1
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
2
|
Bridgemohan C, Cochran DM, Howe YJ, Pawlowski K, Zimmerman AW, Anderson GM, Choueiri R, Sices L, Miller KJ, Ultmann M, Helt J, Forbes PW, Farfel L, Brewster SJ, Frazier JA, Neumeyer AM. Investigating Potential Biomarkers in Autism Spectrum Disorder. Front Integr Neurosci 2019; 13:31. [PMID: 31427932 PMCID: PMC6687766 DOI: 10.3389/fnint.2019.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/03/2019] [Indexed: 01/20/2023] Open
Abstract
Background Early identification and treatment of individuals with autism spectrum disorder (ASD) improves outcomes, but specific evidence needed to individualize treatment recommendations is lacking. Biomarkers that could be routinely measured within the clinical setting could potentially transform clinical care for patients with ASD. This demonstration project employed collection of biomarker data during regular autism specialty clinical visits and explored the relationship of biomarkers with clinical ASD symptoms. Methods Eighty-three children with ASD, aged 5–10 years, completed a multi-site feasibility study integrating the collection of biochemical (blood serotonin, urine melatonin sulfate excretion) and clinical (head circumference, dysmorphology exam, digit ratio, cognitive and behavioral function) biomarkers during routine ASD clinic visits. Parents completed a demographic survey and the Aberrant Behavior Checklist-Community. Cognitive function was determined by record review. Data analysis utilized Wilcoxon two-sample tests and Spearman correlations. Results Participants were 82% male, 63% White, 19% Hispanic, with a broad range of functioning. Group means indicated hyperserotonemia. In a single regression analysis adjusting for race and median household income, higher income was associated with higher levels of blood serotonin and urine melatonin sulfate excretion levels (p = 0.004 and p = 0.04, respectively). Melatonin correlated negatively with age (p = 0.048) and reported neurologic problems (p = 0.02). Dysmorphic status correlated with higher reported stereotyped behavior (p = 0.02) and inappropriate speech (p = 0.04). Conclusion This demonstration project employed collection of multiple biomarkers, allowed for examination of associations between biochemical and clinical measures, and identified several findings that suggest direction for future studies. This clinical research model has promise for integrative biomarker research in individuals with complex, heterogeneous neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Carolyn Bridgemohan
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - David M Cochran
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - Yamini J Howe
- Harvard Medical School, Boston, MA, United States.,Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| | | | - Andrew W Zimmerman
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - George M Anderson
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Roula Choueiri
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Sices
- Boston University Medical Center, Boston, MA, United States.,Boston University School of Medicine, Boston, MA, United States
| | - Karen J Miller
- Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Monica Ultmann
- Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Jessica Helt
- Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| | | | - Laura Farfel
- Boston University Medical Center, Boston, MA, United States.,Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Autism Consortium at Harvard Medical School, Boston, MA, United States
| | | | - Jean A Frazier
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States.,Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ann M Neumeyer
- Harvard Medical School, Boston, MA, United States.,Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| |
Collapse
|
3
|
Boutrus M, Gilani SZ, Alvares GA, Maybery MT, Tan DW, Mian A, Whitehouse AJO. Increased facial asymmetry in autism spectrum conditions is associated with symptom presentation. Autism Res 2019; 12:1774-1783. [PMID: 31225951 DOI: 10.1002/aur.2161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 01/23/2023]
Abstract
A key research priority in the study of autism spectrum conditions (ASC) is the discovery of biological markers that may help to identify and elucidate etiologically distinct subgroups. One physical marker that has received increasing research attention is facial structure. Although there remains little consensus in the field, findings relating to greater facial asymmetry (FA) in ASC exhibit some consistency. As there is growing recognition of the importance of replicatory studies in ASC research, the aim of this study was to investigate the replicability of increased FA in autistic children compared to nonautistic peers. Using three-dimensional photogrammetry, this study examined FA in 84 autistic children, 110 typically developing children with no family history of the condition, and 49 full siblings of autistic children. In support of previous literature, significantly greater depth-wise FA was identified in autistic children relative to the two comparison groups. As a further investigation, increased lateral FA in autistic children was found to be associated with greater severity of ASC symptoms on the Autism Diagnostic Observation Schedule, second edition, specifically related to repetitive and restrictive behaviors. These outcomes provide an important and independent replication of increased FA in ASC, as well as a novel contribution to the field. Having confirmed the direction and areas of increased FA in ASC, these findings could motivate a search for potential underlying brain dysmorphogenesis. Autism Res 2019, 12: 1774-1783. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study looked at the amount of facial asymmetry (FA) in autistic children compared to typically developing children and children who have siblings with autism. The study found that autistic children, compared to the other two groups, had greater FA, and that increased FA was related to greater severity of autistic symptoms. The face and brain grow together during the earliest stages of development, and so findings of facial differences in autism might inform future studies of early brain differences associated with the condition.
Collapse
Affiliation(s)
- Maryam Boutrus
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Syed Zulqarnain Gilani
- Computer Sciences and Software Engineering, University of Western Australia, Perth, Australia.,School of Science, Edith Cowan University, Perth, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Diana Weiting Tan
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Ajmal Mian
- Computer Sciences and Software Engineering, University of Western Australia, Perth, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| |
Collapse
|
4
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
5
|
Jumah F, Ghannam M, Jaber M, Adeeb N, Tubbs RS. Neuroanatomical variation in autism spectrum disorder: A comprehensive review. Clin Anat 2016; 29:454-65. [PMID: 27004599 DOI: 10.1002/ca.22717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/27/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in socialization, communication, and behavior. Many investigators have described the anatomical abnormalities in autistic brains, in an attempt to correlate them with the manifestations of ASD. Herein, we reviewed all the available literature about the neuroanatomical findings in ASD available via "PubMed" and "Google Scholar." References found in review articles were also searched manually. There was substantial discrepancy throughout the literature regarding the reported presence and significance of neuroanatomical findings in ASD, and this is thoroughly discussed in the present review.
