1
|
Zhang Z, Zhan F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers (Basel) 2023; 15:5363. [PMID: 38001623 PMCID: PMC10670837 DOI: 10.3390/cancers15225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit cysteine cathepsins-a group of lysosomal cysteine proteases that participate in multiple biological processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are associated with the development of autoimmune diseases, tumor progression, and metastasis. Cystatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type 2 cystatins have many shared biological roles, each member differs in structure, post-translational modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the type 2 cystatins to have unique biological functions and properties. This review provides an overview of type 2 cystatins, including their biological similarities and differences, their regulatory effect on human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
Collapse
Affiliation(s)
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
2
|
Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F. The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119243. [PMID: 35217144 DOI: 10.1016/j.bbamcr.2022.119243] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jan Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Kluge
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Dao D, Xie B, Nadeem U, Xiao J, Movahedan A, D’Souza M, Leone V, Hariprasad SM, Chang EB, Sulakhe D, Skondra D. High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells 2021; 10:cells10082119. [PMID: 34440888 PMCID: PMC8392173 DOI: 10.3390/cells10082119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.
Collapse
Affiliation(s)
- David Dao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Bingqing Xie
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Jason Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Asad Movahedan
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA;
| | - Mark D’Souza
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA;
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Eugene B. Chang
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dinanath Sulakhe
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
- Correspondence:
| |
Collapse
|
4
|
Carlsson E, Supharattanasitthi W, Jackson M, Paraoan L. Increased Rate of Retinal Pigment Epithelial Cell Migration and Pro-Angiogenic Potential Ensuing From Reduced Cystatin C Expression. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32049341 PMCID: PMC7324439 DOI: 10.1167/iovs.61.2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Variant B precursor cysteine protease inhibitor cystatin C, a known recessive risk factor for developing exudative age-related macular degeneration (AMD), presents altered intracellular trafficking and reduced secretion from retinal pigment epithelial (RPE) cells. Because cystatin C inhibits multiple extracellular matrix (ECM)-degrading cathepsins, this study evaluated the role of this mutation in inducing ECM-related functional changes in RPE cellular behavior. Methods Induced pluripotent stem cells gene-edited bi-allelically by CRISPR/Cas9 to express the AMD-linked cystatin C variant were differentiated to RPE cells and assayed for their ability to degrade fluorescently labeled ECM proteins. Cellular migration and adhesion on multiple ECM proteins, differences in transepithelial resistance and polarized protein secretion were tested. Vessel formation induced by gene edited cells-conditioned media was quantified using primary human dermal microvascular epithelial cells. Results Variant B cystatin C-expressing induced pluripotent stem cells-derived RPE cells displayed a significantly higher rate of laminin and fibronectin degradation 3 days after seeding on fluorescently labeled ECM (P < 0.05). Migration on matrigel, collagen IV and fibronectin was significantly faster for edited cells compared with wild-type (WT) cells. Both edited and WT cells displayed polarized secretion of cystatin C, but transepithelial resistance was lower in gene-edited cells after 6 weeks culture, with significantly lower expression of tight junction protein claudin-3. Media conditioned by gene-edited cells stimulated formation of significantly longer microvascular tubes (P < 0.05) compared with WT-conditioned media. Conclusions Reduced levels of cystatin C lead to changes in the RPE ability to degrade, adhere, and migrate supporting increased invasiveness and angiogenesis relevant for AMD pathology.
Collapse
|
5
|
The Functional Mammalian CRES (Cystatin-Related Epididymal Spermatogenic) Amyloid is Antiparallel β-Sheet Rich and Forms a Metastable Oligomer During Assembly. Sci Rep 2019; 9:9210. [PMID: 31239483 PMCID: PMC6593142 DOI: 10.1038/s41598-019-45545-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
An amyloid matrix composed of several family 2 cystatins, including the reproductive cystatin CRES, is an integral structure in the mouse epididymal lumen and has proposed functions in sperm maturation and protection. Understanding how CRES amyloid assembles in vitro may provide clues on how the epididymal amyloid matrix forms in vivo. We therefore purified full-length CRES under nondenaturing conditions and followed its aggregation from monomer to amyloid under conditions that may approximate those in the epididymal lumen. CRES transitioned into a metastable oligomer that was resistant to aggregation and only over extended time formed higher-ordered amyloids. High protein concentrations facilitated oligomer assembly and also were required to maintain the metastable state since following dilution the oligomer was no longer detected. Similar to other amyloid precursors, the formation of CRES amyloids correlated with a loss of α-helix and a gain of β-sheet content. However, CRES is unique in that its amyloids are rich in antiparallel β-sheets instead of the more common parallel β-sheets. Taken together, our studies suggest that early metastable oligomers may serve as building blocks for functional amyloid assembly and further reveal that antiparallel β-sheet-rich amyloids can be functional forms.
Collapse
|
6
|
Amin F, Khan MS, Bano B. Mammalian cystatin and protagonists in brain diseases. J Biomol Struct Dyn 2019; 38:2171-2196. [DOI: 10.1080/07391102.2019.1620636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh MuslimUniversity, Aligarh, India
| |
Collapse
|
7
|
Zeng Q, Huang Z, Wei L, Fang J, Lin K. Correlations of serum cystatin C level and gene polymorphism with vascular cognitive impairment after acute cerebral infarction. Neurol Sci 2019; 40:1049-1054. [PMID: 30805744 DOI: 10.1007/s10072-019-03777-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to explore the possible correlations of serum cystatin C level and cystatin C gene (CST3) polymorphism with vascular cognitive impairment in patients who had acute cerebral infarction. METHODS A total of 152 patients with acute cerebral infarction were recruited in this case-control study. Patients were divided into vascular cognitive impairment (VCI) group (n = 71) and cognitive impairment no dementia (CIND) group (n = 81). The serum concentrations of cystatin C were measured with immunoturbidimetric assay while the gene polymorphisms of CST3 were determined by technique polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS In the VCI group, serum cystatin C level was significantly higher than that in the control group. The frequency of the B allele was found to be higher in the VCI group as compared with that of the CIND group (18.5% vs 7.7%, p = 0.006). In logistic regression analysis, significant associations of VCI with high serum cystatin C level (OR 3.837 (1.176-12.520), p = 0.026) and CST3 B allele (OR 2.038 (1.048-3.963), p = 0.036) were also found. CONCLUSIONS A high cystatin C level and CST3 B allele confer risks for VCI after acute cerebral infarction. It is probable that measurement of the serum cystatin C level and detection of CST3 gene polymorphism would aid in the early diagnosis of VCI, but further studies are warranted.
Collapse
Affiliation(s)
- Qiong Zeng
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhihua Huang
- Shantou University Medical College, Shantou, China
| | - Liling Wei
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jingnian Fang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kun Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
8
|
Cystatin C promotes tau protein phosphorylation and causes microtubule instability by inhibiting intracellular turnover of GSK3β in neurons. Mol Cell Neurosci 2018; 89:1-8. [PMID: 29577984 DOI: 10.1016/j.mcn.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
In Alzheimer's disease (AD) tau protein hyperphosphorylation causes neurofibrillary tangle formation, microtubule instability and neurodegeneration. Determining the mechanism of tau hyperphosphorylation will provide a better understanding of AD pathology. Cystatin C (CysC) is a risk factor for late-onset AD and its level is upregulated in the brains of AD patients. The role of CysC is AD pathogenesis is not known. In this study, we found that CysC level is upregulated in 3xTg-AD mouse brain. We demonstrate that CysC does not affect cellular Aβ production. However, when overexpressed in neuron (NGF-differentiated PC12 cells), CysC inhibits turnover of GSK3β, promotes GSK3β-catalyzed tau phosphorylation at Ser396/404 and causes microtubule instability. Our data provide a novel insight into the role of CysC in AD pathogenesis.
