1
|
Aron O, Mezjan I, Krieg J, Ferrand M, Colnat-Coulbois S, Maillard L. Mapping the basal temporal language network: a SEEG functional connectivity study. BRAIN AND LANGUAGE 2024; 258:105486. [PMID: 39388909 DOI: 10.1016/j.bandl.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The Basal Temporal Language Area (BTLA) is recognized in epilepsy surgery setting when cortical electrical stimulation (CES) of the ventral temporal cortex (VTC) trigger anomia or paraphasia during naming tasks. Despite acknowledging a ventral language stream, current cognitive language models fail to properly integrate this entity. In this SEEG study we used cortico-cortical evoked potentials in nine epileptic patients to assess and compare the effective connectivity of 73 sites in the left VTC of which 26 were deemed eloquent for naming after CES (BTLA). Eloquent sites connectivity supports the existence of a basal temporal language network (BTLN) structured around posterior projectors while the fusiform gyrus behaved as an integrator. BTLN was strongly connected to the amygdala and hippocampus unlike the non-eloquent sites, except for the anterior fusiform gyrus (FG). These observations support the FG as a multimodal functional hub and add to our understanding of ventral temporal language processing.
Collapse
Affiliation(s)
- Olivier Aron
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France.
| | - Insafe Mezjan
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Julien Krieg
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Mickael Ferrand
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Sophie Colnat-Coulbois
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Louis Maillard
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| |
Collapse
|
2
|
Matoba K, Matsumoto R, Shimotake A, Nakae T, Imamura H, Togo M, Yamao Y, Usami K, Kikuchi T, Yoshida K, Matsuhashi M, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Basal temporal language area revisited in Japanese language with a language function density map. Cereb Cortex 2024; 34:bhae218. [PMID: 38858838 DOI: 10.1093/cercor/bhae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
We revisited the anatomo-functional characteristics of the basal temporal language area (BTLA), first described by Lüders et al. (1986), using electrical cortical stimulation (ECS) in the context of Japanese language and semantic networks. We recruited 11 patients with focal epilepsy who underwent chronic subdural electrode implantation and ECS mapping with multiple language tasks for presurgical evaluation. A semiquantitative language function density map delineated the anatomo-functional characteristics of the BTLA (66 electrodes, mean 3.8 cm from the temporal tip). The ECS-induced impairment probability was higher in the following tasks, listed in a descending order: spoken-word picture matching, picture naming, Kanji word reading, paragraph reading, spoken-verbal command, and Kana word reading. The anterior fusiform gyrus (FG), adjacent anterior inferior temporal gyrus (ITG), and the anterior end where FG and ITG fuse, were characterized by stimulation-induced impairment during visual and auditory tasks requiring verbal output or not, whereas the middle FG was characterized mainly by visual input. The parahippocampal gyrus was the least impaired of the three gyri in the basal temporal area. We propose that the BTLA has a functional gradient, with the anterior part involved in amodal semantic processing and the posterior part, especially the middle FG in unimodal semantic processing.
Collapse
Affiliation(s)
- Kento Matoba
- Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, 5-4-30 Moriyama, Moriyama, Shiga 524-0022, Japan
| | - Hisaji Imamura
- Department of Neurology, Fukui Red Cross Hospital, 2-4-1, Tsukimi, Fukui, 918-8011, Japan
| | - Masaya Togo
- Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Fedorenko E, Ivanova AA, Regev TI. The language network as a natural kind within the broader landscape of the human brain. Nat Rev Neurosci 2024; 25:289-312. [PMID: 38609551 DOI: 10.1038/s41583-024-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Program in Speech and Hearing in Bioscience and Technology, Harvard University, Cambridge, MA, USA.
| | - Anna A Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tamar I Regev
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Hadidane S, Lagarde S, Medina-Villalon S, McGonigal A, Laguitton V, Carron R, Scavarda D, Bartolomei F, Trebuchon A. Basal temporal lobe epilepsy: SEEG electroclinical characteristics. Epilepsy Res 2023; 191:107090. [PMID: 36774667 DOI: 10.1016/j.eplepsyres.2023.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy is the most common type of focal drug-resistant epilepsy. Seizures with predominant involvement of basal temporal regions (BTR) are not well characterized. In this stereo electroencephalography (SEEG) study, we aimed at describing the ictal networks involving BTR and the associated clinical features. METHODS We studied 24 patients explored with SEEG in our center with BTR sampling. We analyzed their seizures using a quantitative method: the "epileptogenicity index". Then we reported the features of the patients with maximal epileptogenicity within BTR, especially ictal network involved, ictal semiology and post-surgical outcome. RESULTS We found that rhinal cortex, parahippocampal cortex and posterior fusiform gyrus were the most epileptogenic structures within the BTR (mean EI: 0.57, 0.55, 0.54 respectively). Three main groups of epileptogenic zone organization were found: anterior (23% of total seizures) posterior (30%) and global (47%, both anterior and posterior). Contralateral spread was found in 35% of left seizures and 20% of right seizures. Naming deficit was more prevalent in left BTR (71% vs 29% in right seizures; p = 0.01) whereas automatic speech production was preferentially represented in right seizures (11% vs 54%; p = 0.001). Surgery was proposed for 11 patients (45.8%), leading to seizure freedom in 72% (Engel Class I). One patient presented post-operative permanent functional deficit. CONCLUSION Basal-temporal lobe epilepsy seems to be a specific entity among the temporal epilepsy spectrum with specific clinical characteristics. Resective surgery can be proposed with good outcomes in a significant proportion of patients and is safe provided that adequate language assessment has been preoperatively made.
Collapse
Affiliation(s)
- S Hadidane
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - S Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - S Medina-Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - A McGonigal
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - V Laguitton
- APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - R Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - D Scavarda
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Pediatric, Neurosurgery Department, Marseille, France
| | - F Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - A Trebuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France; INSERM UMR1106, Institut des Neurosciences des Systèmes, Aix-Marseille Université, Faculté de Médecine Timone, 27, Bd Jean-Moulin, 13385 Marseille Cedex 05, France; Service de Neurophysiologie Clinique, Hôpital de la Timone, 13005 Marseille, France.
| |
Collapse
|
5
|
Snyder KM, Forseth KJ, Donos C, Rollo PS, Fischer-Baum S, Breier J, Tandon N. Critical role of the ventral temporal lobe in naming. Epilepsia 2023; 64:1200-1213. [PMID: 36806185 DOI: 10.1111/epi.17555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Lexical retrieval deficits are characteristic of a variety of different neurological disorders. However, the exact substrates responsible for this are not known. We studied a large cohort of patients undergoing surgery in the dominant temporal lobe for medically intractable epilepsy (n = 95) to localize brain regions that were associated with anomia. METHODS We performed a multivariate voxel-based lesion-symptom mapping analysis to correlate surgical lesions within the temporal lobe with changes in naming ability. Additionally, we used a surface-based mixed-effects multilevel analysis to estimate group-level broadband gamma activity during naming across a subset of patients with electrocorticographic recordings and integrated these results with lesion-deficit findings. RESULTS We observed that ventral temporal regions, centered around the middle fusiform gyrus, were significantly associated with a decline in naming. Furthermore, we found that the ventral aspect of temporal lobectomies was linearly correlated to a decline in naming, with a clinically significant decline occurring once the resection extended 6 cm from the anterior tip of the temporal lobe on the ventral surface. On electrocorticography, the majority of these cortical regions were functionally active following visual processing. These loci coincide with the sites of susceptibility artifacts during echoplanar imaging, which may explain why this region has been previously underappreciated as the locus responsible for postoperative naming deficits. SIGNIFICANCE Taken together, these data highlight the crucial contribution of the ventral temporal cortex in naming and its important role in the pathophysiology of anomia following temporal lobe resections. As such, surgical strategies should attempt to preserve this region to mitigate postoperative language deficits.