Collapse
Affiliation(s)
- Fareed Jumah
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Malik Ghannam
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Mohammad Jaber
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
6
|
Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:111-44. [PMID: 25621659 DOI: 10.1146/annurev-pathol-012414-040405] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is defined by impaired social interaction and communication accompanied by stereotyped behaviors and restricted interests. Although ASD is common, its genetic and clinical features are highly heterogeneous. A number of recent breakthroughs have dramatically advanced our understanding of ASD from the standpoint of human genetics and neuropathology. These studies highlight the period of fetal development and the processes of chromatin structure, synaptic function, and neuron-glial signaling. The initial efforts to systematically integrate findings of multiple levels of genomic data and studies of mouse models have yielded new clues regarding ASD pathophysiology. This early work points to an emerging convergence of disease mechanisms in this complex and etiologically heterogeneous disorder.
Collapse
|
7
|
Riva D, Annunziata S, Contarino V, Erbetta A, Aquino D, Bulgheroni S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. THE CEREBELLUM 2014; 12:676-85. [PMID: 23572290 DOI: 10.1007/s12311-013-0469-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Voxel-based morphometry (VBM) studies have reported abnormalities in brain regions involved in functions that are commonly impaired in autism spectrum disorders (ASD). However, little is known about brain structure anomalies in low-functioning (LF) young children with ASD. A VBM analysis was carried out to assess brain regions involved in ASD LF children, and a multiple regression analysis was used to examine the relationship between regional volume changes and autism symptom measures. Twenty-six LF ASD children (2-10 years) were compared with 21 controls. A VBM-Diffeomorphic Anatomical Registration analysis using Exponentiated Lie algebra (DARTEL) was used to evaluate gray matter (GM) and white matter alterations, covaried with Intelligence Quotient, age, and total brain volume. The resulting altered regions were correlated with Autism Diagnostic Interview (ADI)-Revised and Autism Diagnostic Observation Schedule (ADOS)-Generic scores. GM bilateral reduction was noted in the cerebellum (Crus II and vermis) and in the hippocampi in ASD group. GM reduction was also detected in the inferior and superior frontal gyri, in the occipital medial and superior gyri, and in the inferior temporal gyrus of the left cerebral hemisphere. In the right hemisphere, GM reduction was found in the post-central cortex and in the occipital inferior gyrus. Multiple regression analysis showed a correlation between alterations in GM volume in the cerebellum (Crus II and vermis) and ADI-communication and ADOS-total (communication and interaction) scores. These findings seem to confirm that the cerebellum is involved in integrating and regulating emotional and cognitive functions which are impaired in ASD.
Collapse
Affiliation(s)
- Daria Riva
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C.Besta, Via Celoria 11, 20133, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Veenstra-VanderWeele J, Blakely RD. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology 2012; 37:196-212. [PMID: 21937981 PMCID: PMC3238072 DOI: 10.1038/npp.2011.185] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 12/20/2022]
Abstract
Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these findings into novel ASD treatments, focusing on mTor- and 5-HT-signaling pathways, and their possible intersection. Paralleling the progress made in understanding the root causes of rare genetic syndromes that affect cognitive development, we anticipate progress in models systems using bona fide ASD-associated molecular changes that have the potential to accelerate the development of ASD diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Randy D Blakely
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
9
|
|
10
|
Dosman CF, Senthilselvan A, Andrews D. Psychiatric treatment: A risk factor for obesity? Paediatr Child Health 2011; 7:76-80. [PMID: 20046276 DOI: 10.1093/pch/7.2.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND People with psychiatric diagnoses have increased physical health difficulties. OBJECTIVES To examine the physical growth parameters documented in children receiving psychiatric treatment. METHODS A chart review was performed on consecutive paediatric consultations in 1997 and 1998 on 34 children six to 12 years of age admitted to an intermediate-stay psychiatric inpatient service. Growth parameters of each child were plotted on standard growth curves. The prevalence of obesity (body mass index at or above the 95th percentile), absolute weight at or above the 95th and 50th percentiles, underweight status, tall and short stature, macrocephaly and microcephaly were calculated. The prevalence of atypical findings was compared with the expected prevalence of typical growth parameters in the general population. Risk factors for atypical growth parameters were recorded. An association between weight and specific medication use was explored. RESULTS It was found that 11.8% of the children were obese. It was also found that 23.5% of the children had weight at or above the 95th percentile, 79.3% had weight at or above the 50th percentile, 14.7% had macrocephaly and 79.4% had a head circumference above the 50th percentile; these results were statistically significant. The mean number of psychotropic medications prescribed was 6.4, although there was no significant association between higher weight and current medication type. CONCLUSIONS Children receiving inpatient psychiatric treatment were more likely to have higher weight than typical children. Monitoring growth parameters is an important component of the paediatric care of children with psychiatric diagnoses. Guidelines are required for obesity prevention and intervention in the context of the risk factors experienced by this high risk population.
Collapse
Affiliation(s)
- Cara F Dosman
- Division of Developmental Pediatrics, Glenrose Rehabilitation Hospital, University of Alberta, Edmonton, Alberta
| | | | | |
Collapse
|
11
|
Clark GM, Mackay CE, Davidson ME, Iversen SD, Collinson SL, James AC, Roberts N, Crow TJ. Paracingulate sulcus asymmetry; sex difference, correlation with semantic fluency and change over time in adolescent onset psychosis. Psychiatry Res 2010; 184:10-5. [PMID: 20832252 DOI: 10.1016/j.pscychresns.2010.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
The left paracingulate sulcus (PCS) is longer than the right and the adjacent cortex is activated by the generation of words. In adult patients with chronic schizophrenia the anatomical asymmetry is reduced. In 35 controls and 38 adolescents with schizophrenia or schizoaffective disorder (mean age = 16 years) we found that semantic verbal fluency correlated with leftward PCS asymmetry in controls but not in patients. At intake, PCS length did not differ between patients and controls, but at follow-up (13 controls, 10 patients, mean age = 18 years) PCS asymmetry (comprising both increasing left and decreasing right length) increased significantly, the increase was greater in males than in females, and there was a trend for a diagnosis * sex * side * time interaction such that in controls leftward PCS asymmetry increased, while in patients of both sexes there was convergence toward symmetry. Thus sulcal anatomy develops differentially in the two sexes during adolescence, and the pattern of asymmetric sex-dependent change over time may distinguish patients with psychosis from controls. Greater change in asymmetry during adolescence may explain earlier age of onset in males and greater deficits in verbal fluency.