Collapse
|
9
|
Mathews PM, Levy E. Cystatin C in aging and in Alzheimer's disease. Ageing Res Rev 2016; 32:38-50. [PMID: 27333827 DOI: 10.1016/j.arr.2016.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Under normal conditions, the function of catalytically active proteases is regulated, in part, by their endogenous inhibitors, and any change in the synthesis and/or function of a protease or its endogenous inhibitors may result in inappropriate protease activity. Altered proteolysis as a result of an imbalance between active proteases and their endogenous inhibitors can occur during normal aging, and such changes have also been associated with multiple neuronal diseases, including Amyotrophic Lateral Sclerosis (ALS), rare heritable neurodegenerative disorders, ischemia, some forms of epilepsy, and Alzheimer's disease (AD). One of the most extensively studied endogenous inhibitor is the cysteine-protease inhibitor cystatin C (CysC). Changes in the expression and secretion of CysC in the brain have been described in various neurological disorders and in animal models of neurodegeneration, underscoring a role for CysC in these conditions. In the brain, multiple in vitro and in vivo findings have demonstrated that CysC plays protective roles via pathways that depend upon the inhibition of endosomal-lysosomal pathway cysteine proteases, such as cathepsin B (Cat B), via the induction of cellular autophagy, via the induction of cell proliferation, or via the inhibition of amyloid-β (Aβ) aggregation. We review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced by CysC under various conditions. Beyond highlighting the essential role that balanced proteolytic activity plays in supporting normal brain aging, these findings suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Paul M Mathews
- Departments of Psychiatry, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Efrat Levy
- Departments of Psychiatry, New York University School of Medicine, USA; Biochemistry and Molecular Pharmacology, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
10
|
Grewal R, Haghighi M, Huang S, Smith AG, Cao C, Lin X, Lee DC, Teten N, Hill AM, Selenica MLB. Identifying biomarkers of dementia prevalent among amnestic mild cognitively impaired ethnic female patients. ALZHEIMERS RESEARCH & THERAPY 2016; 8:43. [PMID: 27756387 PMCID: PMC5067885 DOI: 10.1186/s13195-016-0211-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022]
Abstract
Background There is a need to investigate biomarkers that are indicative of the progression of dementia in ethnic patient populations. The disparity of information in these populations has been the focus of many clinical and academic centers, including ours, to contribute to a higher success rate in clinical trials. In this study, we have investigated plasma biomarkers in amnestic mild cognitively impaired (aMCI) female patient cohorts in the context of ethnicity and cognitive status. Method A panel of 12 biomarkers involved in the progression of brain pathology, inflammation, and cardiovascular disorders were investigated in female cohorts of African American, Hispanic, and White aMCI patients. Both biochemical and algorithmic analyses were applied to correlate biomarker levels measured during the early stages of the disease for each ethnicity. Results We report elevated plasma Aβ40, Aβ42, YKL-40, and cystatin C levels in the Hispanic cohort at early aMCI status. In addition, elevated plasma Aβ40 levels were associated with the aMCI status in both White and African American patient cohorts by the decision tree algorithm. Eotaxin-1 levels, as determined by the decision tree algorithm and biochemically measured total tau levels, were associated with the aMCI status in the African American cohort. Conclusions Overall, our data displayed novel differences in the plasma biomarkers of the aMCI female cohorts where the plasma levels of several biomarkers distinguished between each ethnicity at an early aMCI stage. Identification of these plasma biomarkers encourages new areas of investigation among aMCI ethnic populations, including larger patient cohorts and longitudinal study designs. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0211-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rinko Grewal
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Mona Haghighi
- Department of Industrial and Systems Engineering, University of Washington, 3900 Northeast Stevens Way, Seattle, WA, 98195, USA
| | - Shuai Huang
- Department of Industrial and Systems Engineering, University of Washington, 3900 Northeast Stevens Way, Seattle, WA, 98195, USA.,School of Aging Studies, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Amanda G Smith
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.,Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, 3515 E Fletcher Ave, Tampa, FL, 33613, USA
| | - Chuanhai Cao
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Xiaoyang Lin
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Daniel C Lee
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Nancy Teten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Angela M Hill
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.,Department of Pharmacotherapeutics and Clinical Research, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Maj-Linda B Selenica
- Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
11
|
Nguyen A, Hulleman JD. Evidence of Alternative Cystatin C Signal Sequence Cleavage Which Is Influenced by the A25T Polymorphism. PLoS One 2016; 11:e0147684. [PMID: 26845025 PMCID: PMC4741414 DOI: 10.1371/journal.pone.0147684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Cystatin C (Cys C) is a small, potent, cysteine protease inhibitor. An Ala25Thr (A25T) polymorphism in Cys C has been associated with both macular degeneration and late-onset Alzheimer's disease. Previously, studies have suggested that this polymorphism may compromise the secretion of Cys C. Interestingly, we found that untagged A25T, A25T tagged C-terminally with FLAG, or A25T FLAG followed by green fluorescent protein (GFP), were all secreted as efficiently from immortalized human cells as their wild-type (WT) counterparts (e.g., 112%, 100%, and 88% of WT levels from HEK-293T cells, respectively). Supporting these observations, WT and A25T Cys C variants also showed similar intracellular steady state levels. Furthermore, A25T Cys C did not activate the unfolded protein response and followed the same canonical endoplasmic reticulum (ER)-Golgi trafficking pathway as WT Cys C. WT Cys C has been shown to undergo signal sequence cleavage between residues Gly26 and Ser27. While the A25T polymorphism did not affect Cys C secretion, we hypothesized that it may alter where the Cys C signal sequence is preferentially cleaved. Under normal conditions, WT and A25T Cys C have the same signal sequence cleavage site after Gly26 (referred to as 'site 2' cleavage). However, in particular circumstances when the residues around site 2 are modified (such as by the presence of an N-terminal FLAG tag immediately after Gly26, or by a Gly26Lys (G26K) mutation), A25T has a significantly higher likelihood than WT Cys C of alternative signal sequence cleavage after Ala20 ('site 1') or even earlier in the Cys C sequence. Overall, our results indicate that the A25T polymorphism does not cause a significant reduction in Cys C secretion, but instead predisposes the protein to be cleaved at an alternative signal sequence cleavage site if site 2 is hindered. Additional N-terminal amino acids resulting from alternative signal sequence cleavage may, in turn, affect the protease inhibition function of Cys C.
Collapse
Affiliation(s)
- Annie Nguyen
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - John D. Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
12
|
D Potdar P, U Shetti A. Molecular Biomarkers for Diagnosis & Therapies of Alzheimer’s Disease. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.4.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Biomarkers of Renal Function in Type 2 Diabetic Patients with Cognitive Impairment. Neurosci Lett 2015; 610:19-23. [PMID: 26520462 DOI: 10.1016/j.neulet.2015.10.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/25/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Kidney disease is associated with cognitive impairment in studies of nondiabetic adults. We examined the cross-sectional relation between three measures of renal function and cognitive impairment (CI) in type 2 diabetic patients. A total of 357 patients with type 2 diabetes were prospectively enrolled. There were 108 patients with CI and 249 patients without CI (control). We calculated the urinary albumin/creatinine ratio (UACR) from morning spot urine and the estimated glomerular filtration rate (eGFR) in serum samples. Serum Cystatin C (Cys C) was measured with an automated particle-enhanced turbidimetric immunoassay. UACR and Cystatin C levels were significantly higher in patients with CI than those without CI (P<0.001), and the eGFR was lower in patients with CI than those without (P=0.003). A logistic regression analysis indicates that kidney impairment biomarkers levels were significantly associated with an increased risk of CI after adjustment for age and gender. The OR of each kidney biomarker (eGFR, UACR, Cystatin C) for CI status was 1.78 (0.89-3.27), 2.36 (1.29-4.42), and 2.77 (1.36-5.97), respectively. Among three kidney biomarkers (eGFR, UACR, Cystatin C), only elevated serum Cystatin C was associated with increased risk of CI in type 2 diabetic patients, with an OR of 1.42 (1.25-4.24) after additional adjustment for duration of diabetes, hypertension, hyperlipidemia, hemoglobin A1c (HbA1c), high-sensitivity C-reactive protein (Hs-CRP), intima-media thickness (IMT), ankle brachial index (ABI), and brachial-ankle pulse wave velocity (ba-PWV). Furthermore, combination of conventional risk factors and Cystatin C levels exhibited a fair diagnostic value for CI, with an area under the curve (AUC) of 0.91. Among three kidney impairment biomarkers (eGFR, UACR, Cystatin C), only elevated serum Cystatin C was associated with increased risk of CI in type 2 diabetic patients, independent of conventional risk factors. Furthermore, Cystatin C may be a better marker for CI than eGFR and UACR, and exhibited diagnostic value.
