1
|
Schmitt I, Evert BO, Sharma A, Khazneh H, Murgatroyd C, Wüllner U. The Alpha-Synuclein Gene (SNCA) is a Genomic Target of Methyl-CpG Binding Protein 2 (MeCP2)-Implications for Parkinson's Disease and Rett Syndrome. Mol Neurobiol 2024; 61:7830-7844. [PMID: 38429622 DOI: 10.1007/s12035-024-03974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson's disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, University of Bonn, Bonn, Germany
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Hassan Khazneh
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany.
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Dong HW, Weiss K, Baugh K, Meadows MJ, Niswender CM, Neul JL. Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome. Neurotherapeutics 2024; 21:e00384. [PMID: 38880672 PMCID: PMC11284553 DOI: 10.1016/j.neurot.2024.e00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and clinical evaluation of targeted therapies in RTT. Studies in people with and mouse models of RTT have identified neurophysiological features, such as auditory event-related potentials, that correlate with disease severity, suggesting that they could be useful as biomarkers of disease improvement or early treatment response. We recently demonstrated that treatment of RTT mice with a positive allosteric modulator (PAM) of muscarinic acetylcholine subtype 1 receptor (M1) improved phenotypes, suggesting that modulation of M1 activity is a potential therapy in RTT. To evaluate whether neurophysiological features could be useful biomarkers to assess the effects of M1 PAM treatment, we acutely administered the M1 PAM VU0486846 (VU846) at doses of 1, 3, 10 and 30 mg/kg in wildtype and RTT mice. This resulted in an inverted U-shaped dose response with maximal improvement of AEP features at 3 mg/kg but with no marked effect on basal EEG power or epileptiform discharges in RTT mice and no significant changes in wildtype mice. These findings suggest that M1 potentiation can improve neural circuit synchrony to auditory stimuli in RTT mice and that neurophysiological features have potential as pharmacodynamic or treatment-responsive biomarkers for preclinical and clinical evaluation of putative therapies in RTT.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Weiss
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathryn Baugh
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA
| | - Mac J Meadows
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Chemical Biology, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| |
Collapse
|
3
|
Golubiani G, Lagani V, Solomonia R, Müller M. Metabolomic Fingerprint of Mecp2-Deficient Mouse Cortex: Evidence for a Pronounced Multi-Facetted Metabolic Component in Rett Syndrome. Cells 2021; 10:cells10092494. [PMID: 34572143 PMCID: PMC8472238 DOI: 10.3390/cells10092494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/10/2023] Open
Abstract
Using unsupervised metabolomics, we defined the complex metabolic conditions in the cortex of a mouse model of Rett syndrome (RTT). RTT, which represents a cause of mental and cognitive disabilities in females, results in profound cognitive impairment with autistic features, motor disabilities, seizures, gastrointestinal problems, and cardiorespiratory irregularities. Typical RTT originates from mutations in the X-chromosomal methyl-CpG-binding-protein-2 (Mecp2) gene, which encodes a transcriptional modulator. It then causes a deregulation of several target genes and metabolic alterations in the nervous system and peripheral organs. We identified 101 significantly deregulated metabolites in the Mecp2-deficient cortex of adult male mice; 68 were increased and 33 were decreased compared to wildtypes. Pathway analysis identified 31 mostly upregulated metabolic pathways, in particular carbohydrate and amino acid metabolism, key metabolic mitochondrial/extramitochondrial pathways, and lipid metabolism. In contrast, neurotransmitter-signaling is dampened. This metabolic fingerprint of the Mecp2-deficient cortex of severely symptomatic mice provides further mechanistic insights into the complex RTT pathogenesis. The deregulated pathways that were identified—in particular the markedly affected amino acid and carbohydrate metabolism—confirm a complex and multifaceted metabolic component in RTT, which in turn signifies putative therapeutic targets. Furthermore, the deregulated key metabolites provide a choice of potential biomarkers for a more detailed rating of disease severity and disease progression.
Collapse
Affiliation(s)
- Gocha Golubiani
- Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
- Correspondence: ; Tel.: +49-551-39-22933
| |
Collapse
|
4
|
Koulousakis P, Andrade P, Visser-Vandewalle V, Sesia T. The Nucleus Basalis of Meynert and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. J Alzheimers Dis 2020; 69:905-919. [PMID: 31104014 DOI: 10.3233/jad-180133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nucleus basalis of Meynert (nbM) was first described at the end of the 19th century and named after its discoverer, Theodor Meynert. The nbM contains a large population of cholinergic neurons that project their axons to the entire cortical mantle, the olfactory tubercle, and the amygdala. It has been functionally associated with the control of attention and maintenance of arousal, both key functions for appropriate learning and memory formation. This structure is well-conserved across vertebrates, although its degree of organization varies between species. Since early in the investigation of its functional and pathological significance, its degeneration has been linked to various major neuropsychiatric disorders. For instance, Lewy bodies, a hallmark in the diagnosis of Parkinson's disease, were originally described in the nbM. Since then, its involvement in other Lewy body and dementia-related disorders has been recognized. In the context of recent positive outcomes following nbM deep brain stimulation in subjects with dementia-associated disorders, we review the literature from an historical perspective focusing on how the nbM came into focus as a promising therapeutic option for patients with Alzheimer's disease. Moreover, we will discuss what is needed to further develop and widely implement this approach as well as examine novel medical indications for which nbM deep brain stimulation may prove beneficial.
Collapse
Affiliation(s)
- Philippos Koulousakis
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Pablo Andrade
- Department of Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Thibaut Sesia
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
5
|
Rezazadeh A, Uddin M, Snead OC, Lira V, Silberberg A, Weiss S, Donner EJ, Zak M, Bradbury L, Scherer SW, Fasano A, Andrade DM. STXBP1 encephalopathy is associated with awake bruxism. Epilepsy Behav 2019; 92:121-124. [PMID: 30654231 DOI: 10.1016/j.yebeh.2018.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Heterozygous mutations in syntaxin-binding protein 1 (STXBP1) gene are associated with early infantile epileptic encephalopathy 4 (EIEE4). This condition is characterized by epilepsy, developmental delay (DD), and various movement disorders. Herein, we will report 5 unrelated patients with different de novo mutations in STXBP1. In addition, we conducted an online survey through Facebook to identify the incidence of bruxism (BRX) in these patients. Four out of 5 patients (80%) presented with awake BRX (A-BRX). Bruxism was also reported in 81.4% (57/70) of the patients with STXBP1 encephalopathy through the online questionnaire. No consistent correlation was identified between the type of mutation and development of movement disorders or BRX. This is the first study to demonstrate A-BRX in patients with STXBP1 mutation. Given the role of STXBP1 in exocytosis of neurotransmitters and other manifestations of dopamine dysregulation in patients with STXBP1-EIEE4, we suggest that in patients with STXBP1 encephalopathy, A-BRX might be the result of the involvement of dopaminergic circuits.
Collapse
Affiliation(s)
- Arezoo Rezazadeh
- Krembil Neurosciences Epilepsy Genetics Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Mohammed Uddin
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - O Carter Snead
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Victor Lira
- Krembil Neurosciences Epilepsy Genetics Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Shelly Weiss
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Elizabeth J Donner
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Maria Zak
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Laura Bradbury
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada.
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada.
| | - Danielle M Andrade
- Krembil Neurosciences Epilepsy Genetics Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Are dopamine receptor and transporter changes in Rett syndrome reflected in Mecp2-deficient mice? Exp Neurol 2018; 307:74-81. [PMID: 29782864 DOI: 10.1016/j.expneurol.2018.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022]
Abstract
We tested the claim that the dopaminergic dysfunction of Rett Syndrome (RTT) also occurs in Mecp2-deficient mice that serve as a model of the syndrome. We used positron emission tomography (PET) to image dopamine D2 receptors (D2R) and transporters (DAT) in women with RTT and in Mecp2-deficient mice, and D1R and D2R density was measured in postmortem human tissue by autoradiography. Results showed 1) significantly reduced D2R density in the striatum of women with RTT compared to control subjects. 2) PET imaging of mouse striatum similarly demonstrated significant reductions in D2R density of 7-10 week-old hemizygous (Mecp2-null) and heterozygous (HET) mice compared to wild type (WT) mice. With age, the density of D2R declined in WT mice but not HET mice. 3) In contrast, postmortem autoradiography revealed no group differences in the density of D1R and D2R in the caudate and putamen of RTT versus normal control subjects. 4) In humans and in the mouse model, PET revealed only marginal group differences in DAT. The results confirm that dopaminergic dysfunction in RTT is also present in Mecp2-deficient mice and that reductions in D2R more likely explain the impaired ambulation and progressive rigidity observed rather than alterations in DAT.