Collapse
Affiliation(s)
- Kathryn M Snyder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cristian Donos
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA.,Faculty of Physics, University of Bucharest, Bucharest, Romania
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Simon Fischer-Baum
- Department of Psychological Sciences, Rice University, Houston, Texas, USA
| | - Joshua Breier
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas, USA.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, Texas, USA
| |
Collapse
|
6
|
Aron O, Krieg J, Brissart H, Abdallah C, Colnat-Coulbois S, Jonas J, Maillard L. Naming impairments evoked by focal cortical electrical stimulation in the ventral temporal cortex correlate with increased functional connectivity. Neurophysiol Clin 2022; 52:312-322. [PMID: 35777988 DOI: 10.1016/j.neucli.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND High-frequency cortical electrical stimulations (HF-CES) are the gold standard for presurgical functional mapping. In the dominant ventral temporal cortex (VTC) HF-CES can elicit transient naming impairment (eloquent sites), defining a basal temporal language area (BTLA). OBJECTIVE Whether naming impairments induced by HF-CES within the VTC are related to a specific pattern of connectivity of the BTLA within the temporal lobe remains unknown. We addressed this issue by comparing the connectivity of eloquent and non-eloquent sites from the VTC using cortico-cortical evoked potentials (CCEP). METHODS Low frequency cortical electrical stimulations (LF-CES) were used to evoke CCEP in nine individual brains explored with Stereo-Electroencephalography. We compared the connectivity of eloquent versus non eloquent sites within the VTC using Pearson's correlation matrix. RESULTS Overall, within the VTC, eloquent sites were associated with increased functional connectivity compared to non-eloquent sites. Among the VTC structures, this pattern holds true for the inferior temporal gyrus and the parahippocampal gyrus while the fusiform gyrus specifically showed a high connectivity in both non eloquent and eloquent sites. CONCLUSIONS Our findings suggest that the cognitive effects of focal HF-CES are related to the functional connectivity properties of the stimulated sites, and therefore to the disturbance of a wide cortical network. They further suggest that functional specialization of a cortical region emerges from its specific pattern of functional connectivity. Cortical electrical stimulation functional mapping protocols including LF coupled to HF-CES could provide valuable data characterizing both local and distant functional architecture.
Collapse
Affiliation(s)
- Olivier Aron
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France.
| | - Julien Krieg
- Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Helene Brissart
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France
| | - Chifaou Abdallah
- Neurology and Neurosurgery Department, Montreal Neurological Institute (C.A.) McGill University, Montreal, Quebec, Canada
| | - Sophie Colnat-Coulbois
- Department of Neurosurgery, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Jacques Jonas
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Louis Maillard
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| |
Collapse
|
7
|
Binding LP, Dasgupta D, Giampiccolo D, Duncan JS, Vos SB. Structure and function of language networks in temporal lobe epilepsy. Epilepsia 2022; 63:1025-1040. [PMID: 35184291 PMCID: PMC9773900 DOI: 10.1111/epi.17204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
Individuals with temporal lobe epilepsy (TLE) may have significant language deficits. Language capabilities may further decline following temporal lobe resections. The language network, comprising dispersed gray matter regions interconnected with white matter fibers, may be atypical in individuals with TLE. This review explores the structural changes to the language network and the functional reorganization of language abilities in TLE. We discuss the importance of detailed reporting of patient's characteristics, such as, left- and right-sided focal epilepsies as well as lesional and nonlesional pathological subtypes. These factors can affect the healthy functioning of gray and/or white matter. Dysfunction of white matter and displacement of gray matter function could concurrently impact their ability, in turn, producing an interactive effect on typical language organization and function. Surgical intervention can result in impairment of function if the resection includes parts of this structure-function network that are critical to language. In addition, impairment may occur if language function has been reorganized and is included in a resection. Conversely, resection of an epileptogenic zone may be associated with recovery of cortical function and thus improvement in language function. We explore the abnormality of functional regions in a clinically applicable framework and highlight the differences in the underlying language network. Avoidance of language decline following surgical intervention may depend on tailored resections to avoid critical areas of gray matter and their white matter connections. Further work is required to elucidate the plasticity of the language network in TLE and to identify sub-types of language representation, both of which will be useful in planning surgery to spare language function.
Collapse
Affiliation(s)
- Lawrence P. Binding
- Department of Computer ScienceCentre for Medical Image ComputingUniversity College LondonLondonUK
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Debayan Dasgupta
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Victor Horsley Department of NeurosurgeryNational Hospital for Neurology and NeurosurgeryLondonUK
| | - Davide Giampiccolo
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Victor Horsley Department of NeurosurgeryNational Hospital for Neurology and NeurosurgeryLondonUK
- Institute of NeuroscienceCleveland Clinic LondonLondonUK
- Department of NeurosurgeryVerona University HospitalUniversity of VeronaVeronaItaly
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Department of Computer ScienceCentre for Medical Image ComputingUniversity College LondonLondonUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Centre for Microscopy, Characterisation, and AnalysisThe University of Western AustraliaNedlandsWestern AustraliaAustralia
| |
Collapse
|
8
|
Abdallah C, Brissart H, Colnat-Coulbois S, Pierson L, Aron O, Forthoffer N, Vignal JP, Tyvaert L, Jonas J, Maillard L. Stereoelectroencephalographic language mapping of the basal temporal cortex predicts postoperative naming outcome. J Neurosurg 2021; 135:1466-1476. [PMID: 33636700 DOI: 10.3171/2020.8.jns202431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In drug-resistant temporal lobe epilepsy (TLE) patients, the authors evaluated early and late outcomes for decline in visual object naming after dominant temporal lobe resection (TLR) according to the resection status of the basal temporal language area (BTLA) identified by cortical stimulation during stereoelectroencephalography (SEEG). METHODS Twenty patients who underwent SEEG for drug-resistant TLE met the inclusion criteria. During language mapping, a site was considered positive when stimulation of two contiguous contacts elicited at least one naming impairment during two remote sessions. After TLR ipsilateral to their BTLA, patients were classified as BTLA+ when at least one positive language site was resected and as BTLA- when all positive language sites were preserved. Outcomes in naming and verbal fluency tests were assessed using pre- and postoperative (means of 7 and 25 months after surgery) scores at the group level and reliable change indices (RCIs) for clinically meaningful changes at the individual level. RESULTS BTLA+ patients (n = 7) had significantly worse naming scores than BTLA- patients (n = 13) within 1 year after surgery but not at the long-term evaluation. No difference in verbal fluency tests was observed. When RCIs were used, 5 of 18 patients (28%) had naming decline within 1 year postoperatively (corresponding to 57% of BTLA+ and 9% of BTLA- patients). A significant correlation was found between BTLA resection and naming decline. CONCLUSIONS BTLA resection is associated with a specific and early naming decline. Even if this decline is transient, naming scores in BTLA+ patients tend to remain lower compared to their baseline. SEEG mapping helps to predict postoperative language outcome after dominant TLR.
