1
|
Epel B, Viswakarma N, Hameed S, Freidin MM, Abrams CK, Kotecha M. Assessment of blood-brain barrier leakage and brain oxygenation in Connexin-32 knockout mice with systemic neuroinflammation using pulse electron paramagnetic resonance imaging techniques. Magn Reson Med 2024; 91:2519-2531. [PMID: 38193348 PMCID: PMC10997480 DOI: 10.1002/mrm.29994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The determination of blood-brain barrier (BBB) integrity and partial pressure of oxygen (pO2) in the brain is of substantial interest in several neurological applications. This study aimed to assess the feasibility of using trityl OX071-based pulse electron paramagnetic resonance imaging (pEPRI) to provide a quantitative estimate of BBB integrity and pO2 maps in mouse brains as a function of neuroinflammatory disease progression. METHODS Five Connexin-32 (Cx32)-knockout (KO) mice were injected with lipopolysaccharide to induce neuroinflammation for imaging. Three wild-type mice were also used to optimize the imaging procedure and as control animals. An additional seven Cx32-KO mice were used to establish the BBB leakage of trityl using the colorimetric assay. All pEPRI experiments were performed using a preclinical instrument, JIVA-25 (25 mT/720 MHz), at times t = 0, 4, and 6 h following lipopolysaccharide injection. Two pEPRI imaging techniques were used: (a) single-point imaging for obtaining spatial maps to outline the brain and calculate BBB leakage using the signal amplitude, and (b) inversion-recovery electron spin echo for obtaining pO2 maps. RESULTS A statistically significant change in BBB leakage was found using pEPRI with the progression of inflammation in Cx32 KO animals. However, the change in pO2 values with the progression of inflammation for these animals was not statistically significant. CONCLUSIONS For the first time, we show the ability of pEPRI to provide pO2 maps in mouse brains noninvasively, along with a quantitative assessment of BBB leakage. We expect this study to open new queries from the field to explore the pathology of many neurological diseases and provide a path to new treatments.
Collapse
Affiliation(s)
- Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
2
|
Record CJ, Skorupinska M, Laura M, Rossor AM, Pareyson D, Pisciotta C, Feely SME, Lloyd TE, Horvath R, Sadjadi R, Herrmann DN, Li J, Walk D, Yum SW, Lewis RA, Day J, Burns J, Finkel RS, Saporta MA, Ramchandren S, Weiss MD, Acsadi G, Fridman V, Muntoni F, Poh R, Polke JM, Zuchner S, Shy ME, Scherer SS, Reilly MM. Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants. Brain 2023; 146:4336-4349. [PMID: 37284795 PMCID: PMC10545504 DOI: 10.1093/brain/awad187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina W Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospitals Network, Sydney, 2145Australia
| | - Richard S Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Titusville, NJ 08560, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA, 98195USA
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, WC1N 1EH, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
3
|
Karakaya T, Turkyilmaz A, Sager G, Inan R, Yarali O, Cebi AH, Akin Y. Molecular characterization of Turkish patients with demyelinating Charcot-Marie-Tooth disease. Neurogenetics 2022; 23:213-221. [DOI: 10.1007/s10048-022-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
4
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Papaneophytou C, Georgiou E, Kleopa KA. The role of oligodendrocyte gap junctions in neuroinflammation. Channels (Austin) 2020; 13:247-263. [PMID: 31232168 PMCID: PMC6602578 DOI: 10.1080/19336950.2019.1631107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gap junctions (GJs) provide channels for direct cell-to-cell connectivity serving the homeostasis in several organs of vertebrates including the central (CNS) and peripheral (PNS) nervous systems. GJs are composed of connexins (Cx), which show a highly distinct cellular and subcellular expression pattern. Oligodendrocytes, the myelinating cells of the CNS, are characterized by extensive GJ connectivity with each other as well as with astrocytes. The main oligodendrocyte connexins forming these GJ channels are Cx47 and Cx32. The importance of these channels has been highlighted by the discovery of human diseases caused by mutations in oligodendrocyte connexins, manifesting with leukodystrophy or transient encephalopathy. Experimental models have provided further evidence that oligodendrocyte GJs are essential for CNS myelination and homeostasis, while a strong inflammatory component has been recognized in the absence of oligodendrocyte connexins. Further studies revealed that connexins are also disrupted in multiple sclerosis (MS) brain, and in experimental models of induced inflammatory demyelination. Moreover, induced demyelination was more severe and associated with higher degree of CNS inflammation in models with oligodendrocyte GJ deficiency, suggesting that disrupted connexin expression in oligodendrocytes is not only a consequence but can also drive a pro-inflammatory environment in acquired demyelinating disorders such as MS. In this review, we summarize the current insights from human disorders as well as from genetic and acquired models of demyelination related to oligodendrocyte connexins, with the remaining challenges and perspectives.
Collapse
Affiliation(s)
- Christos Papaneophytou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,b Department of Life and Health Sciences, School of Sciences and Engineering , University of Nicosia , Nicosia , Cyprus
| | - Elena Georgiou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Kleopas A Kleopa
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,c Neurology Clinics , the Cyprus Institute of Neurology and Genetics, and the Cyprus School of Molecular Medicine , Nicosia , Cyprus
| |
Collapse
|
6
|
Transient, Recurrent Central Nervous System Clinical Manifestations of X-Linked Charcot-Marie-Tooth Disease Presenting with Very Long Latency Periods between Episodes: Is Prolonged Sun Exposure a Provoking Factor? Case Rep Neurol Med 2020; 2020:9753139. [PMID: 32685222 PMCID: PMC7336214 DOI: 10.1155/2020/9753139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease is one of the most common inherited neurological disorders affecting the peripheral nervous system. The common clinical manifestations of the disease are distal muscle weakness and atrophy, often associated with a characteristic steppage gait and foot deformities. Transient acute and recurrent or chronic central nervous system manifestations, predominantly, dysarthria, dysphagia, motor weakness, and ataxia, have been recognized as a feature of the X-linked type 1 of CMT (CMTX1). The CNS symptoms occur typically in young age and often precede the clinical manifestation of the polyneuropathy. Several predisposing factors such as exercise, fever, and returning from areas of high altitude have been described as triggers of the CNS symptoms; however, in many cases, a substantial cause remains undetermined. In this report, we describe a patient with three attacks of transient CNS deficits at the ages of 11, 21, and 38 years, respectively, which were also accompanied by transient white matter abnormalities on MRI. Two of the attacks occurred after prolonged exposure to sunlight. In our knowledge, this is the first documented case with such long latency periods between CNS attacks as well as the only report describing intense sun exposure as a possible provoking factor.
Collapse
|
7
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
8
|
Liu L, Li XB, Hu ZHM, Zi XH, Zhao X, Xie YZ, Huang SHX, Xia K, Tang BS, Zhang RX. Phenotypes and cellular effects of GJB1 mutations causing CMT1X in a cohort of 226 Chinese CMT families. Clin Genet 2017; 91:881-891. [PMID: 27804109 DOI: 10.1111/cge.12913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022]
Abstract
The aim of this study is to explore the phenotypic and genotypic features of X-linked Charcot-Marie-Tooth (CMT) disease in the mainland of China and to study the cellular effects of six novel Gap junction protein beta-1 variants. We identified 25 missense and 1 non-sense mutations of GJB1 in 31 unrelated families out of 226 CMT families. The frequency of GJB1 mutations was 13.7% of the total and 65% of intermediate CMT. Six novel GJB1 variants (c.5A>G, c.8G>A, c.242T>C, c.269T>C, c.317T>C and c.434T>G) were detected in six unrelated intermediate CMT families. Fluorescence revealed that HeLa cells transfected with EGFP-GJB1-V74M, EGFP-GJB1-L81P or EGFP-GJB1-L90P had diffuse endoplasmic reticulum staining, HeLa cells transfected with EGFP-GJB1-L106P had diffuse intracellular staining, and HeLa cells transfected with EGFP-GJB1-N2S had cytoplasmic and nuclear staining. The distribution of Cx32 in HeLa cells transfected with EGFP-GJB1-F145C was similar to that of those transfected with wild-type (WT). These six variants resulted in a higher percentage of apoptosis than did WT as detected by flow cytometry and Hoechst staining. In conclusion, mutation screening should be first performed in intermediate CMT patients, especially those with additional features. The novel GJB1 variants c.5A>G, c.8G>A, c.242T>C and c.269T>C are considered pathogenic, and c.317T>C and c.434T>G are classified as probably pathogenic.
