1
|
Lee CY, Chan KH. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024; 16:120. [PMID: 38258130 PMCID: PMC10820407 DOI: 10.3390/pharmaceutics16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis is an important neurological disease affecting millions of young patients globally. It is encouraging that more than ten disease-modifying drugs became available for use in the past two decades. These disease-modifying therapies (DMTs) have different levels of efficacy, routes of administration, adverse effect profiles and concerns for pregnancy. Much knowledge and caution are needed for their appropriate use in MS patients who are heterogeneous in clinical features and severity, lesion load on magnetic resonance imaging and response to DMT. We aim for an updated review of the concept of personalization in the use of DMT for relapsing MS patients. Shared decision making with consideration for the preference and expectation of patients who understand the potential efficacy/benefits and risks of DMT is advocated.
Collapse
Affiliation(s)
- Chi-Yan Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Thakolwiboon S, Mills EA, Yang J, Doty J, Belkin MI, Cho T, Schultz C, Mao-Draayer Y. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. FRONTIERS IN AGING 2023; 4:1234572. [PMID: 37900152 PMCID: PMC10603254 DOI: 10.3389/fragi.2023.1234572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Aging is associated with a progressive decline of innate and adaptive immune responses, called immunosenescence. This phenomenon links to different multiple sclerosis (MS) disease courses among different age groups. While clinical relapse and active demyelination are mainly related to the altered adaptive immunity, including invasion of T- and B-lymphocytes, impairment of innate immune cell (e.g., microglia, astrocyte) function is the main contributor to disability progression and neurodegeneration. Most patients with MS manifest the relapsing-remitting phenotype at a younger age, while progressive phenotypes are mainly seen in older patients. Current disease-modifying therapies (DMTs) primarily targeting adaptive immunity are less efficacious in older patients, suggesting that immunosenescence plays a role in treatment response. This review summarizes the recent immune mechanistic studies regarding immunosenescence in patients with MS and discusses the clinical implications of these findings.
Collapse
Affiliation(s)
| | - Elizabeth A. Mills
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Doty
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Martin I. Belkin
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Thomas Cho
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Schultz
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
- Autoimmune Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
von Essen MR, Chow HH, Holm Hansen R, Buhelt S, Sellebjerg F. Immune reconstitution following alemtuzumab therapy is characterized by exhausted T cells, increased regulatory control of proinflammatory T cells and reduced B cell control. Front Immunol 2023; 14:1249201. [PMID: 37744364 PMCID: PMC10512074 DOI: 10.3389/fimmu.2023.1249201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Alemtuzumab is a monoclonal antibody targeting CD52 on the surface of immune cells, approved for the treatment of active relapsing-remitting multiple sclerosis (RRMS). The purpose of this study was to analyze the repopulation of peripheral lymphocytes following alemtuzumab-induced lymphocyte depletion and investigate associations with disease activity and development of secondary autoimmunity. For this, blood samples were collected two years after initiation of alemtuzumab treatment and lymphocytes were subjected to a comprehensive flow cytometry analysis. Included in the study were 40 patients treated with alemtuzumab and 40 treatment-naïve patients with RRMS. Disease activity and development of secondary autoimmune disease was evaluated after three years of treatment. Our study confirms that alemtuzumab treatment profoundly alters the circulating lymphocyte phenotype and describes a reconstituted immune system characterized by T cell activation/exhaustion, an increased regulatory control of IL-17 producing effector T cells and CD20+ T cells, and a reduced control of B cells. There were no obvious associations between immune cell subsets and disease activity or development of secondary autoimmune disease during treatment with alemtuzumab. Our results indicate that the reconstituted immune response is skewed towards a more effective regulatory control of MS-associated proinflammatory T cell responses. Also, the enlarged pool of naïve B cells together with the apparent decrease in control of B cell activity may explain why alemtuzumab-treated patients retain the ability to mount a humoral immune response towards new antigens.
Collapse
Affiliation(s)
- Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | | | | | | | | |
Collapse
|
4
|
Paybast S, Sahraian MA, Nahayati MA, Habibi MA, Shahmohammadi S, Navardi S. Investigation of the safety of live attenuated varicella-zoster virus vaccination in patients with relapse-remitting multiple sclerosis treated with natalizumab: A case series and review of the literature. Mult Scler Relat Disord 2023; 77:104793. [PMID: 37413854 DOI: 10.1016/j.msard.2023.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/26/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION It is generally recommended to avoid live attenuated vaccines in patients treated with high efficacy disease-modifying treatment (DMT). However, a delay in starting DMT in highly active or aggressive multiple sclerosis (MS) might lead to a significant disability. OBJECTIVE We aimed to report a case series of 16 highly active RRMS patients who received the live-attenuated varicella-zoster virus (VZV) vaccine during treatment with natalizumab. METHODS This retrospective case series was conducted between September 2015 and February 2022 at the MS Research Center of Sina and Qaem hospital, Tehran, Mashhad, Iran, to identify the outcome of highly active MS patients who received the live-attenuated VZV vaccine on natalizumab. RESULTS Two males and 14 females were included in this study, with a mean age of 25.5 ± 8.4-year-old. 10 patients were naïve cases of highly active MS, and six were escalated to natalizumab. The patients received two doses of live attenuated VZV vaccine after a mean of 6.72 cycles of natalizumab treatment. Except for the one who experienced mild chickenpox infection, no serious adverse event or disease activity was evident after vaccination. CONCLUSION While our data do not confirm the safety of the live attenuated VZV vaccine in natalizumab recipients, it highlights the importance of case-by-case decision-making in MS management based on the risk-benefit assessment.
Collapse
Affiliation(s)
- Sepideh Paybast
- Multiple Sclerosis Research Center, Neuroscience Institute, Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Hasan Abad Sq, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Hasan Abad Sq, Tehran, Iran
| | - Mohammad Ali Nahayati
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | - Mohammad Amin Habibi
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Institute, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Sareh Shahmohammadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Hasan Abad Sq, Tehran, Iran
| | - Samira Navardi
- Multiple Sclerosis Research Center, Neuroscience Institute, Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Hasan Abad Sq, Tehran, Iran.
| |
Collapse
|
5
|
Otero-Romero S, Lebrun-Frénay C, Reyes S, Amato MP, Campins M, Farez M, Filippi M, Hacohen Y, Hemmer B, Juuti R, Magyari M, Oreja-Guevara C, Siva A, Vukusic S, Tintoré M. ECTRIMS/EAN consensus on vaccination in people with multiple sclerosis: Improving immunization strategies in the era of highly active immunotherapeutic drugs. Mult Scler 2023; 29:904-925. [PMID: 37293841 PMCID: PMC10338708 DOI: 10.1177/13524585231168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 03/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND With the new highly active drugs available for people with multiple sclerosis (pwMS), vaccination becomes an essential part of the risk management strategy. OBJECTIVE To develop a European evidence-based consensus for the vaccination strategy of pwMS who are candidates for disease-modifying therapies (DMTs). METHODS This work was conducted by a multidisciplinary working group using formal consensus methodology. Clinical questions (defined as population, interventions, and outcomes) considered all authorized DMTs and vaccines. A systematic literature search was conducted and quality of evidence was defined according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The recommendations were formulated based on the quality of evidence and the risk-benefit balance. RESULTS Seven questions, encompassing vaccine safety, vaccine effectiveness, global vaccination strategy and vaccination in sub-populations (pediatric, pregnant women, elderly and international travelers) were considered. A narrative description of the evidence considering published studies, guidelines, and position statements is presented. A total of 53 recommendations were agreed by the working group after three rounds of consensus. CONCLUSION This first European consensus on vaccination in pwMS proposes the best vaccination strategy according to current evidence and expert knowledge, with the goal of homogenizing the immunization practices in pwMS.
Collapse
Affiliation(s)
- Susana Otero-Romero
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | | | - Saúl Reyes
- Fundación Santa Fe de Bogotá, Bogotá, Colombia School of Medicine, Universidad de los Andes, Bogotá, Colombia Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Mauricio Farez
- Centro para la Investigación de Enfermedades Neuroinmunológicas (CIEN), FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rosa Juuti
- Multiple Sclerosis International Federation, London, UK
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center and the Danish Multiple Sclerosis Registry, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Aksel Siva
- Department of Neurology, School of Medicine, Istanbul University Cerrahpasa, Cerrahpasa, Istanbul, Turkey
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| |
Collapse
|
6
|
In-depth characterization of long-term humoral and cellular immune responses to COVID-19m-RNA vaccination in multiple sclerosis patients treated with teriflunomide or alemtuzumab. Mult Scler Relat Disord 2023; 72:104616. [PMID: 36933299 PMCID: PMC10008178 DOI: 10.1016/j.msard.2023.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND The impact of disease-modifying therapies on the efficacy to mount appropriate immune responses to COVID-19 vaccination in patients with multiple sclerosis (MS) is currently under investigation. OBJECTIVE To characterize long-term humoral and cellular immunity in mRNA-COVID-19 MS vaccinees treated with teriflunomide or alemtuzumab. METHODS We prospectively measured SARS-COV-2 IgG, memory B-cells specific for SARS-CoV-2 RBD, and memory T-cells secreting IFN-γ and/or IL-2, in MS patients vaccinated with BNT162b2-COVID-19 vaccine before, 1, 3 and 6 months after the second vaccine dose, and 3-6 months following vaccine booster. RESULTS Patients were either untreated (N = 31, 21 females), under treatment with teriflunomide (N = 30, 23 females, median treatment duration 3.7 years, range 1.5-7.0 years), or under treatment with alemtuzumab (N = 12, 9 females, median time from last dosing 15.9 months, range 1.8-28.7 months). None of the patients had clinical SARS-CoV-2 or immune evidence for prior infection. Spike IgG titers were similar between untreated, teriflunomide and alemtuzumab treated MS patients both at 1 month (median 1320.7, 25-75 IQR 850.9-3152.8 vs. median 901.7, 25-75 IQR 618.5-1495.8, vs. median 1291.9, 25-75 IQR 590.8-2950.9, BAU/ml, respectively), at 3 months (median 1388.8, 25-75 1064.6-2347.6 vs. median 1164.3 25-75 IQR 726.4-1399.6, vs. median 837.2, 25-75 IQR 739.4-1868.5 BAU/ml, respectively), and at 6 months (median 437.0, 25-75 206.1-1161.3 vs. median 494.3, 25-75 IQR 214.6-716.5, vs. median 176.3, 25-75 IQR 72.3-328.8 BAU/ml, respectively) after the second vaccine dose. Specific SARS-CoV-2 memory B cells were detected in 41.9%, 40.0% and 41.7% of subjects at 1 month, in 32.3%, 43.3% and 25% at 3 months, and in 32.3%, 40.0%, 33.3% at 6 months following vaccination in untreated, teriflunomide treated and alemtuzumab treated MS patients, respectively. Specific SARS-CoV-2 memory T cells were found in 48.4%, 46.7% and 41.7 at 1 month, in 41.9%, 56.7% and 41.7% at 3 months, and in 38.7%, 50.0%, and 41.7% at 6 months, of untreated, teriflunomide-treated and alemtuzumab -treated MS patients, respectively. Administration of a third vaccine booster significantly increased both humoral and cellular responses in all patients. CONCLUSIONS MS patients treated with teriflunomide or alemtuzumab achieved effective humoral and cellular immune responses up to 6 months following second COVID-19 vaccination. Immune responses were reinforced following the third vaccine booster.
