIONS We found that the progression of functional decline accelerates in regions involved later during disease course. Our findings can be useful in patient management and prognosis prediction.
Collapse
Affiliation(s)
- Umberto Manera
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Fabrizio D'Ovidio
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Sara Cabras
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria Claudia Torrieri
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Rosario Vasta
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesca Palumbo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Maurizio Grassano
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Fabiola De Marchi
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Gabriele Mora
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| |
Collapse
|
15
|
Factors predicting disease progression in C9ORF72 ALS patients. J Neurol 2023; 270:877-890. [PMID: 36280624 DOI: 10.1007/s00415-022-11426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To unveil clinical features, comorbidities, disease progression and prognostic factors in a population-based cohort of ALS patients carrying C9ORF72 expansion (C9 + ALS). METHODS This is a retrospective observational study on ALS patients residing in Emilia Romagna and Piedmont-Valle D'Aosta regions whose data are available through population based registers. We analysed patients who underwent genetic testing, focusing on C9 + ALS subgroup. RESULTS Among 2204 genotyped patients of the two registers, 150 were C9 + ALS. In comparison with patients without mutation, a higher proportion of family history (12.85 vs 68%, p < 0.001) and frontotemporal dementia (3.93% vs 10.67%, p < 0.001) was detected in C9 + ALS. C9 + ALS presented a faster disease progression as measured by monthly decline in ALS Functional Rating Scale-Revised (1.86 ± 3.30 vs 1.45 ± 2.35, p < 0.01) and in forced vital capacity (5.90 ± 5.24 vs 2.97 ± 3.47, p < 0.01), a shorter diagnostic delay (8.93 ± 6.74 vs 12.68 ± 12.86 months, p < 0.01) and earlier onset (58.91 ± 9.02 vs 65.04 ± 11.55 years, p < 0.01). Consistently, they reached death or tracheostomy earlier than other patients (31 vs 37 months, HR = 1.52, 95% C.I. 1.27-1.82, p < 0.001). With respect to other genotyped patients, C9 + ALS patients did not present a significantly higher prevalence of concomitant diseases. Independent prognostic factors of survival of C9 + ALS included sex, age, progression rate, presence of frontotemporal dementia and thyroid disorders, with the latter being associated with prolonged ALS survival (43 vs 29 months, HR = 0.42, 95% C.I. 0.24-0.74, p = 0.003). CONCLUSION Even in the context of a more aggressive disease, C9 + ALS had a longer survival in presence of thyroid disorders. This finding may suggest protective pathogenic pathways in C9 + ALS to be explored, looking for therapeutic strategies to slow disease course.
Collapse
|
16
|
Saucier D, Registe PPW, Bélanger M, O'Connell C. Urbanization, air pollution, and water pollution: Identification of potential environmental risk factors associated with amyotrophic lateral sclerosis using systematic reviews. Front Neurol 2023; 14:1108383. [PMID: 36970522 PMCID: PMC10030603 DOI: 10.3389/fneur.2023.1108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Despite decades of research, causes of ALS remain unclear. To evaluate recent hypotheses of plausible environmental factors, the aim of this study was to synthesize and appraise literature on the potential associations between the surrounding environment, including urbanization, air pollution and water pollution, and ALS. Methods We conducted a series (n = 3) of systematic reviews in PubMed and Scopus to identify epidemiological studies assessing relationships between urbanization, air pollution and water pollution with the development of ALS. Results The combined search strategy led to the inclusion of 44 articles pertaining to at least one exposure of interest. Of the 25 included urbanization studies, four of nine studies on living in rural areas and three of seven studies on living in more highly urbanized/dense areas found positive associations to ALS. There were also three of five studies for exposure to electromagnetic fields and/or proximity to powerlines that found positive associations to ALS. Three case-control studies for each of diesel exhaust and nitrogen dioxide found positive associations with the development of ALS, with the latter showing a dose-response in one study. Three studies for each of high selenium content in drinking water and proximity to lakes prone to cyanobacterial blooms also found positive associations to ALS. Conclusion Whereas markers of air and water pollution appear as potential risk factors for ALS, results are mixed for the role of urbanization.
Collapse
Affiliation(s)
- Daniel Saucier
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
- *Correspondence: Daniel Saucier
| | - Pierre Philippe Wilson Registe
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Mathieu Bélanger
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Colleen O'Connell
- Stan Cassidy Center for Rehabilitation, Fredericton, NB, Canada
- Department of Medicine, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
17
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Calvo A, Canosa A, Moglia C, Manera U, Grassano M, Vasta R, Palumbo F, Cugnasco P, Gallone S, Brunetti M, De Marchi F, Arena V, Pagani M, Dalgard C, Scholz SW, Chia R, Corrado L, Dalfonso S, Mazzini L, Traynor BJ, Chio A. Clinical and Metabolic Signature of UNC13A rs12608932 Variant in Amyotrophic Lateral Sclerosis. Neurol Genet 2022; 8:e200033. [PMID: 36313067 PMCID: PMC9608390 DOI: 10.1212/nxg.0000000000200033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Background and Objectives To characterize the clinical and cognitive behavioral phenotype and brain 18F-2-fluoro-2-deoxy-d-glucose-PET (18F-FDG-PET) metabolism of patients with amyotrophic lateral sclerosis (ALS) carrying the rs12608932 variant of the UNC13A gene. Methods The study population included 1,409 patients with ALS without C9orf72, SOD1, TARDBP, and FUS mutations identified through a prospective epidemiologic ALS register. Control participants included 1,012 geographically matched, age-matched, and sex-matched participants. Clinical and cognitive differences between patients carrying the C/C rs12608932 genotype and those carrying the A/A + A/C genotype were assessed. A subset of patients underwent 18F-FDG-PET. Results The C/C genotype was associated with an increased risk of ALS (odds ratio: 1.54, 95% confidence interval 1.18–2.01, p = 0.001). Patients with the C/C genotype were older, had more frequent bulbar onset, and manifested a higher rate of weight loss. In addition, they showed significantly reduced performance in the letter fluency test, fluency domain of Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and story-based empathy task (reflecting social cognition). Patients with the C/C genotype had a shorter survival (median survival time, C/C 2.25 years, interquartile range [IQR] 1.33–3.92; A/A + C/C: 2.90 years, IQR 1.74–5.41; p = 0.0001). In Cox multivariable analysis, C/C genotype resulted to be an independent prognostic factor. Finally, patients with a C/C genotype had a specific pattern of hypometabolism on brain 18F-FDG-PET extending to frontal and precentral areas of the right hemisphere. Discussion C/C rs12608932 genotype of UNC13A is associated with a specific motor and cognitive/behavioral phenotype, which reflects on 18F-FDG-PET findings. Our observations highlight the importance of adding the rs12608932 variant in UNC13A to the ALS genetic panel to refine the individual prognostic prediction and reduce heterogeneity in clinical trials.