Collapse
Affiliation(s)
- L Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - X B Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Z H M Hu
- National Key Lab of Medical Genetics, Central South University, Changsha, China
| | - X H Zi
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - X Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Z Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - S H X Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - K Xia
- National Key Lab of Medical Genetics, Central South University, Changsha, China
| | - B S Tang
- National Key Lab of Medical Genetics, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - R X Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Abrams CK, Goman M, Wong S, Scherer SS, Kleopa KA, Peinado A, Freidin MM. Loss of Coupling Distinguishes GJB1 Mutations Associated with CNS Manifestations of CMT1X from Those Without CNS Manifestations. Sci Rep 2017; 7:40166. [PMID: 28071741 PMCID: PMC5223219 DOI: 10.1038/srep40166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/01/2016] [Indexed: 11/15/2022] Open
Abstract
CMT1X, an X-linked inherited neuropathy, is caused by mutations in GJB1, which codes for Cx32, a gap junction protein expressed by Schwann cells and oligodendrocytes. Many GJB1 mutations cause central nervous system (CNS) abnormality in males, including stable subclinical signs and, less often, short-duration episodes characterized by motor difficulties and altered consciousness. However, some mutations have no apparent CNS effects. What distinguishes mutations with and without CNS manifestations has been unclear. Here we studied a total of 14 Cx32 mutations, 10 of which are associated with florid episodic CNS clinical syndromes in addition to peripheral neuropathy. The other 4 mutations exhibit neuropathy without clinical or subclinical CNS abnormalities. These "PNS-only" mutations (Y151C, V181M, R183C and L239I) form gap junction plaques and produce levels of junctional coupling similar to those for wild-type Cx32. In contrast, mutants with CNS manifestations (F51L, E102del, V139M, R142Q, R142W, R164W T55I, R164Q and C168Y) either form no morphological gap junction plaques or, if they do, produce little or no detectable junctional coupling. Thus, PNS and CNS abnormalities may involve different aspects of connexin function.
Collapse
Affiliation(s)
- Charles K. Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| | - Mikhail Goman
- Department of Neurology, SUNY Downstate, Brooklyn, NY, USA
| | - Sarah Wong
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven S. Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kleopas A. Kleopa
- Neurology Clinics and Neuroscience Laboratory, Cyprus Institute for Neurology and Genetics, Nicosia, Cyprus
| | - Alejandro Peinado
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| | - Mona M. Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| |
Collapse
|
10
|
Olympiou M, Sargiannidou I, Markoullis K, Karaiskos C, Kagiava A, Kyriakoudi S, Abrams CK, Kleopa KA. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2016; 4:95. [PMID: 27585976 PMCID: PMC5009701 DOI: 10.1186/s40478-016-0369-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte GJs, which may contribute to the increased sensitivity of Cx32 KO mice to LPS and of patients with CMT1X to various stressors. Moreover the presence of an intracellularly retained, misfolded CMT1X mutant such as T55I induces ER stress under inflammatory conditions, further exacerbating oligodendrocyte dysfunction and pathological changes in the CNS.
Collapse
Affiliation(s)
- Margarita Olympiou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Markoullis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Styliana Kyriakoudi
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, USA
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 International Airport Avenue, P.O. Box 23462, , 1683, Nicosia, Cyprus.
| |
Collapse
|
11
|
Jerath NU, Gutmann L, Reddy CG, Shy ME. Charcot-marie-tooth disease type 1X in women: Electrodiagnostic findings. Muscle Nerve 2016; 54:728-32. [PMID: 26873881 DOI: 10.1002/mus.25077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 01/31/2016] [Accepted: 02/10/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Symptoms and signs in women with Charcot-Marie-Tooth disease type 1X (CMT1X) are often milder from those in men, but the available electrophysiologic evidence regarding CMT1X in women has been characterized in some patients as non-uniform or asymmetric. METHODS We retrospectively reviewed electrodiagnostic findings from 45 women and 31 men with CMT1X. RESULTS Motor nerve conduction parameters in CMT1X women were less abnormal (P < 0.05), and a wider range of motor conduction velocities (CVs) were seen in women (P < 0.001) compared with men. In women, nerve conduction studies showed lack of conduction block without temporal dispersion. Motor CVs were more frequently in the normal range in women compared with men. There was no significant relationship to age of presentation and motor CV or compound muscle action potential in women. CONCLUSION NCS parameters in CMT1X women did not demonstrate features suggestive of an acquired demyelinating neuropathy. Muscle Nerve, 2016 Muscle Nerve 54: -, 2016 Muscle Nerve 54: 728-732, 2016.
Collapse
Affiliation(s)
- Nivedita U Jerath
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA.
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | - Chandan G Reddy
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| |
Collapse
|
12
|
Wang Y, Yin F. A Review of X-linked Charcot-Marie-Tooth Disease. J Child Neurol 2016; 31:761-72. [PMID: 26385972 DOI: 10.1177/0883073815604227] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/06/2015] [Indexed: 01/25/2023]
Abstract
X-linked Charcot-Marie-Tooth disease (CMTX) is the second common genetic variant of CMT. CMTX type 1 causes 90% of CMTX. The most important clinical features of CMTX are similar with other types of CMT; however, a few patients get the central nervous system involved with or without white matter lesions; males are more severely and earlier affected than females. In this review, the authors focus on the origin and classification of CMTX, the central nervous system manifestations of CMTX1, the possible mechanism by which GJB1 mutations cause CMT1X, and the emerging therapeutic strategies for CMTX. Moreover, several cases are presented to illustrate the central nervous system manifestations.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China Hunan Intellectual and Developmental Disabilities Research Center, Hunan, China
| |
Collapse
|
13
|
Sargiannidou I, Kim GH, Kyriakoudi S, Eun BL, Kleopa KA. A start codon CMT1X mutation associated with transient encephalomyelitis causes complete loss of Cx32. Neurogenetics 2015; 16:193-200. [PMID: 25771809 DOI: 10.1007/s10048-015-0442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/02/2015] [Indexed: 01/30/2023]
Abstract
X-linked Charcot-Marie-Tooth disease (CMTX1) results from numerous mutations in the GJB1 gene encoding the gap junction protein connexin32 (Cx32) and is one of the commonest forms of inherited neuropathy. Owing to the expression of Cx32 not only in Schwann cells but also in oligodendrocytes, a subset of CMT1X patients develops central nervous system (CNS) clinical manifestations in addition to peripheral neuropathy. While most GJB1 mutations appear to cause peripheral neuropathy through loss of Cx32 function, the cellular mechanisms underlying the CNS manifestations remain controversial. A novel start codon GJB1 mutation (p.Met1Ile) has been found in a CMT1X patient presenting with recurrent episodes of transient encephalomyelitis without apparent signs of peripheral neuropathy. In order to clarify the functional consequences of this mutation, we examined the cellular expression of two different constructs cloned from genomic DNA including the mutated start codon. None of the cloned constructs resulted in detectable expression of Cx32 by immunocytochemistry or immunoblot, although mRNA was produced at normal levels. Furthermore, co-expression with the other major oligodendrocyte connexin, Cx47, had no negative effect on GJ formation by Cx47. Finally, lysosomal and proteasomal inhibition in cells expressing the start codon mutant constructs failed to recover any detection of Cx32 as a result of impaired protein degradation. Our results indicate that the Cx32 start codon mutation is equivalent to a complete loss of the protein with failure of translation, although transcription is not impaired. Thus, complete loss of Cx32 function is sufficient to produce CNS dysfunction with clinical manifestations.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neurology Clinics and Neuroscience Laboratory, Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
14
|
Abrams CK, Freidin M. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems. Cell Tissue Res 2015; 360:659-73. [PMID: 25370202 DOI: 10.1007/s00441-014-2014-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.