Collapse
|
7
|
Leung J, McPhee DM, Renda A, Penty N, Farhoomand F, Nashmi R, Delaney KR. MeCP2-deficient mice have reduced α4 and α6 nicotinic receptor mRNA and altered behavioral response to nicotinic agonists. Behav Brain Res 2017; 330:118-126. [PMID: 28506623 DOI: 10.1016/j.bbr.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Affiliation(s)
- J Leung
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - D M McPhee
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - A Renda
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - N Penty
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - F Farhoomand
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - R Nashmi
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada.
| | - K R Delaney
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada.
| |
Collapse
|
8
|
Vogelgesang S, Niebert S, Renner U, Möbius W, Hülsmann S, Manzke T, Niebert M. Analysis of the Serotonergic System in a Mouse Model of Rett Syndrome Reveals Unusual Upregulation of Serotonin Receptor 5b. Front Mol Neurosci 2017; 10:61. [PMID: 28337123 PMCID: PMC5340760 DOI: 10.3389/fnmol.2017.00061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/23/2017] [Indexed: 12/03/2022] Open
Abstract
Mutations in the transcription factor methyl-CpG-binding-protein 2 (MeCP2) cause a delayed-onset neurodevelopmental disorder known as Rett syndrome (RTT). Although alteration in serotonin levels have been reported in RTT patients, the molecular mechanisms underlying these defects are not well understood. Therefore, we chose to investigate the serotonergic system in hippocampus and brainstem of male Mecp2-/y knock-out mice in the B6.129P2(C)-Mecp2(tm1.1Bird) mouse model of RTT. The serotonergic system in mouse is comprised of 16 genes, whose mRNA expression profile was analyzed by quantitative RT-PCR. Mecp2-/y mice are an established animal model for RTT displaying most of the cognitive and physical impairments of human patients and the selected areas receive significant modulation through serotonin. Using anatomically and functional characterized areas, we found region-specific differential expression between wild type and Mecp2-/y mice at post-natal day 40. In brainstem, we found five genes to be dysregulated, while in hippocampus, two genes were dysregulated. The one gene dysregulated in both brain regions was dopamine decarboxylase, but of special interest is the serotonin receptor 5b (5-ht5b), which showed 75-fold dysregulation in brainstem of Mecp2-/y mice. This dysregulation was not due to upregulation, but due to failure of down-regulation in Mecp2-/y mice during development. Detailed analysis of 5-ht5b revealed a receptor that localizes to endosomes and interacts with Gαi proteins.
Collapse
Affiliation(s)
- Steffen Vogelgesang
- DFG Research Center and Excellence Cluster Microscopy at the Nanometer Range and Molecular Physiology of the Brain Göttingen, Germany
| | - Sabine Niebert
- Department of Maxillofacial Surgery, University Medical Center Göttingen, Germany
| | - Ute Renner
- DFG Research Center and Excellence Cluster Microscopy at the Nanometer Range and Molecular Physiology of the Brain Göttingen, Germany
| | - Wiebke Möbius
- DFG Research Center and Excellence Cluster Microscopy at the Nanometer Range and Molecular Physiology of the BrainGöttingen, Germany; Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Swen Hülsmann
- DFG Research Center and Excellence Cluster Microscopy at the Nanometer Range and Molecular Physiology of the BrainGöttingen, Germany; Clinic for Anesthesiology, University Medical CenterGöttingen, Germany
| | - Till Manzke
- DFG Research Center and Excellence Cluster Microscopy at the Nanometer Range and Molecular Physiology of the Brain Göttingen, Germany
| | - Marcus Niebert
- DFG Research Center and Excellence Cluster Microscopy at the Nanometer Range and Molecular Physiology of the BrainGöttingen, Germany; Institute of Neuro- and Sensory Physiology, University Medical CenterGöttingen, Germany
| |
Collapse
|
9
|
Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome. Neuromolecular Med 2016; 18:364-77. [PMID: 27379379 DOI: 10.1007/s12017-016-8421-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/24/2016] [Indexed: 12/29/2022]
Abstract
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT.
Collapse
|
10
|
Hao S, Tang B, Wu Z, Ure K, Sun Y, Tao H, Gao Y, Patel AJ, Curry DJ, Samaco RC, Zoghbi HY, Tang J. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature 2016; 526:430-4. [PMID: 26469053 PMCID: PMC4828032 DOI: 10.1038/nature15694] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnestic rats have demonstrated that DBS targeted to the fimbria-fornix1-3, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory3-5. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder (IDD). IDDs are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We hypothesized that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett Syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP26, RTT appears by the second year of life, causing profound impairment in cognitive, motor, and social skills along with an array of neurological features7; RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity8-11. Here we show that forniceal DBS in RTT mice rescued contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restored in vivo hippocampal long-term potentiation (LTP) and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT.
Collapse
Affiliation(s)
- Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kerstin Ure
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yaling Sun
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huifang Tao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yan Gao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Akash J Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Daniel J Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rodney C Samaco
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, Tarquinio DC. Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends Neurosci 2016; 39:100-113. [PMID: 26830113 PMCID: PMC4924590 DOI: 10.1016/j.tins.2015.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Lying at the intersection between neurobiology and epigenetics, Rett syndrome (RTT) has garnered intense interest in recent years, not only from a broad range of academic scientists, but also from the pharmaceutical and biotechnology industries. In addition to the critical need for treatments for this devastating disorder, optimism for developing RTT treatments derives from a unique convergence of factors, including a known monogenic cause, reversibility of symptoms in preclinical models, a strong clinical research infrastructure highlighted by an NIH-funded natural history study and well-established clinics with significant patient populations. Here, we review recent advances in understanding the biology of RTT, particularly promising preclinical findings, lessons from past clinical trials, and critical elements of trial design for rare disorders.
Collapse
Affiliation(s)
- David M Katz
- Departments of Neurosciences and Psychiatry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Monica Coenraads
- Rett Syndrome Research Trust, 67 Under Cliff Road, Trumbull, CT 06611, USA
| | - Steven J Gray
- Gene Therapy Center and Department of Ophthalmology, University of North Carolina, Chapel Hill, NC USA
| | - Debashish U Menon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel C Tarquinio
- Children's Healthcare of Atlanta, Emory University, 1605 Chantilly Drive NE, Atlanta, GA 30324, USA
| |
Collapse
|
12
|
Szczesna K, de la Caridad O, Petazzi P, Soler M, Roa L, Saez MA, Fourcade S, Pujol A, Artuch-Iriberri R, Molero-Luis M, Vidal A, Huertas D, Esteller M. Improvement of the Rett syndrome phenotype in a MeCP2 mouse model upon treatment with levodopa and a dopa-decarboxylase inhibitor. Neuropsychopharmacology 2014; 39:2846-56. [PMID: 24917201 PMCID: PMC4200495 DOI: 10.1038/npp.2014.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
Rett Syndrome is a neurodevelopmental autism spectrum disorder caused by mutations in the gene coding for methyl CpG-binding protein (MeCP2). The disease is characterized by abnormal motor, respiratory, cognitive impairment, and autistic-like behaviors. No effective treatment of the disorder is available. Mecp2 knockout mice have a range of physiological and neurological abnormalities that resemble the human syndrome and can be used as a model to interrogate new therapies. Herein, we show that the combined administration of Levodopa and a Dopa-decarboxylase inhibitor in RTT mouse models is well tolerated, diminishes RTT-associated symptoms, and increases life span. The amelioration of RTT symptomatology is particularly significant in those features controlled by the dopaminergic pathway in the nigrostratium, such as mobility, tremor, and breathing. Most important, the improvement of the RTT phenotype upon use of the combined treatment is reflected at the cellular level by the development of neuronal dendritic growth. However, much work is required to extend the duration of the benefit of the described preclinical treatment.