Collapse
|
7
|
Controversies in neuroimmunology: multiple sclerosis, vaccination, SARS-CoV-2 and other dilemas. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:78-99. [PMID: 36322548 PMCID: PMC9714524 DOI: 10.7705/biomedica.6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/04/2022]
Abstract
Neuroimmunology is a discipline that increasingly broadens its horizons in the understanding of neurological diseases. At the same time, and in front of the pathophysiological links of neurological diseases and immunology, specific diagnostic and therapeutic approaches have been proposed. Despite the important advances in this discipline, there are multiple dilemmas that concern and filter into clinical practice. This article presents 15 controversies and a discussion about them, which are built with the most up-to-date evidence available. The topics included in this review are: steroid decline in relapses of multiple sclerosis; therapeutic recommendations in MS in light of the SARS-CoV-2 pandemic; evidence of vaccination in multiple sclerosis and other demyelinating diseases; overview current situation of isolated clinical and radiological syndrome; therapeutic failure in multiple sclerosis, as well as criteria for suspension of disease-modifying therapies; evidence of the management of mild relapses in multiple sclerosis; recommendations for prophylaxis against Strongyloides stercolaris; usefulness of a second course of immunoglobulin in the Guillain-Barré syndrome; criteria to differentiate an acute-onset inflammatory demyelinating chronic polyneuropathy versus Guillain-Barré syndrome; and, the utility of angiotensin-converting enzyme in neurosarcoidosis. In each of the controversies, the general problem is presented, and specific recommendations are offered that can be adopted in daily clinical practice.
Collapse
|
8
|
Kim E, Haag A, Nguyen J, Kesselman MM, Demory Beckler M. Vaccination of multiple sclerosis patients during the COVID-19 era: Novel insights into vaccine safety and immunogenicity. Mult Scler Relat Disord 2022; 67:104172. [PMID: 36116380 PMCID: PMC9462931 DOI: 10.1016/j.msard.2022.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is an incurable autoimmune disease known to cause widespread demyelinating lesions in the central nervous system (CNS) and a host of debilitating symptoms in patients. The development of MS is believed to be driven by the breakdown of the blood brain barrier, subsequent infiltration by CD4+ and CD8+ T cells, and widespread CNS inflammation and demyelination. Disease modifying therapies (DMTs) profoundly disrupt these processes and therefore compose an essential component of disease management. However, the effects of these therapeutic agents on vaccine safety and immunogenicity in individuals with MS are not yet fully understood. As such, the primary objective of this review article was to summarize the findings of recently conducted studies on vaccine safety and immunogenicity in MS patients treated with DMTs, particularly in the context of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Discussed in this review are vaccinations against influenza, yellow fever, human papillomavirus, measles, mumps, rubella, Streptococcus pneumoniae, hepatitis B, and COVID-19. This article additionally reviews our current understanding of COVID-19 severity and incidence in this patient population, the risks and benefits of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vaccination guidelines set forth by MS societies and organizations.
Collapse
Affiliation(s)
- Enoch Kim
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America.
| | - Alyssa Haag
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America.
| | - Jackie Nguyen
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America.
| | - Marc M Kesselman
- Division of Rheumatology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America.
| | - Michelle Demory Beckler
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Given the expansion of options for the treatment of relapsing multiple sclerosis, this review outlines the framework for developing a treatment strategy, with consideration of when to switch or discontinue therapies, and a comprehensive elaboration of the mechanisms of action, efficacy, and safety considerations for each of the therapeutic classes. RECENT FINDINGS The armamentarium of immunotherapies has grown rapidly, to encompass 19 US Food and Drug Administration (FDA)-approved immunotherapies available in 2021, which are addressed in the review. The coronavirus pandemic that began in 2020 underscored existing concerns regarding vaccine efficacy in those treated with immune-suppressing immunotherapies, which are also addressed here. SUMMARY By choosing a treatment strategy before exploring the individual medications, patients and providers can focus their efforts on a subset of the therapeutic options. Although the mechanisms of action, routes of administration, efficacy, safety, and tolerability of the described agents and classes differ, all are effective in reducing relapse frequency in multiple sclerosis (MS), with most also showing a reduction in the accumulation of neurologic disability. These powerful effects are improving the lives of people with MS. Pharmacovigilance is critical for the safe use of these immune-modulating and -suppressing agents, and vaccine efficacy may be reduced by those with immune-suppressing effects.
Collapse
|
10
|
Cauchi M, Willis M, Andrews A, Backx M, Brownlee W, Ford HL, Gran B, Jolles S, Price S, Rashid W, Schmierer K, Tallantyre EC. Multiple sclerosis and the risk of infection: Association of British Neurologists consensus guideline. Pract Neurol 2022; 22:practneurol-2022-003370. [PMID: 35863879 DOI: 10.1136/practneurol-2022-003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Infection in people with multiple sclerosis (MS) is of major concern, particularly for those receiving disease-modifying therapies. This article explores the risk of infection in people with MS and provides guidance-developed by Delphi consensus by specialists involved in their management-on how to screen for, prevent and manage infection in this population.
Collapse
Affiliation(s)
- Marija Cauchi
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Mark Willis
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Angela Andrews
- Pharmacy Neurosciences Directorate, University Hospital of Wales, Cardiff, UK
| | - Matthijs Backx
- Infectious Diseases, University Hospital of Wales and Department of Microbiology, Public Health Wales, Cardiff, UK
| | - Wallace Brownlee
- Queen Square MS Centre, University College London Institute of Neurology, Queen Square Multiple Sclerosis Centre, London, UK
| | - Helen L Ford
- Centre for Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK, Leeds, UK
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, University of Nottingham School of Medicine, Nottingham, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Sian Price
- Department of Neuroscience, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Waqar Rashid
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Klaus Schmierer
- The Blizard Institute (Neuroscience, Surgery & Trauma), Queen Mary University of London Faculty of Medicine and Dentistry, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
11
|
Martire B, Ottaviano G, Sangerardi M, Sgrulletti M, Chini L, Dellepiane RM, Montin D, Rizzo C, Pignata C, Marseglia GL, Moschese V. Vaccinations in Children and Adolescents Treated With Immune-Modifying Biologics: Update and Current Developments. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1485-1496. [PMID: 35085809 DOI: 10.1016/j.jaip.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Treatment with immune-modifying biologics has positively impacted disease control and quality of life in many patients with immune-mediated disorders. However, the higher susceptibility to common and opportunistic pathogens is of concern. Thus, immunization strategies to control vaccine-preventable diseases represent a critical issue in this population. However, limited data exist on the safety, immunogenicity, and efficacy of available vaccines in patients on biologics, particularly in children. Here, according to published literature and real-life experience and practice, we report the interim indications of the Italian Society of Pediatric Allergology and Immunology (SIAIP) Vaccine Committee and of the Italian Primary Immunodeficiency Network (IPINet) Centers on immunization of children and adolescents receiving biologics. Our aim is to provide a practical guidance for the clinician to ensure optimal protection for patients and the community.
Collapse
Affiliation(s)
- Baldassarre Martire
- Pediatrics and Neonatology Unit, Maternal-Infant Department, Monsignor A. R. Dimiccoli Hospital, Barletta, Italy.
| | - Giorgio Ottaviano
- Molecular and Cellular Immunology Unit, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Maria Sangerardi
- Department of Pediatrics and Emergency, Pediatric Hospital, Policlinico - University of Bari, Bari, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, University of Rome, Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Loredana Chini
- Pediatric Immunopathology and Allergology Unit, University of Rome, Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Rosa Maria Dellepiane
- Pediatric Intermediate Care Unit, Scientific Institute for Research, Hospitalization and Healthcare Foundation (IRCSS); Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Montin
- Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Caterina Rizzo
- Innovation and Clinical Pathways Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, IRCCS Foundation, Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome, Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
COVID-19 Vaccination in Lung Transplant Recipients. Indian J Thorac Cardiovasc Surg 2022; 38:347-353. [PMID: 35600498 PMCID: PMC9112254 DOI: 10.1007/s12055-022-01364-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 01/06/2023] Open
|
13
|
Boyko AN, Sivertseva SA, Chemakina DS, Spirin NN, Bykova OV, Guseva ME. Vaccination and Multiple Sclerosis – Current Situation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:486-490. [PMID: 35875700 PMCID: PMC9296221 DOI: 10.1007/s11055-022-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Active immunization of patients with autoimmune diseases is a current challenge. Vaccination of patients with multiple sclerosis (MS) has been shown not to be associated with increased risk of exacerbation. A personalized approach to immunization of this group of patients is required, taking account of ongoing therapy and the nature of the course of illness. MS is not an absolute contraindication for vaccination against the new coronavirus infection. Vaccination can be with any of the currently authorized immunoformulations.