Collapse
Affiliation(s)
- Charles K Abrams
- Departments of Neurology and Physiology & Pharmacology, State University of New York, Brooklyn, NY, 11203, USA,
| | | |
Collapse
|
15
|
A new mutation in GJC2 associated with subclinical leukodystrophy. J Neurol 2014; 261:1929-38. [PMID: 25059390 DOI: 10.1007/s00415-014-7429-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Recessive mutations in GJC2, the gene-encoding connexin 47 (Cx47), cause Pelizaeus-Merzbacher-like disease type 1, a severe dysmyelinating disorder. One recessive mutation (p.Ile33Met) has been associated with a much milder phenotype--hereditary spastic paraplegia type 44. Here, we present evidence that a novel Arg98Leu mutation causes an even milder phenotype--a subclinical leukodystrophy. The Arg98Leu mutant forms gap junction plaques in HeLa cells comparable to wild-type Cx47, but electrical coupling was 20-fold lower in cell pairs expressing Arg98Leu than for cell pairs expressing wild-type Cx47. On the other hand, coupling between Cx47Arg98Leu and Cx43WT expressing cells did not show such reductions. Single channel conductance and normalized steady-state junctional conductance-junctional voltage (G(j)-V(j)) relations differed only slightly from those for wild-type Cx47. Our data suggest that the minimal phenotype in this patient results from a reduced efficiency of opening of Cx47 channels between oligodendrocyte and oligodendrocyte with preserved coupling between oligodendrocyte and astrocyte, and support a partial loss of function model for the mild Cx47 associated disease phenotypes.
Collapse
|
16
|
Kleopa KA, Abrams CK, Scherer SS. How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res 2012; 1487:198-205. [PMID: 22771394 PMCID: PMC3488165 DOI: 10.1016/j.brainres.2012.03.068] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/24/2012] [Indexed: 11/26/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive weakness, atrophy, and sensory abnormalities that are most pronounced in the distal extremities. Some patients have CNS manifestations. Affected males have moderate to severe symptoms, whereas heterozygous females are usually less affected. Neurophysiology shows intermediate slowing of conduction and length-dependent axonal loss. Nerve biopsies show more prominent axonal degeneration than de/remyelination. Mutations in GJB1, the gene that encodes the gap junction (GJ) protein connexin32 (Cx32) cause CMT1X; more than 400 different mutations have been described. Many Cx32 mutants fail to form functional GJs, or form GJs with abnormal biophysical properties. Schwann cells and oligodendrocytes express Cx32, and the GJs formed by Cx32 play an important role in the homeostasis of myelinated axons. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. Effective therapies remain to be developed. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | |
Collapse
|
17
|
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive muscle atrophy and weakness, areflexia, and variable sensory abnormalities; central nervous system manifestations occur, too. Affected males have moderate to severe symptoms, whereas heterozygous females are usually less affected. Neurophysiology shows intermediate slowing of conduction and distal axonal loss. Nerve biopsies show more prominent axonal degeneration than de/remyelination. More than 400 different mutations in GJB1, the gene that encodes the gap junction (GJ) protein connexin32 (Cx32), cause CMT1X. Many Cx32 mutants fail to form functional GJs, or form GJs with abnormal biophysical properties. Schwann cells and oligodendrocytes express Cx32, and the GJs formed by Cx32 play an important role in the homeostasis of myelinated axons. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. An effective therapy remains to be developed.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
18
|
Weishaupt JH, Ganser C, Bähr M. Inflammatory demyelinating CNS disorder in a case of X-linked Charcot-Marie-Tooth disease: positive response to natalizumab. J Neurol 2012; 259:1967-9. [PMID: 22411047 DOI: 10.1007/s00415-012-6467-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/29/2022]
|
19
|
Abrams CK, Scherer SS. Gap junctions in inherited human disorders of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:2030-47. [PMID: 21871435 PMCID: PMC3771870 DOI: 10.1016/j.bbamem.2011.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022]
Abstract
CNS glia and neurons express connexins, the proteins that form gap junctions in vertebrates. We review the connexins expressed by oligodendrocytes and astrocytes, and discuss their proposed physiologic roles. Of the 21 members of the human connexin family, mutations in three are associated with significant central nervous system manifestations. For each, we review the phenotype and discuss possible mechanisms of disease. Mutations in GJB1, the gene for connexin 32 (Cx32) cause the second most common form of Charcot-Marie-Tooth disease (CMT1X). Though the only consistent phenotype in CMT1X patients is a peripheral demyelinating neuropathy, CNS signs and symptoms have been found in some patients. Recessive mutations in GJC2, the gene for Cx47, are one cause of Pelizaeus-Merzbacher-like disease (PMLD), which is characterized by nystagmus within the first 6 months of life, cerebellar ataxia by 4 years, and spasticity by 6 years of age. MRI imaging shows abnormal myelination. A different recessive GJC2 mutation causes a form of hereditary spastic paraparesis, which is a milder phenotype than PMLD. Dominant mutations in GJA1, the gene for Cx43, cause oculodentodigital dysplasia (ODDD), a pleitropic disorder characterized by oculo-facial abnormalities including micropthalmia, microcornia and hypoplastic nares, syndactyly of the fourth to fifth fingers and dental abnormalities. Neurologic manifestations, including spasticity and gait difficulties, are often but not universally seen. Recessive GJA1 mutations cause Hallermann-Streiff syndrome, a disorder showing substantial overlap with ODDD. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Charles K. Abrams
- Department of Neurology and Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, 1-718-270-1270 Phone, 1-718-270-8944 Fax,
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania School of Medicine, Room 450 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6077, 215-573-3198,
| |
Collapse
|
20
|
Kleopa KA. The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 2011; 31:17753-60. [PMID: 22159091 PMCID: PMC6634164 DOI: 10.1523/jneurosci.4824-11.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus.
| |
Collapse
|
21
|
Karadima G, Floroskufi P, Koutsis G, Vassilopoulos D, Panas M. Mutational analysis of PMP22, GJB1 and MPZ in Greek Charcot-Marie-Tooth type 1 neuropathy patients. Clin Genet 2011; 80:497-9. [PMID: 22243284 DOI: 10.1111/j.1399-0004.2011.01657.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wasseff SK, Scherer SS. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis 2011; 42:506-13. [PMID: 21396451 PMCID: PMC3773476 DOI: 10.1016/j.nbd.2011.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/24/2022] Open
Abstract
In addition to the extensive gap junction coupling between astrocytes themselves, oligodendrocytes are thought to be exclusively coupled to astrocytes (O:A coupling) via heterotypic gap junctions composed of Cx47:Cx43 and Cx32:Cx30. We used fluorescent dyes to examine functional coupling in acute slices from the cerebra of mice lacking Cx32 and/or Cx47. In the corpus callosum, unexpectedly, oligodendrocytes appeared to be directly and exclusively coupled to other oligodendrocytes (O:O coupling), and electron microscopy revealed gap junctions between adjacent oligodendrocytes. O:O coupling was more affected in mice lacking Cx32 than in mice lacking Cx47. In the neocortex, oligodendrocytes appeared to be directly and exclusively coupled to astrocytes; Cx47, but not Cx32, was required for O:A coupling.