Collapse
Affiliation(s)
- Karolina Szczesna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Olga de la Caridad
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Soler
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Laura Roa
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mauricio A Saez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Institute of Neuropathology, University of Barcelona, Barcelona, Spain,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Institute of Neuropathology, University of Barcelona, Barcelona, Spain,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rafael Artuch-Iriberri
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain,Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Molero-Luis
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain,Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - August Vidal
- Department of Pathology, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Avenue Gran Via 199-203, L'Hospitalet, Barcelona 08908, Catalonia, Spain, Tel: +34 932607253, Fax: +34 932607140, E-mail: or
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Avenue Gran Via 199-203, L'Hospitalet, Barcelona 08908, Catalonia, Spain, Tel: +34 932607253, Fax: +34 932607140, E-mail: or
| |
Collapse
|
13
|
Xie T, Zhang J, Yuan X, Yang J, Ding W, Huang X, Wu Y. Is X-linked methyl-CpG binding protein 2 a new target for the treatment of Parkinson's disease. Neural Regen Res 2014; 8:1948-57. [PMID: 25206503 PMCID: PMC4145902 DOI: 10.3969/j.issn.1673-5374.2013.21.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/15/2013] [Indexed: 01/20/2023] Open
Abstract
X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson's disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pathogenesis of Parkinson's disease remains unknown. In the present study, we used 6-hydroxydopamine-induced human neuroblastoma cell (SH-SY5Y cells) injury as a cell model of Parkinson's disease. The 6-hydroxydopamine (50 μmol/L) treatment decreased protein levels for both X-linked methyl-CpG binding protein 2 and tyrosine hydroxylase in these cells, and led to cell death. However, overexpression of X-linked methyl-CpG binding protein 2 was able to ameliorate the effects of 6-hydroxydopamine, it reduced 6-hydroxydopamine-induced apoptosis, and increased the levels of tyrosine hydroxylase in SH-SY5Y cells. These findings suggesting that X-linked methyl-CpG binding protein 2 may be a potential therapeutic target for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Teng Xie
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jie Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xianhou Yuan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Medicine, Wuhan 430071, Hubei Province, China
| | - Wei Ding
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yong Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
14
|
Brašić JR, Bibat G, Kumar A, Zhou Y, Hilton J, Yablonski ME, Dogan AS, Guevara MR, Stephane M, Johnston M, Wong DF, Naidu S. Correlation of the vesicular acetylcholine transporter densities in the striata to the clinical abilities of women with Rett syndrome. Synapse 2012; 66:471-82. [PMID: 22223404 DOI: 10.1002/syn.21515] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/18/2011] [Indexed: 11/06/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disability characterized by mutations in the X-linked methyl-CpG-binding protein 2 located at the Xq28 region. The severity is modified in part by X chromosomal inactivation resulting in wide clinical variability. We hypothesized that the ability to perform the activities of daily living (ADL) is correlated with the density of vesicular acetylcholine transporters in the striata of women with RTT. The density of the vesicular acetylcholine transporters in the living human brain can be estimated by single-photon emission-computed tomography (SPECT) after the administration of (-)-5-[¹²³I]iodobenzovesamicol ([¹²³I]IBVM). Twenty-four hours following the intravenous injection of ∼333 MBq (9 mCi) [¹²³ I]IBVM, four women with RTT and nine healthy adult volunteer control participants underwent SPECT brain scans for 60 min. The Vesicular Acetylcholine Transporter Binding Site Index (Kuhl et al., 1994), a measurement of the density of vesicular acetylcholine transporters, was estimated in the striatum and the reference structure, the cerebellum. The women with RTT were assessed for certain ADL. Although the striatal Vesicular Acetylcholine Transporter Binding Site Index was not significantly lower in RTT (5.2 ± 0.9) than in healthy adults (5.7 ± 1.6), RTT striatal Vesicular Acetylcholine Transporter Binding Site Indices and ADL scores were linearly associated (ADL = 0.89*(Vesicular Acetylcholine Transporter Binding Site Index) + 4.5; R² = 0.93; P < 0.01), suggesting a correlation between the ability to perform ADL and the density of vesicular acetylcholine transporters in the striata of women with RTT. [¹²³I]IBVM is a promising tool to characterize the pathophysiological mechanisms of RTT and other neurodevelopmental disabilities.
Collapse
Affiliation(s)
- James Robert Brašić
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland 21287-0807, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. J Neurosci 2011; 31:12629-37. [PMID: 21880923 DOI: 10.1523/jneurosci.0684-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the methyl-CpG-binding protein 2 (MeCP2) result in Rett syndrome (RTT), an X-linked disorder that disrupts neurodevelopment. Girls with RTT exhibit motor deficits similar to those in Parkinson's disease, suggesting defects in the nigrostriatal pathway. This study examined age-dependent changes in dopamine neurons of the substantia nigra (SN) from wild-type, presymptomatic, and symptomatic Mecp2(+/-) mice. Mecp2(+) neurons in the SN in Mecp2(+/-) mice were indistinguishable in morphology, resting conductance, and dopamine current density from neurons in wild-type mice. However, the capacitance, total dendritic length, and resting conductance of Mecp2(-) neurons were less than those of Mecp2(+) neurons as early as 4 weeks after birth, before overt symptoms. These differences were maintained throughout life. In symptomatic Mecp2(+/-) mice, the current induced by activation of D(2) dopamine autoreceptors was significantly less in Mecp2(-) neurons than in Mecp2(+) neurons, although D(2) receptor density was unaltered in Mecp2(+/-) mice. Electrochemical measurements revealed that significantly less dopamine was released after stimulation of striatum in adult Mecp2(+/-) mice compared to wild type. The decrease in size and function of Mecp2(-) neurons observed in adult Mecp2(+/-) mice was recapitulated in dopamine neurons from symptomatic Mecp2(-/y) males. These results show that mutation in Mecp2 results in cell-autonomous defects in the SN early in life and throughout adulthood. Ultimately, dysfunction in terminal dopamine release and D(2) autoreceptor-dependent currents in dopamine neurons from symptomatic females support the idea that decreased dopamine transmission due to heterogeneous Mecp2 expression contributes to the parkinsonian features of RTT in Mecp2(+/-) mice.
Collapse
|
16
|
Schaevitz LR, Moriuchi JM, Nag N, Mellot TJ, Berger-Sweeney J. Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiol Behav 2010; 100:255-63. [PMID: 20045424 DOI: 10.1016/j.physbeh.2009.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
Abstract
Rett syndrome (RTT) is an autism-spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Abnormalities in social behavior, stereotyped movements, and restricted interests are common features in both RTT and classic autism. While mouse models of both RTT and autism exist, social behaviors have not been explored extensively in mouse models of RTT. Here, we report cognitive and social abnormalities in Mecp2(1lox) null mice, an animal model of RTT. The null mice show severe deficits in short- and long-term object recognition memories, reminiscent of the severe cognitive deficits seen in RTT girls. Social behavior, however, is abnormal in that the null mice spend more time in contact with stranger mice than do wildtype controls. These findings are consistent with reports of increased reciprocal social interaction in RTT girls relative to classic autism. We also report here that the levels of the neurotrophins brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and nerve growth factor (NGF) are decreased in the hippocampus of the null mice, and discuss how this may provide an underlying mechanism for both the cognitive deficits and the increased motivation for social contact observed in the Mecp2(1lox) null mice. These studies support a differential etiology between RTT and autism, particularly with respect to sociability deficits.
Collapse
Affiliation(s)
- Laura R Schaevitz
- Department of Biological Sciences, Wellesley College, Wellesley MA 02481, United States
| | | | | | | | | |
Collapse
|
17
|
Roux JC, Villard L. Biogenic amines in Rett syndrome: the usual suspects. Behav Genet 2009; 40:59-75. [PMID: 19851857 DOI: 10.1007/s10519-009-9303-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/07/2009] [Indexed: 12/25/2022]
Abstract
Rett syndrome (RTT) is a severe postnatal neurological disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. In affected children, most biological parameters, including brain structure, are normal (although acquired microcephaly is usually present). However, in recent years, a deficit in bioaminergic metabolism has been identified at the cellular and molecular levels, in more than 200 patients. Recently available transgenic mouse strains with a defective Mecp2 gene also show abnormalities, strongly suggesting that there is a direct link between the function of the MECP2 protein and the metabolism of biogenic amines. Biogenic amines appear to have an important role in the pathophysiology of Rett syndrome, for several reasons. Firstly, biogenic amines modulate a large number of autonomic and cognitive functions. Secondly, many of these functions are affected in RTT patients. Thirdly, biogenic amines are the only neurotransmitters that have repeatedly been found to be altered in RTT patients. Importantly, pharmacological interventions can be envisaged to try to counteract the deficits observed. Here, we review the available human and mouse data and present how they have been and could be used in the development of pharmacological treatments for children affected by the syndrome. Given our current knowledge and the tools available, modulating biogenic amine metabolism may prove to be the most promising strategy for improving the life quality of Rett syndrome patients in the short term.