Collapse
|
14
|
Abstract
Neuroimmunological diseases and their treatment compromise the immune system, thereby increasing the risk of infections and serious illness. Consequently, vaccinations to protect against infections are an important part of the clinical management of these diseases. However, the wide variety of immunotherapies that are currently used to treat neuroimmunological disease — particularly multiple sclerosis and neuromyelitis optica spectrum disorders — can also impair immunological responses to vaccinations. In this Review, we discuss what is known about the effects of various immunotherapies on immunological responses to vaccines and what these effects mean for the safe and effective use of vaccines in patients with a neuroimmunological disease. The success of vaccination in patients receiving immunotherapy largely depends on the specific mode of action of the immunotherapy. To minimize the risk of infection when using immunotherapy, assessment of immune status and exclusion of underlying chronic infections before initiation of therapy are essential. Selection of the required vaccinations and leaving appropriate time intervals between vaccination and administration of immunotherapy can help to safeguard patients. We also discuss the rapidly evolving knowledge of how immunotherapies affect responses to SARS-CoV-2 vaccines and how these effects should influence the management of patients on these therapies during the COVID-19 pandemic. In this Review, the authors discuss how various immunotherapies for neuroimmunological diseases interact with vaccination responses, including responses to SARS-CoV-2 vaccinations, and the implications for the safe and effective use of vaccines in patients with these diseases. Vaccination against infection is an essential part of the management of neuroimmunological diseases. All indicated vaccinations should be administered before initiation of immunotherapy whenever possible; appropriate intervals between vaccination and treatment vary with treatment and vaccination. Inactivated vaccines are considered safe in neuroimmunological diseases but live vaccines are generally contraindicated during immunotherapy. Vaccination responses during immunotherapy can be diminished or abrogated, depending on the treatment and vaccination; antibody titre testing to monitor responses can be considered where appropriate. Vaccinations must be avoided during relapses or exacerbations of neuroimmunological diseases. Vaccination against SARS-CoV-2 is recommended for patients with neuroimmunological disease but some immunotherapies limit the immune response; therefore, timing should be considered carefully.
Collapse
|
15
|
Krajnc N, Bsteh G, Berger T, Mares J, Hartung HP. Monoclonal Antibodies in the Treatment of Relapsing Multiple Sclerosis: an Overview with Emphasis on Pregnancy, Vaccination, and Risk Management. Neurotherapeutics 2022; 19:753-773. [PMID: 35378683 PMCID: PMC8978776 DOI: 10.1007/s13311-022-01224-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Monoclonal antibodies have become a mainstay in the treatment of patients with relapsing multiple sclerosis (RMS) and provide some benefit to patients with primary progressive MS. They are highly precise by specifically targeting molecules displayed on cells involved in distinct immune mechanisms of MS pathophysiology. They not only differ in the target antigen they recognize but also by the mode of action that generates their therapeutic effect. Natalizumab, an [Formula: see text]4[Formula: see text]1 integrin antagonist, works via binding to cell surface receptors, blocking the interaction with their ligands and, in that way, preventing the migration of leukocytes across the blood-brain barrier. On the other hand, the anti-CD52 monoclonal antibody alemtuzumab and the anti-CD20 monoclonal antibodies rituximab, ocrelizumab, ofatumumab, and ublituximab work via eliminating selected pathogenic cell populations. However, potential adverse effects may be serious and can necessitate treatment discontinuation. Most importantly, those are the risk for (opportunistic) infections, but also secondary autoimmune diseases or malignancies. Monoclonal antibodies also carry the risk of infusion/injection-related reactions, primarily in early phases of treatment. By careful patient selection and monitoring during therapy, the occurrence of these potentially serious adverse effects can be minimized. Monoclonal antibodies are characterized by a relatively long pharmacologic half-life and pharmacodynamic effects, which provides advantages such as permitting infrequent dosing, but also creates disadvantages regarding vaccination and family planning. This review presents an overview of currently available monoclonal antibodies for the treatment of RMS, including their mechanism of action, efficacy and safety profile. Furthermore, we provide practical recommendations for risk management, vaccination, and family planning.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jan Mares
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Hans-Peter Hartung
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic.
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
- Brain and Mind Center, University of Sydney, Sydney, Australia.
| |
Collapse
|
16
|
Rolla S, De Mercanti SF, Bardina V, Maglione A, Taverna D, Novelli F, Cocco E, Vladic A, Habek M, Adamec I, Annovazzi POL, Horakova D, Clerico M. Long-Term Effects of Alemtuzumab on CD4+ Lymphocytes in Multiple Sclerosis Patients: A 72-Month Follow-Up. Front Immunol 2022; 13:818325. [PMID: 35296069 PMCID: PMC8919044 DOI: 10.3389/fimmu.2022.818325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Alemtuzumab is highly effective in the treatment of patients with relapsing multiple sclerosis (PwRMS) and selectively targets the CD52 antigen, with a consequent profound lymphopenia, particularly of CD4+ T lymphocytes. However, the immunological basis of its long-term efficacy has not been clearly elucidated. Methods We followed up 29 alemtuzumab-treated RMS patients over a period of 72 months and studied the immunological reconstitution of their CD4+ T cell subsets by means of phenotypic and functional analysis and through mRNA-related molecule expression, comparing them to healthy subject (HS) values (rate 2:1). Results In patients receiving only two-course alemtuzumab, the percentage of CD4+ lymphocytes decreased and returned to basal levels only at month 48. Immune reconstitution of the CD4+ subsets was characterized by a significant increase (p < 0.001) in Treg cell percentage at month 24, when compared to baseline, and was accompanied by restoration of the Treg suppressor function that increased within a range from 2- to 6.5-fold compared to baseline and that persisted through to the end of the follow-up. Furthermore, a significant decrease in self-reactive myelin basic protein-specific Th17 (p < 0.0001) and Th1 (p < 0.05) cells reaching HS values was observed starting from month 12. There was a change in mRNA of cytokines, chemokines, and transcriptional factors related to Th17, Th1, and Treg cell subset changes, consequently suggesting a shift toward immunoregulation and a reduction of T cell recruitment to the central nervous system. Conclusions These data provide further insight into the mechanism that could contribute to the long-term 6-year persistence of the clinical effect of alemtuzumab on RMS disease activity.
Collapse
Affiliation(s)
- Simona Rolla
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- *Correspondence: Simona Rolla,
| | | | - Valentina Bardina
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, Torino, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health, University of Cagliari and Multiple Sclerosis Center, Cagliari, Italy
| | - Anton Vladic
- Department of Neurology, Clinical Hospital Sveti Duh Zagreb and Medical Faculty, University J.J Strossmayer Osijek, Prague, Croatia
| | - Mario Habek
- Referral Center for Autonomic Nervous System, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Adamec
- Referral Center for Autonomic Nervous System, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
17
|
Tornatore C, Wiendl H, Lublin AL, Geertsen SS, Chavin J, Truffinet P, Bar-Or A. Vaccine Response in Patients With Multiple Sclerosis Receiving Teriflunomide. Front Neurol 2022; 13:828616. [PMID: 35295832 PMCID: PMC8918991 DOI: 10.3389/fneur.2022.828616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Many patients with multiple sclerosis (MS) receive disease-modifying therapies (DMTs), such as teriflunomide, to reduce disease activity and slow progression. DMTs mediate their efficacy by modulating or suppressing the immune system, which might affect a patient's response to vaccination. As vaccines against the SARS-CoV-2 virus become available, questions have arisen around their efficacy and safety for patients with MS who are receiving DMTs. Data are beginning to emerge regarding the potential influence of certain DMTs on a patient's response to coronavirus disease 2019 (COVID-19) vaccines and are supported by evidence from vaccination studies of other pathogens. This review summarizes the available data on the response to vaccines in patients with MS who are receiving DMTs, with a focus on teriflunomide. It also provides an overview of the leading COVID-19 vaccines and current guidance around COVID-19 vaccination for patients with MS. Though few vaccination studies have been done for this patient population, teriflunomide appears to have minimal influence on the response to seasonal influenza vaccine. The evidence for other DMTs (e.g., fingolimod, glatiramer acetate) is less consistent: some studies suggest no effect of DMTs on vaccine response, whereas others show reduced vaccine efficacy. No unexpected safety signals have emerged in any vaccine study. Current guidance for patients with MS is to continue DMTs during COVID-19 vaccination, though adjusted timing of dosing for some DMTs may improve the vaccine response.
Collapse
Affiliation(s)
- Carlo Tornatore
- Georgetown University Hospital, Washington, DC, United States
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | | | | | | | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Tur C, Dubessy AL, Otero-Romero S, Amato MP, Derfuss T, Di Pauli F, Iacobaeus E, Mycko M, Abboud H, Achiron A, Bellinvia A, Boyko A, Casanova JL, Clifford D, Dobson R, Farez MF, Filippi M, Fitzgerald KC, Fonderico M, Gouider R, Hacohen Y, Hellwig K, Hemmer B, Kappos L, Ladeira F, Lebrun-Frénay C, Louapre C, Magyari M, Mehling M, Oreja-Guevara C, Pandit L, Papeix C, Piehl F, Portaccio E, Ruiz-Camps I, Selmaj K, Simpson-Yap S, Siva A, Sorensen PS, Sormani MP, Trojano M, Vaknin-Dembinsky A, Vukusic S, Weinshenker B, Wiendl H, Winkelmann A, Zuluaga Rodas MI, Tintoré M, Stankoff B. The risk of infections for multiple sclerosis and neuromyelitis optica spectrum disorder disease-modifying treatments: Eighth European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop Review. April 2021. Mult Scler 2022; 28:1424-1456. [PMID: 35196927 DOI: 10.1177/13524585211069068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research.
