1
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Mian MU, Afzal M, Butt AA, Ijaz M, Khalil K, Abbasi M, Fatima M, Asif M, Nadeem S, Jha S, Panjiyar BK. Neuropharmacology of Neuropathic Pain: A Systematic Review. Cureus 2024; 16:e69028. [PMID: 39385859 PMCID: PMC11464095 DOI: 10.7759/cureus.69028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Neuropathic pain, a debilitating condition, remains challenging to manage effectively. An insight into neuropharmacological mechanisms is critical for optimizing treatment strategies. This systematic review aims to evaluate the role of neuropharmacological agents based on their efficacy, involved neurotransmitters, and receptors. A manual literature search was undertaken in PubMed including Medline, Cochrane Library, Google Scholar, Plos One, Science Direct, and clinicaltrials.gov from 2013 until 2023. Out of the 13 included studies, seven evaluated the role of gabapentinoids. Two main drugs from this group, gabapentin and pregabalin, function by binding voltage-gated calcium channels, lowering neuronal hyperexcitability and pain signal transmission, thereby relieving neuropathic pain. Four of the pooled studies reported the use of tricyclic antidepressants (TCAs) including amitriptyline and nortriptyline which work by blocking the reuptake of norepinephrine and serotonin, their increased concentration is thought to be central to their analgesic effect. Three articles assessed the use of serotonin-norepinephrine reuptake inhibitors (SNRIs) and reported them as effective as the TCAs in managing neuropathic pain. They work by augmenting serotonin and norepinephrine. Three studies focused on the use of selective serotonin reuptake inhibitors (SSRIs), modulating their effect by increasing serotonin levels; however, they were reported as not a highly effective treatment option for neuropathic pain. One of the studies outlined the use of cannabinoids for neuropathic pain by binding to cannabinoid receptors with only mild adverse effects. It is concluded that gabapentinoids, TCAs, and SNRIs were reported as the most effective therapy for neuropathic pain; however, for trigeminal neuralgia, anticonvulsants like carbamazepine were considered the most effective. Opioids were considered second-line drugs for neuropathic pain as they come with adverse effects and a risk of dependence. Ongoing research is exploring novel drugs like ion channels and agents modulating pain pathways for neuropathic pain management. Our review hopes to inspire further research into patient stratification by their physiology, aiding quicker and more accurate management of neuropathic pain while minimizing inadvertent side effects.
Collapse
Affiliation(s)
| | - Mishal Afzal
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Aqsa A Butt
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Muniba Ijaz
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Kashaf Khalil
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Marhaba Fatima
- Internal Medicine, People's University of Medical and Health Sciences for Women-Nawabshah, Nawabshah, PAK
| | - Mariam Asif
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Saad Nadeem
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Shivangi Jha
- Obstetrics and Gynaecology, Pramukh Swami Medical College, Bhaikaka University, Anand, IND
| | - Binay K Panjiyar
- Cardiology/Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
4
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Foley P, Parker RA, de Angelis F, Connick P, Chandran S, Young C, Weir CJ, Chataway J. Efficacy of Fluoxetine, Riluzole and Amiloride in treating neuropathic pain associated with secondary progressive multiple sclerosis. Pre-specified analysis of the MS-SMART double-blind randomised placebo-controlled trial. Mult Scler Relat Disord 2022; 63:103925. [PMID: 35671671 DOI: 10.1016/j.msard.2022.103925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Evidence-based treatment of pain in people with MS presents a major unmet need. OBJECTIVE We aimed to establish if use of Fluoxetine, Riluzole or Amiloride improved neuropathic pain outcomes in comparison to placebo, in adults with secondary progressive MS participating in a trial of these putative neuroprotectants. METHODS In pre-specified secondary analyses of the MS SMART phase-2b double-blind randomised controlled trial (NCT01910259), we analyzed reports of neuropathic pain, overall pain, and pain interference. Multivariate analyses included adjustment for baseline pain severity. Additionally, we explored associations of pain severity with clinical and MRI brain imaging variables. RESULTS 445 Participants were recruited from 13 UK neuroscience centres. We found no statistically significant benefit of active intervention on any rating of neuropathic pain, or pain overall. Compared to placebo, adjusted mean difference in pain intensity was 0.38 (positive values favouring placebo, 95%CI -0.30 to 1.07, p = 0.27) for Amiloride; 0.52 (-0.17 to 1.22, p = 0.14) for Fluoxetine; and 0.40 (-0.30 to 1.10, p = 0.26) for Riluzole. Pain severity was positively correlated with depressive symptoms (Spearman correlation 0.19, 95%CI 0.10-0.28) and fatigue (Rho 0.30, 95%CI 0.20-0.39). CONCLUSION Use of Fluoxetine, Riluzole or Amiloride was not associated with improvement in neuropathic pain symptoms, in comparison to placebo.