Collapse
Affiliation(s)
- Sameh K. Wasseff
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Akimoto C, Morita M, Yamamoto M, Nakano I. [Novel mutation in X-linked Charcot-Marie-tooth (CMTXI) disease associated with central conduction slowing on brainstem auditory evoked potential (BAEP)]. Rinsho Shinkeigaku 2010; 50:399-403. [PMID: 20593665 DOI: 10.5692/clinicalneurol.50.399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CMTX1, the second most common type of inherited hereditary motor and sensory neuropathy (HMSN), is associated with mutations of the gene for the gap junction protein connexin 32 (Cx32). In this condition, central conduction velocity is known to be delayed, presumably because mutated Cx32 is expressed in oligodendrocytes. A 45-year-old man presented with a 5-year history of progressive gait disturbance due to leg muscle weakness. The family history revealed that the mother had also progressive gait disturbance in her early 40s, and the younger sister could not walk faster than before at the age of 41. On neurological assessment, the patient exhibited pes cavus, distal muscle atrophy and weakness, and absence of the knee and ankle jerks. Touch sensation was impaired in the both feet. Motor and sensory nerve conduction velocities were reduced to 30-36 m/s with mild temporal dispersion. Sural nerve biopsy revealed diffuse loss of large myelinated fibers with the remaining large and intermediate nerve fibers being frequently surrounded by a thin myelin sheath. Onion bulb formation was only occasional and mild in degree. His hearing acuity was normal on pure-tone audiometry, but BAEP test demonstrated prolonged central conduction time (-I wave 1.8 milliseconds, I-V wave 6.4 milliseconds). The BAEP findings prompted us to choose Cx32 gene to analyze first to find a novel mutation of two (A and T) base pairs deletion at codons 277 and 278 (Met93fs). Thus, the present case indicates that Cx32 gene mutation should be targeted first in case of HMSN with abnormal BAEP.
Collapse
Affiliation(s)
- Chizuru Akimoto
- Division of Neurology, Department of Internal Medicine, Jichi Medical University
| | | | | | | |
Collapse
|
24
|
Brozková D, Mazanec R, Haberlová J, Sakmaryová I, Subrt I, Seeman P. Six new gap junction beta 1 gene mutations and their phenotypic expression in Czech patients with Charcot-Marie-Tooth disease. Genet Test Mol Biomarkers 2010; 14:3-7. [PMID: 20039784 DOI: 10.1089/gtmb.2009.0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
X-linked Charcot-Marie-Tooth (CMTX) disease is a hereditary motor and sensory neuropathy caused by mutations in the gap junction beta 1 gene (GJB1 codes for connexin 32). In this study we report six novel mutations p.Met1Arg, p.Leu9Phe, p.Ser17Tyr, p.Val63Phe, p.Val170Ile, and p.Leu212Phe in GJB1 and their phenotypic expression. These mutations affect both intracellular and extracellular parts of the GJB1 protein. The screened patients had previously excluded the duplication/deletion on 17p11.2 and the male-to-male transfer in the pedigree. Except p.Val170Ile, all reported mutations segregated with the CMT phenotype in the families and caused CMTX1 neuropathy. Mutations were not found in 200 control DNA samples. Additionally, we performed in silico analysis of the novel mutations with the program PANTHER. The PANTHER scored five mutations, all but p.Val170Ile, as likely deleterious and supported the pathogenicity of the found mutations. These results provided evidence that these five mutations are causative for CMTX1.
Collapse
Affiliation(s)
- Dana Brozková
- DNA Laboratory, Department of Child Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
25
|
Kleopa KA, Orthmann-Murphy J, Sargiannidou I. Gap Junction Disorders of Myelinating Cells. Rev Neurosci 2010; 21:397-419. [DOI: 10.1515/revneuro.2010.21.5.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA. Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci 2009; 29:4736-49. [PMID: 19369543 PMCID: PMC2721059 DOI: 10.1523/jneurosci.0325-09.2009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/23/2009] [Accepted: 03/05/2009] [Indexed: 11/21/2022] Open
Abstract
The gap junction (GJ) protein connexin32 (Cx32) is expressed by myelinating Schwann cells and oligodendrocytes and is mutated in X-linked Charcot-Marie-Tooth disease. In addition to a demyelinating peripheral neuropathy, some Cx32 mutants are associated with transient or chronic CNS phenotypes. To investigate the molecular basis of these phenotypes, we generated transgenic mice expressing the T55I or the R75W mutation and an IRES-EGFP, driven by the mouse Cnp promoter. The transgene was expressed in oligodendrocytes throughout the CNS and in Schwann cells. Both the T55I and the R75W mutants were localized in the perinuclear cytoplasm, did not form GJ plaques, and did not alter the expression or localization of two other oligodendrocytic GJ proteins, Cx47 and Cx29, or the expression of Cx29 in Schwann cells. On wild type background, the expression of endogenous mCx32 was unaffected by the T55I mutant, but was partly impaired by R75W. Transgenic mice with the R75W mutation and all mutant animals with Gjb1-null background developed a progressive demyelinating peripheral neuropathy along with CNS myelination defects. These findings suggest that Cx32 mutations result in loss of function in myelinated cells without trans-dominant effects on other GJ proteins. Loss of Cx32 function alone in the CNS causes myelination defects.
Collapse
Affiliation(s)
| | | | - Sophia Aristodemou
- Department of Molecular Pathology and Electron Microscopy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus, and
| | - Andreas Hadjisavvas
- Department of Molecular Pathology and Electron Microscopy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus, and
| | - Kyriacos Kyriacou
- Department of Molecular Pathology and Electron Microscopy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus, and
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
27
|
Baker SK, Reith CC, Ainsworth PJ. Novel 95G>A (R32K) somatic mosaic connexin 32 mutation. Muscle Nerve 2008; 38:1510-1514. [PMID: 18949782 DOI: 10.1002/mus.21145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is among the most common inherited disorders of the peripheral nervous system, and it is broadly categorized as demyelinating type 1 or axonal type 2 based on nerve conduction studies. Mutations in discrete genes usually segregate into a single phenotype. However, mutations in connexin 32 (Cx32) can produce both axonal and demyelinating CMT phenotypes. Although over 300 mutations have been described in Cx32, somatic mosaicism has only been reported once previously. We report a 39-year-old man who was referred for electrodiagnostic evaluation due to a history of bilateral carpal tunnel syndrome. His physical examination and electrodiagnostic findings demonstrated a mild sensorimotor axonal peripheral neuropathy. Sequencing of his Cx32 (GJB1) gene identified a guanine-to-adenine (G>A) transition at nucleotide position 95. This transition mutation involved approximately one-third of leukocyte-derived genomic DNA. This is the second reported case of somatic mosaicism, and it highlights the phenotypic diversity among CMTX patients.