Collapse
|
18
|
Ward BC, Kolodny NH, Nag N, Berger-Sweeney JE. Neurochemical changes in a mouse model of Rett syndrome: changes over time and in response to perinatal choline nutritional supplementation. J Neurochem 2008; 108:361-71. [PMID: 19012748 DOI: 10.1111/j.1471-4159.2008.05768.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rett syndrome (RTT), the second leading cause of mental retardation in girls, is caused by mutations in the X-linked gene for methyl-CpG-binding protein 2 (MeCP2), a transcriptional repressor. In addition to well-documented neuroanatomical and behavioral deficits, RTT is characterized by reduced markers of cholinergic activity and general neuronal health. Previously, we have shown that early postnatal choline (Cho) supplementation improves behavioral and neuroanatomical symptoms in a mouse model of RTT (Mecp2(1lox) mice). In this study, we use NMR spectroscopy to quantify the relative amounts of Cho, Glutamate (Glu), Glutamine (Gln), and N-acetyl aspartate (NAA) in the brains of wild type and mutant mice at 21, 35, and 42 days of age and in mice receiving postnatal Cho supplementation. We find that the mutant mice have reduced levels of Cho, Glu, and NAA, but elevated Gln levels, compared with their wild type littermates. These differences emerge at different developmental ages. Cho supplementation increases NAA levels, a marker of neuronal integrity, but has no effect on Cho, Glu, or Gln. These data suggest that postnatal nutritional supplementation may improve neuronal function and could serve as a therapeutic agent for human RTT patients.
Collapse
Affiliation(s)
- Bonnie C Ward
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | | | | | | |
Collapse
|
19
|
Nag N, Mellott TJ, Berger-Sweeney JE. Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res 2008; 1237:101-9. [DOI: 10.1016/j.brainres.2008.08.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 12/29/2022]
|
20
|
Ward BC, Agarwal S, Wang K, Berger-Sweeney J, Kolodny NH. Longitudinal brain MRI study in a mouse model of Rett Syndrome and the effects of choline. Neurobiol Dis 2008; 31:110-9. [PMID: 18571096 DOI: 10.1016/j.nbd.2008.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022] Open
Abstract
Rett Syndrome (RTT), the second most common cause of mental retardation in girls, is associated with mutations of an X-linked gene encoding the transcriptional repressor protein MeCP2. Mecp2(1lox) mutant mice express no functional MeCP2 protein and exhibit behavioral abnormalities similar to those seen in RTT patients. Here we monitor the development of both whole brain and regional volumes between 21 and 42 days of age in this model of RTT using MRI. We see decreases in whole brain volumes in both male and female mutant mice. Cerebellar and ventricular volumes are also decreased in RTT males. Previous work has suggested that perinatal choline supplementation alleviates some of the behavioral deficits in both male and female Mecp2(1lox) mutant mice. Here we show that perinatal choline supplementation also positively affects whole brain volume in heterozygous females, and cerebellar volume in male RTT mice.
Collapse
Affiliation(s)
- B C Ward
- Neuroscience Program, Wellesley College, USA
| | | | | | | | | |
Collapse
|
21
|
Nag N, Ward B, Berger-Sweeney JE. Nutritional factors in a mouse model of Rett syndrome. Neurosci Biobehav Rev 2008; 33:586-92. [PMID: 18479749 DOI: 10.1016/j.neubiorev.2008.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 03/07/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
Environmental factors such as nutrition and housing can influence behavioral and anatomical characteristics of several neurological disorders, including Rett syndrome (RTT). RTT is associated with mutations in the X-linked gene encoding MeCP2, a transcriptional repressor that binds methylated DNA. While direct genetic intervention in humans is impossible at this time, motor and cognitive deficits in RTT may be ameliorated through manipulations of epigenetic/environmental factors. For example, studies in rodents suggest that choline nutrient supplementation during critical periods of brain development enhances cholinergic neurotransmission, alters neuronal size and distribution, and facilitates performance of memory and motoric tasks. Recent work in a mouse model of RTT shows that enhancing maternal nutrition through choline supplementation improves both anatomical and behavioral symptoms in the mutant offspring. We describe here cellular and molecular mechanisms that may underlie this specific enhancement and may provide more general insights into mechanisms underlying gene-environment interactions in neurological disorders.
Collapse
Affiliation(s)
- Nupur Nag
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
| | | | | |
Collapse
|
22
|
Hyland K. Clinical Utility of Monoamine Neurotransmitter Metabolite Analysis in Cerebrospinal Fluid. Clin Chem 2008; 54:633-41. [DOI: 10.1373/clinchem.2007.099986] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground: Measurements of monoamine neurotransmitters and their metabolites in plasma and urine are commonly used to aid in the detection and monitoring of neuroblastoma and pheochromocytoma and the evaluation of hypotension or hypertension. Measurements of these neurotransmitters and metabolites can also be helpful in the investigation of disorders that primarily affect the central nervous system, but only when the measurements are made in cerebrospinal fluid (CSF).Content: I describe CSF profiles of monoamine metabolites in the primary and secondary defects affecting serotonin and catecholamine metabolism. I outline the methods required to analyze these metabolites together with details of specific sample handling requirements, sample stability, and interfering compounds, and I emphasize a need for age-related reference intervals.Summary: Measured values of monoamine metabolites in CSF provide only a single-time snapshot of the overall turnover of the monoamine neurotransmitters within the brain. Because these measurements reflect the average concentrations accumulated from all brain regions plus the regional changes that occur within the spinal cord, they may miss subtle abnormalities in particular brain regions or changes that occur on a minute-to-minute or diurnal basis. Clearly defined diagnosed disorders are currently limited to those affecting synthetic and catabolic pathways. In many cases, abnormal monoamine metabolite concentrations are found in CSF and an underlying etiology cannot be found. Molecular screening of candidate genes related to steps in the neurotransmission process, including storage in presynaptic nerve vesicles, release, interaction with receptors, and reuptake, might be a fruitful endeavor in these cases.
Collapse
|
23
|
|
24
|
Nag N, Berger-Sweeney JE. Postnatal dietary choline supplementation alters behavior in a mouse model of Rett syndrome. Neurobiol Dis 2007; 26:473-80. [PMID: 17395475 DOI: 10.1016/j.nbd.2007.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/05/2007] [Accepted: 02/07/2007] [Indexed: 01/06/2023] Open
Abstract
Rett syndrome (RTT), a neurodevelopmental disorder primarily affecting females, is accompanied by behavioral and neuropathological abnormalities and decreases in brain cholinergic markers. Because the cholinergic system is associated with cognitive and motor functions, cholinergic deficits in RTT may underlie some of the behavioral abnormalities. In rodents, increased choline availability during development enhances transmission at cholinergic synapses and improves behavioral performance throughout life. We examined whether choline supplementation of nursing dams would attenuate deficits in Mecp2(1lox) offspring, a mouse model of RTT. Dams were given choline in drinking water, and pups nursed from birth to weaning. Offspring were assessed on development and behavior. In Mecp2(1lox) males, choline supplementation improved motor coordination and locomotor activity, whereas in females it enhanced grip strength. Choline supplementation did not improve response to fear conditioning. Postnatal choline supplementation attenuates some behavioral deficits in Mecp2(1lox) mice and should be explored further as a therapeutic agent in RTT.
Collapse
Affiliation(s)
- Nupur Nag
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | | |
Collapse
|
25
|
Abstract
Rett syndrome is a sporadic disorder (except for a few familial cases) occurring in 1 in 10,000 to 1 in 23,000 girls worldwide. It is associated with profound mental and motor handicap. About 90% of cases involve a mutation in the methyl-CpG binding protein 2 gene (MECP2). The role of this gene in the pathogenesis of this enigmatic disorder is being extensively investigated in animal models. Rett syndrome is associated with a complex phenotype that is unique in every aspect of its presentation, clinical physiology, chemistry, and pathology. Years of concentrated observations have defined the clinical presentation of classic Rett syndrome and its variants and related features (eg, neurophysiologic, radiologic, chemical, metabolic, and anatomic). This article reviews the neuropathology of Rett syndrome, which involves individual neurons, perhaps selected neurons, of decreased size, dendritic branching, and numbers of spines. This article also summarizes the studies in the human and mouse brain with Rett syndrome that are beginning to reveal the disorder's pathoetiology.