Collapse
Affiliation(s)
- Chifaou Abdallah
- Departments of1Neurology and
- 4Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | - Louise Tyvaert
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| | - Jacques Jonas
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| | - Louis Maillard
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| |
Collapse
|
9
|
Aron O, Jonas J, Colnat-Coulbois S, Maillard L. Language Mapping Using Stereo Electroencephalography: A Review and Expert Opinion. Front Hum Neurosci 2021; 15:619521. [PMID: 33776668 PMCID: PMC7987679 DOI: 10.3389/fnhum.2021.619521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Stereo-electroencephalography (sEEG) is a method that uses stereotactically implanted depth electrodes for extra-operative mapping of epileptogenic and functional networks. sEEG derived functional mapping is achieved using electrical cortical stimulations (ECS) that are currently the gold standard for delineating eloquent cortex. As this stands true especially for primary cortices (e.g., visual, sensitive, motor, etc.), ECS applied to higher order brain areas determine more subtle behavioral responses. While anterior and posterior language areas in the dorsal language stream seem to share characteristics with primary cortices, basal temporal language area (BTLA) in the ventral temporal cortex (VTC) behaves as a highly associative cortex. After a short introduction and considerations about methodological aspects of ECS using sEEG, we review the sEEG language mapping literature in this perspective. We first establish the validity of this technique to map indispensable language cortices in the dorsal language stream. Second, we highlight the contrast between the growing empirical ECS experience and the lack of understanding regarding the fundamental mechanisms underlying ECS behavioral effects, especially concerning the dispensable language cortex in the VTC. Evidences for considering network architecture as determinant for ECS behavioral response complexities are discussed. Further, we address the importance of designing new research in network organization of language as this could enhance ECS ability to map interindividual variability, pathology driven reorganization, and ultimately identify network resilience markers in order to better predict post-operative language deficit. Finally, based on a whole body of available studies, we believe there is strong evidence to consider sEEG as a valid, safe and reliable method for defining eloquent language cortices although there have been no proper comparisons between surgical resections with or without extra-operative or intra-operative language mapping.
Collapse
Affiliation(s)
- Olivier Aron
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| | - Jacques Jonas
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| | | | - Louis Maillard
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| |
Collapse
|
10
|
Hamberger MJ, Schevon CA, Seidel WT, McKhann GM, Morrison C. Cortical naming sites and increasing age in adults with refractory epilepsy: More might be less. Epilepsia 2019; 60:1619-1626. [PMID: 31251399 PMCID: PMC6687550 DOI: 10.1111/epi.16097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 06/05/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Critical decisions regarding resection boundaries for epilepsy surgery are often based on results of electrical stimulation mapping (ESM). Despite the potentially serious implications for postoperative functioning, age-referenced data that might facilitate the procedure are lacking. Age might be particularly relevant, as pediatric ESM studies have shown a paucity of language sites in young children followed by a rapid increase at approximately 8-10 years. Beyond adolescence, it has generally been assumed that the language system remains stable, and therefore, potential age-related changes across the adult age span have not been examined. However, increasing age during adulthood is associated with both positive and negative language-related changes, such as a broadening vocabulary and increased word finding difficulty. Because most patients who undergo ESM are adults, we aimed to determine the potential impact of age on the incidence of ESM-identified naming sites across the adult age span in patients with refractory epilepsy. METHODS We analyzed clinical language ESM results from 47 patients, ages 17-64 years, with refractory dominant-hemisphere epilepsy. Patients had comparable location and number of cortical sites tested. The incidence of naming sites was examined as a function of age, and compared between younger and older adults. RESULTS Significantly more naming sites were found in older than younger adults, and age was found to be a significant predictor of number of naming sites identified. SIGNIFICANCE Unlike the developmental changes that coincide with increased naming sites in children, increased naming sites in older adults might signify greater vulnerability of the language system to disruption. Because preservation of language sites can limit the extent of the resection, and thereby reduce the likelihood of seizure freedom, further work should aim to determine the clinical relevance of increased naming sites in older adults.
Collapse
Affiliation(s)
- Marla J. Hamberger
- Department of Neurology, Columbia University Medical Center, New York, New York
| | | | | | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | | |
Collapse
|
11
|
Forseth KJ, Kadipasaoglu CM, Conner CR, Hickok G, Knight RT, Tandon N. A lexical semantic hub for heteromodal naming in middle fusiform gyrus. Brain 2019; 141:2112-2126. [PMID: 29860298 DOI: 10.1093/brain/awy120] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the spectrotemporal profiles of these three regions revealed coincident activity preceding articulation. Only in the middle fusiform gyrus did direct cortical stimulation disrupt both naming tasks while still preserving the ability to repeat sentences. These convergent data strongly support a model in which a distinct neuroanatomical substrate in middle fusiform gyrus provides access to object semantic information. This under-appreciated locus of semantic processing is at risk in resections for temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex-it may explain the range of anomic states seen in these conditions. Further characterization of brain network behaviour engaging this region in both healthy and diseased states will expand our understanding of semantic memory and further development of therapies directed at anomia.
Collapse
Affiliation(s)
- Kiefer James Forseth
- Vivian L Smith Department of Neurosurgery, McGovern Medical School, Houston, TX, USA
| | | | | | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | | | - Nitin Tandon
- Vivian L Smith Department of Neurosurgery, McGovern Medical School, Houston, TX, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
12
|
Rolinski R, Austermuehle A, Wiggs E, Agrawal S, Sepeta L, Gaillard WD, Zaghloul K, Inati SK, Theodore WH. Functional MRI and direct cortical stimulation: Prediction of postoperative language decline. Epilepsia 2019; 60:560-570. [PMID: 30740700 PMCID: PMC6467056 DOI: 10.1111/epi.14666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess the ability of functional MRI (fMRI) to predict postoperative language decline compared to direct cortical stimulation (DCS) in epilepsy surgery patients. METHODS In this prospective case series, 17 patients with drug-resistant epilepsy had intracranial monitoring and resection from 2012 to 2016 with 1-year follow-up. All patients completed preoperative language fMRI, mapping with DCS of subdural electrodes, pre- and postoperative neuropsychological testing for language function, and resection. Changes in language function before and after surgery were assessed. fMRI activation and DCS electrodes in the resection were evaluated as potential predictors of language decline. RESULTS Four of 17 patients (12 female; median [range] age, 43 [23-59] years) experienced postoperative language decline 1 year after surgery. Two of 4 patients had overlap of fMRI activation, language-positive electrodes in basal temporal regions (within 1 cm), and resection. Two had overlap between resection volume and fMRI activation, but not DCS. fMRI demonstrated 100% sensitivity and 46% specificity for outcome compared to DCS (50% and 85%, respectively). When fMRI and DCS language findings were concordant, the combined tests showed 100% sensitivity and 75% specificity for language outcome. Seizure-onset age, resection side, type, volume, or 1 year seizure outcome did not predict language decline. SIGNIFICANCE Language localization overlap of fMRI and direct cortical stimulation in the resection influences postoperative language performance. Our preliminary study suggests that fMRI may be more sensitive and less specific than direct cortical stimulation. Together they may predict outcome better than either test alone.
Collapse
Affiliation(s)
- Rachel Rolinski
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
| | - Alison Austermuehle
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
| | - Edythe Wiggs
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
| | - Shubhi Agrawal
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
- Berman Brain & Spine Institute, Baltimore, MD
| | - Leigh Sepeta
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
- Department of Neurology Children’s National Medical
Center, Washington, D.C
| | - William D Gaillard
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
- Department of Neurology Children’s National Medical
Center, Washington, D.C
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
| | - Sara K Inati
- Electroencephalography Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
| | - William H Theodore
- Clinical Epilepsy Section, National Institute of
Neurological Disorders and Stroke, Bethesda, MD
| |
Collapse
|
13
|
Effect of word association on linguistic event-related potentials in moderately to mildly constraining sentences. Sci Rep 2018; 8:7175. [PMID: 29740165 PMCID: PMC5940757 DOI: 10.1038/s41598-018-25723-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/27/2018] [Indexed: 11/08/2022] Open
Abstract
The processing of word associations in sentence context depends on several factors. EEG studies have shown that when the expectation of the upcoming word is high (high semantic constraint), the within-sentence word association plays a negligible role, whereas in the opposite case, when there is no expectation (as in pseudo-sentences), the role of word association becomes more pronounced. However, what happens when the expectations are not high (mild to moderate semantic constraint) is not yet clear. By adopting a cross-factorial design, crossing sentence congruity with within-sentence word association, our EEG recordings show that association comes into play during semantic processing of the word only when the sentence is meaningless. We also performed an exploratory source localization analysis of our EEG recordings to chart the brain regions putatively implicated in processing the said factors and showed its complementarity to EEG temporal analysis. This study furthers our knowledge on sentence processing and the brain networks involved in it.