Collapse
Affiliation(s)
- Steven K Baker
- Department of Medicine, Division of Neurology, Neuromuscular Disease Clinic, McMaster University Medical Center, 120 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Cara C Reith
- Department of Pathology, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada
| | - Peter J Ainsworth
- Department of Pathology, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Nave KA, Sereda MW, Ehrenreich H. Mechanisms of disease: inherited demyelinating neuropathies--from basic to clinical research. ACTA ACUST UNITED AC 2007; 3:453-64. [PMID: 17671523 DOI: 10.1038/ncpneuro0583] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/25/2007] [Indexed: 01/30/2023]
Abstract
The hereditary motor and sensory neuropathies (also known as Charcot-Marie-Tooth disease or CMT) are characterized by a length-dependent loss of axonal integrity in the PNS, which leads to progressive muscle weakness and sensory deficits. The 'demyelinating' neuropathies (CMT disease types 1 and 4) are genetically heterogeneous, but their common feature is that the primary defect perturbs myelination. As we discuss in this Review, several new genes associated with CMT1 and CMT4 have recently been identified. The emerging view is that a range of different subcellular defects in Schwann cells can cause axonal loss, which represents the final common pathway of all CMT disease and is independent of demyelination. We propose that Schwann cells provide a first line of axonal neuroprotection. A better understanding of axon-glia interactions should open the way to therapeutic interventions for demyelinating neuropathies. Transgenic animal models have become essential for dissecting CMT disease mechanisms and exploring novel therapies.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | | |
Collapse
|
29
|
Nicholson G, Myers S. Intermediate forms of Charcot-Marie-Tooth neuropathy: a review. Neuromolecular Med 2007; 8:123-30. [PMID: 16775371 DOI: 10.1385/nmm:8:1-2:123] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/13/2005] [Accepted: 12/29/2005] [Indexed: 12/19/2022]
Abstract
The Charcot-Marie-Tooth (CMT) neuropathies divide into two main electrophysiological groups with slow and near normal conduction velocities corresponding to Schwann cell and axonal pathology. An intermediate group also exists with nerve conduction velocities, which overlaps the two main groups. Families with intermediate CMT can be recognized in which different affected individuals in the same family have motor conduction velocities in both the CMT type 1 and 2 ranges (i.e., above and below 38 m/s). The intermediate group is caused by a limited number of distinct gene mutations in dynamin2 (DNM2), gap-junction protein 1 (GJB1), neurofilament light polypeptide (NF-L) genes, and a rare mutation and as yet unknown genes on chromosome 1 and 10 loci. Intermediate forms of CMT may be associated with unique disease mechanisms affecting both Schwann cells and axons. It is useful to recognize this unique group of neuropathies for diagnostic and management purposes.
Collapse
Affiliation(s)
- Garth Nicholson
- University of Sydney, The Molecular Medicine and ANZAC Research Institute, Northcott Neuroscience Laboratory, Concord Hospital, NSW 2139, Australia.
| | | |
Collapse
|
30
|
Abstract
Neuropathy is one of the most common referrals to neurologic clinics. Patients often undergo extensive testing for acquired etiologies; inherited causes are common. Increasingly, genetic causes are becoming known and commercial testing available. The rate of recent discovery has been rapid and relates to the extent of single gene disorders of nerve, the ease of peripheral nervous system functional examination, and readily accessible pathologic tissue. Foremost in the rate of recent discoveries is the work and tools of the human genome project. the rapidity of the ongoing discovery requires clinicians to be familiar with molecular biologic discoveries and consider wisely which testing should be performed.
Collapse
Affiliation(s)
- Christopher J Klein
- Department of Neurology, Division of Peripheral Nerve Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Huttner IG, Kennerson ML, Reddel SW, Radovanovic D, Nicholson GA. Proof of genetic heterogeneity in X-linked Charcot-Marie-Tooth disease. Neurology 2006; 67:2016-21. [PMID: 17159110 DOI: 10.1212/01.wnl.0000247271.40782.b7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To characterize a large family with X-linked Charcot-Marie-Tooth (CMT) neuropathy without mutations in the gap junction protein B1 (GJB1) gene, which has an unusual phenotype that is different in some aspects from classic CMTX1. METHODS We tested CMT families consistent with X-linked inheritance for GJB1 mutations. We compared the largest family (CMT623) without GJB1 mutation and with linkage excluding the CMTX1 locus to CMTX1 and normal individuals. RESULTS Only 51% of probable X-linked CMT families had mutations in GJB1. Family CMT623 shows linkage to Xq26.3-q27.1 (lod score z = 6.58), a region within the previously identified locus for CMTX3, Xq26-q28. Unlike CMTX1, affected males in family CMT623 report pain and paraesthesia before the onset of sensory loss, and women are usually asymptomatic. As in CMTX1, affected males have widely ranging intermediate motor conduction velocities. The coding regions of 14 positional candidate genes within the narrowed CMTX3 locus have been excluded for a pathogenic role in the disease. CONCLUSION This study is the first to confirm the CMTX3 locus and to refine the genetic interval to a 5.7-Mb region flanked by the markers DXS1041 and DXS8106. GJB1 mutation-negative forms of X-linked CMT, such as CMTX3, may account for a significant proportion of X-linked CMT.
Collapse
Affiliation(s)
- I G Huttner
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Australia
| | | | | | | | | |
Collapse
|
32
|
Kleopa KA, Zamba-Papanicolaou E, Alevra X, Nicolaou P, Georgiou DM, Hadjisavvas A, Kyriakides T, Christodoulou K. Phenotypic and cellular expression of two novel connexin32 mutations causing CMT1X. Neurology 2006; 66:396-402. [PMID: 16476939 DOI: 10.1212/01.wnl.0000196479.93722.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the phenotypic and cellular expression of two novel connexin32 (Cx32) mutations causing X-linked Charcot-Marie-Tooth disease (CMT1X). METHODS The authors evaluated several members of two families with CMT1X clinically, electrophysiologically, pathologically, and by genetic testing. The Cx32 mutations were expressed in vitro and studied by immunocytochemistry. RESULTS In both families, men were more severely affected than women with onset in the second decade of life. In the first family, the phenotype was that of demyelinating polyneuropathy with variable involvement of peripheral nerves. There was clinical evidence of CNS involvement in at least three of the patients, with extensor plantar responses and brisk reflexes. In the second family, the affected man presented with symmetric polyneuropathy and intermediate slowing of conduction velocities, whereas affected women had prominent asymmetric atrophy of the leg muscles. The authors identified two novel missense mutations resulting in L143P amino acid substitution in the first family and in V140E substitution in the second family, both located in the third transmembrane domain of Cx32. Expression of these Cx32 mutations in communication-incompetent HeLa cells and immunocytochemical analysis revealed that both mutants were retained intracellularly and were localized in the Golgi apparatus. In contrast to wild-type protein, they did not form gap junctions. CONCLUSION These novel connexin32 (Cx32) mutations cause a spectrum of clinical manifestations characteristic of Charcot-Marie-Tooth disease (CMT1X), including demyelinating or intermediate polyneuropathy, which is often asymmetric, and CNS involvement in one family. The position and cellular expression of Cx32 mutations alone cannot fully predict these phenotypic variations in CMT1X.