Collapse
Affiliation(s)
- Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anne-Laure Dubessy
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/ Department of Neurology, Saint Antoine Hospital, AP-HP, Paris, France
| | - Susana Otero-Romero
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tobias Derfuss
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Franziska Di Pauli
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ellen Iacobaeus
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marcin Mycko
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Cleveland, OH, USA
| | - Anat Achiron
- Sheba Medical Center at Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angelo Bellinvia
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia/Institute of Clinical Neurology and Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - David Clifford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK/Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Mauricio F Farez
- Center for Research on Neuroimmunological Diseases, FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Kathryn C Fitzgerald
- Department of Neurology and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mattia Fonderico
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Riadh Gouider
- Department of Neurology, Razi Hospital, Tunis, Tunisia
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Filipa Ladeira
- Neurology Department, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Christine Lebrun-Frénay
- CRCSEP Côte d'Azur, CHU de Nice Pasteur 2, UR2CA-URRIS, Université Nice Côte d'Azur, Nice, France
| | - Céline Louapre
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/Sorbonne University, Paris Brain Institute-ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC Neurosciences, Paris, France
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias Mehling
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Idissc, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Lekha Pandit
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Caroline Papeix
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/Sorbonne University, Paris Brain Institute-ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC Neurosciences, Paris, France
| | - Fredrik Piehl
- Division of Neurology, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Isabel Ruiz-Camps
- Servicio de Enfermedades Infecciosas, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Krzysztof Selmaj
- Collegium Medicum, Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland/Center of Neurology, Lodz, Poland
| | - Steve Simpson-Yap
- Clinical Outcomes Research Unit, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Aksel Siva
- Department of Neurology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Per Soelberg Sorensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Adi Vaknin-Dembinsky
- Hadassah-Hebrew University Medical Center, Department of Neurology, The Agnes-Ginges Center for Neurogenetics Jerusalem, Jerusalem, Israel
| | - Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France/Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France/Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est, Lyon, France
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Münster, Germany
| | | | | | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bruno Stankoff
- Sorbonne Université, Inserm, CNRS, UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France/ Department of Neurology, Saint Antoine Hospital, AP-HP, Paris, France
| |
Collapse
|
19
|
Kasatkin D, Korobko D, Matson M, Lendoeva D, Ivanova S. Approaches to vaccine prevention in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:29-36. [DOI: 10.17116/jnevro202212209129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Toscano S, Chisari CG, Patti F. Multiple Sclerosis, COVID-19 and Vaccines: Making the Point. Neurol Ther 2021; 10:627-649. [PMID: 34625925 PMCID: PMC8500471 DOI: 10.1007/s40120-021-00288-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
On 11 March 2020, the World Health Organization declared the coronavirus disease 19 (COVID-19) outbreak a pandemic. In this context, several studies and clinical trials have been conducted since then, and many are currently ongoing, leading to the development of several COVID-19 vaccines with different mechanisms of action. People affected by multiple sclerosis (MS) have been considered high-risk subjects in most countries and prioritized for COVID-19 vaccination. However, the management of MS during the COVID-19 pandemic has represented a new challenge for MS specialists, particularly because of the initial lack of guidelines and differing recommendations. Despite an initial hesitation in prescribing disease-modifying drugs (DMDs) in naïve and already treated patients with MS, most national neurology associations and organizations agree on not stopping treatment. However, care is needed especially for patients treated with immune-depleting drugs, which also require some attentions in programming vaccine administration. Many discoveries and new research results have accumulated in a short time on COVID-19, resulting in a need for summarizing the existing evidence on this topic. In this review, we describe the latest research results on the immunological aspects of SARS-CoV-2 infection speculating about their impact on COVID-19 vaccines' mechanisms of action and focused on the management of MS during the COVID pandemic according to the most recent guidelines and recommendations. Finally, the efficacy of COVID-19 and other well-known vaccines against infectious disease in patients with MS on DMDs is discussed.
Collapse
Affiliation(s)
- Simona Toscano
- Department G. F. Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Clara G Chisari
- Department G. F. Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Francesco Patti
- Department G. F. Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
21
|
Becker J, Ferreira LC, Damasceno A, Bichuetti DB, Christo PP, Callegaro D, Peixoto MAL, Sousa NADC, Almeida SMD, Adoni T, Santiago-Amaral J, Junqueira T, Pereira SLA, Gomes ABAGR, Pitombeira M, Paolilo RB, Grzesiuk AK, Piccolo AC, D Almeida JAC, Gomes Neto AP, Oliveira ACPD, Oliveira BSD, Tauil CB, Vasconcelos CF, Kaimen-Maciel D, Varela D, Diniz DS, Oliveira EMLD, Malfetano FR, Borges FE, Figueira FFA, Gondim FDAA, Passos GRD, Silva GD, Olival GSD, Santos GACD, Ruocco HH, Sato HK, Soares Neto HR, Cortoni Calia L, Gonçalves MVM, Vecino MCAD, Pimentel MLV, Ribeiro MDC, Boaventura M, Parolin MKF, Melo RBDS, Lázaro R, Thomaz RB, Kleinpaul R, Dias RM, Gomes S, Lucatto SA, Alves-Leon SV, Fukuda T, Ribeiro TAGJ, Winckler TCD, Fragoso YD, Nascimento OJMD, Ferreira MLB, Mendes MF, Brum DG, Glehn FV. Recommendations by the Scientific Department of Neuroimmunology of the Brazilian Academy of Neurology (DCNI/ABN) and the Brazilian Committee for Treatment and Research in Multiple Sclerosis and Neuroimmunological Diseases (BCTRIMS) on vaccination in general and specifically against SARS-CoV-2 for patients with demyelinating diseases of the central nervous system. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:1049-1061. [PMID: 34816999 DOI: 10.1590/0004-282x-anp-2021-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
The Scientific Department of Neuroimmunology of the Brazilian Academy of Neurology (DCNI/ABN) and Brazilian Committee for Treatment and Research in Multiple Sclerosis and Neuroimmunological Diseases (BCTRIMS) provide recommendations in this document for vaccination of the population with demyelinating diseases of the central nervous system (CNS) against infections in general and against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19. We emphasize the seriousness of the current situation in view of the spread of COVID-19 in our country. Therefore, reference guides on vaccination for clinicians, patients, and public health authorities are particularly important to prevent some infectious diseases. The DCNI/ABN and BCTRIMS recommend that patients with CNS demyelinating diseases (e.g., MS and NMOSD) be continually monitored for updates to their vaccination schedule, especially at the beginning or before a change in treatment with a disease modifying drug (DMD). It is also important to note that vaccines are safe, and physicians should encourage their use in all patients. Clearly, special care should be taken when live attenuated viruses are involved. Finally, it is important for physicians to verify which DMD the patient is receiving and when the last dose was taken, as each drug may affect the induction of immune response differently.
Collapse
Affiliation(s)
- Jefferson Becker
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Lis Campos Ferreira
- Universidade Federal de Sergipe, Aracaju SE, Brazil.,Universidade Tiradentes, Aracaju SE, Brazil
| | - Alfredo Damasceno
- Universidade de Campinas, Faculdade de Ciências Médicas, Campinas SP, Brazil
| | | | | | - Dagoberto Callegaro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brazil
| | | | | | | | - Tarso Adoni
- Hospital Sírio Libanês, São Paulo SP, Brazil
| | | | | | | | | | | | - Renata Barbosa Paolilo
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | | | | - Daniel Varela
- Hospital de Clínicas de Passo Fundo, Passo Fundo RS, Brazil
| | | | | | | | | | | | | | | | - Guilherme Diogo Silva
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brazil
| | | | | | - Heloisa Helena Ruocco
- Universidade Federal Fluminense, Niterói RJ, Brazil.,Pontifícia Universidade Católica, Campina SP, Brazil
| | | | | | | | | | | | | | | | - Mateus Boaventura
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brazil
| | | | | | - Robson Lázaro
- Faculdade de Medicina de Jundiaí, Jundiaí SP, Brazil
| | | | | | | | - Sidney Gomes
- Hospital Beneficiência Portuguesa, São Paulo SP, Brazil
| | | | | | - Thiago Fukuda
- Hospital Universitário Prof. Edgar Santos, Salvador BA, Brazil
| | | | | | | | | | | | | | | | - Felipe Von Glehn
- Universidade de Campinas, Faculdade de Ciências Médicas, Campinas SP, Brazil.,Universidade de Brasília, Faculdade de Medicina, Brasília DF, Brazil
| |
Collapse
|
22
|
Szepanowski F, Warnke C, Meyer Zu Hörste G, Mausberg AK, Hartung HP, Kleinschnitz C, Stettner M. Secondary Immunodeficiency and Risk of Infection Following Immune Therapies in Neurology. CNS Drugs 2021; 35:1173-1188. [PMID: 34657228 PMCID: PMC8520462 DOI: 10.1007/s40263-021-00863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Secondary immunodeficiencies (SIDs) are acquired conditions that may occur as sequelae of immune therapy. In recent years a number of disease-modifying therapies (DMTs) has been approved for multiple sclerosis and related disorders such as neuromyelitis optica spectrum disorders, some of which are frequently also used in- or off-label to treat conditions such as chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis, myositis, and encephalitis. In this review, we focus on currently available immune therapeutics in neurology to explore their specific modes of action that might contribute to SID, with particular emphasis on their potential to induce secondary antibody deficiency. Considering evidence from clinical trials as well as long-term observational studies related to the patients' immune status and risks of severe infections, we delineate long-term anti-CD20 therapy, with the greatest data availability for rituximab, as a major risk factor for the development of SID, particularly through secondary antibody deficiency. Alemtuzumab and cladribine have relevant effects on circulating B-cell counts; however, evidence for SID mediated by antibody deficiency appears limited and urgently warrants further systematic evaluation. To date, there has been no evidence suggesting that treatment with fingolimod, dimethyl fumarate, or natalizumab leads to antibody deficiency. Risk factors predisposing to development of SID include duration of therapy, increasing age, and pre-existing low immunoglobulin (Ig) levels. Prevention strategies of SID comprise awareness of risk factors, individualized treatment protocols, and vaccination concepts. Immune supplementation employing Ig replacement therapy might reduce morbidity and mortality associated with SIDs in neurological conditions. In light of the broad range of existing and emerging therapies, the potential for SID warrants urgent consideration among neurologists and other healthcare professionals.