Collapse
|
14
|
Vinther-Jensen T, Nielsen T, Budtz-Jørgensen E, Larsen I, Hansen M, Hasholt L, Hjermind L, Nielsen J, Nørremølle A. Psychiatric and cognitive symptoms in Huntington's disease are modified by polymorphisms in catecholamine regulating enzyme genes. Clin Genet 2015; 89:320-7. [DOI: 10.1111/cge.12628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Affiliation(s)
- T. Vinther-Jensen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - T.T. Nielsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - E. Budtz-Jørgensen
- Department of Biostatistics; University of Copenhagen; Copenhagen Denmark
| | - I.U. Larsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Psychology; University of Copenhagen; Copenhagen Denmark
| | - M.M. Hansen
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - L. Hasholt
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - L.E. Hjermind
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - J.E. Nielsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - A. Nørremølle
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
15
|
Urbizu A, Canet-Pons J, Munoz-Marmol AM, Aldecoa I, Lopez MT, Compta Y, Alvarez R, Ispierto L, Tolosa E, Ariza A, Beyer K. Cystatin C is differentially involved in multiple system atrophy phenotypes. Neuropathol Appl Neurobiol 2015; 41:507-19. [DOI: 10.1111/nan.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Aintzane Urbizu
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Julia Canet-Pons
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Ana M. Munoz-Marmol
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Iban Aldecoa
- Pathology Department; Hospital Clínic Barcelona; Universitat de Barcelona; Barcelona Spain
| | - Maria T. Lopez
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Yaroslau Compta
- Unitat de Parkinson i Trastorns del Moviment; Servicio de Neurología; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED); Hospital Clínic/IDIBAPS; Universitat de Barcelona; Barcelona Spain
| | - Ramiro Alvarez
- Servicio de Neurología; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Lourdes Ispierto
- Servicio de Neurología; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Eduardo Tolosa
- Unitat de Parkinson i Trastorns del Moviment; Servicio de Neurología; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED); Hospital Clínic/IDIBAPS; Universitat de Barcelona; Barcelona Spain
| | - Aurelio Ariza
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
- Universidad Autónoma de Barcelona; Barcelona Spain
| | - Katrin Beyer
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| |
Collapse
|
16
|
Whelly S, Serobian G, Borchardt C, Powell J, Johnson S, Hakansson K, Lindstrom V, Abrahamson M, Grubb A, Cornwall GA. Fertility defects in mice expressing the L68Q variant of human cystatin C: a role for amyloid in male infertility. J Biol Chem 2014; 289:7718-29. [PMID: 24500719 DOI: 10.1074/jbc.m113.515759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hereditary cystatin C amyloid angiopathy is an autosomal dominant disorder in which a variant form of cystatin C (L68Q) readily forms amyloid deposits in cerebral arteries in affected individuals resulting in early death. L68Q protein deposits in human cystatin C amyloid angiopathy patients have also been found in tissues outside of the brain including the testis, suggesting possible effects on fertility. Heterozygous transgenic mice (L68Q) that express the human L68Q variant of cystatin C under the control of the mouse cystatin C promoter were unable to generate offspring, suggesting the presence of L68Q cystatin C amyloid affected sperm function. In vitro studies showed that epididymal spermatozoa from L68Q mice were unable to fertilize oocytes and exhibited poor sperm motility. Furthermore, spermatozoa from L68Q mice exhibited reduced cell viability compared with wild type (WT) spermatozoa and often were detected in large agglutinated clumps. Examination of the epididymal fluid and spermatozoa from L68Q mice showed increased levels and distinct forms of cystatin C amyloid that were not present in WT mice. The addition of epididymal fluid from L68Q mice to WT spermatozoa resulted in a recapitulation of the L68Q phenotype in that WT spermatozoa showed reduced cell viability and motility compared with WT spermatozoa incubated in epididymal fluid from WT mice. L68Q epididymal fluid that was depleted of cystatin C amyloids, however, did not impair the motility of WT spermatozoa. Taken together these studies suggest that amyloids in the epididymal fluid can be cytotoxic to the maturing spermatozoa resulting in male infertility.
Collapse
Affiliation(s)
- Sandra Whelly
- From the Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430 and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Autophagy serves as the sole catabolic mechanism for degrading organelles and protein aggregates. Increasing evidence implicates autophagic dysfunction in Alzheimer's disease (AD) and other neurodegenerative diseases associated with protein misprocessing and accumulation. Under physiologic conditions, the autophagic/lysosomal system efficiently recycles organelles and substrate proteins. However, reduced autophagy function leads to the accumulation of proteins and autophagic and lysosomal vesicles. These vesicles contain toxic lysosomal hydrolases as well as the proper cellular machinery to generate amyloid-beta, the major component of AD plaques. Here, we provide an overview of current research focused on the relevance of autophagic/lysosomal dysfunction in AD pathogenesis as well as potential therapeutic targets aimed at restoring autophagic/lysosomal pathway function.
Collapse
Affiliation(s)
- Miranda E Orr
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Salvatore Oddo
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Banner Sun Health Research Institute and Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| |
Collapse
|
18
|
Small DH, Hu Y, Bolós M, Dawkins E, Foa L, Young KM. β-Amyloid precursor protein: function in stem cell development and Alzheimer's disease brain. NEURODEGENER DIS 2013; 13:96-8. [PMID: 23942027 DOI: 10.1159/000353686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/19/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The β-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.
Collapse
Affiliation(s)
- David H Small
- Menzies Research Institute Tasmania and School of Medicine, University of Tasmania, Hobart, Tas., Australia
| | | | | | | | | | | |
Collapse
|
19
|
Zhong XM, Hou L, Luo XN, Shi HS, Hu GY, He HB, Chen XR, Zheng D, Zhang YF, Tan Y, Liu XJ, Mu N, Chen JP, Ning YP. Alterations of CSF cystatin C levels and their correlations with CSF Αβ40 and Αβ42 levels in patients with Alzheimer's disease, dementia with lewy bodies and the atrophic form of general paresis. PLoS One 2013; 8:e55328. [PMID: 23383156 PMCID: PMC3558470 DOI: 10.1371/journal.pone.0055328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
Immunohistochemical studies have revealed that cystatin C (CysC) co-localizes with amyloid-β (Αβ) in amyloid-laden vascular walls and in the senile plaque cores of amyloid. In vitro and in vivo animal studies suggest that CysC protects against neurodegeneration by inhibition of cysteine proteases, inhibition of Αβ aggregation, induction of autophagy and induction of cell division. CysC levels may be altered and may have a potential link with cerebrospinal fluid (CSF) Aβ levels in various types of dementia with characteristic amyloid deposits, such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and the atrophic form of general paresis (AF-GP). We assessed the serum and CSF levels of CysC and the CSF levels of Aβ40 and Aβ42 in patients with AD (n = 51), DLB (n = 26) and AF-GP (n = 43) and normal controls (n = 30). Using these samples, we explored the correlation between CSF CysC and CSF Aβ levels. We found that in comparison to the normal control group, both CSF CysC and CSF Aβ42 levels were significantly lower in all three dementia groups (all p<0.001); serum CysC levels were the same in the AD and DLB groups, and were lower in the AF-GP group (p = 0.008). The CSF CysC levels were positively correlated with both the CSF Aβ40 and Aβ42 levels in the AD, AF-GP and normal control groups (r = 0.306∼0.657, all p<0.05). Lower CSF CysC levels might be a common feature in dementia with characteristic amyloid deposits. Our results provide evidence for the potential role of CysC involvement in Aβ metabolism and suggest that modulation of the CysC level in the brain might produce a disease-modifying effect in dementia with characteristic amyloid deposits.