Collapse
|
26
|
Sherren N, Pappas BA. Selective acetylcholine and dopamine lesions in neonatal rats produce distinct patterns of cortical dendritic atrophy in adulthood. Neuroscience 2005; 136:445-56. [PMID: 16226382 DOI: 10.1016/j.neuroscience.2005.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/23/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Acetylcholine and dopamine afferents reach their cortical targets during periods of synaptogenesis, and are in position to influence the cytoarchitectural development of cortical neurons. To determine the effect of removing these afferents on dendritic development, we lesioned rat pups at 7 days of age with the selective immunotoxins 192 IgG-saporin, or 6-hydroxydopamine, or both. One group of rats was killed in adulthood for neurochemistry and another was prepared for morphology using Golgi-Cox staining. Changes in morphology were compared in layer V pyramidal cells from medial prefrontal cortex, which sustained the greatest dopamine depletion, and in layer II/III pyramidal cells from retrosplenial cortex, which sustained the greatest choline acetyltransferase depletion. In rats with acetylcholine lesions, layer V medial prefrontal cells had smaller apical tufts and fewer basilar dendritic branches. Both apical and basilar spine density was substantially reduced. Layer II/III retrosplenial cells also had smaller apical tufts and substantially smaller basilar dendritic trees. Apical and basilar spine density did not change. In rats with dopamine lesions, layer V medial prefrontal cells had fewer oblique apical dendrites and atrophied basilar trees. Layer II/III retrosplenial cells had fewer apical dendritic branches. In neither area were spine densities significantly different from control. Neurons from rats with combined lesions were always smaller and less complex than those from singly lesioned rats. However, these cells were simple, additive composites of the morphology produced by single lesions. These data demonstrate that ascending acetylcholine and dopamine afferents play a vital role in the development of cortical cytoarchitecture.
Collapse
Affiliation(s)
- N Sherren
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | |
Collapse
|
27
|
Perry EK, Perry RH. Neurochemistry of consciousness: cholinergic pathologies in the human brain. PROGRESS IN BRAIN RESEARCH 2004; 145:287-99. [PMID: 14650923 DOI: 10.1016/s0079-6123(03)45020-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Elaine K Perry
- MRC Building, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE, UK.
| | | |
Collapse
|
28
|
Abstract
The clinical and neuropathologic aspects of Rett syndrome suggest that an arrest of brain development produces the phenotype, but it is not understood how the gene implicated in Rett syndrome, methyl-CpG protein 2 (MeCP2), is regulated during brain development. In this study, the ontogeny of MeCP2 is examined in the developing human brain and in the female Rett syndrome brain to evaluate the relationship between MeCP2 expression and brain development in health and disease, respectively. Immunocytochemistry using an antibody to the C-terminal region of the protein was performed in paraffin sections of the developing brain to define the age and the sites of MeCP2 protein expression. In development, there is no MeCP2 expression in the germinal matrix or in the progenitor cells. At 10 to 14 weeks' gestation, the neurons of the brain stem and the Cajal-Retzius and subplate neurons of the cortex express MeCP2. By midgestation, some neurons of the basal ganglia express MeCP2, and at late gestation, the most mature cortical neurons in the lower cortical layers are positive. The postnatal cortex continues to increase its expression of neuronal MeCP2. In the Rett syndrome brain, fewer neurons express MeCP2 than in the normal brain. This reduction is most apparent in the brain stem and thalamus. The neurons of the cerebral cortex show the least reduction. We conclude that the regulation of MeCP2 abundance is related to human brain development, being expressed in neurons when they appear mature. In Rett syndrome, however, the expression pattern of MeCP2 does not completely resemble that of the normal immature brain, suggesting that the maintenance of MeCP2 might be determined in specific neurons by factors other than those controlling maturation. In the developing brain, synaptic activity and plasticity could be necessary to maintain MeCP2 in selected neuronal populations.
Collapse
|
29
|
Pappas BA, Sherren N. Neonatal 192 IgG-saporin lesion of forebrain cholinergic neurons: focus on the life span? Neurosci Biobehav Rev 2003; 27:365-76. [PMID: 12946689 DOI: 10.1016/s0149-7634(03)00067-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cholinergic immunotoxin 192 IgG-saporin can be used to effect selective, substantial and permanent lesions of basal forebrain neurons in the neonatal rat. Human neurodevelopmental disorders such as Rett and Down syndromes are characterized by early cholinergic dysfunction and cognitive impairment. Hence, the study of the neonatal 192 IgG-saporin lesioned rat should illuminate the role of cholinergic dysfunction in these human disorders. To date, we and others have failed to observe notable effects of this neonatal lesion on learning and memory, even when combined with a severe lesion of noradrenergic forebrain innervation. As well, attention seems not to be affected. However, complex problem solving (intelligence?) is compromised by the cholinergic lesion. There also appears to be reduced cortical dendritic branching indicative of synapse loss but further research is needed to characterize this. Even if the synapse loss due to neonatal cholinergic lesion is modest and thus insufficient to cause a significant neurodevelopmental dysfunction, its consequences may be devastating during old age.
Collapse
Affiliation(s)
- Bruce A Pappas
- Institute of Neuroscience, Life Sciences Research Centre, Carleton University, Ottawa, Ont., Canada K1S 5B6.
| | | |
Collapse
|
30
|
Ronnett GV, Leopold D, Cai X, Hoffbuhr KC, Moses L, Hoffman EP, Naidu S. Olfactory biopsies demonstrate a defect in neuronal development in Rett's syndrome. Ann Neurol 2003; 54:206-18. [PMID: 12891673 DOI: 10.1002/ana.10633] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rett's Syndrome (RTT) is a neurodevelopmental disorder resulting from mutation in the mecp2 gene that encodes methyl CpG binding protein 2, a transcriptional repressor. Because this disease primarily affects neurons, tissue is not available during active disease. We used the olfactory system as a model to investigate abnormalities in neuronal development in RTT, because olfactory receptor neurons (ORNs) are replaced throughout life by ongoing postnatal neurogenesis. Thus, even in the adult, the olfactory epithelium contains neurons at various developmental stages. We obtained biopsies of nasal epithelium containing ORNs from RTT patients and age-matched controls to study the status of the neuronal population using antibodies to stage-specific developmental markers. There were no postprocedure complications. Compared with age-matched controls, there were far fewer mature ORNs, as defined by olfactory marker protein expression, and significantly greater numbers of immature neuron-specific tubulin-positive ORNs present. In RTT biopsies, olfactory marker protein-positive neurons displayed abnormal structure. These results suggest that dysfunction of MeCP2 results in decreased survival of mature ORNs with a compensatory increase in neurogenesis, or a failure of immature neurons to mature. Our study indicates that olfactory biopsies provide a method to study neuronal developmental diseases in adults and children.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Dunn HG, Stoessl AJ, Ho HH, MacLeod PM, Poskitt KJ, Doudet DJ, Schulzer M, Blackstock D, Dobko T, Koop B, de Amorim GV. Rett syndrome: investigation of nine patients, including PET scan. Can J Neurol Sci 2002; 29:345-57. [PMID: 12463490 DOI: 10.1017/s0317167100002213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We describe nine females with Rett Syndrome (RS), aged 14 to 26 years. All had had developmental delay before the end of their first year and had subsequently regressed to profound dementia with apraxia, ataxia, irregular respirations and often also seizures. METHODS The Revised Gesell developmental assessment and Alpern-Boll Developmental Profile were used in modified form. Volumetric measurements of basal ganglia using MRI were compared with the findings in nine age-matched volunteer females. Positron emission scans with [18F]-6-fluorodopa and [11C]-raclopride were performed under light anesthesia with intravenous Propofol, and the findings were compared with those in healthy control girls. Bidirectional sequencing of the coding regions of the MECP2 gene was investigated in blood samples for mutational analyses. RESULTS The RS females functioned at a mental age level ranging from about 4 to 15 months. The scores correlated with height, weight and head circumference. Magnetic resonance scans of basal ganglia showed a significant reduction in the size of the caudate heads and thalami in the Rett cases. Positron emission scans demonstrated that the mean uptake of fluorodopa in RS was reduced by 13.1% in caudate and by 12.5% in putamen as compared to the controls, while dopamine D2 receptor binding was increased significantly by 9.7% in caudate and 9.6% in putamen. Mutations in the coding regions of the MECP2 gene were present in all nine patients. No significant correlation between type and location of mutation and volumetric changes or isotope uptake was demonstrable. CONCLUSIONS Our findings suggest a mild presynaptic deficit of nigrostriatal activity in Rett syndrome.