Collapse
Affiliation(s)
- Peter Foley
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom.
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Floriana de Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, United Kingdom
| | - Peter Connick
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Siddharthan Chandran
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Carolyn Young
- Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ, United Kingdom
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, United Kingdom
| | | |
Collapse
|
6
|
Mechanisms of dynamical complexity changes in patterns of sensory neurons under antinociceptive effect emergence. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhang X, Gao Y, Wang Q, Du S, He X, Gu N, Lu Y. Riluzole induces LTD of spinal nociceptive signaling via postsynaptic GluR2 receptors. J Pain Res 2018; 11:2577-2586. [PMID: 30464577 PMCID: PMC6209077 DOI: 10.2147/jpr.s169686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Riluzole - a major therapeutic medicine for patients with amyotrophic lateral sclerosis - reportedly has anti-nociceptive and anti-allodynic efficacies in neuropathic pain models. However, little is known about its effect on neurotransmission in the spinal superficial dorsal horn (SDH). The present study aims to investigate the effects of riluzole on the synaptic transmission of SDH nociceptive pathways in both physiological and pathological conditions. Materials and methods Spinal nerve ligation was used to produce a neuropathic pain model. Mechanical allodynia behavior was assessed with Von Frey filaments. Riluzole's effects on nociceptive synaptic transmission under both physiological and pathological conditions were examined by patch-clamp recordings in rat SDH neurons. Results The principal findings of the present study are three-fold. First, we affirm that riluzole has a remarkable long-lasting analgesic effect on both in vitro and in vivo pathological pain models. Second, the prolonged inhibitory effects of riluzole on spinal nociceptive signaling are mediated by both presynaptic and postsynaptic mechanisms. Finally, endocytosis of post-synaptic GluR2 contributes to the riluzole-induced long-term depression (LTD) of the spinal nociceptive pathway. Conclusion The present study finds that riluzole induces LTD of nociceptive signaling in the SDH and produces long-lasting anti-allodynia effects in nerve injury-induced neuropathic pain conditions via postsynaptic AMPA receptors associated with the endocytosis of GluR2.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Yandong Gao
- Department of Anesthesiology, First Hospital of Yulin City, Yulin 719000, China
| | - Qun Wang
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Shibin Du
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Xiaolan He
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Nan Gu
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Yan Lu
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| |
Collapse
|
8
|
Farinato A, Altamura C, Desaphy JF. Effects of Benzothiazolamines on Voltage-Gated Sodium Channels. Handb Exp Pharmacol 2018; 246:233-250. [PMID: 28939972 DOI: 10.1007/164_2017_46] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.