Collapse
Affiliation(s)
- Xiao-Mei Zhong
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Le Hou
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Xin-Ni Luo
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Hai-Shan Shi
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Guo-Yan Hu
- Department of Medical Laboratory, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Hong-Bo He
- Laboratory of Molecular Biology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Xin-Ru Chen
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Dong Zheng
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Yue-Feng Zhang
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Yan Tan
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Xue-Jun Liu
- Department of Medical Laboratory, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Nan Mu
- Department of Geriatric Psychiatry, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Jian-Ping Chen
- Department of Geriatric Psychiatry, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Yu-Ping Ning
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Bertram L, Tanzi RE. The genetics of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:79-100. [PMID: 22482448 DOI: 10.1016/b978-0-12-385883-2.00008-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
21
|
Abstract
Changes in expression and secretion levels of cystatin C (CysC) in the brain in various neurological disorders and in animal models of neurodegeneration underscore a role for CysC in these conditions. A polymorphism in the CysC gene (CST3) is linked to increased risk for Alzheimer's disease (AD). AD pathology is characterized by deposition of oligomeric and fibrillar forms of amyloid β (Aβ) in the neuropil and cerebral vessel walls, neurofibrillary tangles composed mainly of hyperphosphorylated tau, and neurodegeneration. The implication of CysC in AD was initially suggested by its co-localization with Aβ in amyloid-laden vascular walls, and in senile plaque cores of amyloid in the brains of patients with AD, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D), and cerebral infarction. CysC also co-localizes with Aβ amyloid deposits in the brains of non-demented aged individuals. Multiple lines of research show that CysC plays protective roles in AD. In vitro studies have shown that CysC binds Aβ and inhibits Aβ oligomerization and fibril formation. In vivo results from the brains and plasma of Aβ-depositing transgenic mice confirmed the association of CysC with the soluble, non-pathological form of Aβ and the inhibition of Aβ plaques formation. The association of CysC with Aβ was also found in brain and in cerebrospinal fluid (CSF) from AD patients and non-demented control individuals. Moreover, in vitro results showed that CysC protects neuronal cells from a variety of insults that may cause cell death, including cell death induced by oligomeric and fibrillar Aβ. These data suggest that the reduced levels of CysC manifested in AD contribute to increased neuronal vulnerability and impaired neuronal ability to prevent neurodegeneration. This review elaborates on the neuroprotective roles of CysC in AD and the clinical relevance of this protein as a therapeutic agent.
Collapse
Affiliation(s)
- Gurjinder Kaur
- Departments of Psychiatry, Biochemistry, and Molecular Pharmacology, Center for Dementia Research, Nathan S. Kline Institute, New York University School of Medicine, Orangeburg NY, USA
| | | |
Collapse
|
22
|
Hua Y, Zhao H, Lu X, Kong Y, Jin H. Meta-Analysis of the Cystatin C(CST3) Gene G73A Polymorphism and Susceptibility to Alzheimer's Disease. Int J Neurosci 2012; 122:431-8. [DOI: 10.3109/00207454.2012.672502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A. Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 2011; 2011:832379. [PMID: 22191060 PMCID: PMC3235576 DOI: 10.4061/2011/832379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
The genetics of late-onset Alzheimer's disease (LOAD) has taken impressive steps forwards in the last few years. To date, more than six-hundred genes have been linked to the disorder. However, only a minority of them are supported by a sufficient level of evidence. This review focused on such genes and analyzed shared biological pathways. Genetic markers were selected from a web-based collection (Alzgene). For each SNP in the database, it was possible to perform a meta-analysis. The quality of studies was assessed using criteria such as size of research samples, heterogeneity across studies, and protection from publication bias. This produced a list of 15 top-rated genes: APOE, CLU, PICALM, EXOC3L2, BIN1, CR1, SORL1, TNK1, IL8, LDLR, CST3, CHRNB2, SORCS1, TNF, and CCR2. A systematic analysis of gene ontology terms associated with each marker showed that most genes were implicated in cholesterol metabolism, intracellular transport of beta-amyloid precursor, and autophagy of damaged organelles. Moreover, the impact of these genes on complement cascade and cytokine production highlights the role of inflammatory response in AD pathogenesis. Gene-gene and gene-environment interactions are prominent issues in AD genetics, but they are not specifically featured in the Alzgene database.
Collapse
Affiliation(s)
- Paolo Olgiati
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | | | | | | | | |
Collapse
|
24
|
Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J Neurochem 2011; 120 Suppl 1:167-185. [PMID: 22122230 DOI: 10.1111/j.1471-4159.2011.07510.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
: The amyloid cascade hypothesis of Alzheimer's disease envisages that the initial elevation of amyloid β-peptide (Aβ) levels, especially of Aβ(1-42) , is the primary trigger for the neuronal cell death specific to onset of Alzheimer's disease. There is now substantial evidence that brain amyloid levels are manipulable because of a dynamic equilibrium between their synthesis from the amyloid precursor protein and their removal by amyloid-degrading enzymes (ADEs) providing a potential therapeutic strategy. Since the initial reports over a decade ago that two zinc metallopeptidases, insulin-degrading enzyme and neprilysin (NEP), contributed to amyloid degradation in the brain, there is now an embarras de richesses in relation to this category of enzymes, which currently number almost 20. These now include serine and cysteine proteinases, as well as numerous zinc peptidases. The experimental validation for each of these enzymes, and which to target, varies enormously but up-regulation of several of them individually in mouse models of Alzheimer's disease has proved effective in amyloid and plaque clearance, as well as cognitive enhancement. The relative status of each of these enzymes will be critically evaluated. NEP and its homologues, as well as insulin-degrading enzyme, remain as principal ADEs and recently discovered mechanisms of epigenetic regulation of NEP expression potentially open new avenues in manipulation of AD-related genes, including ADEs.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Caroline Beckett
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nikolai D Belyaev
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anthony J Turner
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Murray AM, Barzilay JI, Lovato JF, Williamson JD, Miller ME, Marcovina S, Launer LJ. Biomarkers of renal function and cognitive impairment in patients with diabetes. Diabetes Care 2011; 34:1827-32. [PMID: 21715519 PMCID: PMC3142061 DOI: 10.2337/dc11-0186] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/24/2011] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Kidney disease is associated with cognitive impairment in studies of nondiabetic adults. We examined the cross-sectional relation between three measures of renal function and performance on four measures of cognitive function in the Action to Control Cardiovascular Risk in Diabetes Memory in Diabetes (ACCORD-MIND) study. RESEARCH DESIGN AND METHODS The relationships among estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m(2) (n = 2,968), albumin/creatinine ratio (ACR) ≥30 μg/mg (n = 2,957), and cystatin C level >1.0 mg/L (n = 532) with tertile of performance on the Mini-Mental State Examination, Rey Auditory Verbal Learning Test (RAVLT), Digit Symbol Substitution Test (DSST), and Stroop Test of executive function were measured. RESULTS In adjusted logistic regression models, ACR ≥30 μg/mg was associated with performance in the lowest tertile, compared with the highest two tertiles, on the RAVLT (odds ratio 1.30, 95% CI 1.09-1.56, P = 0.006), equivalent to 3.6 years of aging, and on the DSST (1.47, 1.20-1.80, P = 0.001), equivalent to 3.7 years of aging. Cystatin C >1.0 mg/L was borderline associated with the lowest tertile on the DSST (1.81, 0.93-3.55, P = 0.08) and Stroop (1.78, 0.97-3.23, P = 0.06) in adjusted models. eGFR was not associated with any measure of cognitive performance. CONCLUSIONS In diabetic people with HbA(1c) >7.5% at high risk for cardiovascular disease, decreased cognitive function was associated with kidney disease as measured by ACR, a measure of microvascular endothelial pathology, and cystatin C, a marker of eGFR.