Collapse
Affiliation(s)
- Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Francesca Palumbo
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Paolo Cugnasco
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Salvatore Gallone
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Fabiola De Marchi
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Arena
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Marco Pagani
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Clifton Dalgard
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Sonja W Scholz
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Ruth Chia
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Lucia Corrado
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Sandra Dalfonso
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Letizia Mazzini
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Bryan J Traynor
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Adriano Chio
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
19
|
Logroscino G, Urso D, Tortelli R. The challenge of amyotrophic lateral sclerosis descriptive epidemiology: to estimate low incidence rates across complex phenotypes in different geographic areas. Curr Opin Neurol 2022; 35:678-685. [PMID: 35946801 PMCID: PMC9593328 DOI: 10.1097/wco.0000000000001097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease of motor neurons with a fatal outcome. The rareness of the disease and the rapidly fatal course are the main challenges for the ALS epidemiological research. The understanding of ALS has clearly advanced in the recent years both in the genetics and in the leading pathways of disease determinants. Epidemiological research has played a primary role in these discoveries. RECENT FINDINGS Epidemiological studies have shown a variation of incidence, mortality and prevalence of ALS between geographical areas and different populations, supporting the notion that genetic factors, linked to populations' ancestries, along with environmental and lifestyle factors, play a significant role in the occurrence of the disease. The burden of motor neuron diseases is increasing and currently more relevant in high-income countries but increasing at the highest rate in low and middle-income countries. The ALS phenotype is not restricted to motor functions. C9orf72 repeat expansion seems to present a recognizable phenotype characterized by earlier disease onset, the presence of cognitive and behavioural impairment. SUMMARY Population-based disease registries have played a major role in developing new knowledge on ALS, in characterizing genotype-phenotype correlations, in discovering new genetic modifiers and finally in planning research and health services, considering the high cost of motor neuron disease care. Epidemiological research based on multicentre international collaboration is essential to provide new data on ALS, especially in some regions of the world with poor data.
Collapse
Affiliation(s)
- Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ’Aldo Moro’, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari ’Aldo Moro’, Bari, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ’Aldo Moro’, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce
- Department of Neurosciences, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
20
|
Grassano M, Brodini G, De Marco G, Casale F, Fuda G, Salamone P, Brunetti M, Sbaiz L, Gallone S, Cugnasco P, Bombaci A, Vasta R, Manera U, Canosa A, Moglia C, Calvo A, Traynor BJ, Chio A. Phenotype Analysis of Fused in Sarcoma Mutations in Amyotrophic Lateral Sclerosis. Neurol Genet 2022; 8:e200011. [PMID: 36105853 PMCID: PMC9469212 DOI: 10.1212/nxg.0000000000200011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives Pathogenic variations in fused in sarcoma (FUS) are among the most common genetic causes of amyotrophic lateral sclerosis (ALS) worldwide. They are supposedly characterized by a homogeneous pure motor phenotype with early-onset and short disease duration. However, a few FUS-mutated cases with a very late disease onset and slow progression have been reported. To analyze genotype-phenotype correlations and identify the prognostic factors in FUS-ALS cases. Methods We identified and cross-sectionally analyzed 22 FUS-ALS patient histories from a single-center cohort of 2,615 genetically tested patients and reviewed 289 previously published FUS-ALS cases. Survival analysis was performed by Kaplan-Meier survival curves, followed by the log-rank test and multivariate Cox analysis. Results Survival of FUS-ALS is age-dependent: In our cohort, early-onset cases had a rapid disease progression and short survival (p = 0.000003) while the outcome of FUS-mutated patients with mid-to-late onset did not differ from non–FUS-ALS patients (p = 0.437). Meta-analysis of literature data confirmed this trend (p = 0.00003). This survival pattern is not observed in other ALS-related genes in our series. We clustered FUS-ALS patients in 3 phenotypes: (1) axial ALS, with upper cervical and dropped-head onset in mid-to-late adulthood; (2) benign ALS, usually with a late-onset and slow disease progression; and (3) juvenile ALS, often with bulbar onset and preceded by learning disability or mild mental retardation. Those phenotypes arise from different mutations. Discussion We observed specific genotype-phenotype correlations of FUS-ALS and identified age at onset as the most critical prognostic factor. Our results demonstrated that FUS mutations underlie a specific subtype of ALS and enable a careful stratification of newly diagnosed FUS-ALS cases for clinical course and potential therapeutic windows. This will be crucial in the light of incoming gene-specific therapy.
Collapse
|
21
|
Chio A, Moglia C, Canosa A, Manera U, Grassano M, Vasta R, Palumbo F, Gallone S, Brunetti M, Barberis M, De Marchi F, Dalgard C, Chia R, Mora G, Iazzolino B, Peotta L, Traynor B, Corrado L, D'Alfonso S, Mazzini L, Calvo A. Exploring the phenotype of Italian patients with ALS with intermediate ATXN2 polyQ repeats. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329376. [PMID: 36008116 PMCID: PMC9606535 DOI: 10.1136/jnnp-2022-329376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To detect the clinical characteristics of patients with amyotrophic lateral sclerosis (ALS) carrying an intermediate ATXN2 polyQ number of repeats in a large population-based series of Italian patients with ALS. METHODS The study population includes 1330 patients with ALS identified through the Piemonte and Valle d'Aosta Register for ALS, diagnosed between 2007 and 2019 and not carrying C9orf72, SOD1, TARDBP and FUS mutations. Controls were 1274 age, sex and geographically matched Italian subjects, identified through patients' general practitioners. RESULTS We found 42 cases and 4 controls with≥31 polyQ repeats, corresponding to an estimated OR of 10.4 (95% CI 3.3 to 29.0). Patients with≥31 polyQ repeats (ATXN2+) compared with those without repeat expansion (ATXN2-) had more frequently a spinal onset (p=0.05), a shorter diagnostic delay (p=0.004), a faster rate of ALSFRS-R progression (p=0.004) and King's progression (p=0.004), and comorbid frontotemporal dementia (7 (28.0%) vs 121 (13.4%), p=0.037). ATXN2+ patients had a 1-year shorter survival (ATXN2+ patients 1.82 years, 95% CI 1.08 to 2.51; ATXN2- 2.84 years, 95% CI 1.67 to 5.58, p=0.0001). ATXN2 polyQ intermediate repeats was independently related to a worse outcome in Cox multivariable analysis (p=0.006). CONCLUSIONS In our population-based cohort, ATXN2+ patients with ALS have a distinctive phenotype, characterised by a more rapid disease course and a shorter survival. In addition, ATXN2+ patients have a more severe impairment of cognitive functions. These findings have relevant implications on clinical practice, including the possibility of refining the individual prognostic prediction and improving the design of ALS clinical trials, in particular as regards as those targeted explicitly to ATXN2.