Collapse
Affiliation(s)
- Fabian Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Cologne, Germany
| | | | - Anne K Mausberg
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Medical University Vienna, Vienna, Austria
- Department of Neurology, Palacky University, Olomouc, Czech Republic
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
23
|
Centonze D, Rocca MA, Gasperini C, Kappos L, Hartung HP, Magyari M, Oreja-Guevara C, Trojano M, Wiendl H, Filippi M. Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: an expert consensus. J Neurol 2021; 268:3961-3968. [PMID: 33844056 PMCID: PMC8038920 DOI: 10.1007/s00415-021-10545-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease (COVID-19) appeared in December 2019 in the Chinese city of Wuhan and has quickly become a global pandemic. The disease is caused by the severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2), an RNA beta coronavirus phylogenetically similar to SARS coronavirus. To date, more than 132 million cases of COVID19 have been recorded in the world, of which over 2.8 million were fatal ( https://coronavirus.jhu.edu/map.html ). A huge vaccination campaign has started around the world since the end of 2020. The availability of vaccines has raised some concerns among neurologists regarding the safety and efficacy of vaccination in patients with multiple sclerosis (MS) taking immunomodulatory or immunosuppressive therapies.
Collapse
Affiliation(s)
- Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maria A Rocca
- MS Center and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Ludwig Kappos
- MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Medicine, Clinical Research and Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, University Hospital Duesseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, Australia
- Department of Neurology, Medical University of Vienna, Wien, Austria
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Maria Trojano
- Neurology and Neurophysiopathology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Massimo Filippi
- MS Center and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
24
|
MENACTRIMS practice guideline for COVID-19 vaccination in patients with multiple sclerosis. Mult Scler Relat Disord 2021; 56:103225. [PMID: 34479111 PMCID: PMC8386106 DOI: 10.1016/j.msard.2021.103225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
Patients with multiple sclerosis (MS) should be vaccinated against COVID-19. All COVID-19 vaccines are effective and do not appear to carry any additional risk for patients with MS. Patients with MS should get a COVID-19 vaccine as soon as it becomes available. The risks of COVID-19 disease outweigh any potential risks from the vaccine. Even if vaccinated, patients with MS should continue to practice standard and recommended precautions against COVID-19, such as wearing a face mask, social distancing and washing hands. There is no evidence that patients with MS are at higher risk of complications from the mRNA, non-replicating viral vector, inactivated virus or protein COVID-19 vaccines, compared to the general population. COVID-19 Vaccines are safe to use in patients with MS treated with disease-modifying therapies (DMTs). The effectiveness of vaccination may be affected by few of the DMTs but yet some protection is still provided. For certain DMTs we may consider coordinating the timing of the vaccine with the timing of the DMT dose to increase vaccine efficacy.
Collapse
|
25
|
Mohseni Afshar Z, Babazadeh A, Janbakhsh A, Mansouri F, Sio TT, Sullman MJM, Carson-Chahhoud K, Hosseinzadeh R, Barary M, Ebrahimpour S. Coronavirus disease 2019 (Covid-19) vaccination recommendations in special populations and patients with existing comorbidities. Rev Med Virol 2021; 32:e2309. [PMID: 34677889 PMCID: PMC8646697 DOI: 10.1002/rmv.2309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/09/2023]
Abstract
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a crucial step in ending the current worldwide pandemic. However, several particularly vulnerable groups in the population were not included in sufficient numbers in coronavirus disease 2019 (Covid‐19) vaccine trials. Therefore, as science advances, the advice for vaccinating these special populations against Covid‐19 will continue to evolve. This focused review provides the latest recommendations and considerations for these special populations (i.e., patients with rheumatologic and autoimmune disorders, cancer, transplant recipients, chronic liver diseases, end‐stage renal disease, neurologic disorders, psychiatric disorders, diabetes mellitus, obesity, cardiovascular diseases, chronic obstructive pulmonary disease, human immunodeficiency virus, current smokers, pregnant and breastfeeding women, the elderly, children, and patients with allergic reactions) using the currently available research evidence.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Janbakhsh
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Feizollah Mansouri
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mark J M Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus.,Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Barary
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
26
|
Gold R, Fätkenheuer G, Hartung HP, Kleinschnitz C, Marks R, Maschke M, Bayas A, Löbermann M, Zettl UK, Wiendl H. Vaccination in multiple sclerosis patients treated with highly effective disease-modifying drugs: an overview with consideration of cladribine tablets. Ther Adv Neurol Disord 2021; 14:17562864211019598. [PMID: 34671422 PMCID: PMC8521756 DOI: 10.1177/17562864211019598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Infectious diseases are an important consideration in autoimmune conditions such as multiple sclerosis. Infective episodes may trigger relapses and significantly deteriorate the course of the disease. Some immunotherapies may cause increased rates of infection-related adverse events. Thus, infection and vaccine-related issues should be included in the individualized patient-specific treatment strategy and counseling before starting therapy and regularly on treatment. Clinical and epidemiological studies as well as pharmacovigilance data repeatedly demonstrated the safety of the great majority of vaccines in multiple sclerosis patients. Moreover, studies have shown that vaccinations with killed/inactivated vaccines do not increase the short-term risk of relapse or deterioration in multiple sclerosis, whereas infections have been shown to provoke relapses. The available evidence indicates reduced humoral vaccination efficacy on treatment with MS drugs acting on the S1P receptor, natalizumab, and B-cell depleting therapies. Recent data for cladribine tablets suggest the potential of effective immunization in the interval of the two treatment courses and after completion of therapy. Regardless of treatment, vaccine efficacy may be optimized with proper timing of application. Multiple sclerosis patients receiving highly effective therapies should be vaccinated according to general recommendations for healthy adults. Immunization against COVID-19 is highly recommended for all multiple sclerosis patients regardless of age and comorbidities. Preliminary data show the potential of adequate responses in patients treated with cladribine tablets.
Collapse
Affiliation(s)
- Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, Germany
| | - Gerd Fätkenheuer
- Department of Clinical Infectiology, University Hospital of Cologne, Cologne, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany Brain and Mind Centre, University of Sydney, Australia
| | | | - Reinhard Marks
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Matthias Maschke
- Department of Neurology, Krankenhaus der Barmherzigen Brueder, Campus Trier, University of Mainz, Germany
| | - Antonios Bayas
- Department of Neurology, University Hospital Augsburg, Augsburg, Germany
| | - Micha Löbermann
- Department of Tropical Medicine, Infectious Diseases and Nephrology, Rostock University Medical Center, Rostock, Germany
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunology Section, University of Rostock, Rostock, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
27
|
Gabelić T, Barun B, Adamec I, Krbot Skorić M, Habek M. Product review on MAbs (alemtuzumab and ocrelizumab) for the treatment of multiple sclerosis. Hum Vaccin Immunother 2021; 17:4345-4362. [PMID: 34668842 DOI: 10.1080/21645515.2021.1969850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traditionally, the management of active relapsing remitting MS was based on the, so-called, maintenance therapy, which is characterized by continuous treatment with particular disease modifying therapy (DMT), and a return of disease activity when the drug is discontinued. Another approach is characterized by a short treatment course of a DMT, which is hypothesized to act as an immune reconstitution therapy (IRT), with the potential to protect against relapses for years after a short course of treatment. Introduction of monoclonal antibodies in the treatment of MS has revolutionized MS treatment in the last decade. However, given the increasingly complex landscape of DMTs approved for MS, people with MS and neurologists are constantly faced with the question which DMT is the most appropriate for the given patient, a question we still do not have an answer to. In this product review, we will discuss the first DMT that acts as IRT, an anti-CD52 monoclonal antibody alemtuzumab and an anti CD20 monoclonal antibody, ocrelizumab that has the potential to act as an IRT, but is administered continuously. Special emphasis will be given on safety in the context of COVID-19 pandemics and vaccination strategies.
Collapse
Affiliation(s)
- Tereza Gabelić
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Barbara Barun
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Adamec
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Magdalena Krbot Skorić
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia.,Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Mario Habek
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
28
|
Boyko AN, Sivertseva SA, Chemakina DS, Spirin NN, Bykova OV, Guseva ME. [Vaccination and multiple sclerosis at the present stage]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:44-48. [PMID: 34387445 DOI: 10.17116/jnevro202112107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Immunization of the patients with autoimmune diseases is rising a lot of concerns. It was previously demonstrated that vaccination in MS patients was not associated with an increased risk of exacerbations. A personalized approach is needed to define the immunization schedule. A decision should be made based on the course of the disease and the treatment used. Multiple sclerosis is not an absolute contraindication to vaccination. Any authorized vaccine can be used in MS patients.
Collapse
Affiliation(s)
- A N Boyko
- Pirogov Russian National Research University, Moscow, Russia.,Federal Center of Brain and Neurotechnologies, Moscow, Russia
| | - S A Sivertseva
- Tyumen Regional Center for Multiple Sclerosis, AO MSCH «Neftyanik», Tyumen, Russia
| | - D S Chemakina
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia
| | - N N Spirin
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - O V Bykova
- Research and Clinical Centre of Pediatric Psychoneurology Moscow, Russi, Research and Clinical Centre of Pediatric Psychoneurology Moscow, Russia
| | - M E Guseva
- Pirogov Russian National Research University, Moscow, Russia
| |
Collapse
|
29
|
Reyes S, Cunningham AL, Kalincik T, Havrdová EK, Isobe N, Pakpoor J, Airas L, Bunyan RF, van der Walt A, Oh J, Mathews J, Mateen FJ, Giovannoni G. Update on the management of multiple sclerosis during the COVID-19 pandemic and post pandemic: An international consensus statement. J Neuroimmunol 2021; 357:577627. [PMID: 34139567 PMCID: PMC8183006 DOI: 10.1016/j.jneuroim.2021.577627] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022]
Abstract
In this consensus statement, we provide updated recommendations on multiple sclerosis (MS) management during the COVID-19 crisis and the post-pandemic period applicable to neurology services around the world. Statements/recommendations were generated based on available literature and the experience of 13 MS expert panelists using a modified Delphi approach online. The statements/recommendations give advice regarding implementation of telemedicine; use of disease-modifying therapies and management of MS relapses; management of people with MS at highest risk from COVID-19; management of radiological monitoring; use of remote pharmacovigilance; impact on MS research; implications for lowest income settings, and other key issues.