Collapse
Affiliation(s)
- K A Kleopa
- Department of Clinical Neurosciences, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
LEWIS RICHARDA, SUMNER AUSTINJ. Electrophysiologic Features of Inherited Demyelinating Neuropathies: A Reappraisal. Ann N Y Acad Sci 2006; 883:321-335. [DOI: 10.1111/j.1749-6632.1999.tb08594.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Kleopa KA, Scherer SS. Molecular genetics of X-linked Charcot-Marie-Tooth disease. Neuromolecular Med 2006; 8:107-22. [PMID: 16775370 DOI: 10.1385/nmm:8:1-2:107] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 11/10/2005] [Accepted: 11/17/2005] [Indexed: 11/11/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common molecularly designated form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive distal muscle atrophy and weakness, areflexia, and variable sensory abnormalities. Affected males have moderate-to-severe symptoms, whereas heterozygous females are usually mildly affected or even asymptomatic. Several patients also have manifestations of central nervous system involvement or hearing impairment. Electrophysiological and pathological studies of peripheral nerves show evidence of demyelinating neuropathy with prominent axonal degeneration. A large number of mutations in the GJB1 gene encoding the gap junction (GJ) protein connexin32 (Cx32) cause CMT1X. Cx32 is expressed by Schwann cells and oligodendrocytes, as well as by other tissues, and the GJ formed by Cx32 play an important role in the homeostasis of myelinated axons. The reported CMT1X mutations are diverse and affect both the promoter region as well as the coding region of GJB1. Many Cx32 mutants fail to form functional GJ, or form GJ with abnormal biophysical properties. Furthermore, Cx32 mutants are often retained intracellularly either in the endoplasmic reticulum or Golgi in which they could potentially have additional dominant-negative effects. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. No definite phenotype-genotype correlation has yet been established for CMT1X and effective molecular based therapeutics for this disease, remain to be developed.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Clinical Neurosciences, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | | |
Collapse
|
35
|
Berger P, Sirkowski EE, Scherer SS, Suter U. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom. Neurobiol Dis 2004; 17:290-9. [PMID: 15474366 DOI: 10.1016/j.nbd.2004.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 04/27/2004] [Accepted: 07/09/2004] [Indexed: 11/16/2022] Open
Abstract
Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.
Collapse
Affiliation(s)
- Philipp Berger
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
36
|
Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS. Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 2004; 47:346-57. [PMID: 15293232 DOI: 10.1002/glia.20043] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oligodendrocytes of adult rodents express three different connexins: connexin29 (Cx29), Cx32, and Cx47. In this study, we show that Cx29 is localized to the inner membrane of small myelin sheaths, whereas Cx32 is localized on the outer membrane of large myelin sheaths; Cx29 does not colocalize with Cx32 in gap junction plaques. All oligodendrocytes appear to express Cx47, which is largely restricted to their perikarya. Cx32 and Cx47 are colocalized in many gap junction plaques on oligodendrocyte somata, particularly in gray matter. Cx45 is detected in the cerebral vasculature, but not in oligodendrocytes or myelin sheaths. This diversity of connexins in oligodendrocytes (in different populations of cells and in different subcellular compartments) likely reflects functional differences between these connexins and perhaps the oligodendrocytes themselves.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, USA.
| | | | | | | | | |
Collapse
|
37
|
Taylor RA, Simon EM, Marks HG, Scherer SS. The CNS phenotype of X-linked Charcot-Marie-Tooth disease: more than a peripheral problem. Neurology 2003; 61:1475-8. [PMID: 14663027 DOI: 10.1212/01.wnl.0000095960.48964.25] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Robert A Taylor
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, USA.
| | | | | | | |
Collapse
|
38
|
Shelton GD, Podell M, Poncelet L, Schatzberg S, Patterson E, Powell HC, Mizisin AP. Inherited polyneuropathy in Leonberger dogs: a mixed or intermediate form of Charcot-Marie-Tooth disease? Muscle Nerve 2003; 27:471-7. [PMID: 12661049 DOI: 10.1002/mus.10350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A spontaneous distal, symmetrical polyneuropathy in related Leonberger dogs with onset between 1 to 9 years of age was characterized clinically, electrophysiologically, histologically, and morphometrically. Exercise intolerance and weakness was associated with a high-steppage pelvic-limb gait, a loss or change in the pitch of the bark, and dyspnea. Neurological examination revealed marked atrophy of the distal limb muscles, depressed spinal and cranial nerve reflexes, and weak or absent movement of the laryngeal and pharyngeal muscles. Electrophysiological evaluation was consistent with denervation and was characterized by loss or marked attenuation of compound muscle action potentials and slowed motor nerve conduction velocity. Muscle biopsy specimens showed neurogenic atrophy. Chronic nerve fiber loss associated with decreased myelinated fiber density and a shift of the axonal size-frequency distribution toward smaller fibers was the predominant finding in peripheral nerve specimens. Pedigree analysis of a large multigenerational family, including nine sibships with at least one affected individual, suggested X-linked inheritance. Mutational and linkage analysis of this family may aid in identification of the chromosomal loci and gene responsible for this inherited axonal neuropathy. Further characterization of this inherited axonal neuropathy may establish the Leonberger dog as a spontaneous animal model of inherited axonal neuropathy and possibly lead to the discovery of a new gene or genes associated with axonal variants.
Collapse
MESH Headings
- Action Potentials/genetics
- Animals
- Charcot-Marie-Tooth Disease/veterinary
- Disease Models, Animal
- Dog Diseases/genetics
- Dog Diseases/pathology
- Dog Diseases/physiopathology
- Dogs
- Female
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/veterinary
- Lameness, Animal/genetics
- Lameness, Animal/pathology
- Lameness, Animal/physiopathology
- Male
- Microscopy, Electron
- Motor Neurons/pathology
- Motor Neurons/ultrastructure
- Muscle Contraction/genetics
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/genetics
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/ultrastructure
- Pedigree
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla 92093-0612, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Takashima H, Nakagawa M, Umehara F, Hirata K, Suehara M, Mayumi H, Yoshishige K, Matsuyama W, Saito M, Jonosono M, Arimura K, Osame M. Gap junction protein beta 1 (GJB1) mutations and central nervous system symptoms in X-linked Charcot-Marie-Tooth disease. Acta Neurol Scand 2003; 107:31-7. [PMID: 12542510 DOI: 10.1034/j.1600-0404.2003.01317.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To clarify the clinical variability, including central nervous system (CNS) involvement, in X-linked Charcot-Marie-Tooth disease (CMTX) patients. MATERIAL AND METHODS We clinically, pathologically and genetically studied six CMTX patients with distinct symptoms and four different GJB1 mutations. RESULTS One patient with Val63Ile had deafness, low intelligence, saccadic eye movement, upper extremity distal dominant muscle weakness and normal sensation. Another patient with Glu186Lys had severe sensorineural deafness at the age of 6 years, but did not develop muscle weakness until the age of 20 years. Two patients with Arg22Gln had typical CMT1A-like clinical features, no CNS symptoms and obvious onion bulb formations. Two siblings with deletion of the entire GJB1 gene had mild to moderate lower extremity muscle weakness and sensory disturbance without CNS involvement. CONCLUSION These findings suggest that some gain of function mutations of GJB1 may be related to CNS symptoms because the patients with GJB1 deletion only had peripheral neuropathy, although other unknown associated factors may contribute to their clinical phenotypes.