Collapse
Affiliation(s)
- Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maurizio Grassano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Rosario Vasta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Francesca Palumbo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Salvatore Gallone
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maura Brunetti
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Marco Barberis
- Genetics, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Fabiola De Marchi
- Neurology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Gabriele Mora
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Barbara Iazzolino
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Laura Peotta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Bryan Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins, Baltimore, Maryland, USA
| | - Lucia Corrado
- Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Italy
| | - Letizia Mazzini
- Neurology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
22
|
Spinelli EG, Ghirelli A, Riva N, Canu E, Castelnovo V, Domi T, Pozzi L, Carrera P, Silani V, Chiò A, Filippi M, Agosta F. Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Front Neurol 2022; 13:931006. [PMID: 35911889 PMCID: PMC9334911 DOI: 10.3389/fneur.2022.931006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini “Department of Neuroscience, ” ALS Center, University of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta
| |
Collapse
|
23
|
Vishal SS, Wijegunawardana D, Salaikumaran MR, Gopal PP. Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons. Front Cell Dev Biol 2022; 10:876893. [PMID: 35646935 PMCID: PMC9133736 DOI: 10.3389/fcell.2022.876893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in TDP-43, a RNA-binding protein with multiple functions in RNA metabolism, cause amyotrophic lateral sclerosis (ALS), but it is uncertain how defects in RNA biology trigger motor neuron degeneration. TDP-43 is a major constituent of ribonucleoprotein (RNP) granules, phase separated biomolecular condensates that regulate RNA splicing, mRNA transport, and translation. ALS-associated TDP-43 mutations, most of which are found in the low complexity domain, promote aberrant liquid to solid phase transitions and impair the dynamic liquid-like properties and motility of RNP transport granules in neurons. Here, we perform a comparative analysis of ALS-linked mutations and TDP-43 variants in order to identify critical structural elements, aromatic and charged residues that are key determinants of TDP-43 RNP transport and condensate formation in neurons. We find that A315T and Q343R disease-linked mutations and substitutions of aromatic residues within the α-helical domain and LARKS, show the most severe defects in TDP-43 RNP granule transport and impair both anterograde and retrograde motility. F313L and F313-6L/Y substitutions of one or both phenylalanine residues in LARKS suggest the aromatic rings are important for TDP-43 RNP transport. Similarly, W334F/L substitutions of the tryptophan residue in the α-helical domain, impair TDP-43 RNP motility (W334L) or anterograde transport (W334F). We also show that R293A and R293K mutations, which disrupt the only RGG in the LCD, profoundly reduce long-range, directed transport and net velocity of TDP-43 RNP granules. In the disordered regions flanking the α-helical domain, we find that F283Y, F397Y or Y374F substitutions of conserved GF/G and SYS motifs, also impair anterograde and/or retrograde motility, possibly by altering hydrophobicity. Similarly, ALS-linked mutations in disordered regions distant from the α-helical domain also show anterograde transport deficits, consistent with previous findings, but these mutations are less severe than A315T and Q343R. Overall our findings demonstrate that the conserved α-helical domain, phenylalanine residues within LARKS and RGG motif are key determinants of TDP-43 RNP transport, suggesting they may mediate efficient recruitment of motors and adaptor proteins. These results offer a possible mechanism underlying ALS-linked TDP-43 defects in axonal transport and homeostasis.
Collapse
Affiliation(s)
- Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | | | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Ahangaran M, Chiò A, D'Ovidio F, Manera U, Vasta R, Canosa A, Moglia C, Calvo A, Minaei-Bidgoli B, Jahed-Motlagh MR. Causal associations of genetic factors with clinical progression in amyotrophic lateral sclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106681. [PMID: 35151113 DOI: 10.1016/j.cmpb.2022.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent advances in the genetic causes of ALS reveals that about 10% of ALS patients have a genetic origin and that more than 30 genes are likely to contribute to this disease. However, four genes are more frequently associated with ALS: C9ORF72, TARDBP, SOD1, and FUS. The relationship between genetic factors and ALS progression rate is not clear. In this study, we carried out a causal analysis of ALS disease with a genetics perspective in order to assess the contribution of the four mentioned genes to the progression rate of ALS. METHODS In this work, we applied a novel causal learning model to the CRESLA dataset which is a longitudinal clinical dataset of ALS patients including genetic information of such patients. This study aims to discover the relationship between four mentioned genes and ALS progression rate from a causation perspective using machine learning and probabilistic methods. RESULTS The results indicate a meaningful association between genetic factors and ALS progression rate with causality viewpoint. Our findings revealed that causal relationships between ALSFRS-R items associated with bulbar regions have the strongest association with genetic factors, especially C9ORF72; and other three genes have the greatest contribution to the respiratory ALSFRS-R items with a causation point of view. CONCLUSIONS The findings revealed that genetic factors have a significant causal effect on the rate of ALS progression. Since C9ORF72 patients have higher proportion compared to those carrying other three gene mutations in the CRESLA cohort, we need a large multi-centric study to better analyze SOD1, TARDBP and FUS contribution to the ALS clinical progression. We conclude that causal associations between ALSFRS-R clinical factors is a suitable predictor for designing a prognostic model of ALS.
Collapse
Affiliation(s)
- Meysam Ahangaran
- Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran; Department of Computer Engineering, Mazandaran University of Science and Technology, Babol, Iran.
| | - Adriano Chiò
- Department of Computer Engineering, Mazandaran University of Science and Technology, Babol, Iran; 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy; National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy.
| | - Fabrizio D'Ovidio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Rosario Vasta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Behrouz Minaei-Bidgoli
- Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | | |
Collapse
|
25
|
Bette M, Cors E, Kresse C, Schütz B. Therapeutic Treatment of Superoxide Dismutase 1 (G93A) Amyotrophic Lateral Sclerosis Model Mice with Medical Ozone Decelerates Trigeminal Motor Neuron Degeneration, Attenuates Microglial Proliferation, and Preserves Monocyte Levels in Mesenteric Lymph Nodes. Int J Mol Sci 2022; 23:ijms23063403. [PMID: 35328829 PMCID: PMC8950555 DOI: 10.3390/ijms23063403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and lethal neurodegenerative disease in which progressive motor neuron loss and associated inflammation represent major pathology hallmarks. Both the prevention of neuronal loss and neuro-destructive inflammation are still unmet challenges. Medical ozone, an ozonized oxygen mixture (O3/O2), has been shown to elicit profound immunomodulatory effects in peripheral organs, and beneficial effects in the aging brain. We investigated, in a preclinical drug testing approach, the therapeutic potential of a five-day O3/O2i.p. treatment regime at the beginning of the symptomatic disease phase in the superoxide dismutase (SOD1G93A) ALS mouse model. Clinical assessment of SOD1G93A mice revealed no benefit of medical ozone treatment over sham with respect to gross body weight, motor performance, disease duration, or survival. In the brainstem of end stage SOD1G93A mice, however, neurodegeneration was found decelerated, and SOD1-related vacuolization was reduced in the motor trigeminal nucleus in the O3/O2 treatment group when compared to sham-treated mice. In addition, microglia proliferation was less pronounced in the brainstem, while the hypertrophy of astroglia remained largely unaffected. Finally, monocyte numbers were reduced in the blood, spleen, and mesenteric lymph nodes at postnatal day 60 in SOD1G93A mice. A further decrease in monocyte numbers seen in mesenteric lymph nodes from sham-treated SOD1G93A mice at an advanced disease stage, however, was prevented by medical ozone treatment. Collectively, our study revealed a select neuroprotective and possibly anti-inflammatory capacity for medical ozone when applied as a therapeutic agent in SOD1G93A ALS mice.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| | - Eileen Cors
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Department of Mitochondrial Proteostasis, Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Carolin Kresse
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| |
Collapse
|
26
|
Jiang L, Zhang T, Lu K, Qi S. The progress in C9orf72 research: ALS/FTD pathogenesis, functions and structure. Small GTPases 2022; 13:56-76. [PMID: 33663328 PMCID: PMC9707547 DOI: 10.1080/21541248.2021.1892443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hexanucleotide repeat (GGGGCC) expansion in C9orf72 is accounted for a large proportion of the genetic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The hypotheses of how the massive G4C2 repeats in C9orf72 destroy the neurons and lead to ALS/FTD are raised and improving. As a multirole player, C9orf72 exerts critical roles in many cellular processes, including autophagy, membrane trafficking, immune response, and so on. Notably, the partners of C9orf72, through which C9orf72 participates in the cell activities, have been identified. Notably, the structures of the C9orf72-SMCR8-WDR41 complex shed light on its activity as GTPase activating proteins (GAP). In this manuscript, we reviewed the latest research progress in the C9orf72-mediated ALS/FTD, the physiological functions of C9orf72, and the putative function models of C9orf72/C9orf72-containing complex.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tizhong Zhang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China,CONTACT Shiqian Qi Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
These authors contributed equally to this work.