Collapse
|
14
|
Herbet G, Moritz-Gasser S, Boiseau M, Duvaux S, Cochereau J, Duffau H. Converging evidence for a cortico-subcortical network mediating lexical retrieval. Brain 2018; 139:3007-3021. [PMID: 27604309 DOI: 10.1093/brain/aww220] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/13/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France.,Department of Neurology, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Morgane Boiseau
- Department of Neurology, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Sophie Duvaux
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Jérôme Cochereau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France
| |
Collapse
|
15
|
Cai J, Hu X, Guo K, Yang P, Situ M, Huang Y. Increased Left Inferior Temporal Gyrus Was Found in Both Low Function Autism and High Function Autism. Front Psychiatry 2018; 9:542. [PMID: 30425664 PMCID: PMC6218606 DOI: 10.3389/fpsyt.2018.00542] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Previous neuroimaging studies of autism spectrum disorder (ASD) have focused on subjects with IQ > 70 or ASD without considering IQ levels. It remains unclear whether differences in brain anatomy in this population are associated with variations in clinical phenotype. In this study, 19 children with low functioning autism (LFA) and 19 children with high functioning autism (HFA) were compared with 27 healthy controls (HC). We found increased gray matter volume (GMV) in the left inferior temporal gyrus in subjects with both HFA and LFA and increased GMV of left middle temporal gyrus BA21 was found only in the LFA group. A significant negative correlation was found between the left inferior temporal gyrus (LITG) and the score of repetitive behavior in the HFA group.
Collapse
Affiliation(s)
- Jia Cai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Hu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Kuifang Guo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Pingyuan Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Mingjing Situ
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Trebuchon A, Lambert I, Guisiano B, McGonigal A, Perot C, Bonini F, Carron R, Liegeois-Chauvel C, Chauvel P, Bartolomei F. The different patterns of seizure-induced aphasia in temporal lobe epilepsies. Epilepsy Behav 2018; 78:256-264. [PMID: 29128469 DOI: 10.1016/j.yebeh.2017.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Ictal language disturbances may occur in dominant hemisphere temporal lobe epilepsy (TLE), but little is known about the precise anatomoelectroclinical correlations. This study investigated the different facets of ictal aphasia in intracerebrally recorded TLE. METHODS Video-stereoelectroencephalography (SEEG) recordings of 37 seizures in 17 right-handed patients with drug-resistant TLE were analyzed; SEEG electroclinical correlations between language disturbance and involvement of temporal lobe structures were assessed. In the clinical analysis, we separated speech disturbance from loss of consciousness. RESULTS According to the region involved, different patterns of ictal aphasia in TLE were identified. Impaired speech comprehension was associated with posterior lateral involvement, anomia and reduced verbal fluency with anterior mediobasal structures, and jargonaphasia with basal temporal involvement. The language production deficits, such as anomia and low fluency, cannot be simply explained by an involvement of Broca's area, since this region was not affected by seizure discharge. SIGNIFICANCE Assessment of language function in the early ictal state can be successfully performed and provides valuable information on seizure localization within the temporal lobe as well as potentially useful information for guiding surgery.
Collapse
Affiliation(s)
- Agnès Trebuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France.
| | - Isabelle Lambert
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Bernard Guisiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Aileen McGonigal
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Charline Perot
- APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Francesca Bonini
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | | | - Patrick Chauvel
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| |
Collapse
|
17
|
Bédos Ulvin L, Jonas J, Brissart H, Colnat-Coulbois S, Thiriaux A, Vignal JP, Maillard L. Intracerebral stimulation of left and right ventral temporal cortex during object naming. BRAIN AND LANGUAGE 2017; 175:71-76. [PMID: 29024845 DOI: 10.1016/j.bandl.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing.
Collapse
Affiliation(s)
- Line Bédos Ulvin
- Service de Neurologie, Centre Hospitalier Universitaire de Reims, Reims, France.
| | - Jacques Jonas
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; CRAN, UMR 7039, CNRS et Université de Lorraine, Nancy, France.
| | - Hélène Brissart
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France.
| | | | - Anne Thiriaux
- Service de Neurologie, Centre Hospitalier Universitaire de Reims, Reims, France.
| | - Jean-Pierre Vignal
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; CRAN, UMR 7039, CNRS et Université de Lorraine, Nancy, France.
| | - Louis Maillard
- Service de Neurologie, Centre Hospitalier Universitaire de Nancy, Nancy, France; CRAN, UMR 7039, CNRS et Université de Lorraine, Nancy, France.
| |
Collapse
|
18
|
Enatsu R, Kanno A, Ookawa S, Ochi S, Ishiai S, Nagamine T, Mikuni N. Distribution and Network of Basal Temporal Language Areas: A Study of the Combination of Electric Cortical Stimulation and Diffusion Tensor Imaging. World Neurosurg 2017. [DOI: 10.1016/j.wneu.2017.06.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Benjamin CF, Walshaw PD, Hale K, Gaillard WD, Baxter LC, Berl MM, Polczynska M, Noble S, Alkawadri R, Hirsch LJ, Constable RT, Bookheimer SY. Presurgical language fMRI: Mapping of six critical regions. Hum Brain Mapp 2017; 38:4239-4255. [PMID: 28544168 PMCID: PMC5518223 DOI: 10.1002/hbm.23661] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language‐critical areas are now well‐known. We evaluated whether clinicians could use a novel approach, including clinician‐driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician‐based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239–4255, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher F Benjamin
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Patricia D Walshaw
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| | - Kayleigh Hale
- U.S. Department of Veterans Affairs, War Related Illness and Injury Study Center, Washington, DC
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Leslie C Baxter
- Department of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - Madison M Berl
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Monika Polczynska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California.,Faculty of English, Adam Mickiewicz University, Poznań, Poland
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rafeed Alkawadri
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut
| | - Lawrence J Hirsch
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Susan Y Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| |
Collapse
|
20
|
Sood MR, Sereno MI. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps. Hum Brain Mapp 2016; 37:2784-810. [PMID: 27061771 PMCID: PMC4949687 DOI: 10.1002/hbm.23208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/09/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariam R. Sood
- Department of Psychological SciencesBirkbeck, University of London Malet StreetLondonWC1E 7HXUnited Kingdom
| | - Martin I. Sereno
- Department of Psychological SciencesBirkbeck, University of London Malet StreetLondonWC1E 7HXUnited Kingdom
- Experimental Psychology, Division of Psychology and Language Sciences 26 Bedford WayLondonWC1H 0APUnited Kingdom
| |
Collapse
|
21
|
Abstract
Surgery is an important therapeutic alternative for patients with uncontrolled epilepsy. Preoperative identification of brain regions important for language is important to reduce the risk of functional impairment after surgery. The Wada test suffers from several technical and clinical disadvantages and provides hemispheric data at best. More invasive methods such as intraoperative or chronic subdural cortical mapping have more limited application. New approaches using neuroimaging methods offer the opportunity to localize, as well as lateralize, language. In addition, normal volunteers can be studied with the same techniques, providing comparative and control data. Although most normal studies have been reported as group data, it is important for individual scans to be available for comparison with patient studies to understand the normal range of interindividual variability. Two techniques, PET with 15O-water-PET and fMRI, have been used. Both detect signal changes associated with increased regional blood flow during neuronal activity. Usually, scans performed during a language task are compared with those obtained during control conditions. It is important to choose activation tasks carefully, to make sure one is imaging activation associated with the particular process of interest. PET has advantages, including a fully diffusible tracer, standardized analytic methods, a more comfortable environment, and less sensitivity to movement artifact. On the other hand, it involves a cyclotron-produced tracer, radiation exposure, and is more difficult to repeat. FMRI over represents the effects of large vascular structures and is very sensitive to movement but uses widely available equipment and has no limitation on the number of studies. For both studies, it is important to understand the potential effects of such factors as attention, fatigue, and familiarity with the material. Several studies comparing 15O-water-PET and fMRI to the Wada test found that the former are at least as accurate for language lateralization. In addition, we compared 15O-water-PET to direct subdural electrode cortical stimulation and found that regions showing increased cerebral blood flow during naming tasks co-registered with subdural electrodes that disrupted language during electrical stimulation. In this and other studies, PET detected more regions than electrical stimulation techniques. The whole brain cannot be covered with electrodes, but some areas participating in a task may not be crucial for it. FMRI is particularly useful for children. We compared cortical activation patterns in normal children, adolescents, and adults. The activation patterns, and laterality of language dominance, in children 8 years and above, were similar to adults, although some differences could reflect maturation and evolving focality of cognitive processes. In children with epilepsy, fMRI successfully identified language laterality and provided data on intrahemispheric localization. Studies also showed the effects of the epileptic focus on normal activation patterns for several tasks. Neuroimaging functional mapping is an important tool, still in the process of development and evolution. Although potentially of great clinical and scientific value, it should be used and interpreted cautiously.