Collapse
Affiliation(s)
- Saúl Reyes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Fundación Santa Fe de Bogotá, Bogotá, Colombia; School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | | | - Tomas Kalincik
- CORe, Department of Medicine, University of Melbourne, Melbourne, Australia; Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Eva Kubala Havrdová
- Department of Neurology and Center for Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Julia Pakpoor
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laura Airas
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Reem F Bunyan
- Department of Neurology, Neurosciences Center, King Fahd Specialist Hospital (KFSH)-Dammam, Dammam, Saudi Arabia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Joela Mathews
- Department of Pharmacy, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
30
|
Habek M. Chickenpox and asymptomatic COVID-19 after first cycle of alemtuzumab for multiple sclerosis. Neurol Sci 2021; 42:4003-4005. [PMID: 34331616 PMCID: PMC8325041 DOI: 10.1007/s10072-021-05495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Mario Habek
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
31
|
Negahdaripour M, Shafiekhani M, Moezzi SMI, Amiri S, Rasekh S, Bagheri A, Mosaddeghi P, Vazin A. Administration of COVID-19 vaccines in immunocompromised patients. Int Immunopharmacol 2021; 99:108021. [PMID: 34352567 PMCID: PMC8316069 DOI: 10.1016/j.intimp.2021.108021] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Since the beginning of vaccination programs against COVID-19 in different countries, several populations such as patients with specific immunological conditions have been considered as the priorities for immunization. In this regard, patients with autoimmune diseases or those receiving immunosuppressive agents and anti-cancer therapies, need special attention. However, no confirmed data is presently available regarding COVID-19 vaccines in these populations due to exclusion from the conducted clinical trials. Given the probable suppression or over-activation of the immune system in such patients, reaching a consensus for their vaccination is critical, besides gathering data and conducting trials, which could probably clarify this matter in the future. In this review, besides a brief on the available COVID-19 vaccines, considerations and available knowledge about administering similar vaccines in patients with cancer, hematopoietic stem cell transplantation, solid organ transplantation, multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatologic and dermatologic autoimmune disorders are summarized to help in decision making. As discussed, live-attenuated viruses, which should be avoided in these groups, are not employed in the present COVID-19 vaccines. Thus, the main concern regarding efficacy could be met using a potent COVID-19 vaccine. Moreover, the vaccination timing for maximum efficacy could be decided according to the patient’s condition, indicated medications, and the guides provided here. Post-vaccination monitoring is also advised to ensure an adequate immune response. Further studies in this area are urgently warranted.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Clinical Pharmacy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Abbadessa G, Lavorgna L, Trojsi F, Coppola C, Bonavita S. Understanding and managing the impact of the Covid-19 pandemic and lockdown on patients with multiple sclerosis. Expert Rev Neurother 2021; 21:731-743. [PMID: 34278928 DOI: 10.1080/14737175.2021.1957673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Covid-19 has been sweeping over the world for more than a year. People with Multiple Sclerosis (MS) might be particularly vulnerable either for the disease iteself or for the ongoing immune treatment. The aim of this review is to understand the impact of the Covid-19 pandemic and lockdown on patients with MS and to provide evidence-based advice to ensure them a high standard of care even during the pandemic. AREAS COVERED Literature search was conducted in the Scopus, Web of Science, Pubmed electronic databases, and articles reference lists to investigate the effect of Covid-19 on MS patients' treatment, access to health-care services and mental-health.The search terms 'multiple sclerosis' AND 'Covid-19' were combined with each of the following term 'disease modifying treatment,' 'steroids,' 'vaccination,' 'mental health,' 'stress,' 'quality of life,' 'management,' 'impact,' 'recommendations,'. EXPERT OPINION To ensure MS control during the pandemic, minimizing the risk of Covid-19 contagion, face-to-face visits may be implemented with televisits. Management of relapses and DMTs schedule should be adapted based on the specific benefit/risk ratio for each patient, considering disease activity, disability, comorbidities. Vaccination should be strongly recommended. Telerehabilitation and online psychological support programs should be encouraged to preserve motor performances and mental health.
Collapse
Affiliation(s)
- Gianmarco Abbadessa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Lavorgna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
| |
Collapse
|
33
|
Galleguillos L, Alonso R. Key points to keep in mind related to COVID-19 vaccines in people with multiple sclerosis. Mult Scler Relat Disord 2021; 54:103142. [PMID: 34298479 PMCID: PMC8284074 DOI: 10.1016/j.msard.2021.103142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Vaccinations are often the most effective tool against certain diseases known to mankind, and their interaction with multiple sclerosis (MS) has been discussed for decades. With rapidly accumulating numbers of cases and deaths due to COVID-19, there is a global effort to respond to this pandemic in terms of scale and speed. Different platforms are currently being used around the world for the development of best COVID-19 vaccine. While some COVID-19 vaccines have already been approved by different regulatory agencies, there is scarce data in large cohorts regarding the efficacy and security of COVID-19 vaccines in people with MS. In this short review we aimed the most important information to keep in mind regarding this topic.
Collapse
Affiliation(s)
- Lorna Galleguillos
- Neurology and Psychiatry Department, Clínica alemana, Neurology and Neurosurgery Department, Clínica Dávila, Santiago, Chile.
| | - Ricardo Alonso
- Neurology Department, Hospital Ramos Mejías, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Kelly H, Sokola B, Abboud H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J Neuroimmunol 2021; 356:577599. [PMID: 34000472 PMCID: PMC8095041 DOI: 10.1016/j.jneuroim.2021.577599] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
COVID-19 vaccination is recommended for multiple sclerosis patients. Disease-modifying therapies can influence the safety and efficacy of COVID-19 vaccines. RNA, DNA, protein, and inactivated vaccines are likely safe for multiple sclerosis patients. A few incidences of central demyelination were reported with viral vector vaccines, but their benefits likely outweigh their risks if alternatives are unavailable. Live-attenuated vaccines should be avoided whenever possible in treated patients. Interferon-beta, glatiramer acetate, teriflunomide, fumarates, and natalizumab are not expected to impact vaccine efficacy, while cell-depleting agents (ocrelizumab, rituximab, ofatumumab, alemtuzumab, and cladribine) and sphingosine-1-phosphate modulators will likely attenuate vaccine responses. Coordinating vaccine timing with dosing regimens for some therapies may optimize vaccine efficacy.
Collapse
Affiliation(s)
- Hannah Kelly
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Brent Sokola
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
35
|
[The corona pandemic and multiple sclerosis: vaccinations and their implications for patients-Part 2: vaccine technologies]. DER NERVENARZT 2021; 92:1283-1292. [PMID: 34232358 PMCID: PMC8261806 DOI: 10.1007/s00115-021-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
Im Zusammenhang mit den Herausforderungen durch die weltweit vorherrschende COVID-19-Pandemie kam es zu teils epochalen Fortschritten im Bereich der Impfstofftechnologien. Neben den bereits langjährig eingesetzten Tot‑, Lebend- und proteinbasierten Impfstoffen gewannen im Zuge dieser Gesundheitskrise vektor- und genbasierte Impfstoffe enorm an Bedeutung. Ziel dieser Arbeit ist es daher, einen Überblick über Multiple Sklerose und Impfen, rezente Fortschritte in der SARS-CoV-2-Impfstoff-Landschaft sowie eine detaillierte Auseinandersetzung mit den verschiedenen Impfstofftechnologien zu bieten. Abschließend sollen übersichtsmäßig klare Empfehlungen im Zusammenhang mit krankheitsmodifizierenden Therapien und Impfen bei Multiple Sklerose gegeben werden.
Collapse
|
36
|
Coyle PK, Gocke A, Vignos M, Newsome SD. Vaccine Considerations for Multiple Sclerosis in the COVID-19 Era. Adv Ther 2021; 38:3550-3588. [PMID: 34075554 PMCID: PMC8169434 DOI: 10.1007/s12325-021-01761-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
People with multiple sclerosis (MS) are at risk for infections that can result in amplification of baseline symptoms and possibly trigger clinical relapses. Vaccination can prevent infection through the activation of humoral and cellular immune responses. This is particularly pertinent in the era of emerging novel vaccines against severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019 (COVID-19). MS disease-modifying therapies (DMTs), which affect the immune system, may impact immune responses to COVID-19 vaccines in people with MS. The objective of this article is to provide information on immune system responses to vaccinations and review previous studies of vaccine responses in people with MS to support the safety and importance of receiving currently available and emerging COVID-19 vaccines. Immunological studies have shown that coordinated interactions between T and B lymphocytes of the adaptive immune system are key to successful generation of immunological memory and production of neutralizing antibodies following recognition of vaccine antigens by innate immune cells. CD4+ T cells are essential to facilitate CD8+ T cell and B cell activation, while B cells drive and sustain T cell memory. Data suggest that some classes of DMT, including type 1 interferons and glatiramer acetate, may not significantly impair the response to vaccination. DMTs-such as sphingosine-1-phosphate receptor modulators, which sequester lymphocytes from circulation; alemtuzumab; and anti-CD20 therapies, which rely on depleting populations of immune cells-have been shown to attenuate responses to conventional vaccines. Currently, three COVID-19 vaccines have been granted emergency use authorization in the USA on the basis of promising interim findings of ongoing trials. Because analyses of these vaccines in people with MS are not available, decisions regarding COVID-19 vaccination and DMT choice should be informed by data and expert consensus, and personalized with considerations for disease burden, risk of infection, and other factors.
Collapse
Affiliation(s)
- Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA
| | | | - Megan Vignos
- Biogen, Cambridge, MA, USA.
- US Medical MS Franchise and Interferons, Biogen, 133 Boston Post Rd, Weston, MA, 20493, USA.
| | - Scott D Newsome
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Woopen C, Schleußner K, Akgün K, Ziemssen T. Approach to SARS-CoV-2 Vaccination in Patients With Multiple Sclerosis. Front Immunol 2021; 12:701752. [PMID: 34234787 PMCID: PMC8256163 DOI: 10.3389/fimmu.2021.701752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
For more than a year now, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been causing the coronavirus disease (COVID-19) pandemic with high mortality and detrimental effects on society, economy, and individual lives. Great hopes are being placed on vaccination as one of the most potent escape strategies from the pandemic and multiple vaccines are already in clinical use. However, there is still a lot of insecurity about the safety and efficacy of vaccines in patients with autoimmune diseases like multiple sclerosis (MS), especially under treatment with immunomodulatory or immunosuppressive drugs. We propose strategic approaches to SARS-CoV-2 vaccination management in MS patients and encourage fellow physicians to measure the immune response in their patients. Notably, both humoral and cellular responses should be considered since the immunological equivalent for protection from SARS-CoV-2 after infection or vaccination still remains undefined and will most likely involve antiviral cellular immunity. It is important to gain insights into the vaccine response of immunocompromised patients in order to be able to deduce sensible strategies for vaccination in the future.