| |
Collapse
|
27
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
28
|
Edgar S, Ellis M, Abdul-Aziz NA, Goh KJ, Shahrizaila N, Kennerson ML, Ahmad-Annuar A. Mutation analysis of SOD1, C9orf72, TARDBP and FUS genes in ethnically-diverse Malaysian patients with amyotrophic lateral sclerosis (ALS). Neurobiol Aging 2021; 108:200-206. [PMID: 34404558 DOI: 10.1016/j.neurobiolaging.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
Recent studies have identified SOD1, FUS, TARDBP and C9orf72 as major ALS-related genes in both European and Asian populations. However, significant differences exist in the mutation frequencies of these genes between various ancestral backgrounds. This study aims to identify the frequency of mutations in the common causative ALS genes in a multi-ethnic Malaysian cohort. We screened 101 Malaysian ALS patients including 3 familial and 98 sporadic cases for mutations in the coding regions of SOD1, FUS, and TARDBP by Sanger sequencing. The C9orf72 hexanucleotide repeat expansion was screened using the repeat-primed polymerase chain reaction assay. Mutations were found in 5.9% (6 of 101) of patients including 3.0% (3 of 101) of patients with the previously reported SOD1 missense mutations (p.V48A and p.N87S) and 3.0% (3 of 101) of patients with the C9orf72 repeat expansion. No mutations were found in the FUS and TARDBP genes. This study is the first to report the mutation frequency in an ethnically diverse Malaysian ALS population and warrants further investigation to reveal novel genes and disease pathways.
Collapse
Affiliation(s)
- Suzanna Edgar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia
| | - Nur Adilah Abdul-Aziz
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Jin Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia.
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Raymond J, Mehta P, Larson T, Pioro EP, Horton DK. Reproductive History and Age of Onset for Women Diagnosed with Amyotrophic Lateral Sclerosis: Data from the National ALS Registry: 2010-2018. Neuroepidemiology 2021; 55:416-424. [PMID: 34218222 DOI: 10.1159/000516344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurological disease of largely unknown etiology with no cure. The National ALS Registry is a voluntary online system that collects demographic and reproductive history (females only) data from patients with ALS. We will examine the association between demographic and reproductive history among female patients aged >18 years and various ages of onset for ALS. METHODS Data from a cross-sectional study were collected and examined for 1,018 female ALS patients. Patient characteristics examined were demographics including race, BMI, and familial history of ALS. Among patients, information on reproductive history, including age at menopause, ever pregnant, and age at first pregnancy was collected. Unadjusted and adjusted logistic regression models were used to estimate OR and 95% CI in this study. RESULTS Women were more likely to be diagnosed with ALS before age 60 if they were nonwhite (p = 0.015), had attended college (p = 0.0012), had a normal BMI at age 40 (p < 0.0001), completed menopause before age 50 (p < 0.0001), and had never been pregnant (p = 0.046) in the univariate analysis. Women diagnosed with ALS before age 60 were also more likely to have limb site of onset (p < 0.0001). In the multivariate analysis, those who completed menopause before age 50 were more likely to be diagnosed with ALS before age 60 (OR = 1.8, 95% CI: 1.4-2.3) compared with women who completed menopause at or after age 50, after controlling for race, ever pregnant, age at first pregnancy, family history of ALS, education status, smoking history, and BMI at age 40. For women who were diagnosed with ALS before age 50, the odds of them entering menopause before age 50 climb to 48.7 (95% CI: 11.8, 200.9). The mean age of ALS diagnosis for women who completed menopause before age 50 was 58 years and 64 years for women who entered menopause after age 50 (p < 0.0001). CONCLUSION Women who reported completing menopause before age 50 were significantly more likely to be diagnosed with ALS before age 60 compared with those who reported entering menopause after age 50. More research is needed to determine the relationship between female reproductive history, especially regarding endogenous estrogen exposure and early-onset ALS.
Collapse
Affiliation(s)
- Jaime Raymond
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ted Larson
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Erik P Pioro
- Section of ALS and Related Disorders, The Cleveland Clinic, Cleveland, Ohio, USA
| | - D Kevin Horton
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
31
|
Raymond J, Mehta P, Larson T, Factor-Litvak P, Davis B, Horton K. History of vigorous leisure-time physical activity and early onset amyotrophic lateral sclerosis (ALS), data from the national ALS registry: 2010-2018. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:535-544. [PMID: 33896281 DOI: 10.1080/21678421.2021.1910308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Previous research has suggested that vigorous physical activity (VPA) during adolescence and early adulthood is associated with ALS. The National ALS Registry (Registry) collects physical activity data from persons with ALS. Objective: To examine the association between vigorous VPA and early onset ALS, defined as a diagnosis before age 60, among patients enrolled in the Registry. VPA was defined as engaging in dynamic exercise for at least 10 minutes in a session that caused heavy sweating or large increases in breathing or heart rate. Methods: A cross-sectional study was conducted of 5463 ALS patients with VPA history and 956 ALS patients who never engaged in VPA. Patient characteristics were collected via online surveys in the following areas: demographic, lifetime VPA history, and initial onset of symptoms. General linear modeling was used to estimate mean age of diagnosis and to compute 95% confidence intervals. Results: Patients who reported engaging in VPA at least moderately (three times a week) during early adulthood were more likely to have an ALS diagnosis earlier compared to patients who did not (p < 0.0001). After controlling for year of birth, statistically significant associations between those reporting VPA at age 15-24 and 25-34 and diagnosis of ALS earlier (p = 0.0009, p = 0.0144 respectively). Conclusion: Patients with ALS who had a history of VPA before age 35, were significantly more likely to be diagnosed with ALS before age 60 compared to patients with ALS who never engaged vigorously. More research is needed in the relationship between VPA and early onset ALS.