Collapse
Affiliation(s)
- Gina M Clark
- College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hall GBC, Doyle KAR, Goldberg J, West D, Szatmari P. Amygdala engagement in response to subthreshold presentations of anxious face stimuli in adults with autism spectrum disorders: preliminary insights. PLoS One 2010; 5:e10804. [PMID: 20520836 PMCID: PMC2876036 DOI: 10.1371/journal.pone.0010804] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/03/2010] [Indexed: 11/19/2022] Open
Abstract
Current theoretical models of autism spectrum disorders (ASD) have proposed that impairments in the processing of social/emotional information may be linked to amygdala dysfunction. However, the extent to which amygdala functions are compromised in ASD has become a topic of debate in recent years. In a jittered functional magnetic resonance imaging study, sub-threshold presentations of anxious faces permitted an examination of amygdala recruitment in 12 high functioning adult males with ASD and 12 matched controls. We found heightened neural activation of the amygdala in both high functioning adults with ASD and matched controls. Neither the intensity nor the time-course of amygdala activation differed between the groups. However, the adults with ASD showed significantly lower levels of fusiform activation during the trials compared to controls. Our findings suggest that in ASD, the transmission of socially salient information along sub-cortical pathways is intact: and yet the signaling of this information to structures downstream may be impoverished, and the pathways that facilitate subsequent processing deficient.
Collapse
Affiliation(s)
- Geoffrey B C Hall
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
13
|
Kosaka H, Omori M, Munesue T, Ishitobi M, Matsumura Y, Takahashi T, Narita K, Murata T, Saito DN, Uchiyama H, Morita T, Kikuchi M, Mizukami K, Okazawa H, Sadato N, Wada Y. Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. Neuroimage 2010; 50:1357-63. [PMID: 20123027 DOI: 10.1016/j.neuroimage.2010.01.085] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/15/2010] [Accepted: 01/25/2010] [Indexed: 11/16/2022] Open
Abstract
Enlarged head circumference and increased brain weight have been reported in infants with pervasive developmental disorders (PDD), and volumetric studies suggest that children with PDD have abnormally enlarged brain volumes. However, little is known about brain volume abnormalities in young adults with PDD. We explored gray matter (GM) volume in young adults with PDD. T1-weighted volumetric images were acquired with a 3-T magnetic resonance scanner from 32 males with high-functioning PDD (23.8+/-4.2 years; Full Scale Intelligence Quotient [FSIQ]=101.6+/-15.6) and 40 age-matched normal male control subjects (22.5+/-4.3 years; FSIQ=109.7+/-7.9). Regional GM volumes were compared between the two groups using voxel-based morphometry (VBM) with the Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL). Compared with the control group, the high-functioning PDD group showed significantly less GM in the right insula, the right inferior frontal gyrus, and the right inferior parietal lobule. A conservative threshold confirmed considerably smaller volumes in the right insula and inferior frontal gyrus. In these areas, negative correlations were found between Autism Spectrum Quotient scores and GM volume, although no significant correlations were found between each subject's FSIQ and GM volume. No regions showed greater GM volumes in the high-functioning PDD group. The insular cortex, which works as a relay area for multiple neurocognitive systems, may be one of the key regions underlying the complex clinical features of PDD. These smaller GM volumes in high-functioning PDD subjects may reflect the clinical features of PDD itself, rather than FSIQ.
Collapse
Affiliation(s)
- Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2009; 1309:83-94. [PMID: 19896929 DOI: 10.1016/j.brainres.2009.09.120] [Citation(s) in RCA: 542] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 01/25/2023]
Abstract
Multiple types of indirect evidence have been used to support theories of altered cortical connectivity in autism spectrum disorders (ASD). In other developmental disorders reduced spine expression is commonly found, while conditions such as fragile X syndrome show increased spine densities. Despite its relevance to theories of altered cortical connectivity, synaptic spine expression has not been systematically explored in ASD. Here we examine dendritic spines on Golgi-impregnated cortical pyramidal cells in the cortex of ASD subjects and age-matched control cases. Pyramidal cells were studied within both the superficial and deep cortical layers of frontal, temporal, and parietal lobe regions. Relative to controls, spine densities were greater in ASD subjects. In analyses restricted to the apical dendrites of pyramidal cells, greater spine densities were found predominantly within layer II of each cortical location and within layer V of the temporal lobe. High spine densities were associated with decreased brain weights and were most commonly found in ASD subjects with lower levels of cognitive functioning. Greater spine densities in ASD subjects provide structural support for recent suggestions of connectional changes within the cerebral cortex that may result in altered cortical computations.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Psychology Department, Program in Neuroscience, University of Nevada, Reno, NV 89557-0296, USA
| | | |
Collapse
|
15
|
Coben R, Myers TE. The Relative Efficacy of Connectivity Guided and Symptom Based EEG Biofeedback for Autistic Disorders. Appl Psychophysiol Biofeedback 2009; 35:13-23. [DOI: 10.1007/s10484-009-9102-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
16
|
Casanova MF, El-Baz A, Mott M, Mannheim G, Hassan H, Fahmi R, Giedd J, Rumsey JM, Switala AE, Farag A. Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy. J Autism Dev Disord 2009; 39:751-64. [PMID: 19148739 PMCID: PMC2911778 DOI: 10.1007/s10803-008-0681-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 12/10/2008] [Indexed: 12/15/2022]
Abstract