Collapse
Affiliation(s)
- William D. Gaillard
- Clinical Epilepsy Section, National Institutes of Health, Bethesda Maryland, Children’s National Medical Center, Washington, D.C
| | - William H. Theodore
- Clinical Epilepsy Section, National Institutes of Health, Bethesda Maryland,
| |
Collapse
|
22
|
Toledano R, Jiménez-Huete A, Campo P, Poch C, García-Morales I, Gómez Angulo JC, Coras R, Blümcke I, Álvarez-Linera J, Gil-Nagel A. Small temporal pole encephalocele: A hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia 2016; 57:841-51. [DOI: 10.1111/epi.13371] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Rafael Toledano
- Epilepsy Unit; Department of Neurology; Hospital Ruber Internacional; Madrid Spain
- Epilepsy Unit; Department of Neurology; Hospital Ramon y Cajal; Madrid Spain
| | | | - Pablo Campo
- Department of Basic Psychology; Autonoma University of Madrid; Madrid Spain
| | - Claudia Poch
- Department of Biological and Health Psychology; Autonoma University of Madrid; Madrid Spain
| | - Irene García-Morales
- Epilepsy Unit; Department of Neurology; Hospital Ruber Internacional; Madrid Spain
- Epilepsy Unit; Department of Neurology; Hospital Clinico San Carlos; Madrid Spain
| | | | - Roland Coras
- Department of Neuropathology; University Hospital Erlangen; Erlangen Germany
| | - Ingmar Blümcke
- Department of Neuropathology; University Hospital Erlangen; Erlangen Germany
| | | | - Antonio Gil-Nagel
- Epilepsy Unit; Department of Neurology; Hospital Ruber Internacional; Madrid Spain
| |
Collapse
|
23
|
Sereno MI. Origin of symbol-using systems: speech, but not sign, without the semantic urge. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130303. [PMID: 25092671 PMCID: PMC4123682 DOI: 10.1098/rstb.2013.0303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural language--spoken and signed--is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint.
Collapse
Affiliation(s)
- Martin I Sereno
- Experimental Psychology, University College London, London, WC1H 0AP, UK Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK Birkbeck/UCL Neuroimaging Centre, 26 Bedford Way, London, WC1H 0AP, UK Cognitive Science Department, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093
| |
Collapse
|
24
|
Entz L, Tóth E, Keller CJ, Bickel S, Groppe DM, Fabó D, Kozák LR, Erőss L, Ulbert I, Mehta AD. Evoked effective connectivity of the human neocortex. Hum Brain Mapp 2014; 35:5736-53. [PMID: 25044884 DOI: 10.1002/hbm.22581] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/04/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022] Open
Abstract
The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6-BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Broca's area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large-scale, directional study of local and long-range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies.
Collapse
Affiliation(s)
- László Entz
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, Manhasset, New York, 11030; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1132, Hungary; Department of Functional Neurosurgery and Department of Epilepsy, National Institute of Clinical Neuroscience, Budapest, 1145, Hungary; Péter Pázmány Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kin H, Ishikawa E, Takano S, Ayuzawa S, Matsushita A, Muragaki Y, Aiyama H, Sakamoto N, Yamamoto T, Matsumura A. Language areas involving the inferior temporal cortex on intraoperative mapping in a bilingual patient with glioblastoma. Neurol Med Chir (Tokyo) 2014; 53:256-8. [PMID: 23615419 DOI: 10.2176/nmc.53.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 40-year-old bilingual man underwent removal of glioblastoma multiforme with intraoperative language mapping, mainly using the picture-naming and auditory responsive-naming tasks under cortical stimulation. Multiple language areas were identified, including one located in the middle of the inferior temporal cortex (ITC). Individual mapping for glioma patients must be performed because language areas might be located in various and unexpected regions, including the ITC.
Collapse
Affiliation(s)
- Hidehiro Kin
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Complex auditory hallucinations are often characterized by hearing voices and are then called auditory verbal hallucinations (AVHs). While AVHs have been extensively investigated in psychiatric patients suffering from schizophrenia, reports from neurological patients are rare and, in most cases, incomplete. Here, we characterize AVHs in 9 patients suffering from pharmacoresistant epilepsy by analyzing the phenomenology of AVHs and patients' neuropsychological and lesion profiles. From a cohort of 352 consecutively examined patients with epilepsy, 9 patients suffering AVHs were identified and studied by means of a semistructured interview, neuropsychological tests, and multimodal imaging, relying on a combination of functional and structural neuroimaging data and surface and intracranial EEG. We found that AVHs in patients with epilepsy were associated with prevalent language deficits and damage to posterior language areas and basal language areas in the left temporal cortex. Auditory verbal hallucinations, most of the times, consisted in hearing a single voice of the same gender and language as the patient and had specific spatial features, being, most of the times, perceived in the external space, contralateral to the lesion. We argue that the consistent location of AVHs in the contralesional external space, the prominence of associated language deficits, and the prevalence of lesions to the posterior temporal language areas characterize AVHs of neurological origin, distinguishing them from those of psychiatric origin.
Collapse
|
27
|
Bagga D, Singh N, Modi S, Kumar P, Bhattacharya D, Garg ML, Khushu S. Assessment of lexical semantic judgment abilities in alcohol-dependent subjects: an fMRI study. J Biosci 2013; 38:905-15. [PMID: 24296894 DOI: 10.1007/s12038-013-9387-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropsychological studies have shown that alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual motor skills, abstraction and problem solving, whereas language skills are relatively spared in alcoholics despite structural abnormalities in the language-related brain regions. To investigate the preserved mechanisms of language processing in alcohol-dependents, functional brain imaging was undertaken in healthy controls (n=18) and alcohol-dependents (n=16) while completing a lexical semantic judgment task in a 3 T MR scanner. Behavioural data indicated that alcohol-dependents took more time than controls for performing the task but there was no significant difference in their response accuracy. fMRI data analysis revealed that while performing the task, the alcoholics showed enhanced activations in left supramarginal gyrus, precuneus bilaterally, left angular gyrus, and left middle temporal gyrus as compared to control subjects. The extensive activations observed in alcoholics as compared to controls suggest that alcoholics recruit additional brain areas to meet the behavioural demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting compensatory mechanisms for the execution of task for showing an equivalent performance or decreased neural efficiency of relevant brain networks. However, on direct comparison of the two groups, the results did not survive correction for multiple comparisons; therefore, the present findings need further exploration.