Collapse
Affiliation(s)
- Jaime Raymond
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Mehta
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ted Larson
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pam Factor-Litvak
- Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Bryn Davis
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kevin Horton
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
32
|
Hasegawa-Ogawa M, Okano HJ. Characterization of the upstream and intron promoters of the gene encoding TAR DNA-binding protein. Sci Rep 2021; 11:8720. [PMID: 33888768 PMCID: PMC8062691 DOI: 10.1038/s41598-021-88015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
TAR DNA-binding protein (TDP-43, encoded by TARDBP) is a multifunctional protein that regulates transcription and RNA metabolism by binding DNA or RNA. TDP-43 has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) because abnormal accumulation of cleaved and phosphorylated C-terminal fragments of TDP-43 in motor neurons is a pathological hallmark of ALS. Here, we cloned and analyzed the promoter region of the TARDBP gene. TARDBP upstream sequences and/or intron/luciferase constructs were generated, and their promoter activity was experimentally assessed. The upstream region predictably exhibited promoter activity and identified putative cis-acting elements, including the i-motif, was relevant for the regulation of TDP-43 expression. The cellular abundance of TDP-43 is strictly controlled, and its constancy is critically important for motor neuron survival. A machinery serving to maintain a constant level of TDP-43 is autoregulation via control of mRNA stability, a negative feedback system involving binding to the 3' untranslated region of its own pre-mRNA. However, whether transcriptional mechanisms contribute to TDP-43 autoregulation is unclear. We further showed that TDP-43 negatively regulates the TARDBP promoter and, surprisingly, that disease-causing TDP-43 mutants lacked this regulatory activity. These results allowed the elucidation of a novel transcriptional autoregulatory mechanism of TDP-43.
Collapse
Affiliation(s)
- Minami Hasegawa-Ogawa
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 1058461, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 1058461, Japan.
| |
Collapse
|
33
|
Canosa A, Lomartire A, De Marco G, Grassano M, Brunetti M, Manera U, Vasta R, Salamone P, Fuda G, Sbaiz L, Gallone S, Moglia C, Calvo A, Chiò A. A novel splice site FUS mutation in a familial ALS case: effects on protein expression. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:128-136. [PMID: 33879000 DOI: 10.1080/21678421.2021.1909065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To investigate the impact of a novel heterozygous FUS mutation in the acceptor splice site of intron 14 (c.1542 - 1 g > t) on protein expression in Peripheral Blood Mononuclear Cells (PBMC) from a familial ALS patient. Methods: PBMC were isolated for mRNA analysis (cDNA synthesis, sequencing and one-step RT-PCR), Western Immunoblot (WI), and Immunofluorescence (IF). Results: cDNA analysis revealed the skipping of exon 15 and a premature stop codon at c.228. RT-PCR showed reduced FUS mRNA by more than half compared to a healthy control (HC) and an ALS patient without genetic mutations (wtALS). In WI FUS band intensity in the proband was 30-50% compared to HC and wtALS. An antibody expected to detect only the wild-type protein did not reveal any reduction of FUS band intensity compared to the other antibodies. IF showed no difference among HC, wtALS, and the proband. Discussion: The reduction of FUS mRNA and protein in PBMC suggests the absence of the truncated protein, probably due to nonsense-mediated decay, leading to loss of function.
Collapse
Affiliation(s)
- Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1, Turin, Italy
| | - Annarosa Lomartire
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Giovanni De Marco
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1, Turin, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Paolina Salamone
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Giuseppe Fuda
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Luca Sbaiz
- Department of Clinical Pathology, Laboratory of Genetics, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Salvatore Gallone
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1, Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1, Turin, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy, and
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy, and.,Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| |
Collapse
|
34
|
Sassani M, Alix JJ, McDermott CJ, Baster K, Hoggard N, Wild JM, Mortiboys HJ, Shaw PJ, Wilkinson ID, Jenkins TM. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis. Brain 2021; 143:3603-3618. [PMID: 33439988 DOI: 10.1093/brain/awaa340] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is postulated to be central to amyotrophic lateral sclerosis (ALS) pathophysiology. Evidence comes primarily from disease models and conclusive data to support bioenergetic dysfunction in vivo in patients is currently lacking. This study is the first to assess mitochondrial dysfunction in brain and muscle in individuals living with ALS using 31P-magnetic resonance spectroscopy (MRS), the modality of choice to assess energy metabolism in vivo. We recruited 20 patients and 10 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. 31P-MRS was acquired from cerebral motor regions and from tibialis anterior during rest and exercise. Bioenergetic parameter estimates were derived including: ATP, phosphocreatine, inorganic phosphate, adenosine diphosphate, Gibbs free energy of ATP hydrolysis (ΔGATP), phosphomonoesters, phosphodiesters, pH, free magnesium concentration, and muscle dynamic recovery constants. Linear regression was used to test for associations between brain data and clinical parameters (revised amyotrophic functional rating scale, slow vital capacity, and upper motor neuron score) and between muscle data and clinico-neurophysiological measures (motor unit number and size indices, force of contraction, and speed of walking). Evidence for primary dysfunction of mitochondrial oxidative phosphorylation was detected in the brainstem where ΔGATP and phosphocreatine were reduced. Alterations were also detected in skeletal muscle in patients where resting inorganic phosphate, pH, and phosphomonoesters were increased, whereas resting ΔGATP, magnesium, and dynamic phosphocreatine to inorganic phosphate recovery were decreased. Phosphocreatine in brainstem correlated with respiratory dysfunction and disability; in muscle, energy metabolites correlated with motor unit number index, muscle power, and speed of walking. This study provides in vivo evidence for bioenergetic dysfunction in ALS in brain and skeletal muscle, which appears clinically and electrophysiologically relevant. 31P-MRS represents a promising technique to assess the pathophysiology of mitochondrial function in vivo in ALS and a potential tool for future clinical trials targeting bioenergetic dysfunction.
Collapse
Affiliation(s)
- Matilde Sassani
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - James J Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Kathleen Baster
- Statistical Service Unit, University of Sheffield, Sheffield, UK
| | - Nigel Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Heather J Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
35
|
Lanteri P, Meola I, Canosa A, De Marco G, Lomartire A, Rinaudo MT, Albamonte E, Sansone VA, Lunetta C, Manera U, Vasta R, Moglia C, Calvo A, Origone P, Chiò A, Mandich P. The heterozygous deletion c.1509_1510delAG in exon 14 of FUS causes an aggressive childhood-onset ALS with cognitive impairment. Neurobiol Aging 2021; 103:130.e1-130.e7. [PMID: 33637330 DOI: 10.1016/j.neurobiolaging.2021.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
We report a case of childhood-onset ALS with a FUS gene mutation presenting cognitive impairment and a rapid clinical progression. The patient, an 11-year-old girl, presented with right distal upper limb weakness and mild intellectual disability at the Griffith Mental Development Scales. The disease rapidly worsened and the patient became tetraplegic and bed-ridden 2 years after symptom onset. A c.1509_1510delAG mutation in exon 14 of the FUS gene was detected, resulting in a predicted truncated protein, p.G504Wfs*12, lacking the nuclear localization signal. The levels of FUS mRNA in the proband were not significantly different compared to controls. Western immunoblot analysis showed that one antibody (500-526) detected in the proband ~50% of the amount of FUS protein compared to controls, while 3 other antibodies (2-27, 400-450 and FUS C-terminal), which recognize both wild type and the mutated FUS, detected 60% to 75% of the amount of the protein. These findings indicate that p.G504Wfs*12 FUS is more prone to undergo post-translational modification respect to wild type FUS.