Collapse
Affiliation(s)
- H Takashima
- Third Department of Internal Medicine, Kagoshima University Faculty of Medicine, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hattori N, Yamamoto M, Yoshihara T, Koike H, Nakagawa M, Yoshikawa H, Ohnishi A, Hayasaka K, Onodera O, Baba M, Yasuda H, Saito T, Nakashima K, Kira JI, Kaji R, Oka N, Sobue G. Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. Brain 2003; 126:134-51. [PMID: 12477701 DOI: 10.1093/brain/awg012] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Three genes commonly causing Charcot-Marie-Tooth disease (CMT) encode myelin-related proteins: peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) and connexin 32 (Cx32). Demyelinating versus axonal phenotypes are major issues in CMT associated with mutations of these genes. We electrophysiologically, pathologically and genetically evaluated demyelinating and axonal features of 205 Japanese patients with PMP22 duplication, MPZ mutations or Cx32 mutations. PMP22 duplication caused mainly demyelinating phenotypes with slowed motor nerve conduction velocity (MCV) and demyelinating histopathology, while axonal features were variably present. Two distinctive phenotypic subgroups were present in patients with MPZ mutations: one showed preserved MCV and exclusively axonal pathological features, while the other was exclusively demyelinating. These axonal and demyelinating phenotypes were well concordant among siblings in individual families, and MPZ mutations did not overlap among these two subgroups, suggesting that the nature and position of the MPZ mutations mainly determine the axonal and demyelinating phenotypes. Patients with Cx32 mutations showed intermediate slowing of MCV, predominantly axonal features and relatively mild demyelinating pathology. These axonal and demyelinating features were present concomitantly in individual patients to a variable extent. The relative severity of axonal and demyelinating features was not associated with particular Cx32 mutations. Median nerve MCV and overall histopathological phenotype changed little with disease advancement. Axonal features of diminished amplitudes of compound muscle action potentials (CMAPs), axonal loss, axonal sprouting and neuropathic muscle wasting all changed as disease advanced, especially in PMP22 duplication and Cx32 mutations. Median nerve MCVs were well maintained independently of age, disease duration and the severity of clinical and pathological abnormalities, confirming that median nerve MCV is an excellent marker for the genetically determined neuropathic phenotypes. Amplitude of CMAPs was correlated significantly with distal muscle strength in PMP22 duplication, MPZ mutations and Cx32 mutations, while MCV slowing was not, indicating that clinical weakness results from reduced numbers of functional large axons, not from demyelination. Thus, the three major myelin-related protein mutations induced varied degrees of axonal and demyelinating phenotypic features according to the specific gene mutation as well as the stage of disease advancement, while clinically evident muscle wasting was attributable to loss of functioning large axons.
Collapse
Affiliation(s)
- Naoki Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schelhaas HJ, Van Engelen BGM, Gabreëls-Festen AAWM, Hageman G, Vliegen JHR, Van Der Knaap MS, Zwarts MJ. Transient cerebral white matter lesions in a patient with connexin 32 missense mutation. Neurology 2002; 59:2007-8. [PMID: 12499506 DOI: 10.1212/01.wnl.0000038390.29853.46] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- H J Schelhaas
- Neuromuscular Center Nijmegen, Institute of Neurology, University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Inherited neuropathies are common and are usually caused by mutations in genes that are expressed by myelinating Schwann cells or neurons, which is the biological basis for long-standing distinction between primary demyelinating and axonal neuropathies. Neuropathies can be isolated, the primary manifestation of a more complex syndrome, or overshadowed by other aspects of the inherited disease. Increasing knowledge of the molecular-genetic causes of inherited neuropathies facilitates faster, more accurate diagnosis, and sets the stage for development of specific therapeutic interventions.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- University of Pennsylvania Medical Center, 3400 Spruce Street, 3 West Gates, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
43
|
Kleopa KA, Yum SW, Scherer SS. Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J Neurosci Res 2002; 68:522-34. [PMID: 12111842 DOI: 10.1002/jnr.10255] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both oligodendrocytes and myelinating Schwann cells express the gap junction protein connexin32 (Cx32). Mutations in the gene encoding Cx32 (GJB1) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX). Although most CMTX patients do not have clinical central nervous system (CNS) manifestations, subclinical evidence of CNS dysfunction is common. We investigated the cellular effects of a subgroup of GJB1/Cx32 mutations that have been reported to cause clinical CNS dysfunction. We hypothesized that these mutants have dominant-negative effects on other connexins expressed by oligodendrocytes, specifically Cx45. We expressed these and other Cx32 mutants in communication-incompetent as well as Cx45-expressing HeLa cells, and analyzed the transfected cells by immunocytochemistry and immunoblotting. In communication-incompetent cells, the mutants associated with CNS phenotypes failed to reach the cell membrane and were instead retained in the endoplasmic reticulum (A39V, T55I) or Golgi apparatus (M93V, R164Q, R183H), although rare gap junction plaques were found in cells expressing M93V or R183H. In HeLa cells stably expressing Cx45, these Cx32 mutants showed a similar expression pattern, and did not alter the pattern of Cx45 expression. These results indicate that Cx32 mutants that are associated with a CNS phenotype do not interact with Cx45, but may instead have other toxic effects in oligodendrocytes.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
44
|
Panas M, Kalfakis N, Karadimas C, Vassilopoulos D. Episodes of generalized weakness in two sibs with the C164T mutation of the connexin 32 gene. Neurology 2001; 57:1906-8. [PMID: 11723288 DOI: 10.1212/wnl.57.10.1906] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two sibs with Charcot-Marie-Tooth disease had repeated episodes of generalized weakness. The patients had distal weakness and atrophy as well as findings of CNS involvement on brain MRI. Both patients bear the C164T mutation of the connexin 32 gene but no mutations of the genes responsible for hyper- or hypokalemic periodic paralysis. It is possible that both patients have one disease with complex phenotype due to abnormal expression of the connexin 32 gene.
Collapse
Affiliation(s)
- M Panas
- Neurogenetics Unit, Department of Neurology, University of Athens, Greece
| | | | | | | |
Collapse
|
45
|
Dubourg O, Tardieu S, Birouk N, Gouider R, Léger JM, Maisonobe T, Brice A, Bouche P, LeGuern E. The frequency of 17p11.2 duplication and Connexin 32 mutations in 282 Charcot-Marie-Tooth families in relation to the mode of inheritance and motor nerve conduction velocity. Neuromuscul Disord 2001; 11:458-63. [PMID: 11404117 DOI: 10.1016/s0960-8966(00)00222-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 17p11.2 duplication and Connexin 32 (Cx32) mutations are the most frequent gene mutations responsible for Charcot-Marie-Tooth diseases. We classified 282 Charcot-Marie-Tooth families according to the median motor nerve conduction velocity of the index patient and the mode of inheritance, and screened them for 17p11.2 duplication and Cx32 mutations. Forty-seven percent of the Charcot-Marie-Tooth families had median motor nerve conduction velocity under 30 m/s (group 1), 15% between 30 and 40 m/s (group 2), and 28% over 40 m/s (group 3). Spinal Charcot-Marie-Tooth (group 4) was observed in 7% of the families. Modes of inheritance were not similarly represented among the different groups. The 17p11.2 duplication was detected in index patients of group 1 only, and accounted for 83% of the familial cases and 36% of the isolated cases. In contrast, 21 Cx32 mutations were detected to variable degrees in groups 1-3, but were most numerous by far in dominant families of group 2 (44%). This systematic approach was taken to estimate the frequency of 17p11.2 duplication and Cx32 mutations in the different Charcot-Marie-Tooth subgroups, in order to propose a practical strategy for molecular analysis.
Collapse
Affiliation(s)
- O Dubourg
- Inserm U289, Hôpital de la Salpêtrière, 47 Boulevard de l'hôpital, 75651 Cedex 13, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lewis RA, Sumner AJ, Shy ME. Electrophysiological features of inherited demyelinating neuropathies: A reappraisal in the era of molecular diagnosis. Muscle Nerve 2000; 23:1472-87. [PMID: 11003782 DOI: 10.1002/1097-4598(200010)23:10<1472::aid-mus3>3.0.co;2-#] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The observation that inherited demyelinating neuropathies have uniform conduction slowing and that acquired disorders have nonuniform or multifocal slowing was made prior to the identification of mutations in myelin-specific genes which cause many of the inherited disorders involving peripheral nerve myelin. It is now clear that the electrophysiological aspects of these disorders are more complex than previously realized. Specifically, certain mutations appear to induce nonuniform slowing of conduction which resemble the findings in acquired demyelinating neuropathies. It is clinically important to recognize the different electrodiagnostic patterns of the various inherited demyelinating neuropathies. In addition, an understanding of the relationship between mutations of specific genes and their associated neurophysiological findings is likely to facilitate understanding of the role of these myelin proteins in peripheral nerve function and of how abnormalities in myelin proteins lead to neuropathy. We therefore review the current information on the electrophysiological features of the inherited demyelinating neuropathies in hopes of clarifying their electrodiagnostic features and to shed light on the physiological consequences of the different genetic mutations.