Collapse
Affiliation(s)
- Henry G Dunn
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Armstrong DD. Neuropathology of Rett syndrome. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 8:72-6. [PMID: 12112730 DOI: 10.1002/mrdd.10027] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rett Syndrome is unlike any other pediatric neurologic disease, and its clinical-pathologic correlation can not be defined with standard histology techniques. Based on hypotheses suggested by careful clinical observations, the nervous system of the Rett child has been explored utilizing morphometry, golgi preparations, computerized tomography, magnetic resonance imaging, chemistry, immunocytochemistry, autoradiography, and molecular biologic techniques. From these many perspectives we conclude that Rett syndrome is not a typical degenerative disorder, storage disorder, nor the result of gross malformation, infectious or neoplastic processes. There remain regions of the brain that have not been studied in detail but the available data suggest that the neuropathology of Rett syndrome can be summarized as follows: the Rett brain is small for the age and the height of the patient; it does not become progressively smaller over three to four decades; it has small dendritic trees in pyramidal neurons of layers III and V in selected lobes (frontal, motor, and temporal); it has small neurons with an increased neuronal packing density; it has an immature expression of microtubular protein-2 and cyclooxygenase; it exhibits a changing pattern of neurotransmitter receptors with an apparent reduction in many neurotransmitters, possibly contributing to some symptomatology. A mutation in Mecp2 causes this unique disorder of brain development. Neuronal mosaicism for normal and mutated Mecp2 produces a consistent phenotype in the classic female patient and a small brain with some preserved islands of function, but with an inability to support hand use and speech. This paper summarizes our current observations about neuropathology of Rett syndrome. MRDD Research Reviews 2002;8:72-76.
Collapse
|
33
|
Villemagne PM, Naidu S, Villemagne VL, Yaster M, Wagner HN, Harris JC, Moser HW, Johnston MV, Dannals RF, Wong DF. Brain glucose metabolism in Rett Syndrome. Pediatr Neurol 2002; 27:117-22. [PMID: 12213612 DOI: 10.1016/s0887-8994(02)00399-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rett syndrome is a progressive neurologic disorder affecting girls in early childhood with loss of achieved psychomotor abilities and mental retardation. Six sedated female patients (4 to 15 years of age) with a diagnosis of Rett syndrome were studied with [(18)F]fluorodeoxyglucose (FDG) and underwent positron emission tomography scanning of the brain. Relative tracer concentrations between different areas of the brain were assessed, and results were compared with 18 age-matched control subjects. Patients were divided into two age groups: 3 to 8 years of age and 9 to 15 years of age. A relative decrease in [(18)F]FDG uptake in the lateral occipital areas in relation with the whole brain and a relative increase in the cerebellum was evident in both age groups (P < 0.001, unpaired Student t test). A relative increase in frontal tracer uptake was observed in the younger group. Sensorimotor areas and relations between cortical and subcortical structures were preserved in all patients. Changes in glucose cerebral metabolism resemble the regional distribution of normal children less than 1 year of age, likely reflecting a maturational arrest. Changes in frontal areas parallel those in postmortem N-methyl-D-aspartate receptor densities and could correlate with different clinical stages of the disease. This pattern differs from those described in Down syndrome, autism, and Alzheimer's disease.
Collapse
Affiliation(s)
- Patricia M Villemagne
- Department of Radiology, Johns Hopkins Medical Institutions;, Baltimore, Maryland 21287-0807, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
It has long been suspected that the Rett syndrome (RS) is associated with abnormality of monoaminergic systems, particularly in the brainstem and midbrain, with spread to basal ganglia and cerebral cortex. Early investigators found no significant abnormality in the level of metabolites of noradrenaline, dopamine or serotonin in the spinal fluid, but autopsy brain studies revealed reduced levels of these substances and their metabolites as well as cortical choline acetyltransferase (ChAT) and microtubule-associated proteins (MAP). Levels of Substance P in spinal fluid of RS girls have been reported to be low, while levels of glutamate are raised. Attempts to assess dopaminergic activity by positron emission tomography (PET) in RS have given variable results with different reagents, including [(18)F] 6-fluorodopa. Our group investigated nine RS patients after the age of 12 years and control girls of similar age. Volumetric scans of basal ganglia with Magnetic Resonance Imaging showed a significant reduction in the size of caudate heads and thalami in RS (but not in the size of lentiform nuclei). PET scans with [(11)C] raclopride and with [(18)F] 6-fluorodopa under intravenous propofol anesthesia showed the mean uptake of fluorodopa to be reduced by 13.1% in caudate and by 12.4% in putamen as compared to the controls, whereas dopamine D2 receptor binding, as indicated by raclopride binding, was significantly increased by 9.7% in caudate and by 9.6% in putamen.
Collapse
Affiliation(s)
- H G Dunn
- Department of Pediatrics, University of British Columbia, BC, Vancouver, Canada.
| |
Collapse
|
35
|
Saito Y, Ito M, Ozawa Y, Matsuishi T, Hamano K, Takashima S. Reduced expression of neuropeptides can be related to respiratory disturbances in Rett syndrome. Brain Dev 2001; 23 Suppl 1:S122-6. [PMID: 11738857 DOI: 10.1016/s0387-7604(01)00358-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We immunohistochemically examined neurotransmitter systems, which function in the brainstem and are involved in neuronal organization of respiration, in an autopsy brain from a patient with Rett syndrome (RS). Immunoreactivity (IR) for tyrosine hydroxylase, a functional marker for catecholaminergic neurons, was severely reduced in the locus ceruleus, while that for tryptophan hydroxylase involved in serotonin synthesis was spared in the raphe nuclei. In the brainstem, IR for substance P (SP) was reduced in the parabrachial complex and that for methionine-enkephalin (met-enk) was affected in the parabrachial, hypoglossal, dorsal vagal and solitary nuclei. In addition, expressions of these neuropeptides were also disturbed in the basal ganglia. A widespread altered expression of antagonistic neuropeptides, SP and met-enk, may be involved in the pathogenesis of RS, especially in its respiratory manifestation.
Collapse
Affiliation(s)
- Y Saito
- Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The Rett syndrome (RS) is a peculiar, sporadic, atrophic disorder, almost entirely confined to females. After the first six months of life there is developmental slowing with reduced communication and head growth for about one year. This is followed by a rapid destructive stage with severe dementia and loss of hand skills (with frequent hand wringing), apraxia and ataxia, autistic features and irregular breathing with hyperventilation. Seizures often supervene. Subsequently there is some stabilization in a pseudo-stationary stage during the preschool to school years, associated with more emotional contact but also abnormalities of the autonomic and skeletal systems. After the age of 15-20 years, a late motor deterioration occurs with dystonia and frequent spasticity but seizures become milder. RS has generally been considered an X-linked disorder in which affected females represent a new mutation, with male lethality. Linkage studies suggested a critical region at Xq28. In 1999, mutations in the gene MECP2 encoding X-linked methyl cytosine-binding protein 2 (MeCP2) were found in a proportion of Rett girls. This protein can bind methylated DNA. Analyses are leading to much further investigation of mutants and their effects on genes. Neuropathological and electrophysiological studies of RS are described. Description of neurometabolic factors includes reduced levels of dopamine, serotonin, noradrenaline and choline acetyltransferase (ChAT) in brain, also estimation of nerve growth factors, endorphin, substance P, glutamate and other amino acids and their receptor levels. The results of neuroimaging are surveyed, including volumetric magnetic resonance imaging (MRI) and positron emission tomography (PET).
Collapse
Affiliation(s)
- H G Dunn
- Division of Neurology, British Columbia's Children's Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
37
|
Sherren N, Pappas BA, Fortin T. Neural and behavioral effects of intracranial 192 IgG-saporin in neonatal rats: sexually dimorphic effects? BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:49-62. [PMID: 10209242 DOI: 10.1016/s0165-3806(99)00018-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The consequences of neonatal cholinergic lesions were examined in male and female rats. Rats were injected intraventricularly with 600 ng of 192 IgG-saporin at 7 days of age and examined behaviorally and histologically at 21, 45 and 90 days of age. 192 IgG-saporin profoundly reduced low affinity neurotrophin receptor (p75NTR)-immunoreactive (IR) and, to a lesser extent, choline acetyltransferase-IR cells in the basal forebrain. Presumptive sympathetic ingrowths (p75NTR- and dopamine beta-hydroxylase-IR) into the hippocampus were first apparent at 45 days of age and were not significantly greater at 90 days. Behaviorally, 192 IgG-saporin increased the time females, but not males, spent on the open arms of the elevated plus maze. Lesioned rats had longer platform location latencies in the Morris water maze only at the first hidden platform training session and did not differ on the rate of learning the platform location or on the no-platform probe trial. Generally, the effects of neonatal cholinergic lesions were not sex dependent and are unlikely to model Rett syndrome, a disorder characterized by forebrain cholinergic deficit which is seen almost exclusively in females.