Collapse
Affiliation(s)
- Paola Lanteri
- Neurophysiopathology Centre, Department of Diagnostics and Applied Technology, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Irene Meola
- Child Neurology Unit, Cesare Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giovanni De Marco
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Annarosa Lomartire
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria Teresa Rinaudo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Emilio Albamonte
- The NEMO Clinical Center (NEuroMuscular Onmicenter), Milan, Italy
| | - Valeria Ada Sansone
- The NEMO Clinical Center (NEuroMuscular Onmicenter), Milan, Italy; Neurorehabilitation Unit, University of Milan, Milan, Italy
| | | | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosario Vasta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Origone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI) University of Genoa and IRCCS Policlinico San Martino, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy.
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI) University of Genoa and IRCCS Policlinico San Martino, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| |
Collapse
|
36
|
Clinical Update on C9orf72: Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:67-76. [PMID: 33433869 DOI: 10.1007/978-3-030-51140-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of C9orf72 gene has led to important scientific progresses and has considerably changed our clinical practice. However, a decade after C9orf72 discovery, some important clinical questions remain unsolved. The reliable cutoff for the pathogenic repeat number and the implication of intermediate alleles in frontotemporal dementia, amyotrophic lateral sclerosis, or in other diseases are still uncertain. The occurrence of an anticipation phenomenon - at the clinical and molecular levels - in C9orf72 kindreds is still debated as well, and the factors driving age at onset and phenotype variability are largely unknown. All these questions have a significant impact not only in clinical practice for diagnosis and genetic counseling but also in a research context for the initiation of therapeutic trials. In this chapter, we will address all those issues and summarize the recent updates about clinical aspects of C9orf72 disease, focusing on both the common and the less typical phenotypes.
Collapse
|
37
|
Tesauro M, Bruschi M, Filippini T, D'Alfonso S, Mazzini L, Corrado L, Consonni M, Vinceti M, Fusi P, Urani C. Metal(loid)s role in the pathogenesis of amyotrophic lateral sclerosis: Environmental, epidemiological, and genetic data. ENVIRONMENTAL RESEARCH 2021; 192:110292. [PMID: 33027627 DOI: 10.1016/j.envres.2020.110292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. The etiology is still unknown and the pathogenesis remains unclear. ALS is familial in the 10% of cases with a Mendelian pattern of inheritance. In the remaining sporadic cases, a multifactorial origin is supposed in which several predisposing genes interact with environmental factors. The etiological role of environmental factors, such as pesticides, exposure to electromagnetic fields, and metals has been frequently investigated, with controversial findings. Studies in the past two decades have highlighted possible roles of metals, and ionic homeostasis dysregulation has been proposed as the main trigger to motor-neuron degeneration. This study aims at evaluating the possible role of environmental factors in etiopathogenesis of ALS, with a particular attention on metal contamination, focusing on the industrial Briga area in the province of Novara (Piedmont region, North Italy), characterized by: i) a higher incidence of sporadic ALS (sALS) in comparison with the entire province, and ii) the reported environmental pollution. Environmental data from surface, ground and discharge waters, and from soils were collected and specifically analyzed for metal content. Considering the significance of genetic mechanisms in ALS, a characterization for the main ALS genes has been performed to evaluate the genetic contribution for the sALS patients living in the area of study. The main findings of this study are the demonstration that in the Briga area the most common metal contaminants are Cu, Zn, Cr, Ni (widely used in tip-plating processes), that are above law limits in surface waters, discharge waters, and soil. In addition, other metals and metalloids, such as Cd, Pb, Mn, and As show a severe contamination in the same area. Results of genetic analyses show that sALS patients in the Briga area do not carry recurrent mutations or an excess of mutations in the four main ALS causative genes (SOD1, TARDBP, FUS, C9ORF72) and for ATXN2 CAG repeat locus. This study supports the hypothesis that the higher incidence of sALS in Briga area may be related to environmental metal(loid)s contamination, along with other environmental factors. Further studies, implementing analysis of genetic polymorphisms, as well as investigation with long term follow-up, may yield to key aspects into the etiology of ALS. The interplay between different approaches (environmental, chemical, epidemiological, genetic) of our work provides new insights and methodology to the comprehension of the disease etiology.
Collapse
Affiliation(s)
- Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via C. Pascal, 36, 20133, Milan, Italy.
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20133, Milan, Italy
| | - Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, CAAD, UPO University, Via Solaroli, 17, 28100, Novara, Italy
| | - Letizia Mazzini
- ALS Centre Department of Neurology, Maggiore della Carità University Hospital, Corso Mazzini, 18, 28100, Novara, Italy
| | - Lucia Corrado
- Department of Health Sciences, CAAD, UPO University, Via Solaroli, 17, 28100, Novara, Italy
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via C. Pascal, 36, 20133, Milan, Italy
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, 715 Albany Street, MA 02118, USA
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20133, Milan, Italy.
| |
Collapse
|
38
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|
39
|
Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral Glycolysis in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8924. [PMID: 33255513 PMCID: PMC7727792 DOI: 10.3390/ijms21238924] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and peripheral cells. Glycolysis is the conversion of glucose to pyruvate or lactate which results in the generation of ATP and has been shown to be abnormal in peripheral cells in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Changes to the glycolytic pathway are seen early in neurodegenerative disease and highlight how in multiple neurodegenerative conditions pathology is not always confined to the nervous system. In this paper, we review the abnormalities described in glycolysis in the three most common neurodegenerative diseases. We show that in all three diseases glycolytic changes are seen in fibroblasts, and red blood cells, and that liver, kidney, muscle and white blood cells have abnormal glycolysis in certain diseases. We highlight there is potential for peripheral glycolysis to be developed into multiple types of disease biomarker, but large-scale bio sampling and deciphering how glycolysis is inherently altered in neurodegenerative disease in multiple patients' needs to be accomplished first to meet this aim.
Collapse
Affiliation(s)
- Simon M. Bell
- Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield S10 2HQ, UK; (T.B.); (J.L.); (D.J.B.); (S.P.A.); (H.M.)
| | | | | | | | | | | |
Collapse
|
40
|
Grassano M, Calvo A, Moglia C, Brunetti M, Barberis M, Sbaiz L, Canosa A, Manera U, Vasta R, Corrado L, D'Alfonso S, Mazzini L, Scholz SW, Dalgard C, Ding J, Gibbs RJ, Chia R, Traynor BJ, Chiò A. Mutational Analysis of Known ALS Genes in an Italian Population-Based Cohort. Neurology 2020; 96:e600-e609. [PMID: 33208543 DOI: 10.1212/wnl.0000000000011209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the burden of rare genetic variants and to estimate the contribution of known amyotrophic lateral sclerosis (ALS) genes in an Italian population-based cohort, we performed whole genome sequencing in 959 patients with ALS and 677 matched healthy controls. METHODS We performed genome sequencing in a population-based cohort (Piemonte and Valle d'Aosta Registry for ALS [PARALS]). A panel of 40 ALS genes was analyzed to identify potential disease-causing genetic variants and to evaluate the gene-wide burden of rare variants among our population. RESULTS A total of 959 patients with ALS were compared with 677 healthy controls from the same geographical area. Gene-wide association tests demonstrated a strong association with SOD1, whose rare variants are the second most common cause of disease after C9orf72 expansion. A lower signal was observed for TARDBP, proving that its effect on our cohort is driven by a few known causal variants. We detected rare variants in other known ALS genes that did not surpass statistical significance in gene-wise tests, thus highlighting that their contribution to disease risk in our cohort is limited. CONCLUSIONS We identified potential disease-causing variants in 11.9% of our patients. We identified the genes most frequently involved in our cohort and confirmed the contribution of rare variants in disease risk. Our results provide further insight into the pathologic mechanism of the disease and demonstrate the importance of genome-wide sequencing as a diagnostic tool.