Collapse
Affiliation(s)
| | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
38
|
Inshasi J, Alroughani R, Al-Asmi A, Alkhaboury J, Alsalti A, Boshra A, Canibano B, Deleu D, Ahmed SF, Shatila A, Thakre M. Expert Consensus and Narrative Review on the Management of Multiple Sclerosis in the Arabian Gulf in the COVID-19 Era: Focus on Disease-Modifying Therapies and Vaccination Against COVID-19. Neurol Ther 2021; 10:1-17. [PMID: 34155473 PMCID: PMC8209665 DOI: 10.1007/s40120-021-00260-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
This article describes consensus recommendations from an expert group of neurologists from the Arabian Gulf region on the management of relapsing multiple sclerosis (RMS) in the COVID-19 era. MS appears not to be a risk factor for severe adverse COVID-19 outcomes (though patients with advanced disability or a progressive phenotype are at higher risk). Disease-modifying therapy (DMT)-based care appears generally safe for patients with MS who develop COVID-19 (although there may be an increased risk of adverse outcomes with anti-CD20 therapy). Interferon-β, teriflunomide, dimethyl fumarate, glatiramer acetate, natalizumab and cladribine tablets are unlikely to increase the risk of infection; fingolimod, anti-CD20 agents and alemtuzumab may confer an intermediate risk. Existing DMT therapy should be continued at this time. For patients requiring initiation of a DMT, all currently available DMTs except alemtuzumab can be started safely at this time; initiate alemtuzumab subject to careful individual risk-benefit considerations. Patients should receive vaccination against COVID-19 where possible, with no interruption of existing DMT-based care. There is no need to alter the administration of interferon-β, teriflunomide, dimethyl fumarate, glatiramer acetate, natalizumab, fingolimod or cladribine tablets for vaccination; new starts on other DMTs should be delayed for up to 6 weeks after completion of vaccination to allow the immune response to develop. Doses of the Oxford University/AstraZeneca vaccine may be scheduled around doses of anti-CD20 or alemtuzumab. Where white cell counts are suppressed by treatment, these should be allowed to recover before vaccination.
Collapse
Affiliation(s)
- Jihad Inshasi
- Neurology Department, Rashid Hospital and Dubai Medical College, Dubai Health Authority (DHA), Dubai, UAE
| | - Raed Alroughani
- Department of Medicine, Amiri Hospital, Sharq, Kuwait
- Division of Neurological, Department of Medicine, Amiri Hospital, Arabian Gulf Street, 13001 Sharq, Kuwait
| | - Abdullah Al-Asmi
- College of Medicine and Health Sciences, Neurology Unit, Sultan Qaboos University, Muscat, Oman
- Sultan Qaboos University Hospital, Muscat, Oman
| | - Jaber Alkhaboury
- Neurology Department, Khoula Hospital, Ministry of Health, Muscat, Oman
| | - Abdullah Alsalti
- Neurology Department, Khoula Hospital, Ministry of Health, Muscat, Oman
| | - Amir Boshra
- Merck Serono Middle East FZ Ltd, Dubai, UAE
- An Affiliate of Merck KgaA, Darmstadt, Germany
| | - Beatriz Canibano
- Department of Neurology (Neuroscience Institute), Hamad Medical Corporation, Doha, Qatar
| | - Dirk Deleu
- Department of Neurology, Ibn Sina Hospital, Kuwait city, Kuwait
| | - Samar Farouk Ahmed
- Department of Neurology, Ibn Sina Hospital, Kuwait city, Kuwait
- Minia University, Minya, Egypt
| | - Ahmed Shatila
- Neurology Department, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Mona Thakre
- Neurology Department, Al Zahra Hospital, Dubai, United Arab Emirates
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review focuses on new evidence supporting the global immunization strategy for multiple sclerosis (MS) patients receiving disease-modifying drugs (DMDs), including the recently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RECENT FINDINGS New data strengthen the evidence against a causal link between MS and vaccination. Recent consensus statements agree on the need to start vaccination early. Timings for vaccine administration should be adjusted to ensure safety and optimize vaccine responses, given the potential interference of DMDs. Patients treated with Ocrelizumab (and potentially other B-cell depleting therapies) are at risk of diminished immunogenicity to vaccines. This has relevant implications for the upcoming vaccination against SARS-CoV-2. SUMMARY An early assessment and immunization of MS patients allows optimizing vaccine responses and avoiding potential interference with treatment plans. Vaccinations are safe and effective but some specific considerations should be followed when vaccinating before, during, and after receiving immunotherapy. A time-window for vaccination taking into account the kinetics of B cell repopulation could potentially improve vaccine responses. Further understanding of SARS-CoV-2 vaccine response dynamics in MS patients under specific therapies will be key for defining the best vaccination strategy.
Collapse
|
40
|
Smith TE, Kister I. Infection Mitigation Strategies for Multiple Sclerosis Patients on Oral and Monoclonal Disease-Modifying Therapies. Curr Neurol Neurosci Rep 2021; 21:36. [PMID: 34009478 PMCID: PMC8132488 DOI: 10.1007/s11910-021-01117-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The newer, higher-efficacy disease-modifying therapies (DMTs) for multiple sclerosis (MS)-orals and monoclonals-have more profound immunomodulatory and immunosuppressive properties than the older, injectable therapies and require risk mitigation strategies to reduce the risk of serious infections. This review will provide a systematic framework for infectious risk mitigation strategies relevant to these therapies. RECENT FINDINGS We classify risk mitigation strategies according to the following framework: (1) screening and patient selection, (2) vaccinations, (3) antibiotic prophylaxis, (4) laboratory and MRI monitoring, (5) adjusting dose and frequency of DMT, and (6) behavioral modifications to limit the risk of infection. We systematically apply this framework to the infections for which risk mitigations are available: hepatitis B, herpetic infections, progressive multifocal leukoencephalopathy, and tuberculosis. We also discuss up-to-date recommendations regarding COVID-19 vaccinations for patients on DMTs. We offer a practical, comprehensive, DMT-specific framework of derisking strategies designed to minimize the risk of infections associated with the newer MS therapies.
Collapse
Affiliation(s)
- Tyler Ellis Smith
- Department of Neurology, NYU-Multiple Sclerosis Care Center, NYU School of Medicine, New York, NY, USA.
- , New York, NY, USA.
| | - Ilya Kister
- Department of Neurology, NYU-Multiple Sclerosis Care Center, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Infectious Challenges with Novel Antibody–Based Therapies. Curr Infect Dis Rep 2021. [DOI: 10.1007/s11908-021-00753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Nesbitt C, Rath L, Zhong M, Cheng AC, Butzkueven H, Wesselingh R, Skibina O, Monif M, Yeh W, Brotherton JM, Reddel S, Van Der Walt A. Vaccinations in patients with multiple sclerosis: review and recommendations. Med J Aust 2021; 214:350-354.e1. [PMID: 33866556 DOI: 10.5694/mja2.51012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Cassie Nesbitt
- Alfred Health, Melbourne, VIC.,Monash University, Melbourne, VIC
| | | | - Michael Zhong
- Alfred Health, Melbourne, VIC.,Monash University, Melbourne, VIC
| | - Allen C Cheng
- Alfred Health, Melbourne, VIC.,Monash University, Melbourne, VIC
| | | | - Robb Wesselingh
- Alfred Health, Melbourne, VIC.,Monash University, Melbourne, VIC
| | | | - Mastura Monif
- Alfred Health, Melbourne, VIC.,Monash University, Melbourne, VIC
| | - Wei Yeh
- Alfred Health, Melbourne, VIC.,Monash University, Melbourne, VIC
| | | | | | | |
Collapse
|
43
|
Current Immunological and Clinical Perspective on Vaccinations in Multiple Sclerosis Patients: Are They Safe after All? Int J Mol Sci 2021; 22:ijms22083859. [PMID: 33917860 PMCID: PMC8068297 DOI: 10.3390/ijms22083859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Vaccines work by stimulating the immune system, and their immunogenicity is key in achieving protection against specific pathogens. Questions have been raised whether in Multiple Sclerosis (MS) patients they could induce disease exacerbation and whether vaccines could possibly act as a trigger in the onset of MS in susceptible populations. So far, no correlation has been found between the vaccinations against influenza, hepatitis B, tetanus, human papillomavirus, measles, mumps, rubella, varicella zoster, tuberculosis, yellow fever, or typhoid fever and the risk of MS. Further research is needed for the potential protective implications of the tetanus and Bacillus Calmette-Guerin vaccines in MS patients. Nowadays with the emerging coronavirus disease 2019 (COVID-19) and recent vaccinations approval and arrival, the risk-benefit in MS patients with regards to safety and efficacy of COVID-19 vaccination in those treated with immunosuppressive therapies is of paramount importance. In this manuscript, we demonstrate how different vaccine types could be related to the immunopathogenesis of MS and discuss the risks and benefits of different vaccinations in MS patients.
Collapse
|
44
|
Otero-Romero S, Sánchez-Montalvá A, Vidal-Jordana A. Assessing and mitigating risk of infection in patients with multiple sclerosis on disease modifying treatment. Expert Rev Clin Immunol 2021; 17:285-300. [PMID: 33543657 DOI: 10.1080/1744666x.2021.1886924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: The important development that the multiple sclerosis (MS) treatment field has experienced in the last years comes along with the need of dealing with new adverse events such as the increase risk of infections. In the shared therapeutic decision-making process, the MS expert neurologist should also balance the risks of specific infections under each particular treatment and be familiar with new mitigation strategies.Areas covered: In this review, the authors provide an up-to-date review of the infection risk associated with MS treatments with a specific focus on risk mitigating strategies. The search was conducted using Pubmed® database (2000 - present) to identify publications that reported infection rates and infection complications for each treatment (interferon beta, glatiramer acetate, teriflunomide, dimethyl fumarate, fingolimod, cladribine, natalizumab, alemtuzumab, rituximab, and ocrelizumab).Expert opinion: Since the emergence of the first natalizumab-related PML case, the arrival of new MS therapies has come hand in hand with new infectious complications. MS-specialist neurologist has to face new challenges regarding the management of immunosuppression-related infectious complications. The implementation of patient-centered management focus on preventive and mitigating strategies with a multidisciplinary approach should be seen in the future as a marker of excellence of MS management.