Collapse
Affiliation(s)
- Alessandro Farinato
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Concetta Altamura
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
9
|
Excessive spinal glutamate transmission is involved in oxaliplatin-induced mechanical allodynia: a possibility for riluzole as a prophylactic drug. Sci Rep 2017; 7:9661. [PMID: 28851920 PMCID: PMC5574967 DOI: 10.1038/s41598-017-08891-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin, a chemotherapy medication, causes severe peripheral neuropathy. Although oxaliplatin-induced peripheral neuropathy is a dose-limiting toxicity, a therapeutic strategy against its effects has not been established. We previously reported the involvement of N-methyl-D-aspartate receptors and their intracellular signalling pathway in oxaliplatin-induced mechanical allodynia in rats. The aim of this study was to clarify the involvement of spinal glutamate transmission in oxaliplatin-induced mechanical allodynia. In vivo spinal microdialysis revealed that the baseline glutamate concentration was elevated in oxaliplatin-treated rats, and that mechanical stimulation of the hind paw markedly increased extracellular glutamate concentration in the same rats. In these rats, the expression of glutamate transporter 1 (GLT-1), which plays a major role in glutamate uptake, was decreased in the spinal cord. Moreover, we explored the potential of pharmacological therapy targeting maintenance of extracellular glutamate homeostasis. The administration of riluzole, an approved drug for amyotrophic lateral sclerosis, suppressed the increase of glutamate concentration, the decrease of GLT-1 expression and the development of mechanical allodynia. These results suggest that oxaliplatin disrupts the extracellular glutamate homeostasis in the spinal cord, which may result in neuropathic symptoms, and support the use of riluzole for prophylaxis of oxaliplatin-induced mechanical allodynia.
Collapse
|
10
|
Warendorf J, Vrancken AFJE, van Schaik IN, Hughes RAC, Notermans NC. Drug therapy for chronic idiopathic axonal polyneuropathy. Cochrane Database Syst Rev 2017; 6:CD003456. [PMID: 28631805 PMCID: PMC6481404 DOI: 10.1002/14651858.cd003456.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for evaluation of polyneuropathy. There is a need to gather and review emerging evidence on treatments, as the number of people affected is likely to increase in ageing populations. This is an update of a review first published in 2004 and previously updated in 2006, 2008, 2011 and 2013. OBJECTIVES To assess the effects of drug therapy for chronic idiopathic axonal polyneuropathy for reducing disability and ameliorating neurological symptoms and associated impairments, and to assess any adverse effects of treatment. SEARCH METHODS In July 2016, we searched Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews in the Cochrane Library, MEDLINE, Embase, and the Web of Science. We searched two trials registries for ongoing trials. We also handsearched the reference lists of relevant articles, reviews and textbooks identified electronically, and we would have contacted authors and other experts in the field to identify additional studies if this seemed useful. SELECTION CRITERIA We sought all randomised or quasi-randomised (alternate or other systematic treatment allocation) trials that examined the effects of any drug therapy in people with CIAP at least one year after the onset of treatment. People with CIAP had to fulfil the following criteria: age 40 years or older, distal sensory or sensorimotor polyneuropathy, absence of systemic or other neurological disease, chronic clinical course not reaching a nadir in less than two months, exclusion of any recognised cause of the polyneuropathy by medical history taking, clinical or laboratory investigations, and electrophysiological studies in agreement with axonal polyneuropathy, without evidence of demyelinating features. The primary outcome was the proportion of participants with a significant improvement in disability. Secondary outcomes were change in the mean disability score, change in the proportion of participants who make use of walking aids, change in the mean Medical Research Council sum score, degree of pain relief and/or reduction of other positive sensory symptoms, change in the proportion of participants with pain or other positive sensory symptoms, and frequency of adverse effects. DATA COLLECTION AND ANALYSIS Two review authors independently reviewed the results of the literature search and extracted details of trial methodology and outcome data of all potentially relevant trials. MAIN RESULTS We identified 39 studies and assessed them for possible inclusion in the review, but we excluded all of them because of insufficient quality or lack of relevance. We summarised evidence from non-randomised studies in the Discussion. AUTHORS' CONCLUSIONS Even though CIAP has been clearly described and delineated, no adequate randomised or quasi-randomised controlled clinical treatment trials have been performed. In their absence there is no proven efficacious drug therapy.