Collapse
Affiliation(s)
- Maurizio Grassano
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy.
| | - Andrea Calvo
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Cristina Moglia
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Maura Brunetti
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Marco Barberis
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Luca Sbaiz
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Antonio Canosa
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Umberto Manera
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Rosario Vasta
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Lucia Corrado
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Sandra D'Alfonso
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Letizia Mazzini
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Sonja W Scholz
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Clifton Dalgard
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Jinhui Ding
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Raphael J Gibbs
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Ruth Chia
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Bryan J Traynor
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | - Adriano Chiò
- From "Rita Levi Montalcini" Department of Neuroscience (M.G., A. Calvo, C.M., A. Canosa, U.M., R.V., A. Chiò), University of Turin, Italy; Biocomputational Group (J.D., R.J.G.) and Neuromuscular Diseases Research Section (M.G., R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD; Laboratory of Genetics, Department of Clinical Pathology (M. Brunetti, M. Barberis, L.S.), Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont; ALS Center (L.M.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy; Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics (S.W.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center; Department of Anatomy, Physiology & Genetics (C.D.), and The American Genome Center, Collaborative Health Initiative Research Program (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Institute of Cognitive Sciences and Technologies (A. Chiò), National Council of Research, Rome, Italy
| | | |
Collapse
|
41
|
Moglia C, Calvo A, Brunetti M, Chiò A, Grassano M. Broadening the clinical spectrum of FUS mutations: a case with monomelic amyotrophy with a late progression to amyotrophic lateral sclerosis. Neurol Sci 2020; 42:1207-1209. [PMID: 33001405 DOI: 10.1007/s10072-020-04751-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/20/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Cristina Moglia
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy. .,Struttura Complessa Neurologia IU, Azienda Ospedaliero Universitaria Città della Salute e della Scienza of Turin, via Cherasco 15, 10126, Turin, Italy.
| | - Andrea Calvo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Struttura Complessa Neurologia IU, Azienda Ospedaliero Universitaria Città della Salute e della Scienza of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Maura Brunetti
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Struttura Complessa Neurologia IU, Azienda Ospedaliero Universitaria Città della Salute e della Scienza of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Struttura Complessa Neurologia IU, Azienda Ospedaliero Universitaria Città della Salute e della Scienza of Turin, via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Torino, Turin, Italy
| | - Maurizio Grassano
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
42
|
Ungaro C, Sprovieri T, Morello G, Perrone B, Spampinato AG, Simone IL, Trojsi F, Monsurrò MR, Spataro R, La Bella V, Andò S, Cavallaro S, Conforti FL. Genetic investigation of amyotrophic lateral sclerosis patients in south Italy: a two-decade analysis. Neurobiol Aging 2020; 99:99.e7-99.e14. [PMID: 32951934 DOI: 10.1016/j.neurobiolaging.2020.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial disease characterized by the interplay of genetic and environmental factors. In the majority of cases, ALS is sporadic, whereas familial forms occur in less than 10% of patients. Herein, we present the results of molecular analyses performed in a large cohort of Italian ALS patients, focusing on novel and already described variations in ALS-linked genes. Our analysis revealed that more than 10% of tested patients carried a mutation in one of the major ALS genes, with C9orf72 hexanucleotide expansion being the most common mutation. In addition, our study confirmed a significant association between ALS patients carrying the ATNX-1 intermediate repeat and the pathological C9orf72 expansion, supporting the involvement of this risk factor in neuronal degeneration. Overall, our study broadens the known mutational spectrum in ALS and provides new insights for a more accurate view of the genetic pattern of the disease.
Collapse
Affiliation(s)
- Carmine Ungaro
- Department of Earth and Environment, Institute of Atmospheric Pollution (IIA), National Research Council (CNR), Rende (CS), Italy
| | - Teresa Sprovieri
- Department of Earth and Environment, Institute of Atmospheric Pollution (IIA), National Research Council (CNR), Rende (CS), Italy
| | - Giovanna Morello
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Benedetta Perrone
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Antonio Gianmaria Spampinato
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Isabella Laura Simone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Monsurrò
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Vincenzo La Bella
- Department of Experimental Biomedicine and Clinical Neurosciences, ALS Clinical Research Center and Laboratory of Neurochemistry, University of Palermo, Palermo, Italy
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy; Centro Sanitario, Università della Calabria, Rende (CS), Italy
| | - Sebastiano Cavallaro
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy.
| |
Collapse
|
43
|
Yang L, Cheng Y, Jia X, Liu X, Li X, Zhang K, Shen D, Liu M, Guan Y, Liu Q, Cui L, Li X. Four novel optineurin mutations in patients with sporadic amyotrophic lateral sclerosis in Mainland China. Neurobiol Aging 2020; 97:149.e1-149.e8. [PMID: 32893042 DOI: 10.1016/j.neurobiolaging.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
This study was to investigate the genetic contribution of optineurin (OPTN), a gene associated with primary open-angle glaucoma and amyotrophic lateral sclerosis (ALS), in Chinese patients with ALS. To gain additional insight into the spectrum and pathogenic relevance of this gene for ALS, we sequenced all the coding exons of OPTN and intron-exon boundaries in 398 patients with ALS [33 familial ALS (FALS), 365 unrelated sporadic ALS (SALS)] using next-generation sequencing. Six nonsynonymous variants were identified in 6 unrelated patients with SALS, in which one patient harbored 2 different OPTN variants and another carried an SETX mutation at the same time. Among those 6 variants, 4 were novel missense mutations: c.247C>T (p.R83C), c.676T>C (p.F226L), c.1699A>G (p.Y567A), and c.1713C>G (p.H571Q) (all heterozygous). The remaining 2 were already reported in previous studies. All 6 patients were spinal onset but showed differences in ALS subtypes as well as age of onset and disease progression. Taken together, we detected 4 novel missense OPTN mutations and 2 previously described mutations that might be causal for ALS, accounting for a mutant frequency of 1.10% (4/365) in patients with SALS after excluding 2 benign variants, and confirmed that OPTN mutations are common in Asian populations. In addition, our data suggested that variability in phenotype of the same mutation might partly be due to the oligogenic basis of ALS.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinmiao Jia
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xudong Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiuli Li
- Beijing San Valley Medical Laboratory Co, Ltd, Beijing, China
| | - Kang Zhang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
44
|
Tondo G, Iaccarino L, Cerami C, Vanoli GE, Presotto L, Masiello V, Coliva A, Salvi F, Bartolomei I, Mosca L, Lunetta C, Perani D. 11 C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1513-1523. [PMID: 32762033 PMCID: PMC7480909 DOI: 10.1002/acn3.51112] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Neuroinflammation is considered a key driver for neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). SOD1 mutations cause about 20% of familial ALS, and related pathology might generate microglial activation triggering neurodegeneration. 11C‐PK11195 is the prototypical and most validated PET radiotracer, targeting the 18‐kDa translocator protein which is overexpressed in activated microglia. In this study, we investigated microglia activation in asymptomatic (ASYM) and symptomatic (SYM) SOD1 mutated carriers, by using 11C‐PK11195 and PET imaging. Methods We included 20 subjects: 4 ASYM‐carriers, neurologically normal, 6 SYM‐carriers with probable ALS, and 10 healthy controls. A receptor parametric mapping procedure estimated 11C‐PK11195 binding potentials and voxel‐wise statistical comparisons were performed at group and single‐subject levels. Results Both the SYM‐ and ASYM‐carriers showed significant microglia activation in cortical and subcortical structures, with variable patterns at individual level. Clusters of activation were present in occipital and temporal regions, cerebellum, thalamus, and medulla oblongata. Notably, SYM‐carriers showed microglia activation also in supplementary and primary motor cortices and in the somatosensory regions. Interpretation In vivo neuroinflammation occurred in all SOD1 mutated cases since the presymptomatic stages, as shown by a significant cortical and subcortical microglia activation. The involvement of sensorimotor cortex became evident at the symptomatic disease stage. Although our data indicate the role of in vivo PET imaging for assessing resident microglia in the investigation of SOD1‐ALS pathophysiology, further studies are needed to clarify the temporal and spatial dynamics of microglia activation and its relationship with neurodegeneration.