Collapse
Affiliation(s)
- Anne M Murray
- Department of Medicine, MinneapolisMedical Research Foundation, Minneapolis, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Iraola-Guzmán S, Estivill X, Rabionet R. DNA methylation in neurodegenerative disorders: a missing link between genome and environment? Clin Genet 2011; 80:1-14. [PMID: 21542837 DOI: 10.1111/j.1399-0004.2011.01673.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The risk of developing neurodegenerative disorders such as Alzheimer's disease or Parkinson's disease is influenced by genetic and environmental factors. Environmental events occurring during development or later in life can be related to disease susceptibility. One way by which the environment may exert its effect is through epigenetic modifications, which might affect the functioning of genes. These include nucleosome positioning, post-translational histone modifications, and DNA methylation. In this review we will focus in the potential role of DNA methylation in neurodegenerative disorders and in the approaches to explore such epigenetic changes. Advances in deciphering the role of epigenetic modifications in phenotype are being uncovered for a variety of diseases, including cancer, autoimmune, neurodevelopmental and cognitive disorders. Epigenetic modifications are now being also associated with cardiovascular and metabolic traits, and they are expected to be especially involved in learning and memory processes, as well as in neurodegenerative disease. The study of the role of methylation and other epigenetic modifications in disease development will provide new insights in the etiopathogenesis of neurodegenerative disorders, and should hopefully shape new avenues in the development of therapeutic strategies.
Collapse
Affiliation(s)
- S Iraola-Guzmán
- Center for Genomic Regulation and UPF, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | |
Collapse
|
27
|
Gauthier S, Kaur G, Mi W, Tizon B, Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front Biosci (Schol Ed) 2011; 3:541-54. [PMID: 21196395 DOI: 10.2741/s170] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegeneration occurs in acute pathological conditions such as stroke, ischemia, and head trauma and in chronic disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. While the cause of neuronal death is different and not always known in these varied conditions, hindrance of cell death would be beneficial in the prevention of, slowing of, or halting disease progression. Enhanced cystatin C (CysC) expression in these conditions caused a debate as to whether CysC up-regulation facilitates neurodegeneration or it is an endogenous neuroprotective attempt to prevent the progression of the pathology. However, recent in vitro and in vivo data have demonstrated that CysC plays protective roles via pathways that are dependent on inhibition of cysteine proteases, such as cathepsin B, or by induction of autophagy, induction of proliferation, and inhibition of amyloid-beta aggregation. Here we review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced under various conditions. These data suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
|
28
|
Hooton H, Dubern B, Henegar C, Paternoster L, Nohr EA, Alili R, Rousseau F, Pelloux V, Galan P, Hercberg S, Arner P, Sørensen TIA, Clément K. Association between CST3 rs2424577 polymorphism and corpulence related phenotypes during lifetime in populations of European ancestry. Obes Facts 2011; 4:131-44. [PMID: 21577020 PMCID: PMC6444514 DOI: 10.1159/000327797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Cystatin C, a protein coded by CST3 gene, is implicated in adipose tissue biology. Our hypothesis is that common variants in CST3 gene could play a role in the development of corpulence during lifetime. METHODS Two tag SNPs were selected to capture all SNPs in the CST3 region. We first investigated the association of the two tag SNPs individually and combined into haplotypes with corpulence related phenotypes in 4,288 French subjects (BMI = 24.31 ( 3.74 kg/m²). Significant findings were replicated in five independent populations--790 Danish lean men (BMI = 24.63 ( 2.30 kg/m²), 672 Danish obese men (BMI = 33.23 ( 2.34 kg/m²), 763 Swedish women (BMI = 21.73 ( 2.87 kg/m²), 1,848 Danish lean women (BMI = 22.66 ( 2.85 kg/m²) and 2,061 Danish obese women (BMI = 37.01 ( 3.59 kg/m²). RESULTS Rs2424577 was associated with BMI in three independent populations--G/G carriers were less corpulent than A/A carriers in the French individuals (p = 0.045) and in the Danish lean men (p = 0.021), and they were more corpulent in the group of Swedish women (p = 0.004). This phenomenon has been described as a flip-flop phenomenon, probably caused by a multilocus effect. CONCLUSION CST3 rs2424577 is associated with BMI in a complex fashion. This association is probably caused by the interaction between several functional variants.
Collapse
Affiliation(s)
- Henri Hooton
- INSERM U872 Equipe 7, Centre de Recherche des Cordeliers 15 Rue de l’Ecole de Medecine, 75006 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamamoto-Watanabe Y, Watanabe M, Jackson M, Akimoto H, Sugimoto K, Yasujima M, Wakasaya Y, Matsubara E, Kawarabayashi T, Harigaya Y, Lyndon AR, Shoji M. Quantification of cystatin C in cerebrospinal fluid from various neurological disorders and correlation with G73A polymorphism in CST3. Brain Res 2010; 1361:140-5. [DOI: 10.1016/j.brainres.2010.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 12/12/2022]
|
30
|
Cystatin C in macular and neuronal degenerations: implications for mechanism(s) of age-related macular degeneration. Vision Res 2009; 50:737-42. [PMID: 19917302 DOI: 10.1016/j.visres.2009.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 11/23/2022]
Abstract
Cystatin C is a strong inhibitor of cysteine proteinases expressed by diverse cells. Variant B cystatin C, which was associated with increased risk of developing age-related macular degeneration, differs from the wild type protein by a single amino acid (A25T) in the signal sequence responsible for its targeting to the secretory pathway. The same variant conveys susceptibility to Alzheimer disease. Our investigations of the trafficking and processing of variant B cystatin C in living RPE cells highlight impaired secretion of extracellular modulators and inappropriate protein retention in RPE cells as potential molecular mechanisms underpinning macular, and possibly neuronal, degeneration.
Collapse
|
31
|
|
32
|
Sun B, Zhou Y, Halabisky B, Lo I, Cho SH, Mueller-Steiner S, Devidze N, Wang X, Grubb A, Gan L. Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer's disease. Neuron 2008; 60:247-57. [PMID: 18957217 DOI: 10.1016/j.neuron.2008.10.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 09/23/2008] [Accepted: 10/07/2008] [Indexed: 12/19/2022]
Abstract
Impaired degradation of amyloid beta (Abeta) peptides could lead to Abeta accumulation, an early trigger of Alzheimer's disease (AD). How Abeta-degrading enzymes are regulated remains largely unknown. Cystatin C (CysC, CST3) is an endogenous inhibitor of cysteine proteases, including cathepsin B (CatB), a recently discovered Abeta-degrading enzyme. A CST3 polymorphism is associated with an increased risk of late-onset sporadic AD. Here, we identified CysC as the key inhibitor of CatB-induced Abeta degradation in vivo. Genetic ablation of CST3 in hAPP-J20 mice significantly lowered soluble Abeta levels, the relative abundance of Abeta1-42, and plaque load. CysC removal also attenuated Abeta-associated cognitive deficits and behavioral abnormalities and restored synaptic plasticity in the hippocampus. Importantly, the beneficial effects of CysC reduction were abolished on a CatB null background, providing direct evidence that CysC regulates soluble Abeta and Abeta-associated neuronal deficits through inhibiting CatB-induced Abeta degradation.