Minicolumnar changes that generalize throughout a significant portion of the cortex have macroscopic structural correlates that may be visualized with modern structural neuroimaging techniques. In magnetic resonance images (MRIs) of fourteen autistic patients and 28 controls, the present study found macroscopic morphological correlates to recent neuropathological findings suggesting a minicolumnopathy in autism. Autistic patients manifested a significant reduction in the aperture for afferent/efferent cortical connections, i.e., gyral window. Furthermore, the size of the gyral window directly correlated to the size of the corpus callosum. A reduced gyral window constrains the possible size of projection fibers and biases connectivity towards shorter corticocortical fibers at the expense of longer association/commisural fibers. The findings may help explain abnormalities in motor skill development, differences in postnatal brain growth, and the regression of acquired functions observed in some autistic patients.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hallahan B, Daly EM, McAlonan G, Loth E, Toal F, O'Brien F, Robertson D, Hales S, Murphy C, Murphy KC, Murphy DGM. Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med 2009; 39:337-346. [PMID: 18775096 DOI: 10.1017/s0033291708003383] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Several prior reports have found that some young children with autism spectrum disorder [ASD; including autism and Asperger's syndrome and pervasive developmental disorder - not otherwise specified (PDD-NOS)] have a significant increase in head size and brain weight. However, the findings from older children and adults with ASD are inconsistent. This may reflect the relatively small sample sizes that were studied, clinical heterogeneity, or age-related brain differences. METHOD Hence, we measured head size (intracranial volume), and the bulk volume of ventricular and peripheral cerebrospinal fluid (CSF), lobar brain, and cerebellum in 114 people with ASD and 60 controls aged between 18 and 58 years. The ASD sample included 80 people with Asperger's syndrome, 28 with autism and six with PDD-NOS. RESULTS There was no significant between-group difference in head and/or lobar brain matter volume. However, compared with controls, each ASD subgroup had a significantly smaller cerebellar volume, and a significantly larger volume of peripheral CSF. CONCLUSIONS Within ASD adults, the bulk volume of cerebellum is reduced irrespective of diagnostic subcategory. Also the significant increase in peripheral CSF may reflect differences in cortical maturation and/or ageing.
Collapse
Affiliation(s)
- B Hallahan
- Section of Brain Maturation, Department of Psychological Medicine, Institute of Psychiatry, King's College, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Coben R, Myers TE. Connectivity Theory of Autism: Use of Connectivity Measures in Assessing and Treating Autistic Disorders. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10874200802398824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, Curran S, Robertson D, Murphy DGM. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage 2008; 41:1184-91. [PMID: 18495494 DOI: 10.1016/j.neuroimage.2008.03.041] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that the biological basis of autism spectrum disorder includes cerebellar 'disconnection'. However, direct in vivo evidence in support of this is lacking. Here, the microstructural integrity of cerebellar white matter in adults with Asperger syndrome was studied using diffusion tensor magnetic resonance tractography. Fifteen adults with Asperger syndrome and 16 age-IQ-gender-matched healthy controls underwent diffusion tensor magnetic resonance imaging. For each subject, tract-specific measurements of mean diffusivity and fractional anisotropy were made within the inferior, middle, superior cerebellar peduncles and short intracerebellar fibres. No group differences were observed in mean diffusivity. However, people with Asperger syndrome had significantly lower fractional anisotropy in the short intracerebellar fibres (p<0.001) and right superior cerebellar (output) peduncle (p<0.001) compared to controls; but no difference in the input tracts. Severity of social impairment, as measured by the Autistic Diagnostic Interview, was negatively correlated with diffusion anisotropy in the fibres of the left superior cerebellar peduncle. These findings suggest a vulnerability of specific cerebellar neural pathways in people with Asperger syndrome. The localised abnormalities in the main cerebellar outflow pathway may prevent the cerebral cortex from receiving those cerebellar feedback inputs necessary for a successful adaptive social behaviour.
Collapse
Affiliation(s)
- Marco Catani
- Section of Brain Maturation, Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, King's College London, London, SE58AF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Noriega G. Modeling propagation delays in the development of SOMs — a parallel with abnormal brain growth in autism. Neural Netw 2008; 21:130-9. [DOI: 10.1016/j.neunet.2007.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/14/2007] [Accepted: 12/03/2007] [Indexed: 11/24/2022]
|
21
|
Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J. Mapping Early Brain Development in Autism. Neuron 2007; 56:399-413. [PMID: 17964254 DOI: 10.1016/j.neuron.2007.10.016] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Noriega G. Propagation Delays in the Development of SOMs and Abnormal Brain Growth in Autism. ACTA ACUST UNITED AC 2007. [DOI: 10.1109/ijcnn.2007.4370931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Noriega G. Self-organizing maps as a model of brain mechanisms potentially linked to autism. IEEE Trans Neural Syst Rehabil Eng 2007; 15:217-26. [PMID: 17601191 DOI: 10.1109/tnsre.2007.897031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The application of artificial neural networks in the study of psychopathological syndromes has great potential. Several computational models of acquired and developmental disorders, including autism, have been proposed recently. In this paper, we use the framework of self-organizing maps to study several aspects of autism, by modeling abnormalities in the learning process in biologically plausible manners. We then interpret the resulting feature maps with reference to autistic characteristics. The effects of manipulating the physical structure and size of self-organizing maps were measured and compared with the general characteristics of neural growth abnormalities in autistic children. We find no effect on stimuli coverage, but a negative impact on map unfolding, dependant on the intensity of the abnormality, but not the time of onset. We analyze sensory issues by introducing the concept of attention functions, used to model hypersensitivities and hyposensitivities. The issue of focus on details rather than the whole is analyzed through a model in which distant neighbors are explicitly rejected; we show the model may lead to improved coverage of finely-shaped areas or isolated stimuli, but poorer map unfolding. Finally, we consider effects of noisy communication channels on the development of maps, and show a strong sensitivity of both coverage and unfolding of maps.