Collapse
Affiliation(s)
- Giacomo Tondo
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Chiara Cerami
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Scuola Universitaria di Studi Superiori IUSS Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | | | - Luca Presotto
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Masiello
- Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| | - Angela Coliva
- Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| | - Fabrizio Salvi
- Bellaria Hospital, IRCCS of Neurological Sciences, Bologna, Italy
| | | | - Lorena Mosca
- Department of Laboratory Medicine, Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| |
Collapse
|
45
|
Targeted next-generation sequencing study in familial ALS-FTD Portuguese patients negative for C9orf72 HRE. J Neurol 2020; 267:3578-3592. [DOI: 10.1007/s00415-020-10042-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
|
46
|
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2019; 13:368. [PMID: 31456666 PMCID: PMC6700252 DOI: 10.3389/fncel.2019.00368] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2aRs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
Collapse
Affiliation(s)
- Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Raymond J, Oskarsson B, Mehta P, Horton K. Clinical characteristics of a large cohort of US participants enrolled in the National Amyotrophic Lateral Sclerosis (ALS) Registry, 2010-2015. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:413-420. [PMID: 31131638 PMCID: PMC6946020 DOI: 10.1080/21678421.2019.1612435] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/03/2022]
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive fatal disease with a varying range of clinical characteristics. Objective: To describe the clinical characteristics in a large cohort of ALS participants enrolled in the National ALS Registry. Methods: Data from ALS participants who completed the Registry's online clinical survey module during 2010-2015 were analyzed to determine characteristics, such as site of onset, associated symptoms, time of symptom onset to diagnosis, time of diagnosis to hospice referral, and pharmacological and non-pharmacological interventions. Results: Of the 1758 participants who completed the survey, 60.9% were male, 62.1% were 50-69 years old, and 95.5% white. Approximately, 72.0% reported initial limb weakness onset of disease, followed by bulbar (22.1%), and trunk/global onset (6.1%). Other symptoms ever experienced included cramps (56.7%), fasciculations (56.3%), and dysarthria (33.0%). The median time between an increase of muscle cramps until an ALS diagnosis was 12 months; limb onset participants had cramps longer preceding diagnosis versus those with bulbar onset. The most frequent interventions used included riluzole (48.3% currently using), wheelchairs/scooters (32.8%), and noninvasive breathing equipment (30.0%). Participants with trunk/global onset were referred to hospice almost four times earlier than others. Conclusions: These data show how ALS clinical characteristics differ widely in a large cohort of participants preceding diagnosis and reflect variations in disease onset, progression, and prognosis. Better characterization of symptom onset may assist clinicians in diagnosing ALS sooner, which could lead to earlier therapeutic interventions.
Collapse
Affiliation(s)
- Jaime Raymond
- a Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention , Atlanta , GA , USA and
| | | | - Paul Mehta
- a Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention , Atlanta , GA , USA and
| | - Kevin Horton
- a Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention , Atlanta , GA , USA and
| |
Collapse
|
48
|
Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 2019; 187:341-356. [PMID: 29777524 DOI: 10.1007/s12011-018-1380-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis are characterized by a chronic and selective process of neuronal cell death. Although the causes of neurodegenerative diseases remain still unknown, it is now a well-established idea that more factors, such as genetic, endogenous, and environmental, are involved. Among environmental causes, the accumulation of mercury, a heavy metal considered a toxic agent, was largely studied as a probable factor involved in neurodegenerative disease course. Mercury exists in three main forms: elemental mercury, inorganic mercury, and organic mercury (methylmercury and ethylmercury). Sources of elemental mercury can be natural (volcanic emission) or anthropogenic (coal-fired electric utilities, waste combustion, hazardous-waste incinerators, and gold extraction). Moreover, mercury is still used as an antiseptic, as a medical preservative, and as a fungicide. Dental amalgam can emit mercury vapor. Mercury vapor, being highly volatile and lipid soluble, can cross the blood-brain barrier and the lipid cell membranes and can be accumulated into the cells in its inorganic forms. Also, methylmercury can pass through blood-brain and placental barriers, causing serious damage in the central nervous system. This review describes the toxic effects of mercury in cell cultures, in animal models, and in patients with neurodegenerative diseases. In vitro experiments showed that mercury exposure was principally involved in oxidative stress and apoptotic processes. Moreover, motor and cognitive impairment and neural loss have been confirmed in various studies performed in animal models. Finally, observational studies on patients with neurodegenerative diseases showed discordant data about a possible mercury involvement.
Collapse
Affiliation(s)
- Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Annalisa Samà
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
49
|
Christidi F, Karavasilis E, Rentzos M, Kelekis N, Evdokimidis I, Bede P. Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1005. [PMID: 30524366 PMCID: PMC6262087 DOI: 10.3389/fneur.2018.01005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is now universally recognized as a complex multisystem disorder with considerable extra-motor involvement. The neuropsychological manifestations of frontotemporal, parietal, and basal ganglia involvement in ALS have important implications for compliance with assistive devices, survival, participation in clinical trials, caregiver burden, and the management of individual care needs. Recent advances in neuroimaging have been instrumental in characterizing the biological substrate of heterogeneous cognitive and behavioral deficits in ALS. In this review we discuss the clinical and radiological aspects of cognitive and behavioral impairment in ALS focusing on the recognition, assessment, and monitoring of these symptoms.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Garcia-Santibanez R, Burford M, Bucelli RC. Hereditary Motor Neuropathies and Amyotrophic Lateral Sclerosis: a Molecular and Clinical Update. Curr Neurol Neurosci Rep 2018; 18:93. [DOI: 10.1007/s11910-018-0901-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|