Collapse
Affiliation(s)
- N Sherren
- Life Sciences Research Center, Institute of Neuroscience, Carleton University, 1125 Colonel By Dr., Ottawa, ON, Canada
| | | | | |
Collapse
|
38
|
Abstract
Rett syndrome (RS) is a progressive disorder that is predominant in females. It is associated with cortical atrophy, stereotyped hand movements mimicking hand-washing, severe mental deficiency, and cortical and extrapyramidal dysfunction. The cause of RS is unknown; no consistent genetic abnormalities, at either the cellular or mitochondrial levels, have been identified. The diagnosis still depends solely upon clinical evidence. The clinical progression of RS is consistent with an arrested neuronal development that may be due to either impaired cellular differentiation or the lack of appropriate trophic factors. Neuropathological studies have confirmed (1) a generalized brain atrophy involving the cerebrum and cerebellum; (2) a decrease in neuronal cell size and increased cell packing density throughout the brain; (3) a reduction in the number of basal forebrain cholinergic neurons; (4) a reduction in the concentration of melanin-containing neurons in the substantia nigra. Biochemical studies have identified (1) a decrease in cholinergic markers in the neocortex, hippocampus, thalamus and basal ganglia; (2) inconsistent and variable changes in biogenic amine biomarkers in post-mortem tissues and cerebrospinal fluid (CSF); (3) an elevation of beta-endorphin levels in the thalamus and glutamate levels in the CSF; (4) no evidence for mitochondrial dysfunction. These data suggest that there is a primary deficit in cholinergic function that might underlie some of the higher cognitive impairments and extrapyramidal dysfunction. Overall, the clinical, biochemical and neuropathological data suggest that RS is a neurodevelopmental disorder that has its greatest effects upon a limited number of neural systems during the first few years of postnatal life.
Collapse
Affiliation(s)
- G L Wenk
- Department of Psychology, University of Arizona, Tucson 85724, USA.
| |
Collapse
|
39
|
Wenk GL. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem 1997; 67:85-95. [PMID: 9075237 DOI: 10.1006/nlme.1996.3757] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus basalis magnocellularis (NBM) contains a population of large cholinergic (Ch) neurons that send their axons to the entire cortical mantle, the olfactory bulbs, and the amygdala. This is the centennial anniversary of the first exact description of this nucleus by Von Kölliker, who named it in honor of its discoverer. This review will focus upon recent attempts to understand the role of the NBM Ch neurons in higher cognitive function by the use of selective lesion analyses and electrophysiological recording techniques. Behavioral deficits associated with NBM lesions produced by injections of excitatory amino acid agonists have been demonstrated in a variety of tasks. Performance decrements produced by these lesions were initially interpreted as being the result of impairments in learning and memory abilities. However, the precise role of the Ch NBM neurons in these performance deficits could not be more thoroughly investigated until it became possible to produce selective and discrete lesions by injection of the immunotoxin, IgG-192 saporin. The results of investigations using this immunotoxin supported a role for NBM Ch neurons in the performance of tasks that require selected attentional abilities rather than learning and memory per se. These lesion analysis studies suggested that the corticopetal NBM Ch system may be involved in the control of shifting attention to potentially relevant, and brief, sensory stimuli that predict a biologically relevant event, such as a food reward. Electrophysiological evidence has implicated NBM Ch cells in the control of attentional processes, as well as a role in the control and maintenance of arousal and sleep states. Electrophysiological studies also suggest that NBM Ch neurons might influence cortical EEG activity in two ways, by its direct excitatory inputs and by an indirect inhibitory projection to the thalamic reticular nucleus. Taken together with the results of histological and anatomical studies of the basal forebrain, NBM Ch cells appear to be ideally located within the basal forebrain for evaluating sensory stimuli for their level of significance, via inputs from the midbrain and limbic system, and also to modulate intrinsic cortical responsiveness appropriately in order to attend to brief, highly salient sensory stimuli.
Collapse
Affiliation(s)
- G L Wenk
- Division of Neural Systems, Memory and Aging, Arizona Research Laboratories, University of Arizona, Tucson 85724, USA.
| |
Collapse
|
40
|
Pappas BA, Davidson CM, Fortin T, Nallathamby S, Park GA, Mohr E, Wiley RG. 192 IgG-saporin lesion of basal forebrain cholinergic neurons in neonatal rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 96:52-61. [PMID: 8922668 DOI: 10.1016/0165-3806(96)00095-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Seven day old rats received bilateral intraventricular injections (200 ng) of the immunotoxin 192 IgG-saporin. When assayed in adulthood, these rats showed an 84% loss of hippocampal and a 52% loss of cortical choline acetyltransferase (ChAT) activity. ChAT was unaffected in the caudate. Cholinergic neurons immunoreactive (IR) for the low affinity neurotrophin receptor (P75NTR) were severely reduced throughout the basal forebrain nuclei. Cortical and hippocampal norepinephrine were increased and these areas showed ingrowth of ectopic, P75NTR and dopamine beta-hydroxylase IR varicosities. These were probably sympathetic axons. No obvious forebrain dysmorphogenesis was observed and cortical thickness was unaffected. These rats showed no evidence of impaired spatial learning/memory as assessed by the Morris water maze and delayed spatial alternation. However, they were less active on the elevated plus apparatus and spent less time on the open arms, suggestive of increased timidity. 192 IgG-saporin appears to be a powerful tool to selectively lesion basal forebrain cholinergic neurons in the neonatal rat. Surprisingly, the neuromorphological and behavioral sequelae seem minimal. It may be necessary to achieve near-total neonatal destruction of forebrain cholinergic neurons before severe, lasting mnemonic effects are evident.
Collapse
Affiliation(s)
- B A Pappas
- Institute of Neuroscience, Carleton University, Ottawa, Ont., Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wenk GL, Mobley SL. Choline acetyltransferase activity and vesamicol binding in Rett syndrome and in rats with nucleus basalis lesions. Neuroscience 1996; 73:79-84. [PMID: 8783231 DOI: 10.1016/0306-4522(96)00019-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The decline in choline acetyltransferase activity has been identified previously within the brains of patients with Rett syndrome and Alzheimer's disease. The level of [3H]vesamicol binding to a terminal vesicular acetylcholine transporter is inversely related to the decline in cortical choline acetyltransferase activity in Alzheimer's disease, which may be due to compensatory processes within surviving cholinergic terminals. In order to investigate whether similar cholinergic compensatory processes are present in the Rett syndrome brain and are altered by normal aging, we investigated the density of cholinergic vesicular transporters in (i) the brains of Rett syndrome patients, and (ii) young and old rats with experimentally-induced cholinergic cell loss. In Rett syndrome, a significant decline in choline acetyltransferase activity within the putamen and thalamus was directly correlated with a decline in [3H]vesamicol binding. In both young and old rats, basal forebrain lesions decreased cortical choline acetyltransferase activity significantly, while [3H]vesamicol binding was unchanged. In contrast to young and old lesioned rats and patients with Alzheimer's disease, cholinergic cells in the brains of patients with Rett syndrome do not compensate for the loss of cholinergic cells by increasing acetylcholine vesicular storage.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, memory & Aging, University of Arizona, Tucson 85724, USA
| | | |
Collapse
|
42
|
Cornford ME, Philippart M, Jacobs B, Scheibel AB, Vinters HV. Neuropathology of Rett syndrome: case report with neuronal and mitochondrial abnormalities in the brain. J Child Neurol 1994; 9:424-31. [PMID: 7822737 DOI: 10.1177/088307389400900419] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuronal changes in the brain of a Rett syndrome patient were examined in a frontal lobe biopsy performed at age 3 years and in the postmortem brain at age 15 years. In the brain biopsy, frontal cortex contained numerous scattered pyramidal neurons with cytoplasmic vacuolation and increased cytoplasmic density, with no neuronophagia or inflammation detected; electron microscopy showed these neurons to have large, lucent-appearing mitochondria, very abundant ribosomal content, and some lipofuscin granules. Postmortem brain 12 years later showed scattered neurons in frontal cortex, substantia nigra, and cerebellar folia, with increased electron density of the cytoplasm, stacks of ribosomal endoplasmic reticulum, and large amounts of disorganized membranous material, including autophagic-type organelles. Mitochondria of these neurons contained electron-dense, finely granular matrix inclusions; in the substantia nigra, some spherical mitochondrial inclusions completely filled the matrix space. Golgi preparations of (autopsy) frontal cortex and cerebellar folia showed truncation and thickening of dendrites and a degenerate appearance of cortical pyramidal neurons, similar to changes found in aged brain. Synaptophysin immunohistochemistry indicated that the density of synapses was not greatly altered compared to controls in frontal cortex and cerebellum. The patient also had a second genetic defect, severe combined immunodeficiency with thymic aplasia, which may be X-linked.