Collapse
|
24
|
Hutsler JJ, Love T, Zhang H. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 2007; 61:449-57. [PMID: 16580643 DOI: 10.1016/j.biopsych.2006.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 11/10/2005] [Accepted: 01/09/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Qualitative reports of the cerebral cortex in a small number of autism spectrum disorder (ASD) cases have suggested an increase in thickness and disruptions in migration and lamination patterns. METHODS We examined postmortem ASD individuals and age-matched controls using magnetic resonance imaging (MRI) to evaluate total cortical thickness, and histological samples to evaluate the pattern of cortical layering. RESULTS Overall, thickness measures from ASD subjects were equivalent to control cases. Individual regions showed marginal but nonsignificant thickness differences in the temporal lobes. Cortical thickness values in ASD subjects decreased significantly with age. Quantitative examination of proportional layer thickness in histological sections indicated that the pattern of cortical layering was largely undisturbed, while qualitative examination of these same samples revealed evidence of cell clustering and supernumerary cells in layer I and the subplate. These features were not severe and were never found in a majority of cases. CONCLUSIONS These findings support limited disturbances in cortical cell patterning, but do not indicate a major deficit in the orderly migration of cortical neuroblasts during development, or their subsequent aggregation into the laminar pattern found in typically developing individuals.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
25
|
Rinehart NJ, Bellgrove MA, Tonge BJ, Brereton AV, Howells-Rankin D, Bradshaw JL. An examination of movement kinematics in young people with high-functioning autism and Asperger's disorder: further evidence for a motor planning deficit. J Autism Dev Disord 2007; 36:757-67. [PMID: 16865551 PMCID: PMC2000294 DOI: 10.1007/s10803-006-0118-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper examines upper-body movement kinematics in individuals with high-functioning autism (HFA) and Asperger's disorder (AD). In general, the results indicate that HFA is more consistently associated with impaired motoric preparation/initiation than AD. The data further suggest that this quantitative difference in motor impairment is not necessarily underpinned by greater executive dysfunction vulnerability in autism relative to AD. Quantitative motoric dissociation between autism and AD may have down-stream effects on later stages of movement resulting in qualitative differences between these disorder groups, e.g. "motor clumsiness" in AD versus "abnormal posturing" in autism. It will be important for future research to map the developmental trajectory of motor abnormalities in these disorder groups.
Collapse
Affiliation(s)
- Nicole J Rinehart
- Centre for Developmental Psychiatry and Psychology, Department of Psychological Medicine, Monash University, Monash Medical Centre, 246, Clayton Road, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Schmitz C, van Kooten IAJ, Hof PR, van Engeland H, Patterson PH, Steinbusch HWM. Autism: neuropathology, alterations of the GABAergic system, and animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 71:1-26. [PMID: 16512344 DOI: 10.1016/s0074-7742(05)71001-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christoph Schmitz
- Department of Psychiatry and Neuropsychology, Division of Cellular Neuroscience Maastricht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The most replicated finding in autism neuroanatomy-a tendency to unusually large brains-has seemed paradoxical in relation to the specificity of the abnormalities in three behavioral domains that define autism. We now know a range of things about this phenomenon, including that brains in autism have a growth spurt shortly after birth and then slow in growth a few short years afterward, that only younger but not older brains are larger in autism than in controls, that white matter contributes disproportionately to this volume increase and in a nonuniform pattern suggesting postnatal pathology, that functional connectivity among regions of autistic brains is diminished, and that neuroinflammation (including microgliosis and astrogliosis) appears to be present in autistic brain tissue from childhood through adulthood. Alongside these pervasive brain tissue and functional abnormalities, there have arisen theories of pervasive or widespread neural information processing or signal coordination abnormalities (such as weak central coherence, impaired complex processing, and underconnectivity), which are argued to underlie the specific observable behavioral features of autism. This convergence of findings and models suggests that a systems- and chronic disease-based reformulation of function and pathophysiology in autism needs to be considered, and it opens the possibility for new treatment targets.
Collapse
Affiliation(s)
- Martha R Herbert
- Pediatric Neurology, Center for Morphometric Analysis, Massachusetts General Hospital, Charleston, MA 02129, USA.
| |
Collapse
|
28
|
Redcay E, Courchesne E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 2005; 58:1-9. [PMID: 15935993 DOI: 10.1016/j.biopsych.2005.03.026] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/17/2005] [Accepted: 03/16/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple studies have reported increased brain size in autism, while others have found no difference from normal. These conflicting results may be due to a lack of accounting for age-related changes in brain enlargement, use of small sample sizes, or differences in data acquisition methods. METHODS Reports of autism head circumference (HC), magnetic resonance imaging (MRI), and post-mortem brain weight (BW) that met specific criteria were identified and analyzed. Percent difference from normal values (%Diff) and standardized mean differences (SMD) were calculated to compare brain size across studies and measurement methods. Curve fitting, analysis of variance, and heterogeneity analyses were applied to assay the effects of age and measurement type on reported brain size in autism. RESULTS A fitted curve of HC and MRI %Diff values from 15 studies revealed a largely consistent pattern of brain size changes. Specifically, brain size in autism was slightly reduced at birth, dramatically increased within the first year of life, but then plateaued so that by adulthood the majority of cases were within normal range. Analysis of variance of MRI and post-mortem %Diff values by age group (young child, older child, adult) and measurement type (MRI, BW) revealed a significant main effect of both age and measurement type, with the youngest ages (2-5) showing the greatest deviation from normal. Random effects heterogeneity analysis revealed a significant effect of age on HC and MRI SMD. CONCLUSIONS These findings reveal a period of pathological brain growth and arrest in autism that is largely restricted to the first years of life, before the typical age of clinical identification. Study of the older autistic brain, thus, reflects the outcome, rather than the process, of pathology. Future research focusing on this early process of brain pathology will likely be critical to elucidate the etiology of autism.