Collapse
Affiliation(s)
- Janna Warendorf
- Brain Center Rudolf Magnus, University Medical Center UtrechtDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyUtrechtNetherlands
| | - Ivo N van Schaik
- Academic Medical Centre, University of AmsterdamDepartment of NeurologyMeibergdreef 9PO Box 22700AmsterdamNetherlands1100 DE
| | - Richard AC Hughes
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114Queen SquareLondonUKWC1N 3BG
| | - Nicolette C Notermans
- Brain Center Rudolf Magnus, University Medical Center UtrechtDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
11
|
Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology. ADVANCES IN NEUROBIOLOGY 2017; 16:225-253. [PMID: 28828613 DOI: 10.1007/978-3-319-55769-4_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vast majority of peripheral neurons sensing noxious stimuli and conducting pain signals to the dorsal horn of the spinal cord utilize glutamate as a chemical transmitter of excitation. High-affinity glutamate transporter subtypes GLAST/EAAT1, GLT1/EAAT2, EAAC1/EAAT3, and EAAT4, differentially expressed on sensory neurons, postsynaptic spinal interneurons, and neighboring glia, ensure fine modulation of glutamate neurotransmission in the spinal cord. The glutamate transport system seems to play important roles in molecular mechanisms underlying chronic pain and analgesia. Downregulation of glutamate transporters (GluTs) often precedes or occurs simultaneously with development of hypersensitivity to thermal or tactile stimuli in various models of chronic pain. Moreover, antisense knockdown or pharmacological inhibition of these membrane proteins can induce or aggravate pain. In contrast, upregulation of GluTs by positive pharmacological modulators or by viral gene transfer to the spinal cord can reverse the development of such pathological hypersensitivity. Furthermore, some multi-target drugs displaying analgesic properties (e.g., tricyclic antidepressant amitriptyline, riluzole, anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic pain treatment. However, design and development of new analgesics based on the modulation of glutamate uptake will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of this transport system in the spinal cord.
Collapse
|
12
|
Moisset X, Cornut-Chauvinc C, Clavelou P, Pereira B, Dallel R, Guy N. Is there pain with neuropathic characteristics in patients with amyotrophic lateral sclerosis? A cross-sectional study. Palliat Med 2016; 30:486-94. [PMID: 26269326 DOI: 10.1177/0269216315600332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis is a progressive debilitating and lethal disorder, characterized by degeneration of motor neurons that warrant palliative care. Pain is frequent in patients with amyotrophic lateral sclerosis and significantly impacts on quality of life. AIM To describe pain and assess the prevalence of pain with neuropathic characteristics in patients with amyotrophic lateral sclerosis. DESIGN Cross-sectional survey from March 2009 to October 2013. SETTING/PARTICIPANTS Amyotrophic lateral sclerosis patients underwent multidisciplinary assessment and completed questionnaires measuring the severity and impact of pain and anxiety. The Douleur Neuropathique-4 questionnaire was used to look for pain with neuropathic characteristics. RESULTS Of 96 clinical evaluations, 93 were usable for analysis (age at onset: 62 ± 12.5 years; disease duration: 34 ± 33 months). The overall pain prevalence was 66%, with 9% experiencing pain with neuropathic characteristics. Pain was most often located in the neck and shoulders (38% of pain patients). Neck and shoulder pain was associated with neck (p = 0.04) and proximal upper limb muscular weakness (p = 0.02), respectively. Pain was not associated with disease duration, respiratory or nutritional parameters, but with higher anxiety scores (p = 0.01). Patients with neuropathic characteristics pain did not differ significantly from patients with or without pain, except that they had higher minimal pain intensity score (p < 0.05). Neuropathic characteristics pain was frequently spontaneous (rarely evoked) and described as numbness, burning, electric shock, tingling, and pins-and-needle. CONCLUSION Even if amyotrophic lateral sclerosis is a disease of the motor system, pain is frequent and can rarely have neuropathic characteristics. Pain must be always sought and appropriately treated to limit quality of life impairment.