Collapse
Affiliation(s)
- Binggui Sun
- Gladstone Institute of Neurological Disease, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sundelöf J, Arnlöv J, Ingelsson E, Sundström J, Basu S, Zethelius B, Larsson A, Irizarry MC, Giedraitis V, Rönnemaa E, Degerman-Gunnarsson M, Hyman BT, Basun H, Kilander L, Lannfelt L. Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology 2008; 71:1072-9. [PMID: 18824671 DOI: 10.1212/01.wnl.0000326894.40353.93] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Multiple lines of research suggest that increased cystatin C activity in the brain protects against the development of Alzheimer disease (AD). METHODS Serum cystatin C levels were analyzed at two examinations of the Uppsala Longitudinal Study of Adult Men, a longitudinal, community-based study of elderly men (age 70 years, n = 1,153 and age 77 years, n = 761, a subset of the age 70 examination). Cox regressions were used to examine associations between serum cystatin C and incident AD. AD cases were identified by cognitive screening and comprehensive medical chart review in all subjects. RESULTS On follow-up (median 11.3 years), 82 subjects developed AD. At age 70 years, lower cystatin C was associated with higher risk of AD independently of age, APOE4 genotype, glomerular filtration rate, diabetes, hypertension, stroke, cholesterol, body mass index, smoking, education level, and plasma amyloid-beta protein 40 and 42 levels (hazard ratio [HR] for lowest [<1.12 micromol/L] vs highest [>1.30 micromol/L] tertile = 2.67, 95% CI 1.22-5.83, p < 0.02). The results were similar at age 77 years (43 participants developed AD during follow-up). Furthermore, a 0.1-mumol/L decrease of cystatin C between ages 70 and 77 years was associated with a 29% higher risk of incident AD (HR 1.29, 95% CI 1.03-1.63, p < 0.03). CONCLUSIONS Low levels of serum cystatin C precede clinically manifest Alzheimer disease (AD) in elderly men free of dementia at baseline and may be a marker of future risk of AD. These findings strengthen the evidence for a role for cystatin C in the development of clinical AD.
Collapse
Affiliation(s)
- J Sundelöf
- Uppsala University, Department of Public Health/Geriatrics, Uppsala Science Park, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Low molecular-mass plasma proteins play a key role in health and disease. Cystatin C is an endogenous cysteine proteinase inhibitor belonging to the type 2 cystatin superfamily. The mature, active form of human cystatin C is a single non-glycosylated polypeptide chain consisting of 120 amino acid residues, with a molecular mass of 13,343-13,359 Da, and containing four characteristic disulfide-paired cysteine residues. Human cystatin C is encoded by the CST3 gene, ubiquitously expressed at moderate levels. Cystatin C monomer is present in all human body fluids; it is preferentially abundant in cerebrospinal fluid, seminal plasma, and milk. Cystatin C L68Q variant is an amyloid fibril-forming protein with a high tendency to dimerize. It forms self-aggregates with massive amyloid deposits in the brain arteries of young adults, leading to lethal cerebral hemorrhage. The main catabolic site of cystatin C is the kidney: more than 99% of the protein is cleared from the circulation by glomerular ultrafiltration and tubular reabsorption. The diagnostic value of cystatin C as a marker of kidney dysfunction has been extensively investigated in multiple clinical studies on adults, children, and in the elderly. In almost all the clinical studies, cystatin C demonstrated a better diagnostic accuracy than serum creatinine in discriminating normal from impaired kidney function, but controversial results have been obtained by comparing this protein with other indices of kidney disease, especially serum creatinine-based equations. In this review, we present and discuss most of the available data from the literature, critically reviewing conclusions and suggestions for the use of cystatin C in clinical practice. Despite the multitude of clinical data in the literature, cystatin C has not been widely used, perhaps because of a combination of factors, such as a general diffidence among clinicians, the absence of definitive cut-off values, conflicting results in clinical studies, no clear evidence on when and how to request the test, the poor commutability of results, and no accurate examination of costs and of its routine use in a stat laboratory.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Laboratory Medicine, University-Hospital of Padua, Padua, Italy
| | | |
Collapse
|
35
|
Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 2008; 9:768-78. [PMID: 18802446 DOI: 10.1038/nrn2494] [Citation(s) in RCA: 521] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.
Collapse
|
36
|
Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 2008; 38:178-98. [DOI: 10.1007/s12035-008-8041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/16/2008] [Indexed: 01/09/2023]
|
37
|
Bai Y, Markham K, Chen F, Weerasekera R, Watts J, Horne P, Wakutani Y, Bagshaw R, Mathews PM, Fraser PE, Westaway D, St. George-Hyslop P, Schmitt-Ulms G. The in Vivo Brain Interactome of the Amyloid Precursor Protein. Mol Cell Proteomics 2008; 7:15-34. [DOI: 10.1074/mcp.m700077-mcp200] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Chuo LJ, Sheu WHH, Pai MC, Kuo YM. Genotype and plasma concentration of cystatin C in patients with late-onset Alzheimer disease. Dement Geriatr Cogn Disord 2007; 23:251-7. [PMID: 17310123 DOI: 10.1159/000100021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A polymorphism locating at position 73 of cystatin C (CST3) exon 1 was suggested to be associated with Alzheimer disease (AD), but with contradictory results. The relationship between the CST3 genotype and the cystatin C plasma level in AD remains unknown. OBJECTIVE We aim to determine the association between CST3 polymorphism and the plasma levels of cystatin C in AD and nondemented control individuals. METHOD The polymorphisms of the CST3 genotype were determined using PCR followed by restriction fragment length polymorphism analysis, and the plasma cystatin C concentrations were quantified by sandwich ELISA in 175 AD and 461 control subjects. RESULTS Although the CST3A allele frequencies were similar between the two groups, the CST3A/A homozygote was significantly associated with late-onset AD. As expected, the established AD genetic risk factor APOE epsilon4 allele was overrepresented in the AD cohort. The plasma cystatin C levels were lower in the AD patients than in the control group. Furthermore, plasma cystatin C levels were associated positively with age and negatively with CST3A allele in the control group. CONCLUSION The homozygous CST3A/A genotype confers a risk for AD in Taiwan Chinese. Such an association may be due to the reduced level of cystatin C in the peripheral circulation.
Collapse
Affiliation(s)
- Liang-Jen Chuo
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, and Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
39
|
Selenica ML, Wang X, Ostergaard-Pedersen L, Westlind-Danielsson A, Grubb A. Cystatin C reduces the in vitro formation of soluble Abeta1-42 oligomers and protofibrils. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 67:179-90. [PMID: 17365997 DOI: 10.1080/00365510601009738] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There are an increasing number of genetic and neuropathological observations to suggest that cystatin C, an extracellular protein produced by all nucleated cells, might play a role in the pathophysiology of sporadic Alzheimer's disease (AD). Recent observations indicate that small and large soluble oligomers of the beta-amyloid protein (Abeta) impair synaptic plasticity and induce neurotoxicity in AD. The objective of the present study was to investigate the influence of cystatin C on the production of such oligomers in vitro. Co-incubation of cystatin C with monomeric Abeta1-42 significantly attenuated the in vitro formation of Abeta oligomers and protofibrils, as determined using electron microscopy (EM), dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, thioflavin T (ThT) spectrofluorimetry and gel chromatography. However, cystatin C did not dissolve preformed Abeta oligomers. Direct binding of cystatin C to Abeta was demonstrated with the formation of an initial 1:1 molar high-affinity complex. These observations suggest that cystatin C might be a regulating element in the transformation of monomeric Abeta to larger and perhaps more toxic molecular species in vivo.