Collapse
Affiliation(s)
- R A Lewis
- Department of Neurology, Wayne State University School of Medicine, UHC 8D, 4201 St. Antoine, Detroit, Michigan, USA.
| | | | | |
Collapse
|
47
|
Bergmann C, Senderek J, Hermanns B, Jauch A, Janssen B, Schröder JM, Karch D. Becker muscular dystrophy combined with X-linked Charcot-Marie-Tooth neuropathy. Muscle Nerve 2000; 23:818-23. [PMID: 10797409 DOI: 10.1002/(sici)1097-4598(200005)23:5<818::aid-mus23>3.0.co;2-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A man was identified with two X-chromosomal neuromuscular disorders, X-linked Charcot-Marie-Tooth disease (CMTX) and Becker muscular dystrophy (BMD). The neuropathy could be tracked in the family and was found to be caused by a mutation in the connexin32 gene on Xq13. 1. The muscular dystrophy was sporadic owing to a de novo deletion in the dystrophin gene located in band Xp21.2. Although these genetic alterations of the same X-chromosome are considered as physically independent, their combination resulted in a unique phenotype with severe wasting of proximal as well as distal muscles and rapid progression of both conditions.
Collapse
Affiliation(s)
- C Bergmann
- Institut für Neuropathologie der Rheinisch-Westfälischen Technischen Hochschule, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Abrams CK, Oh S, Ri Y, Bargiello TA. Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot-Marie-Tooth disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:203-14. [PMID: 10751671 DOI: 10.1016/s0165-0173(99)00082-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The connexins are a family of homologous integral membrane proteins that form channels that provide a low resistance pathway for the transmission of electrical signals and the diffusion of small ions and non-electrolytes between coupled cells. Individuals carrying mutations in the gene encoding connexin 32 (Cx32), a gap junction protein expressed in the paranodal loops and Schmidt-Lantermann incisures of myelinating Schwann cells, develop a peripheral neuropathy - the X-linked form of Charcot-Marie-Tooth disease (CMTX). Over 160 different mutations in Cx32 associated with CMTX have been identified. Some mutations will lead to complete loss of function with no possibility of expression of functional channels. Some mutations in Cx32 lead to the abnormal accumulation of Cx32 proteins in the cytoplasm, particularly in the Golgi apparatus; CMTX may arise due to incorrect trafficking of Cx32 or to interference with trafficking of other proteins. On the other hand, many mutant forms of Cx32 can form functional channels. Some functional mutants have conductance voltage relationships that are disrupted to a degree which would lead to a substantial reduction in the available gap junction mediated communication pathway. Others have essentially normal steady-state g-V relations. In one of these cases (Ser26Leu), the only change introduced by the mutation is a reduction in the pore diameter from 7 A for the wild-type channel to less than 3 A for Ser26Leu. This reduction in pore diameter may restrict the passage of important signaling molecules. These findings suggest that in some, if not all cases of CMTX, loss of function of normal Cx32 is sufficient to cause CMTX.
Collapse
Affiliation(s)
- C K Abrams
- Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
49
|
Rozental R, Srinivas M, Gökhan S, Urban M, Dermietzel R, Kessler JA, Spray DC, Mehler MF. Temporal expression of neuronal connexins during hippocampal ontogeny. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:57-71. [PMID: 10751657 DOI: 10.1016/s0165-0173(99)00096-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Communication through gap junction channels provides a major signaling mechanism during early brain histogenesis, a developmental time during which neural progenitor cells are inexcitable and do not express ligand-gated channel responses to the major CNS neurotransmitters. Expression of different gap junction types during neurogenesis may therefore define intercellular pathways for transmission of developmentally relevant molecules. To better understand the molecular mechanism(s) by which growth and differentiation of neurons are modulated by gap junction channels, we have been examining the developmental effects of a specific set of cytokines on differentiation and gap junction expression in a conditionally immortalized mouse embryonic hippocampal neuronal progenitor cell line (MK31). When multipotent MK31 cells are in an uncommitted state, they uniformly express the neuroepithelial intermediate filament class VI marker, nestin, are strongly coupled by gap junctions composed of connexin43 (Cx43) and express connexin45 (Cx45) at the mRNA level. As these cells undergo neuronal lineage commitment and exit from cell cycle, they begin to express the early neurofilament marker, NF66, and coupling strength and expression of Cx43 begin to decline with concurrent expression of other connexin proteins, including Cx26, Cx33, Cx36, Cx40 and Cx45. Terminal neuronal differentiation is heralded by the expression of more advanced neurofilament proteins, increased morphologic maturation, the elaboration of inward currents and action potentials that possess mature physiological properties, and changing profiles of expression of connexin subtypes, including upregulation of Cx36 expression. These important developmental transitions are regulated by a complex network of cell cycle checkpoints. To begin to examine the precise roles of gap junction proteins in traversing these developmental checkpoints and in thus regulating neurogenesis, we have focused on individual members of two classes of genes involved in these seminal events: ID (inhibitor of differentiation)-1 and GAS (growth arrest-specific gene)5. When MK31 cells were maintained in an uncommitted state, levels of ID-1 mRNA were high and GAS5 transcripts were essentially undetectable. Application of cytokines that promote neuronal lineage commitment and cell cycle exit resulted in down-regulation of ID-1 and upregulation of GAS5 transcripts, whereas additional cytokine paradigms that promoted terminal neuronal differentiation resulted in the delayed down-regulation of GAS5 mRNA. Stable MK31 transfectants were generated for ID-1 and GAS5. In basal conditions, cellular proliferation was enhanced in the ID-1 transfectants and inhibited in the GAS5 transfectants when compared with control MK31 cells. When cytokine-mediated neurogenesis was examined in these transfected cell lines, constitutive expression of ID-1 inhibited and constitutive expression of GAS5 enhanced initial and terminal stages of neuronal differentiation, with evidence that terminal neuronal maturation in both transfectant lines was associated with decreased cellular viability, possibly due to the presence of conflicting cell cycle-associated developmental signals. These experimental reagents will prove to be valuable experimental tools to help define the functional interrelationships between changing profiles of connexin protein expression and cell cycle regulation during neuronal ontogeny in the mammalian brain. The present review summarizes the current state of research involving the temporal expression of such connexin types in differentiating hippocampal neurons and speculates on the possible role of these intercellular channels in the development and plasticity of the nervous system. In addition, we describe the functional properties and expression pattern of the newly discovered neuronal-specific gap junctional protein, Cx36, in the developing mouse fetal hippocampus and in the rat retina and brain.
Collapse
Affiliation(s)
- R Rozental
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Rapid advances in understanding the molecular biology of the gap junctional proteins - connexins (Cx) - have revealed that these proteins are indispensable for various cellular functions. Recent findings that mutational alterations of Cx genes leads to several quite different human diseases provide additional evidence that these proteins possess several not yet fully understood functions. Many different mutations of Cx32 have been found in the hereditary peripheral neuropathy - X-linked Charcot-Marie-Tooth syndrome and several mutations of Cx26 and Cx31 have been detected in deafness. Individual mutations of Cx46, Cx50 and Cx43 have been found in cataract or heart malformations. In this review, we analyzed the functional importance of mutations of different Cx described in different human diseases. Topological comparison of mutations in different Cx species has revealed several hot spots, where mutations are common for two different Cx or diseases. The value of Cx mutations associated with diseases for understanding Cx functions is discussed.
Collapse
Affiliation(s)
- V Krutovskikh
- Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon, France.
| | | |
Collapse
|