Collapse
Affiliation(s)
- D Bagga
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig. SK Mazumdar Marg, Timarpur, Delhi 110 054, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Monzalvo K, Dehaene-Lambertz G. How reading acquisition changes children's spoken language network. BRAIN AND LANGUAGE 2013; 127:356-365. [PMID: 24216407 DOI: 10.1016/j.bandl.2013.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 10/09/2013] [Accepted: 10/19/2013] [Indexed: 06/02/2023]
Abstract
To examine the influence of age and reading proficiency on the development of the spoken language network, we tested 6- and 9-years-old children listening to native and foreign sentences in a slow event-related fMRI paradigm. We observed a stable organization of the peri-sylvian areas during this time period with a left dominance in the superior temporal sulcus and inferior frontal region. A year of reading instruction was nevertheless sufficient to increase activation in regions involved in phonological representations (posterior superior temporal region) and sentence integration (temporal pole and pars orbitalis). A top-down activation of the left inferior temporal cortex surrounding the visual word form area, was also observed but only in 9year-olds (3years of reading practice) listening to their native language. These results emphasize how a successful cultural practice, reading, slots in the biological constraints of the innate spoken language network.
Collapse
Affiliation(s)
- Karla Monzalvo
- INSERM, U992, Cognitive Neuroimaging Unit, F-91191 Gif/Yvette, France; CEA, DSV/I2BM, NeuroSpin Center, F-91191 Gif/Yvette, France; University Paris-Sud, Cognitive Neuroimaging Unit, F-91191 Gif/Yvette, France
| | | |
Collapse
|
29
|
Desmurget M, Song Z, Mottolese C, Sirigu A. Re-establishing the merits of electrical brain stimulation. Trends Cogn Sci 2013; 17:442-9. [PMID: 23932195 DOI: 10.1016/j.tics.2013.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/05/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
During the past decades, direct electrical stimulation (DES) has been a key method not only in determining the organization of brain networks mediating movement, language, and cognition but also in establishing many central concepts of modern neuroscience, such as the electrical nature of neural transmission, the localization of brain functions, and the homuncular arrangement of sensorimotor areas. However, recent criticisms have questioned the utility of DES and argued that data collected with this technique may be flawed and unreliable. As with every other neuroscientific method, DES does have limitations. However, existing evidence argues strongly for its validity and usefulness by demonstrating that DES produces highly specific outcomes at well-defined anatomical sites and significantly minimizes postoperative deficits in brain-damaged patients.
Collapse
|
30
|
Dien J, Brian ES, Molfese DL, Gold BT. Combined ERP/fMRI evidence for early word recognition effects in the posterior inferior temporal gyrus. Cortex 2013; 49:2307-21. [PMID: 23701693 DOI: 10.1016/j.cortex.2013.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/08/2013] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
Abstract
Two brain regions with established roles in reading are the posterior middle temporal gyrus and the posterior fusiform gyrus (FG). Lesion studies have also suggested that the region located between them, the posterior inferior temporal gyrus (pITG), plays a central role in word recognition. However, these lesion results could reflect disconnection effects since neuroimaging studies have not reported consistent lexicality effects in pITG. Here we tested whether these reported pITG lesion effects are due to disconnection effects or not using parallel Event-related Potentials (ERP)/functional magnetic resonance imaging (fMRI) studies. We predicted that the Recognition Potential (RP), a left-lateralized ERP negativity that peaks at about 200-250 msec, might be the electrophysiological correlate of pITG activity and that conditions that evoke the RP (perceptual degradation) might therefore also evoke pITG activity. In Experiment 1, twenty-three participants performed a lexical decision task (temporally flanked by supraliminal masks) while having high-density 129-channel ERP data collected. In Experiment 2, a separate group of fifteen participants underwent the same task while having fMRI data collected in a 3T scanner. Examination of the ERP data suggested that a canonical RP effect was produced. The strongest corresponding effect in the fMRI data was in the vicinity of the pITG. In addition, results indicated stimulus-dependent functional connectivity between pITG and a region of the posterior FG near the Visual Word Form Area (VWFA) during word compared to nonword processing. These results provide convergent spatiotemporal evidence that the pITG contributes to early lexical access through interaction with the VWFA.
Collapse
Affiliation(s)
- Joseph Dien
- Center for Advanced Study of Language, University of Maryland, College Park, MD, USA; Department of Psychological & Brain Sciences, University of Louisville, Louisville, KY, USA.
| | | | | | | |
Collapse
|
31
|
Visual processing in the inferior temporal cortex: an intracranial event related potential study. Clin Neurophysiol 2012; 124:164-70. [PMID: 22999318 DOI: 10.1016/j.clinph.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 06/11/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate visual processing over the inferior temporal cortex (ITC) by recording intracranial event-related potentials (IERPs), and correlating the results with those of electrocortical stimulation mapping (ESM). METHODS IERPs to word, non-word, and non-letter visual stimuli were recorded over the ITC in 6 patients with intractable epilepsy. Two patients underwent ESM of the same contacts. RESULTS IERPs were observed at 18 electrodes in 4 out of 6 patients. Nine electrodes showed early IERPs (peak latency ≤ 200 ms) over the posterior and middle ITC and 7 of them showed a following late ERP component, "early+late IERPs". Nine electrodes showed late IERPs (peak latency>200 ms) over the middle and anterior ITC. Among four electrodes showing language or visual phenomena by ESM, one electrode showed a short latency IERP, another electrode showed a late IERP, and the remaining two electrodes showed no IERPs. CONCLUSIONS Our findings further support that the visual recognition occurred sequentially from posterior to anterior ITC. Dissociation of IERPs and ESM may be explained by the methodological difference. SIGNIFICANCE IERP study disclosed that visual recognition occurred sequentially from posterior to anterior ITC.
Collapse
|
32
|
Monzalvo K, Fluss J, Billard C, Dehaene S, Dehaene-Lambertz G. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 2012; 61:258-74. [PMID: 22387166 DOI: 10.1016/j.neuroimage.2012.02.035] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 01/02/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022] Open
Affiliation(s)
- Karla Monzalvo
- INSERM, Cognitive Neuroimaging Unit, Gif sur Yvette, 91191 France
| | | | | | | | | |
Collapse
|
33
|
Hamberger MJ, Cole J. Language organization and reorganization in epilepsy. Neuropsychol Rev 2011; 21:240-51. [PMID: 21842185 PMCID: PMC3193181 DOI: 10.1007/s11065-011-9180-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/31/2011] [Indexed: 10/17/2022]
Abstract
The vast majority of healthy individuals are left hemisphere dominant for language; however, individuals with left hemisphere epilepsy have a higher likelihood of atypical language organization. The cerebral organization of language in epilepsy has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping (ESM), and more recently, with noninvasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). Investigators have used these techniques to explore the influence of unique clinical features inherent in epilepsy that might contribute to the reorganization of language, such as location of seizure onset, age of seizure onset, and extent of interictal epileptiform activity. In this paper, we review the contribution of these and other clinical variables to the lateralization and localization of language in epilepsy, and how these patient-related variables affect the results from these three different, yet complementary methodologies. Unlike the abrupt language changes that occur following acute brain injury with disruption of established language circuits, converging evidence suggests that the chronic nature of epileptic activity can result in a developmental shift of language from the left to the right hemisphere or re-routing of language pathways from traditional to non-traditional areas within the dominant left hemisphere. Clinical variables have been shown to contribute to cerebral language reorganization in the setting of chronic seizure disorders, yet such factors have not been reliable predictors of altered language networks in individual patients, underscoring the need for language lateralization and localization procedures when definitive identification of language cortex is necessary for clinical care.