Collapse
Affiliation(s)
- M L Selenica
- Disease Biology, H. Lundbeck A/S, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
40
|
Corder EH, Huang R, Cathcart HM, Lanham IS, Parker GR, Cheng D, Smith S, Poduslo SE. Membership in genetic groups predicts Alzheimer disease. Rejuvenation Res 2006; 9:89-93. [PMID: 16608402 DOI: 10.1089/rej.2006.9.89] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The multiple polymorphisms contributing to Alzheimer disease (AD) have been difficult to identify. Three essentially sufficient risk sets were found using a fuzzy latent classification statistical model; that is, grade-of-membership analysis, and genotypes for APOE, APOCI, LDLr, cystatin C, and cathepsin D (180 cases, 120 controls). These were: (a) CST3:GA and CTSD:CT; (b) APOE44 and LDLr8:GG and LDLr13:TT; and (c) APOE34 and LDLr13:TC. Consonance with one of the groups and high aggregate membership carried >800-fold elevated risk for AD. The absence of these combinations defined low risk. APOE3/- with heterozygous promoter and receptor genotypes predicted long life without dementia.
Collapse
Affiliation(s)
- Elizabeth H Corder
- Center for Demographic Studies, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Levy E, Jaskolski M, Grubb A. The role of cystatin C in cerebral amyloid angiopathy and stroke: cell biology and animal models. Brain Pathol 2006; 16:60-70. [PMID: 16612983 PMCID: PMC8095742 DOI: 10.1111/j.1750-3639.2006.tb00562.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A variant of the cysteine protease inhibitor, cystatin C, forms amyloid deposited in the cerebral vasculature of patients with hereditary cerebral hemorrhage with amyloidosis, Icelandic type (HCHWA-I), leading to cerebral hemorrhages early in life. However, cystatin C is also implicated in neuronal degenerative diseases in which it does not form the amyloid protein, such as Alzheimer disease (AD). Accumulating data suggest involvement of cystatin C in the pathogenic processes leading to amyloid deposition in cerebral vasculature and most significantly to cerebral hemorrhage in patients with cerebral amyloid angiopathy (CAA). This review focuses on cell culture and animal models used to study the role of cystatin C in these processes.
Collapse
Affiliation(s)
- Efrat Levy
- Department of Psychiatry, New York University School of Medicine, and Nathan Kline Institute, Orangeburg 10962, USA.
| | | | | |
Collapse
|
42
|
Revesz T, Holton JL, Lashley T, Plant G, Rostagno A, Ghiso J, Frangione B. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 2006; 12:343-57. [PMID: 12146803 PMCID: PMC8095796 DOI: 10.1111/j.1750-3639.2002.tb00449.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is the term used to describe deposition of amyloid in the walls of arteries, arterioles and, less often, capillaries and veins of the central nervous system. CAAs are an important cause of cerebral hemorrhage and may also result in ischemic lesions and dementia. A number of amyloid proteins are known to cause CAA. The most common sporadic CAA, caused by A beta deposition, is associated with aging and is a common feature of Alzheimer disease (AD). CAA occurs in several familial conditions, including hereditary cerebral hemorrhage with amyloidosis of Icelandic type caused by deposition of mutant cystatin C, hereditary cerebral hemorrhage with amyloidosis Dutch type and familial AD with deposition of either A beta variants or wild-type A beta, the transthyretin-related meningo-vascular amyloidoses, gelsolin as well as familial prion disease-related CAAs and the recently described BRI2 gene-related CAAs in familial British dementia and familial Danish dementia. This review focuses on the morphological, biochemical, and genetic aspects as well as the clinical significance of CAAs with special emphasis on the BRI2 gene-related cerebrovascular amyloidoses. We also discuss data relevant to the pathomechanism of the different forms of CAA with an emphasis on the most common A beta-related types.
Collapse
Affiliation(s)
- Tamas Revesz
- Queen Square Brain Bank, Department of Molecular Pathogenesis, University College London, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Papassotiropoulos A, Fountoulakis M, Dunckley T, Stephan DA, Reiman EM. Genetics, transcriptomics, and proteomics of Alzheimer's disease. J Clin Psychiatry 2006; 67:652-70. [PMID: 16669732 PMCID: PMC2259384 DOI: 10.4088/jcp.v67n0418] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide an updated overview of the methods used in genetic, transcriptomic, and proteomic studies in Alzheimer's disease and to demonstrate the importance of those methods for the improvement of the current diagnostic and therapeutic possibilities. DATA SOURCES MEDLINE-based search of 233 peer-reviewed articles published between 1975 and 2006. DATA SYNTHESIS Alzheimer's disease is a genetically heterogeneous disorder. Rare mutations in the amyloid precursor protein, presenilin 1, and presenilin 2 genes have shown the importance of the amyloid metabolism for its development. In addition, converging evidence from population-based genetic studies, gene expression studies, and protein profile studies in the brain and in the cerebrospinal fluid suggest the existence of several pathogenetic pathways such as amyloid precursor protein processing, beta-amyloid degradation, tau phosphorylation, proteolysis, protein misfolding, neuroinflammation, oxidative stress, and lipid metabolism. CONCLUSIONS The development of high-throughput genotyping methods and of elaborated statistical analyses will contribute to the identification of genetic risk profiles related to the development and course of this devastating disease. The integration of knowledge derived from genetic, transcriptomic, and proteomic studies will greatly advance our understanding of the causes of Alzheimer's disease, improve our capability of establishing an early diagnosis, help define disease subgroups, and ultimately help to pave the road toward improved and tailored treatments.
Collapse
|
44
|
Ghidoni R, Benussi L, Paterlini A, Missale C, Usardi A, Rossi R, Barbiero L, Spano P, Binetti G. Presenilin 2 mutations alter cystatin C trafficking in mouse primary neurons. Neurobiol Aging 2006; 28:371-6. [PMID: 16545890 DOI: 10.1016/j.neurobiolaging.2006.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 12/30/2005] [Accepted: 01/21/2006] [Indexed: 10/24/2022]
Abstract
Mutations in the presenilin genes account for the majority of familial Alzheimer disease (FAD) cases. In the present report we demonstrated that the FAD-linked presenilin 2 mutations (PS2 M239I and T122R) alter cystatin C trafficking in mouse primary neurons reducing secretion of its glycosylated form. These mutations showed a different impact on cystatin C: PS2 T122R had a much stronger effect determining a dramatic intracellular accumulation of cystatin C (native and glycosylated), followed by a reduction in the secretion of both forms. Several experimental evidences suggest that cystatin C exerts a protective role in the brain and favors stem cells proliferation. Confocal imaging showed that the effect of PS2 T122R mutation was a massive recruitment of cystatin C into the neuronal processes, in the presence of an intact cytoskeletal structure. The consequent reduction in the cystatin C extracellular levels might result in a failure of neuroregeneration. Understanding the interplay of PS2 and cystatin C in the pathogenesis of AD might highlight new therapeutic prospective.