Collapse
Affiliation(s)
- Elizabeth Redcay
- Department of Psychology, University of California, San Diego, USA.
| | | |
Collapse
|
29
|
Courchesne E, Pierce K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 2005; 23:153-70. [PMID: 15749242 DOI: 10.1016/j.ijdevneu.2005.01.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 01/06/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022] Open
Abstract
While abnormalities in head circumference in autism have been observed for decades, it is only recently that scientists have begun to focus in on the developmental origins of such a phenomenon. In this article we review past and present literature on abnormalities in head circumference, as well as recent developmental MRI studies of brain growth in this disorder. We hypothesize that brain growth abnormalities are greatest in frontal lobes, particularly affecting large neurons such as pyramidal cells, and speculate how this abnormality might affect neurofunctional circuitry in autism. The relationship to clinical characteristics and other disorders of macrencephaly are discussed.
Collapse
Affiliation(s)
- Eric Courchesne
- Department of Neurosciences, University of California, San Diego, CA, USA.
| | | |
Collapse
|
30
|
Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA, DeLong GR, Abramson RK, Wright HH, Cuccaro ML. Accelerated head growth in early development of individuals with autism. Pediatr Neurol 2005; 32:102-8. [PMID: 15664769 DOI: 10.1016/j.pediatrneurol.2004.08.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 08/02/2004] [Indexed: 11/26/2022]
Abstract
Macrocephaly is one of the most consistent physical findings reported in autistic individuals. Previous studies attempted to determine if macrocephaly is associated with risk for autism. This study hypothesizes that an abnormal acceleration in head growth during early development, rather than macrocephaly, is associated with autism risk. To investigate this hypothesis, head circumference data were examined in 251 individuals from 82 multiplex (at least two individuals with autism) and 113 sporadic (no family history) families with autism. This examination included longitudinal measurements for 79 individuals. Nineteen percent of the original 251 individuals were found to have macrocephaly (head circumference >97%). Abnormal acceleration in head growth was defined as an increase of 25 or more percentile points in head circumference between two consecutive measurements. Thirty-five percent of individuals with multiple head circumference records had an abnormal increase in head circumference. Furthermore, autistic individuals with accelerated head growth in early childhood displayed higher levels of adaptive functioning and less social impairment. This study confirms the presence of abnormal acceleration in head growth during the first and second months of life in a subgroup of autistic individuals.
Collapse
Affiliation(s)
- Yulia A Dementieva
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rice SA, Bigler ED, Cleavinger HB, Tate DF, Sayer J, McMahon W, Ozonoff S, Lu J, Lainhart JE. Macrocephaly, corpus callosum morphology, and autism. J Child Neurol 2005; 20:34-41. [PMID: 15791921 DOI: 10.1177/08830738050200010601] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the cause of autism is undetermined, a general consensus has been that some type of early aberrant neural development underlies the disorder. Given the increased prevalence of macrocephaly in autism, one theory of abnormal neural development implicates early brain growth resulting in larger brain and head size in autism. Surface area measurements of the midsagittal section of the corpus callosum can be used as an index of neural development and white-matter integrity because the corpus callosum is the major white-matter structure that interconnects the two cerebral hemispheres. The purpose of this study was to obtain corpus callosum surface area, shape, and contour in a sample of non-mentally retarded autistic subjects with macrocephaly (n = 12) and compare them with those of matched (n = 8), typically developing control subjects with benign macrocephaly. No significant differences were found in surface area, shape, or contour between groups, nor did corpus callosum surface area relate to measures of IQ or picture vocabulary. These findings suggest no unique difference in overall regional corpus callosum surface area in autism with macrocephaly.
Collapse
Affiliation(s)
- Sara A Rice
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Palmen SJMC, Hulshoff Pol HE, Kemner C, Schnack HG, Janssen J, Kahn RS, van Engeland H. Larger Brains in Medication Naive High-Functioning Subjects with Pervasive Developmental Disorder. J Autism Dev Disord 2004; 34:603-13. [PMID: 15679181 DOI: 10.1007/s10803-004-5282-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Are brain volumes of individuals with Pervasive Developmental Disorder (PDD) still enlarged in adolescence and adulthood, and if so, is this enlargement confined to the gray and/or the white matter and is it global or more prominent in specific brain regions. METHODS Brain MRI scans were made of 21 adolescents with PDD and 21 closely matched controls. RESULTS All brain volumes, except the white matter, were significantly larger in patients. After correction for brain volume, ventricular volumes remained significantly larger in patients. CONCLUSIONS Patients showed a proportional, global increase in gray matter and cerebellum volume, and a disproportional increase in ventricular volumes. Thus, at least in high-functioning patients with PDD, brain enlargement may still be present in adult life.
Collapse
Affiliation(s)
- Saskia J M C Palmen
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW We discuss evidence of brain maldevelopment in the first years of life in autism and new neuroanatomical and functional evidence from later ages of development. RECENT FINDINGS Head circumference, an accurate indicator of brain size in children, was reported to jump from normal or below normal size in the first postnatal months in autistic infants to the 84 th percentile by about 1 year of age; this abnormally accelerated growth was concluded by 2 years of age. Infants with extreme head (and therefore brain) growth fell into the severe end of the clinical spectrum and had more extreme neuroanatomical abnormalities. In the frontal and temporal lobes in autism, there have been reports of abnormal increases in gray and white matter at 2 to 4 years; reduced metabolic measures; deviant diffusion tensor imaging results in white matter; underdeveloped cortical minicolumns; and reduced functional activation during socio-emotional, cognitive and attention tasks. Cerebellar abnormalities included abnormal volumes, reduced number and size of Purkinje neurons in the vermis and hemispheres, molecular defects, and reduced functional activation in posterior regions. SUMMARY A new neurobiological phenomenon in autism has been described that precedes the onset of clinical behavioral symptoms, and is brief and age-delimited to the first two years of life. The neurobiological defects that precede, trigger, and underlie it may form part of the developmental precursors of some of the anatomical, functional, and behavioral manifestations of autism. Future studies of the first years of life may help elucidate the factors and processes that bring about the unfolding of autistic behavior.