Collapse
Affiliation(s)
- Xavier Moisset
- Neuro-Dol, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France Centre SLA, Service de Neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Pierre Clavelou
- Neuro-Dol, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France Centre SLA, Service de Neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, Délégation Recherche Clinique & Innovation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Radhouane Dallel
- Neuro-Dol, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Nathalie Guy
- Neuro-Dol, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France Centre SLA, Service de Neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
13
|
Reichl S, Segelcke D, Keller V, Jonas R, Boecker A, Wenk M, Evers D, Zahn PK, Pogatzki-Zahn EM. Activation of glial glutamate transporter via MAPK p38 prevents enhanced and long-lasting non-evoked resting pain after surgical incision in rats. Neuropharmacology 2016; 105:607-617. [PMID: 26920805 DOI: 10.1016/j.neuropharm.2016.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/06/2016] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
Abstract
Pain after surgery has recently become a major issue not only due to lack of treatment success in the acute phase; even more alarming is the large number of patients developing prolonged pain after surgery. Because spinal glutamate as well as spinal glia plays a major role in acute incisional pain, we investigated the role of the spinal glial glutamate transporters (GT), GLAST, GLT-1, for acute and prolonged pain and hyperalgesia caused by an incision. Spinal administration of the GT-inhibitor DL-TBOA increased non-evoked pain but not evoked pain behavior (hyperalgesia) up to 2 weeks after incision. In accordance, spinal GLAST (and to a lesser degree GLT-1) were upregulated after incision for several days. Long-term incision induced GT upregulation was prevented by long-lasting p38-inhibitor administration but not by long-lasting ERK1/2-inhibition after incision. In accordance, daily treatment with the p38-inhibitor (but not the ERK1/2 inhibitor) prolonged non-evoked but not evoked pain behavior after incision. In electrophysiological experiments, spontaneous activity of high threshold (HT) (but not wide dynamic range (WDR)) neurons known to transmit incision induced non-evoked pain was increased after prolonged treatment with the p38-inhibitor. In conclusion, our findings indicate a new spinal pathway by which non-evoked pain behavior after incision is modulated. The pathway is modality (non-evoked pain) and neuron (HT) specific and disturbance contributes to prolonged long-term pain after surgical incision. This may have therapeutic implications for the treatment of acute and - even more relevant - for prevention of chronic pain after surgery in patients.
Collapse
Affiliation(s)
- Sylvia Reichl
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany; Department of Anesthesiology, Perioperative and General Intensive Care Medicine, University Hospital Salzburg and Paracelsus Private Medical University, Muellner Hauptstr. 48, 5020 Salzburg, Austria
| | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany
| | - Viktor Keller
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany
| | - Robin Jonas
- Department of Anesthesiology and Intensive Care, Faculty of Medicine at Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Armin Boecker
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany
| | - Manuel Wenk
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany
| | - Dagmar Evers
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Treatment, Ruhr-University Bochum, BG-Kliniken Bergmannsheil, Buerkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany.
| |
Collapse
|
14
|
Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination. Sci Rep 2015; 5:15122. [PMID: 26456300 PMCID: PMC4601011 DOI: 10.1038/srep15122] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination.