Collapse
Affiliation(s)
- Marla J Hamberger
- The Neurological Institute, Columbia University Medical Center, 710 West 168th Street, 7th floor, New York, NY 10032, USA.
| | | |
Collapse
|
34
|
Skipper LM, Ross LA, Olson IR. Sensory and semantic category subdivisions within the anterior temporal lobes. Neuropsychologia 2011; 49:3419-29. [PMID: 21889520 DOI: 10.1016/j.neuropsychologia.2011.07.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/12/2011] [Accepted: 07/31/2011] [Indexed: 11/29/2022]
Abstract
In the semantic memory literature the anterior temporal lobe (ATL) is frequently discussed as one homogeneous region when in fact, anatomical studies indicate that it is likely that there are discrete subregions within this area. Indeed, the influential Hub Account of semantic memory has proposed that this region is a sensory-amodal, general-purpose semantic processing region. However review of the literature suggested two potential demarcations: sensory subdivisions and a social/nonsocial subdivision. To test this, participants were trained to associate social or non-social words with novel auditory, visual, or audiovisual stimuli. Later, study participants underwent an fMRI scan where they were presented with the sensory stimuli and the task was to recall the semantic associate. The results showed that there were sensory specific subdivisions within the ATL - that the perceptual encoding of auditory stimuli preferentially activated the superior ATL, visual stimuli the inferior ATL, and multisensory stimuli the polar ATL. Moreover, our data showed that there is stimulus-specific sensitivity within the ATL - the superior and polar ATLs were more sensitive to the retrieval of social knowledge as compared to non-social knowledge. No ATL regions were more sensitive to the retrieval of non-social knowledge. These findings indicate that the retrieval of newly learned semantic associations activates the ATL. In addition, superior and polar aspects of the ATL are sensitive to social stimuli but relatively insensitive to non-social stimuli, a finding that is predicted by anatomical connectivity and single-unit studies in non-human primates. And lastly, the ATL contains sensory processing subdivisions that fall along superior (auditory), inferior (visual), polar (audiovisual) subdivisions.
Collapse
Affiliation(s)
- Laura M Skipper
- Department of Psychology, Temple University, Philadelphia, PA 19122, United States.
| | | | | |
Collapse
|
35
|
Koubeissi MZ, Lesser RP, Sinai A, Gaillard WD, Franaszczuk PJ, Crone NE. Connectivity between perisylvian and bilateral basal temporal cortices. Cereb Cortex 2011; 22:918-25. [PMID: 21715651 DOI: 10.1093/cercor/bhr163] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Language processing requires the orchestrated action of different neuronal populations, and some studies suggest that the role of the basal temporal (BT) cortex in language processing is bilaterally distributed. Our aim was to demonstrate connectivity between perisylvian cortex and both BT areas. We recorded corticocortical evoked potentials (CCEPs) in 8 patients with subdural electrodes implanted for surgical evaluation of intractable epilepsy. Four patients had subdural grids over dominant perisylvian and BT areas, and 4 had electrode strips over both BT areas and left posterior superior temporal gyrus (LPSTG). After electrocortical mapping, patients with grids had 1-Hz stimulation of language areas. Patients with strips did not undergo mapping but had 1-Hz stimulation of the LPSTG. Posterior language area stimulation elicited CCEPs in ipsilateral BT cortex in 3/4 patients with left hemispheric grids. CCEPs were recorded in bilateral BT cortices in 3/4 patients with strips upon stimulation of the LPSTG, and in the LPSTG in the fourth patient upon stimulation of either BT area. This is the first in vivo demonstration of connectivity between LPSTG and both BT cortices. The role of BT cortex in language processing may be bilaterally distributed and related to linking visual information with phonological representations stored in the LPSTG.
Collapse
Affiliation(s)
- Mohamad Z Koubeissi
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Cervenka MC, Boatman-Reich DF, Ward J, Franaszczuk PJ, Crone NE. Language mapping in multilingual patients: electrocorticography and cortical stimulation during naming. Front Hum Neurosci 2011; 5:13. [PMID: 21373361 PMCID: PMC3044479 DOI: 10.3389/fnhum.2011.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/23/2011] [Indexed: 11/29/2022] Open
Abstract
Multilingual patients pose a unique challenge when planning epilepsy surgery near language cortex because the cortical representations of each language may be distinct. These distinctions may not be evident with routine electrocortical stimulation mapping (ESM). Electrocorticography (ECoG) has recently been used to detect task-related spectral perturbations associated with functional brain activation. We hypothesized that using broadband high gamma augmentation (HGA, 60–150 Hz) as an index of cortical activation, ECoG would complement ESM in discriminating the cortical representations of first (L1) and second (L2) languages. We studied four adult patients for whom English was a second language, in whom subdural electrodes (a total of 358) were implanted to guide epilepsy surgery. Patients underwent ECoG recordings and ESM while performing the same visual object naming task in L1 and L2. In three of four patients, ECoG found sites activated during naming in one language but not the other. These language-specific sites were not identified using ESM. In addition, ECoG HGA was observed at more sites during L2 versus L1 naming in two patients, suggesting that L2 processing required additional cortical resources compared to L1 processing in these individuals. Post-operative language deficits were identified in three patients (one in L2 only). These deficits were predicted by ECoG spectral mapping but not by ESM. These results suggest that pre-surgical mapping should include evaluation of all utilized languages to avoid post-operative functional deficits. Finally, this study suggests that ECoG spectral mapping may potentially complement the results of ESM of language.
Collapse
Affiliation(s)
- Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
37
|
Using subdural electrodes to assess the safety of resections. Epilepsy Behav 2011; 20:223-9. [PMID: 20880755 DOI: 10.1016/j.yebeh.2010.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/20/2022]
Abstract
Subdural electrodes are frequently used to aid in the neurophysiological assessment of patients with intractable seizures. We review their use for localizing cortical regions supporting movement, sensation, and language.
Collapse
|
38
|
Gainotti G. The organization and dissolution of semantic-conceptual knowledge: is the 'amodal hub' the only plausible model? Brain Cogn 2011; 75:299-309. [PMID: 21211892 DOI: 10.1016/j.bandc.2010.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/09/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022]
Abstract
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas.
Collapse
Affiliation(s)
- Guido Gainotti
- Department of Neurosciences, Policlinico Gemelli, Catholic University of Rome, Italy.
| |
Collapse
|
39
|
Mion M, Patterson K, Acosta-Cabronero J, Pengas G, Izquierdo-Garcia D, Hong YT, Fryer TD, Williams GB, Hodges JR, Nestor PJ. What the left and right anterior fusiform gyri tell us about semantic memory. Brain 2010; 133:3256-68. [PMID: 20952377 DOI: 10.1093/brain/awq272] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The study of patients with semantic dementia, a variant of frontotemporal lobar degeneration, has emerged over the last two decades as an important lesion model for studying human semantic memory. Although it is well-known that semantic dementia is associated with temporal lobe degeneration, controversy remains over whether the semantic deficit is due to diffuse temporal lobe damage, damage to only a sub-region of the temporal lobe or even less severe damage elsewhere in the brain. The manner in which the right and left temporal lobes contribute to semantic knowledge is also not fully elucidated. In this study we used unbiased imaging analyses to correlate resting cerebral glucose metabolism and behavioural scores in tests of verbal and non-verbal semantic memory. In addition, a region of interest analysis was performed to evaluate the role of severely hypometabolic areas. The best, indeed the only, strong predictor of semantic scores across a set of 21 patients with frontotemporal lobar degeneration with semantic impairment was degree of hypometabolism in the anterior fusiform region subjacent to the head and body of the hippocampus. As hypometabolism in the patients' rostral fusiform was even more extreme than the abnormality in other regions with putative semantic relevance, such as the temporal poles, the significant fusiform correlations cannot be attributed to floor-level function in these other regions. More detailed analysis demonstrated more selective correlations: left anterior fusiform function predicted performance on two expressive verbal tasks, whereas right anterior fusiform metabolism predicted performance on a non-verbal test of associative semantic knowledge. This pattern was further supported by an additional behavioural study performed on a wider cohort of patients with semantic dementia, in which the patients with more extensive right-temporal atrophy (when matched on degree of naming deficit to a set of cases with more extensive left temporal atrophy) were significantly more impaired on the test of non-verbal semantics. Our preferred interpretation of this laterality effect involves differential strength of connectivity between different regions of a widespread semantic network in the human brain.