Collapse
Affiliation(s)
- Roberta Ghidoni
- NeuroBioGen Lab-Memory Clinic, IRCCS Centro S. Giovanni di Dio-FBF, AFaR, Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Watanabe M, Jackson M, Ikeda M, Mizushima K, Amari M, Takatama M, Hirai S, Ikeda Y, Shizuka-Ikeda M, Okamoto K. Genetic analysis of the cystatin C gene in familial and sporadic ALS patients. Brain Res 2006; 1073-1074:20-4. [PMID: 16443201 DOI: 10.1016/j.brainres.2005.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 11/26/2005] [Accepted: 12/11/2005] [Indexed: 12/11/2022]
Abstract
Bunina bodies, small eosinophilic intraneuronal inclusions, stain positive for cystatin C and are the only specific pathological hallmark of amyotrophic lateral sclerosis (ALS). We screened the cystatin C gene (CST3) for mutations in 57 sporadic ALS patients and 12 familial ALS cases that did not possess a SOD1 mutation. We detected the known polymorphism in exon 1, a G/A transition at +73, in both familial and sporadic ALS patients. However, the allelic and genotypic frequencies of the +73 G/A polymorphism did not differ between ALS patients and control samples. No other mutation was detected in the ALS patients. The results reported here indicate that there may not be a direct genetic link between cystatin C and ALS, and it may be that deficits occur in proteins that interact with cystatin C.
Collapse
Affiliation(s)
- Mitsunori Watanabe
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Babiloni C, Benussi L, Binetti G, Bosco P, Busonero G, Cesaretti S, Dal Forno G, Del Percio C, Ferri R, Frisoni G, Ghidoni R, Rodriguez G, Squitti R, Rossini PM. Genotype (cystatin C) and EEG phenotype in Alzheimer disease and mild cognitive impairment: A multicentric study. Neuroimage 2006; 29:948-64. [PMID: 16213753 DOI: 10.1016/j.neuroimage.2005.08.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/22/2005] [Accepted: 08/25/2005] [Indexed: 11/18/2022] Open
Abstract
Previous findings demonstrated that haplotype B of CST3, the gene coding for cystatin C, is a recessive risk factor for late-onset Alzheimer's disease (AD; Finckh, U., von der Kammer, H., Velden, J., Michel, T., Andresen, B., Deng, A., Zhang, J., Muller-Thomsen, T., Zuchowski, K., Menzer, G., Mann, U., Papassotiropoulos, A., Heun, R., Zurdel, J., Holst, F., Benussi, L., Stoppe, G., Reiss, J., Miserez, A.R., Staehelin, H.B., Rebeck, G.W., Hyman, B.T., Binetti, G., Hock, C., Growdon, J.H., Nitsch, R.M., 2000. Genetic association of the cystatin C gene with late-onset Alzheimer disease. Arch. Neurol. 57, 1579-1583). In the present multicentric electroencephalographic (EEG) study, we analyzed the effects of CST3 haplotypes on resting cortical rhythmicity in subjects with AD and mild cognitive impairment (MCI) with the hypothesis that sources of resting EEG rhythms are more impaired in carriers of the CST3 B haplotype than non-carriers. We enrolled a population of 84 MCI subjects (42% with the B haplotype) and 65 AD patients (40% with the B haplotype). Resting eyes-closed EEG data were recorded in all subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Results showed that the amplitude of alpha 1 (parietal, occipital, temporal areas) and alpha 2 (occipital area) was statistically lower in CST3 B carriers than non-carriers (P < 0.01). Whereas there was a trend towards statistical significance that amplitude of occipital delta sources was stronger in CST3 B carriers than in non-carriers. This was true for both MCI and AD subjects. The present findings represent the first demonstration of relationships between the AD genetic risk factor CST3 B and global neurophysiological phenotype (i.e., cortical delta and alpha rhythmicity) in MCI and AD subjects, prompting future genotype-EEG phenotype studies for the early prediction of AD conversion in individual MCI subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, Univ. La Sapienza Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
BEYER KATRIN, LAO JOSÉI, LATORRE PILAR, ARIZA AURELIO. Age at Onset: An Essential Variable for the Definition of Genetic Risk Factors for Sporadic Alzheimer's Disease. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2005.tb06138.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Nishiyama K, Konishi A, Nishio C, Araki-Yoshida K, Hatanaka H, Kojima M, Ohmiya Y, Yamada M, Koshimizu H. Expression of cystatin C prevents oxidative stress-induced death in PC12 cells. Brain Res Bull 2005; 67:94-9. [PMID: 16140167 DOI: 10.1016/j.brainresbull.2005.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 05/29/2005] [Indexed: 12/01/2022]
Abstract
Cystatin C, an inhibitor of cysteine proteinases, is suggested to be involved in oxidative stress-induced apoptosis of cultured CNS neurons and various neuronal diseases in vivo; however, little is known about its mechanism of action. To address the role cystatin C plays in oxidative stress-induced neuronal cell death, we established PC12 cell lines that stably expressed rat cystatin C. These cystatin C-expressing PC12 cells showed remarkable resistance to high (50%) oxygen atmosphere. This resistance correlate with expression levels of cystatin C, demonstrating that cystatin C has a protective effect on high oxygen-induced cell death. In contrast, in a normal (20%) oxygen atmosphere neither control nor cystatin C-expressing PC12 cells showed a significant change in the number of living cells, indicating that cystatin C does not play an important role in the regulation of cellular proliferation. Furthermore, the cystatin C-expressing cell line also resisted other oxidative stresses, including glutamate- and 13-L-hydroperoxylinoleic acid (LOOH)-induced cell death. These results demonstrate that cystatin C has protective effects against various oxidative stresses that induce cell death.
Collapse
Affiliation(s)
- Keiji Nishiyama
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nagai A, Ryu JK, Terashima M, Tanigawa Y, Wakabayashi K, McLarnon JG, Kobayashi S, Masuda J, Kim SU. Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B. Brain Res 2005; 1066:120-8. [PMID: 16325785 DOI: 10.1016/j.brainres.2005.10.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
Cystatin C, a cysteine protease inhibitor, is implicated in pathogenesis of late-onset Alzheimer's disease and other neurological disorders. Our recent study showed that cystatin C injection into rat hippocampus induced neuronal cell death in granule cell layer of dentate gyrus in vivo. We further confirmed that cystatin C neurotoxicity was inhibited by simultaneous coapplication of cathepsin B, a cysteine protease. In vitro cytotoxicity was also studied in cultures of human CNS neurons, mixed cultures with astrocytes and A1 human hybrid neurons. Cystatin C induced neuronal cell death in a dose-dependent manner, which accompanied increased number of TUNEL (+) cells, up-regulation of active caspase-3 and DNA ladder. The results of the present study indicate that cystatin C participates in the process of apoptotic neuronal cell death in experimental conditions by means of inhibitory activity of cysteine proteases, and that cystatin C might be involved in the pathogenesis in human neurological disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Atsushi Nagai
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pirttilä TJ, Lukasiuk K, Håkansson K, Grubb A, Abrahamson M, Pitkänen A. Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiol Dis 2005; 20:241-53. [PMID: 16242633 DOI: 10.1016/j.nbd.2005.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022] Open
Abstract
Brain damaging insults cause alterations in neuronal networks that trigger epileptogenesis, and eventually lead to the appearance of spontaneous seizures. The present experiments were designed to study the cellular expression and functions of a cysteine proteinase inhibitor, cystatin C, whose gene expression is previously shown to be upregulated in the rat hippocampus during status epilepticus (SE)-induced epileptogenesis. The present data showed that the expression of cystatin C protein increased in the mouse hippocampus 7 days following SE and localized mainly to astrocytes and microglia. Acute neuronal death in the hippocampus at 24 h after SE was reduced in cystatin C-/- mice. Also, the basal level of neurogenesis in the subgranular layer of dentate gyrus was decreased in cystatin C-/- mice compared to wildtype littermates. Interestingly, migration of newly born neurons within the granule cell layer was attenuated in cystatin C-/- mice. These data demonstrate that cystatin C has a role in neuronal death and neurogenesis during SE-induced network reorganization.
Collapse
Affiliation(s)
- Terhi J Pirttilä
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|