Collapse
|
15
|
Thompson JM, Ji G, Neugebauer V. Small-conductance calcium-activated potassium (SK) channels in the amygdala mediate pain-inhibiting effects of clinically available riluzole in a rat model of arthritis pain. Mol Pain 2015; 11:51. [PMID: 26311432 PMCID: PMC4551697 DOI: 10.1186/s12990-015-0055-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arthritis pain is an important healthcare issue with significant emotional and affective consequences. Here we focus on potentially beneficial effects of activating small-conductance calcium-activated potassium (SK) channels in the amygdala, a brain center of emotions that plays an important role in central pain modulation and processing. SK channels have been reported to regulate neuronal activity in the central amygdala (CeA, output nucleus). We tested the effects of riluzole, a clinically available drug for the treatment of amyotrophic lateral sclerosis, for the following reasons. Actions of riluzole include activation of SK channels. Evidence in the literature suggests that riluzole may have antinociceptive effects through an action in the brain but not the spinal cord. Mechanism and site of action of riluzole remain to be determined. Here we tested the hypothesis that riluzole inhibits pain behaviors by acting on SK channels in the CeA in an arthritis pain model. RESULTS Systemic (intraperitoneal) application of riluzole (8 mg/kg) inhibited audible (nocifensive response) and ultrasonic (averse affective response) vocalizations of adult rats with arthritis (5 h postinduction of a kaolin-carrageenan monoarthritis in the knee) but did not affect spinal withdrawal thresholds, which is consistent with a supraspinal action. Stereotaxic administration of riluzole into the CeA by microdialysis (1 mM, concentration in the microdialysis fiber, 15 min) also inhibited vocalizations, confirming the CeA as a site of action of riluzole. Stereotaxic administration of a selective SK channel blocker (apamin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA had no effect by itself but inhibited the effect of systemic riluzole on vocalizations. Off-site administration of apamin into the basolateral amygdala (BLA) as a placement control or stereotaxic application of a selective blocker of large-conductance calcium-activated potassium (BK) channels (charybdotoxin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA did not affect the inhibitory effects of systemically applied riluzole. CONCLUSIONS The results suggest that riluzole can inhibit supraspinally organized pain behaviors in an arthritis model by activating SK, but not BK, channels in the amygdala (CeA but not BLA).
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
16
|
Chew DJ, Carlstedt T, Shortland PJ. The effects of minocycline or riluzole treatment on spinal root avulsion-induced pain in adult rats. THE JOURNAL OF PAIN 2014; 15:664-75. [PMID: 24667712 DOI: 10.1016/j.jpain.2014.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 02/13/2014] [Accepted: 03/06/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Spinal root avulsion produces tactile and thermal hypersensitivity, neurodegeneration, and microglial and astrocyte activation in both the deafferented and the adjacent intact spinal cord segments. Following avulsion of the fifth lumbar spinal root, immediate and prolonged treatment with riluzole or minocycline for 2 weeks altered the development of behavioral hypersensitivity. Riluzole delayed the onset of thermal and tactile hypersensitivity and partially reversed established pain behavior. Minocycline effectively prevented and reversed both types of behavioral change. Histologic analysis revealed that both drugs reduced microglial staining in the spinal cord, with minocycline being more effective than riluzole. Astrocyte activation was ameliorated to a lesser extent. Surprisingly, neither drug provided a neuroprotective effect on avulsed motoneurons. PERSPECTIVE Immediate treatment of spinal root avulsion injuries with minocycline or riluzole prevents the onset of evoked pain hypersensitivity by reducing microglial cell activation. When treatment is delayed, minocycline, but not riluzole, reverses pre-established hypersensitivity. Thus, these drugs may provide a new translational treatment option for chronic avulsion injury pain.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Thomas Carlstedt
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Peter J Shortland
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Cepeda MS, Berlin JA, Gao CY, Wiegand F, Wada DR. Placebo Response Changes Depending on the Neuropathic Pain Syndrome: Results of a Systematic Review and Meta-Analysis. PAIN MEDICINE 2012; 13:575-95. [DOI: 10.1111/j.1526-4637.2012.01340.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Kawasaki-Yatsugi S, Nagakura Y, Ogino S, Sekizawa T, Kiso T, Takahashi M, Ishikawa G, Ito H, Shimizu Y. Automated measurement of spontaneous pain-associated limb movement and drug efficacy evaluation in a rat model of neuropathic pain. Eur J Pain 2012; 16:1426-36. [DOI: 10.1002/j.1532-2149.2012.00142.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2012] [Indexed: 12/30/2022]
Affiliation(s)
- S. Kawasaki-Yatsugi
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - Y. Nagakura
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - S. Ogino
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - T. Sekizawa
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - T. Kiso
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - M. Takahashi
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - G. Ishikawa
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - H. Ito
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| | - Y. Shimizu
- Pharmacology Research Labs; Drug Discovery Research; Astellas Pharma Inc; Ibaraki; Japan
| |
Collapse
|
19
|
Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons. PLoS One 2011; 6:e18681. [PMID: 21541342 PMCID: PMC3081829 DOI: 10.1371/journal.pone.0018681] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/11/2011] [Indexed: 11/19/2022] Open
Abstract
In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (INaP). The INaP is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of INaP in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the INaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the INaP was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the INaP without affecting the transient sodium current (INaT). Taken together, these results demonstrate for the first time that the INaP blocker riluzole selectively inhibits INaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the INaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.