Collapse
Affiliation(s)
- Eric Courchesne
- Department of Neurosciences, University of California, San Diego, California 92037, USA.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- E Courchesne
- Department of Neuroscience, School of Medicine, University of California-San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002; 59:184-92. [PMID: 12136055 DOI: 10.1212/wnl.59.2.184] [Citation(s) in RCA: 550] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To explore the specific gross neuroanatomic substrates of this brain developmental disorder, the authors examine brain morphometric features in a large sample of carefully diagnosed 3- to 4-year-old children with autism spectrum disorder (ASD) compared with age-matched control groups of typically developing (TD) children and developmentally delayed (DD) children. METHODS Volumes of the cerebrum, cerebellum, amygdala, and hippocampus were measured from three-dimensional coronal MR images acquired from 45 children with ASD, 26 TD children, and 14 DD children. The volumes were analyzed with respect to age, sex, volume of the cerebrum, and clinical status. RESULTS Children with ASD were found to have significantly increased cerebral volumes compared with TD and DD children. Cerebellar volume for the ASD group was increased in comparison with the TD group, but this increase was proportional to overall increases in cerebral volume. The DD group had smaller cerebellar volumes compared with both of the other groups. Measurements of amygdalae and hippocampi in this group of young children with ASD revealed enlargement bilaterally that was proportional to overall increases in total cerebral volume. There were similar findings of cerebral enlargement for both girls and boys with ASD. For subregion analyses, structural abnormalities were observed primarily in boys, although this may reflect low statistical power issues because of the small sample (seven girls with ASD) studied. Among the ASD group, structural findings were independent of nonverbal IQ. In a subgroup of children with ASD with strictly defined autism, amygdalar enlargement was in excess of increased cerebral volume. CONCLUSIONS These structural findings suggest abnormal brain developmental processes early in the clinical course of autism. Research currently is underway to better elucidate mechanisms underlying these structural abnormalities and their longitudinal progression.
Collapse
Affiliation(s)
- B F Sparks
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N. Effects of age on brain volume and head circumference in autism. Neurology 2002; 59:175-83. [PMID: 12136053 DOI: 10.1212/wnl.59.2.175] [Citation(s) in RCA: 341] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether brain volume, as assessed on MRI scans, differs between individuals with autism and control subjects, and whether such differences are affected by age. BACKGROUND Previous studies have found increased brain weight, head circumference, and MRI brain volume in children with autism. However, studies of brain size in adults with autism have yielded conflicting results. The authors hypothesize that enlargement of the brain may be a feature of brain development during early childhood in autism that normalizes with maturational processes. METHODS The authors measured total brain volumes from 1.5-mm coronal MRI scans in 67 non-mentally retarded children and adults with autism and 83 healthy community volunteers, ranging in age from 8 to 46 years. Head circumference was also measured. Groups did not differ on age, sex, verbal IQ, or socioeconomic status. RESULTS Brain volumes were significantly larger for children with autism 12 years old and younger compared with normally developing children, when controlling for height. Brain volumes for individuals older than age 12 did not differ between the autism and control groups. Head circumference was increased in both younger and older groups of subjects with autism, suggesting that those subjects older than age 12 had increased brain volumes as children. CONCLUSIONS Brain development in autism follows an abnormal pattern, with accelerated growth in early life that results in brain enlargement in childhood. Brain volume in adolescents and adults with autism is, however, normal, and appears to be due to a slight decrease in brain volume for these individuals at the same time that normal children are experiencing a slight increase.
Collapse
Affiliation(s)
- E H Aylward
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Recent evidence suggests that the brain weight of individuals over the age of 60 who commit suicide is significantly higher than in those who die of natural causes. AIMS To ascertain whether brain weight is different in people of a younger age who commit suicide than in those who die accidentally. METHOD A retrospective review of post-mortem reports collecting height, weight and brain weight in 100 suicide victims (87 males, mean age 38.5 years) and 100 age/gender-matched controls who died accidentally or of natural causes (87 males, mean age 38.7 years). Comparison by t-test was made of brain weight in isolation as well as brain weight corrected for height, weight and body mass index. RESULTS These results reveal no significant difference in brain weight in suicide cases compared to the general population (P > 0.05). The brain weight of those who died by hanging was significantly higher than of those who died by overdose. CONCLUSIONS Whatever the significant neuropsychiatric elements are that influence suicidal behaviour, they do not consistently affect brain weight in the population studied.
Collapse
Affiliation(s)
- S J Hamilton
- Department of Histopathology, Manchester Royal Infirmary, UK
| | | |
Collapse
|
38
|
Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. J Child Neurol 2002; 17:515-21. [PMID: 12269731 DOI: 10.1177/088307380201700708] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although neuropathologic studies have centered on small samples, it is accepted that brains of autistic individuals tend to be large, on average. Knowledge regarding the cause of this macrocephaly is limited. Postmortem studies reveal little in terms of cortical dysplasia. Some of these studies suggest increased cell-packing density in subcortical structures. These neuronomorphometric studies have been subjective or based their conclusions on measures of neuronal density. Our study sought the possible presence of increased cell-packing density by using the Gray Level Index. The Gray Level Index is defined as the ratio of the area covered by Nissl-stained elements to unstained area in postmortem samples. Analyzed images included Brodmann's cortical areas 9, 21, and 22 of 9 autistic patients (7 males, 2 females; mean age of 12 years, with a range of 5 to 28 years) and 11 normal controls (7 males, 4 females; mean age of 14 years, with a range of 3 to 25 years). The overall multivariate test revealed significant differences both between autistic patients and controls (P = .001) and between hemispheres (P = .025). Follow-up univariate tests showed significant diagnosis-dependent effects in feature distance (P = .005), the standard deviation in distance (P = .016), and feature amplitude (P = .001). The overall mean Gray Level Index was 19.4% in controls and 18.7% in autism (P = .724). In autism, an increased number of minicolumns, combined with fewer cells per column (or their greater dispersion), results in no global difference in neuronal density.