Collapse
Affiliation(s)
- Marco Mion
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge CB2 0SZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lesser RP, Crone NE, Webber WRS. Subdural electrodes. Clin Neurophysiol 2010; 121:1376-1392. [PMID: 20573543 PMCID: PMC2962988 DOI: 10.1016/j.clinph.2010.04.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/21/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Subdural electrodes are frequently used to aid in the neurophysiological assessment of patients with intractable seizures. We review the indications for these, their uses for localizing epileptogenic regions and for localizing cortical regions supporting movement, sensation, and language.
Collapse
Affiliation(s)
- Ronald P Lesser
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - W R S Webber
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| |
Collapse
|
41
|
Binney RJ, Embleton KV, Jefferies E, Parker GJM, Ralph MAL. The Ventral and Inferolateral Aspects of the Anterior Temporal Lobe Are Crucial in Semantic Memory: Evidence from a Novel Direct Comparison of Distortion-Corrected fMRI, rTMS, and Semantic Dementia. Cereb Cortex 2010; 20:2728-38. [PMID: 20190005 DOI: 10.1093/cercor/bhq019] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Richard J Binney
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
42
|
Temporal Dynamics of Japanese Morphogram and Syllabogram Processing in the Left Basal Temporal Area Studied by Event-Related Potentials. J Clin Neurophysiol 2009; 26:160-6. [DOI: 10.1097/wnp.0b013e3181a184c1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Fonseca ATD, Guedj E, Alario FX, Laguitton V, Mundler O, Chauvel P, Liegeois-Chauvel C. Brain regions underlying word finding difficulties in temporal lobe epilepsy. Brain 2009; 132:2772-84. [DOI: 10.1093/brain/awp083] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Electrophysiological study of the basal temporal language area: A convergence zone between language perception and production networks. Clin Neurophysiol 2009; 120:539-50. [DOI: 10.1016/j.clinph.2008.12.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/02/2008] [Accepted: 12/27/2008] [Indexed: 11/22/2022]
|
45
|
Dien J, Franklin MS, Michelson CA, Lemen LC, Adams CL, Kiehl KA. fMRI characterization of the language formulation area. Brain Res 2008; 1229:179-92. [DOI: 10.1016/j.brainres.2008.06.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 10/26/2007] [Accepted: 06/18/2008] [Indexed: 11/30/2022]
|
46
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
47
|
Abstract
The field of epilepsy has contributed significantly to localization of neurologic function, particularly in the neocortex. Methodologies such as cortical stimulation, positron emission tomography, functional MRI, trans-cranial magnetic stimulation, surgical resection, and magnetoencephalography have been used successfully in patients with epilepsy to locate specific functions, primarily for the purpose of defining eloquent cortex before surgical resections. The left hemisphere serves language-related functions and verbal memory in most people, whereas the right hemisphere serves some language function in addition to perceiving most components of music and other forms of nonverbal material. Both hemispheres cooperate in understanding spatial relationships. Studies in patients with developmental abnormalities have enriched our understanding of localization of function within the cortex. Future studies may help us understand the sequence in which specific regions are activated during specific tasks and determine which regions are necessary for tasks and which are supplementary. The ability to predict preoperatively the effect of removal of specific tissues would benefit surgical planning for all patients who undergo cortical resections, including those with epilepsy.
Collapse
|
48
|
Hamberger MJ. Cortical language mapping in epilepsy: a critical review. Neuropsychol Rev 2007; 17:477-89. [PMID: 18004662 DOI: 10.1007/s11065-007-9046-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/03/2007] [Indexed: 11/29/2022]
Abstract
One challenge in dominant hemisphere epilepsy surgery is to remove sufficient epileptogenic tissue to achieve seizure freedom without compromising postoperative language function. Electrical stimulation mapping (ESM) of language was developed specifically to identify essential language cortex in pharmacologically intractable epilepsy patients undergoing left hemisphere resection of epileptogenic cortex. Surprisingly, the procedure remains unstandardized, and limited data support its clinical validity. Nevertheless, ESM for language mapping has likely minimized postoperative language decline in numerous patients, and has generated a wealth of data elucidating brain-language relations. This article reviews the literature on topographical patterns of language organization inferred from ESM, and the influence of patient characteristics on these patterns, including baseline ability level, age, gender, pathology, degree of language lateralization and bilingualism. Questions regarding clinical validity and limitations of ESM are discussed. Finally, recommendations for clinical practice are presented, and theoretical questions regarding ESM and the findings it has generated are considered.
Collapse
Affiliation(s)
- Marla J Hamberger
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
49
|
Mikuni N, Miyamoto S, Ikeda A, Satow T, Taki J, Takahashi J, Ohigashi Y, Hashimoto N. Subtemporal Hippocampectomy Preserving the Basal Temporal Language Area for Intractable Mesial Temporal Lobe Epilepsy: Preliminary Results. Epilepsia 2006; 47:1347-53. [PMID: 16922880 DOI: 10.1111/j.1528-1167.2006.00610.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Decline in verbal memory as a surgical complication remains an unresolved problem in mesial temporal lobe epilepsy. Some areas in the temporal lobe associated with the language function, often including the basal temporal language area, have been removed or transected by conventional surgical procedures. The authors defined the basal temporal language area and removed only the epileptogenic zone with a subtemporal approach. METHODS The basal temporal language area was evaluated by using long-term subdural electrodes in five patients with language-dominant-side mesial temporal lobe epilepsy. While preserving this area, the hippocampus and the parahippocampal gyrus were removed by using a combined subtemporal, transventricular, transchoroidal fissure approach. Verbal memory performance was assessed with the Wechsler Memory Scale-Revised (WMS-R) before and after the operation. RESULTS The basal temporal language area, defined as a part of the inferior temporal gyrus, the fusiform gyrus, and the parahippocampal gyrus, was spared by entering the temporal horn via collateral sulcus. Verbal memory was significantly improved by 3 months and 1 year after the operation. CONCLUSIONS In language-dominant-side mesial temporal lobe epilepsy, preserving the basal temporal language area would have potential to improve verbal memory outcomes after removal of the epileptogenic zone.
Collapse
Affiliation(s)
- Nobuhiro Mikuni
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Boatman DF, Miglioretti DL. Cortical sites critical for speech discrimination in normal and impaired listeners. J Neurosci 2006; 25:5475-80. [PMID: 15944375 PMCID: PMC6724973 DOI: 10.1523/jneurosci.0936-05.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We used statistical modeling to investigate variability in the cortical auditory representations of 24 normal-hearing epilepsy patients undergoing electrocortical stimulation mapping (ESM). Patients were identified as normal or impaired listeners based on recognition accuracy for acoustically filtered words used to simulate everyday listening conditions. The experimental ESM task was a binary (same-different) auditory syllable discrimination paradigm that both listener groups performed accurately at baseline. Template mixture modeling of speech discrimination deficits during ESM showed larger and more variable cortical distributions for impaired listeners than normal listeners, despite comparable behavioral performances. These results demonstrate that individual differences in speech recognition abilities are reflected in the underlying cortical representations.
Collapse
Affiliation(s)
- Dana F Boatman
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|