Collapse
Affiliation(s)
- Susana Otero-Romero
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Department of Infectious Diseases. Hospital Universitari Vall d'Hebron, International Health Program Catalan Institute of Health (PROSICS), Universitat Autònoma De Barcelona, Barcelona, Spain.,Micobacteria Infections Study Group (GEIM) of the Spanish Society of Infectious Diseases (SEIMC), Spain
| | - Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat). Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Gelibter S, Orrico M, Filippi M, Moiola L. COVID-19 with no antibody response in a multiple sclerosis patient treated with cladribine: Implication for vaccination program? Mult Scler Relat Disord 2021; 49:102775. [PMID: 33517176 PMCID: PMC7817400 DOI: 10.1016/j.msard.2021.102775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Stefano Gelibter
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Orrico
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Eliseeva DD, Vasiliev AV, Abramova AA, Kochergin IA, Zakharova MN. [Monoclonal antibody therapies for rapidly progressive and highly active multiple sclerosis in the era of the COVID-19 pandemic]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:31-36. [PMID: 34387443 DOI: 10.17116/jnevro202112107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the COVID-19 pandemic continues, reducing the risk of infection for immunocompromised patients remains an important issue. Patients with aggressive multiple sclerosis (MS) require immunosuppressive therapy in order to control the overactive autoimmune response. Preliminary international and national trials demonstrate that older age, higher disability status and progressive MS are generally associated with a more severe clinical course of COVID-19. However, uncertainty remains about the effect of disease-modifying therapies on the COVID-19 clinical presentation. In this article, we pay special attention to monoclonal antibodies used for immune reconstitution therapy, which results in significant changes to the T-cell and/or B-cell repertoire. Based on the published data from registries in different countries, we attempted to estimate the benefits and risks of these therapies in a complicated epidemiological setting.
Collapse
Affiliation(s)
| | - A V Vasiliev
- «Neuroclinic» (Yusupov Hospital), Moscow, Russia
| | | | | | | |
Collapse
|
47
|
Fiorella C, Lorna G. COVID-19 in a multiple sclerosis (MS) patient treated with alemtuzumab: Insight to the immune response after COVID. Mult Scler Relat Disord 2020; 46:102447. [PMID: 32835901 PMCID: PMC7416707 DOI: 10.1016/j.msard.2020.102447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a novel disease that has spread abruptly over the world, allowing the development of countermeasures an urgent global priority. It has been speculated that elder people and patient with comorbidities may be at risk of developing complication. On the other hand, it has been seen that immunosuppressed patients could develop a mild presentation of the disease. Based on this hypothesis, several immunosuppressant agents are currently being tested as potential treatment for coronavirus 2019 (COVID-19). METHODS report a patient treated with alemtuzumab (Humanized monoclonal antibody against the lymphocyte and monocyte surface antigen CD52, which depletes B and T cells) (Thompson et al., 2018) for recurrent remittent multiple sclerosis (RRMS) who developed mild COVID-19. RESULTS Despite complete B and T cell depletion, patient symptoms abated few days with no need for hospitalization due to COVID-19 and no clinical evidence of disease activation regarding her MS. DISCUSSION This report shows that MS patients with mild depletion of B and T cells can mount an antiviral response against COVID-19 and produce IgG.
Collapse
Affiliation(s)
- Celsi Fiorella
- Universidad del Desarrollo-Clínica Alemana, Santiago, Chile
| | - Galleguillos Lorna
- Department of Neurology, Clínica Alemana, Santiago, Av Vitacura 5951, Vitacura, Santiago, Chile.
| |
Collapse
|
48
|
Baker D, Roberts CAK, Pryce G, Kang AS, Marta M, Reyes S, Schmierer K, Giovannoni G, Amor S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin Exp Immunol 2020; 202:149-161. [PMID: 32671831 PMCID: PMC7405500 DOI: 10.1111/cei.13495] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Although most autoimmune diseases are considered to be CD4 T cell- or antibody-mediated, many respond to CD20-depleting antibodies that have limited influence on CD4 and plasma cells. This includes rituximab, oblinutuzumab and ofatumumab that are used in cancer, rheumatoid arthritis and off-label in a large number of other autoimmunities and ocrelizumab in multiple sclerosis. Recently, the COVID-19 pandemic created concerns about immunosuppression in autoimmunity, leading to cessation or a delay in immunotherapy treatments. However, based on the known and emerging biology of autoimmunity and COVID-19, it was hypothesised that while B cell depletion should not necessarily expose people to severe SARS-CoV-2-related issues, it may inhibit protective immunity following infection and vaccination. As such, drug-induced B cell subset inhibition, that controls at least some autoimmunities, would not influence innate and CD8 T cell responses, which are central to SARS-CoV-2 elimination, nor the hypercoagulation and innate inflammation causing severe morbidity. This is supported clinically, as the majority of SARS-CoV-2-infected, CD20-depleted people with autoimmunity have recovered. However, protective neutralizing antibody and vaccination responses are predicted to be blunted until naive B cells repopulate, based on B cell repopulation kinetics and vaccination responses, from published rituximab and unpublished ocrelizumab (NCT00676715, NCT02545868) trial data, shown here. This suggests that it may be possible to undertake dose interruption to maintain inflammatory disease control, while allowing effective vaccination against SARS-CoV-29, if and when an effective vaccine is available.
Collapse
Affiliation(s)
- D. Baker
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - C. A. K. Roberts
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - G. Pryce
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - A. S. Kang
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Oral Immunobiology and Regenerative MedicineInstitute of Dentistry, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - M. Marta
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - S. Reyes
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - K. Schmierer
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - G. Giovannoni
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - S. Amor
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Pathology DepartmentAmsterdam UMCVUmc siteAmsterdamThe Netherlands
| |
Collapse
|
49
|
Zrzavy T, Wimmer I, Rommer PS, Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur J Neurol 2020; 28:3503-3516. [PMID: 33090599 PMCID: PMC7675490 DOI: 10.1111/ene.14578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Objective The outbreak of the SARS‐CoV‐2 pandemic, caused by a previously unknown infectious agent, posed unprecedented challenges to healthcare systems and unmasked their vulnerability and limitations worldwide. Patients with long‐term immunomodulatory/suppressive therapies, as well as their physicians, were and are concerned about balancing the risk of infection and effects of disease‐modifying therapy. Over the last few months, knowledge regarding SARS‐CoV‐2 has been growing tremendously, and the first experiences of infections in patients with multiple sclerosis (MS) have been reported. Methods This review summarizes the currently still limited knowledge about SARS‐CoV‐2 immunology and the commonly agreed modes of action of approved drugs in immune‐mediated diseases of the central nervous system (MS and neuromyelitis optica spectrum disorder). Specifically, we discuss whether immunosuppressive/immunomodulatory drugs may increase the risk of SARS‐CoV‐2 infection and, conversely, may decrease the severity of a COVID‐19 disease course. Results At present, it can be recommended in general that none of those therapies with a definite indication needs to be stopped per se. A possibly increased risk of infection for most medications is accompanied by the possibility to reduce the severity of COVID‐19. Conclusions Despite the knowledge gain over the last few months, current evidence remains limited, and, thus, further clinical vigilance and systematic documentation is essential.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Ciotti JR, Valtcheva MV, Cross AH. Effects of MS disease-modifying therapies on responses to vaccinations: A review. Mult Scler Relat Disord 2020; 45:102439. [PMID: 32769063 PMCID: PMC7395588 DOI: 10.1016/j.msard.2020.102439] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Development of long-term immunologic memory relies upon humoral and cellular immune responses. Vaccinations aim to stimulate these responses against pathogens. Several studies have evaluated the impact of multiple sclerosis disease-modifying therapies on immune response to vaccines. Findings from these studies have important implications for people with multiple sclerosis who require vaccination and are using disease-modifying therapies. METHODS Searches using PubMed and other engines were conducted in May 2020 to collect studies evaluating the impact of various disease-modifying therapies on immune responses to vaccination. RESULTS Several studies demonstrated preserved immune responses in people treated with beta-interferons to multiple vaccine types. Limited data suggest vaccine responses to be preserved with dimethyl fumarate treatment, as well. Vaccine responses were reduced to varying degrees in those treated with glatiramer acetate, teriflunomide, sphingosine-1-phosphate receptor modulators, and natalizumab. The timing of vaccination played an important role in those treated with alemtuzumab. Humoral vaccine responses were significantly impaired by B cell depleting anti-CD20 monoclonal antibody therapies, particularly to a neoantigen. Data are lacking on vaccine responses in patients with multiple sclerosis taking cladribine and high-dose corticosteroids. Notably, the majority of these studies have focused on humoral responses, with few examining cellular immune responses to vaccination. CONCLUSIONS Prior investigations into the effects of individual disease-modifying therapies on immune responses to existing vaccines can serve as a guide to expected responses to a SARS-CoV-2 vaccine. Responses to any vaccination depend on the vaccine type, the type of response (recall versus response to a novel antigen), and the impact of the individual disease-modifying therapy on humoral and cellular immunity in response to that vaccine type. When considering a given therapy, clinicians should weigh its efficacy against MS for the individual patient versus potential impact on responses to vaccinations that may be needed in the future.
Collapse
Affiliation(s)
- John Robert Ciotti
- Washington University in St. Louis, Department of Neurology, St. Louis, MO, USA.
| | | | - Anne Haney Cross
- Washington University in St. Louis, Department of Neurology, St. Louis, MO, USA
| |
Collapse
|