Collapse
|
39
|
Abstract
Research on the neurochemical aspects of the pathophysiology of autism is still increasing and publications are abundant. In this paper we reviewed significant data from the last decade and recent research results from our center. We focused on molecules influencing the central nervous system (CNS) and consecutively responsible for typical autistic behavior. We highlighted the mutual relationship between the serotonergic, immunological and endocrinological system and the interaction of these three pivotal systems with predisposing (genetic)and external (pre-, peri- and postnatal) conditions and xenobiotics. We stressed the influence of age, pubertal stage, sex, race and IQ on biological data. There is growing evidence that the complexity and variability of those interactions might be responsible for the heterogeneity of behavioral phenotypes and biological findings in Autism. Genetic, neuroanatomical and neurophysiological data were mentioned according their relevance to neurochemical opinions.
Collapse
Affiliation(s)
- J Croonenberghs
- 1University of Antwerp, the University Center of Child and Adolescent Psychiatry, A.Z.M., Antwerp
| | - D Deboutte
- 1University of Antwerp, the University Center of Child and Adolescent Psychiatry, A.Z.M., Antwerp
| | - M Maes
- 2The Clinical Research Center for Mental Health (CRC-MH), Antwerp
| |
Collapse
|
40
|
Abstract
Neuroimaging studies of neurobehavioral disorders are using new imaging modalities. In dyslexia, anatomic imaging studies demonstrate an abnormal symmetry of the planum temporale. Functional imaging supports the hypothesis that developmental dyslexia is frequently the result of deficits in phonologic processing and that normal reading requires a patent network organization of a number of anterior and posterior brain areas. In autism, anatomic imaging studies are conflicting. Functional imaging demonstrates temporal lobe abnormalities and abnormal interaction between frontal and parietal brain areas. In attention-deficit-hyperactivity disorder, imaging studies suggest an abnormality in the prefrontal and striatal regions. Neuroimaging studies are often contradictory, but trends, especially with functional imaging analysis, are evolving. Because neurobehavioral disorders seem to be a result of a dysfunction in brain circuits, no one region will be abnormal in all patients studied. Further studies with well-defined patient populations and appropriate activation paradigms will better elucidate the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Y Frank
- Child Study Center, Bronx Lebanon Hospital Center, Bronx, New York 10457, USA
| | | |
Collapse
|
41
|
Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, Courchesne E. Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2001; 11:127-45. [PMID: 11240116 DOI: 10.1016/s0926-6410(00)00072-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although under some conditions the attention-related late positive event-related potential (ERP) response (LPC) is apparently normal in autism during visual processing, the LPC elicited by visuospatial processing may be compromised. Results from this study provide evidence for abnormalities in autism in two components of the LPC generated during spatial processing. The early frontal distribution of the LPC which may reflect attention orienting was delayed or missing in autistic subjects during conditions in which attention was to peripheral visual fields. The later parietal distribution of the LPC which may be associated with context updating was smaller in amplitude in autistic subjects regardless of attention location. Both abnormalities suggest disruption of function in spatial attention networks in autism. Evidence that the cerebellar abnormalities in autism may underlie these deficits comes from: (1) similar results in ERP responses and spatial attention deficits in patients with cerebellar lesions; (2) brain-behavior correlations in normally functioning individuals associating the size of the posterior cerebellar vermis and the latency of the frontal LPC; and (3) a previously reported complementary correlation between the size of the posterior vermal lobules and spatial orienting speed. Although the scalp-recorded LPC is thought to be cortically generated, it may be modulated by subcortical neural activity. The cerebellum may serve as a modulating influence by affecting the task-related antecedent attentional process. The electrophysiological abnormalities reported here index spatial attention deficits in autism that may reflect cerebellar influence on both frontal and parietal spatial attention function.
Collapse
Affiliation(s)
- J Townsend
- Department of Neurosciences 0217, University of California, San Diego, La Jolla 92093-0217, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND There is little available literature on the effect of suicide methods on brain weight. AIMS To explore variations in post-mortem brain weight in different methods of fatal self-harm (FSH) and in deaths from natural causes. METHOD A review of a sample of coroners' records of elderly persons (60 and above). Verdicts of suicide, misadventure and open verdicts were classified as FSH. Post-mortem brain weight for 142 FSH victims and 150 victims of unexpected, sudden or unexplained death due to natural causes, and from various methods of FSH, were compared. RESULTS Brain weight of victims of FSH was significantly higher than of those who died of natural causes (P < 0.01); brain weights in both groups were within the normal range for this age group. There was no significant difference in brain weight between different methods of FSH (P > 0.05). CONCLUSIONS The findings require critical examination and further research, to include data from younger age groups. A regional or national suicide neuropathological database could be set up if all victims of FSH underwent routine neurohistochemical post-mortem examination.
Collapse
|
43
|
Filipek PA, Accardo PJ, Baranek GT, Cook EH, Dawson G, Gordon B, Gravel JS, Johnson CP, Kallen RJ, Levy SE, Minshew NJ, Ozonoff S, Prizant BM, Rapin I, Rogers SJ, Stone WL, Teplin S, Tuchman RF, Volkmar FR. The screening and diagnosis of autistic spectrum disorders. J Autism Dev Disord 1999; 29:439-84. [PMID: 10638459 DOI: 10.1023/a:1021943802493] [Citation(s) in RCA: 462] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Child Neurology Society and American Academy of Neurology recently proposed to formulate Practice Parameters for the Diagnosis and Evaluation of Autism for their memberships. This endeavor was expanded to include representatives from nine professional organizations and four parent organizations, with liaisons from the National Institutes of Health. This document was written by this multidisciplinary Consensus Panel after systematic analysis of over 2,500 relevant scientific articles in the literature. The Panel concluded that appropriate diagnosis of autism requires a dual-level approach: (a) routine developmental surveillance, and (b) diagnosis and evaluation of autism. Specific detailed recommendations for each level have been established in this document, which are intended to improve the rate of early suspicion and diagnosis of, and therefore early intervention for, autism.
Collapse
|
44
|
Millichap JG. Cortical Dysfunction in Autism. Pediatr Neurol Briefs 1999. [DOI: 10.15844/pedneurbriefs-13-4-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|