Collapse
Affiliation(s)
- M E Cornford
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles Medical Center, Torrance 90509
| | | | | | | | | |
Collapse
|
43
|
Bachman ES, Berger-Sweeney J, Coyle JT, Hohmann CF. Developmental regulation of adult cortical morphology and behavior: an animal model for mental retardation. Int J Dev Neurosci 1994; 12:239-53. [PMID: 7976481 DOI: 10.1016/0736-5748(94)90071-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to examine the behavioral performance in adult mice which, as neonates, had received lesions to cortically projecting, cholinergic basal forebrain neurons. The nucleus basalis magnocellularis (nBM) provides the primary cholinergic innervation to cerebral cortex. Lesions in the nBM in neonatal mice result in transient cholinergic denervation and persistent abnormalities in cortical morphology and cytoarchitecture. These cortical abnormalities resemble pathologies observed in a number of developmental disabilities in humans, including Down Syndrome. Balb/CByJ mice received lesions to the nBM 12-24 hr after birth; littermates served as controls. Behavioral testing began 8 weeks after the lesion and included assessments of spontaneous motor activity, retention (a passive avoidance task) and cognition (the Morris swim task). Following behavioral testing, a subset of mice was killed for Nissl and acetylcholinesterase (AChE) histology. The cortical morphology in these brains was evaluated and ranked by the experimenter, who was blind to the lesion and behavioral studies. The lesioned mice exhibited increased spontaneous activity as compared to littermate controls. The lesioned mice were also severely impaired in performance of the retention and cognitive task; they showed decreased passive avoidance retention latencies and increased swim maze latencies as compared to controls. The brains of all of the lesioned mice exhibited cortical morphological abnormalities that ranged from slight to severe. Cortical AChE intensity and distribution in the brains of the lesioned mice, however, were comparable to those of controls. In correlation studies of behavioral and morphological data, motor activity did not correlate with either passive avoidance retention or swim maze latencies. Additionally, cortical cytoarchitectural abnormalities did not correlate with motor activity. Cortical cytoarchitectural abnormalities did, however, correlate with both passive avoidance and swim maze latencies, i.e. severely abnormal cortical morphology predicted low passive avoidance retention latencies and high swim maze latencies. These data indicate that cortical cytoarchitectural abnormalities resulting from nBM lesions in neonates correlate with impairments on the cognitive task, but not with the activity measures, in adult mice. Thus, in this lesion model, and by extrapolation in developmental disabilities in humans, structural changes in the cortex which result from transient disruption of cortical cholinergic innervation may lead to persistent cognitive impairments in adulthood.
Collapse
Affiliation(s)
- E S Bachman
- School of Medicine, University of North Carolina, Chapel Hill
| | | | | | | |
Collapse
|
44
|
Percy AK, Glaze DG, Schultz RJ, Zoghbi HY, Williamson D, Frost JD, Jankovic JJ, del Junco D, Skender M, Waring S. Rett syndrome: controlled study of an oral opiate antagonist, naltrexone. Ann Neurol 1994; 35:464-70. [PMID: 8154874 DOI: 10.1002/ana.410350415] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
HYPOTHESIS The opiate antagonist, naltrexone, will be beneficial in Rett syndrome. SUBJECTS Twenty-five individuals fulfilling the criteria for Rett syndrome. METHOD Randomized, double-blind, placebo-controlled crossover trial with two treatment periods, 4 months each, and an intervening 1-month washout period. Clinical stage, motor and cognitive development, motor-behavioral analysis, neurophysiological parameters (computerized electroencephalographic analysis, breathing characteristics, quantification of stereotyped hand movements, and sleep characteristics), and cerebrospinal fluid beta-endorphin measurements were evaluated at baseline and at the end of each treatment period. RESULTS Only data from the first period of this study were analyzed due to significant sequence effects in the crossover design. This analysis indicated positive effects on certain respiratory characteristics including decreased disorganized breathing during wakefulness. Four (40%) of the individuals receiving naltrexone progressed one or more clinical stages versus none of the individuals receiving placebo. The adjusted (for baseline value and Rett stage) end of treatment psychomotor test age (Bayley Scales) was significantly higher for the placebo group. There was no significant change for the other parameters. CONCLUSION Naltrexone may modify some of the respiratory disturbance in Rett syndrome. Declines in motor function and more rapid progression of the disorder suggest a deleterious effect.
Collapse
|
45
|
Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN, Moser H. Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 1993; 34:227-34. [PMID: 8338347 DOI: 10.1002/ana.410340220] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rett syndrome is a pediatric neurological disorder of unknown etiology defined by the presence of severe neurodevelopment decline, acquired microcephaly, dementia, abnormalities of movement, autistic behavior, and seizures in young female children. In this study, the neuroanatomy of 11 females with Rett syndrome and 15 age- and gender-matched control subjects was investigated in vivo with quantitative neuroimaging techniques. Compared to control subjects, the patients with Rett syndrome were found to have significantly reduced cerebral volume; evidence of greater loss of gray matter in comparison to white matter; regional variation in cortical gray matter, with the frontal regions showing the largest decrease; and reduced volume of the caudate nucleus and midbrain, even when taking into account general reduction in the size of the brain. In addition, there was no evidence of an ongoing degenerative process in this sample of girls with Rett syndrome. The consistency of these data with results from neuropathological investigations points to the need for continued quantitative neuroimaging studies of children with this condition. In particular, research employing serial longitudinal scans of very young children manifesting early signs of the clinical syndrome holds promise for helping to elucidate the neuropathological pathways leading to the debilitating clinical manifestations of Rett syndrome.
Collapse
Affiliation(s)
- A L Reiss
- Kennedy Kreiger Institute, Baltimore, MD 21205
| | | | | | | | | | | | | |
Collapse
|
46
|
Wenk GL, O'Leary M, Nemeroff CB, Bissette G, Moser H, Naidu S. Neurochemical alterations in Rett syndrome. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 74:67-72. [PMID: 8403377 DOI: 10.1016/0165-3806(93)90084-n] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Rett syndrome (RS) is a neurological disorder associated with severe mental deficiency and neurological manifestations of cortical and extrapyramidal dysfunction. The present report is (1) a postmortem brain study that compares the levels of choline acetyltransferase (ChAT) activity and the binding density of selected neurotransmitter receptors in four cases of RS and five normal controls of similar age and (2) a study of cerebrospinal fluid (CSF) concentrations of the endogenous tridecapeptide neurotensin in 12 RS patients and 8 controls of similar age. The level of ChAT activity was lower in many cortical and subcortical regions in the RS brains as compared to control levels. The number of NMDA, AMPA, mu opioid and neurotensin binding sites, as well as CSF concentrations of neurotensin, did not differ significantly from control levels. The results suggest that changes in specific neurotransmitter systems, particularly cholinergic neurons, in the thalamus, cerebellum and basal ganglia may underlie the progressive deterioration in motor and cognitive function characteristic of this disorder.
Collapse
Affiliation(s)
- G L Wenk
- Division of Neural Systems, Memory and Aging, Arizona Research Laboratories, University of Arizona, Tucson 85724
| | | | | | | | | | | |
Collapse
|
47
|
Kaneko K, Yuasa T, Miyatake T, Tsuji S. Stereotyped hand clasping: an unusual tardive movement disorder. Mov Disord 1993; 8:230-1. [PMID: 8474498 DOI: 10.1002/mds.870080224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report an 83-year-old woman with vascular parkinsonism who presented with stereotyped rhythmical hand-clasping movements after 18 months exposure to neuroleptics. Although stereotypical rhythmical orolinguomasticatory and limb movements are the most common tardive dyskinesia in the elderly, we feel this woman's hand clasping represents another unusual expression of a tardive movement disorder.
Collapse
Affiliation(s)
- K Kaneko
- Department of Neurology, Niigata University, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
The term biogenic amine is an umbrella term that encompasses all amines with an origin in biological processes. This review will be restricted to the biogenic amine abnormalities that affect the metabolism of serotonin and the catecholamines. The synthesis and catabolism of these neurotransmitters are outlined, and a summary is given of the neurological details, biochemical features, and treatment of the inborn errors that primarily affect their metabolism. An idea is also developed that proposes that abnormalities of biogenic amine metabolism are far more common than is currently considered, and that the search for these problems may be appropriate in any neonate or infant who presents with neurological problems of unknown origin.
Collapse
Affiliation(s)
- K Hyland
- Metabolic Disease Center, Baylor Research Institute, Dallas, TX 75226
| |
Collapse
|
49
|
Millichap JG. Neurochemical Markers in Rett’s Syndrome. Pediatr Neurol Briefs 1991. [DOI: 10.15844/pedneurbriefs-5-12-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|