Collapse
|
20
|
Collins S, Sigtermans MJ, Dahan A, Zuurmond WWA, Perez RSGM. NMDA receptor antagonists for the treatment of neuropathic pain. PAIN MEDICINE 2011; 11:1726-42. [PMID: 21044263 DOI: 10.1111/j.1526-4637.2010.00981.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The N-methyl-D-Aspartate (NMDA) receptor has been proposed as a primary target for the treatment of neuropathic pain. The aim of the present study was to perform a meta-analysis evaluating the effects of (individual) NMDA receptor antagonists on neuropathic pain, and the response (sensitivity) of individual neuropathic pain disorders to NMDA receptor antagonist therapy. DESIGN PubMed (including MEDLINE), EMBASE and CENTRAL were searched up to October 26, 2009 for randomized placebo controlled trials (RCTs) on neuropathic pain. The methodological quality of the included trials was independently assessed by two authors using the Delphi list. Fixed or random effects model were used to calculate the summary effect size using Hedges' g. SETTING NA. PATIENTS The patients used for the study were neuropathic pain patients. INTERVENTIONS The interventions used were NMDA receptor antagonists. OUTCOME MEASUREMENTS The outcome of measurements was the reduction of spontaneous pain. RESULTS Twenty-eight studies were included, meeting the inclusion criteria. Summary effect sizes were calculated for subgroups of studies evaluating ketamine IV in complex regional pain syndrome (CRPS), oral memantine in postherptic neuralgia and, respectively, ketamine IV, and oral memantine in postamputation pain. Treatment with ketamine significantly reduced pain in postamputation pain (pooled summary effect size: -1.18 [confidence interval (CI) 95% -1.98, -0.37], P = 0.004). No significant effect on pain reduction could be established for ketamine IV in CRPS (-0.65 [CI 95% -1.47, 0.16], P = 0.11) oral memantine in postherptic neuralgia (0.03 [CI 95% -0.51, 0.56], P = 0.92) and for oral memantine in postamputation pain (0.38 [CI 95% -0.21, 0.98], P = 0.21). CONCLUSIONS Based on this systematic review, no conclusions can yet be made about the efficacy of NMDA receptor antagonists on neuropathic pain. Additional RCTs in homogenous groups of pain patients are needed to explore the therapeutic potential of NMDA receptor antagonists in neuropathic pain.
Collapse
Affiliation(s)
- Susan Collins
- Department of Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Gosselin RD, O'Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF. Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology 2010; 138:2418-25. [PMID: 20226190 DOI: 10.1053/j.gastro.2010.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 02/23/2010] [Accepted: 03/04/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The molecular basis underlying visceral hypersensitivity in functional irritable bowel syndrome remains elusive, resulting in poor treatment effectiveness. Because alterations in spinal non-neuronal (astrocytic) glutamate reuptake are suspected to participate in chronic pain, we asked whether such processes occur in visceral hypersensitivity. METHODS Visceral hypersensitivity was induced in Sprague-Dawley rats by maternal separation. Separated adults were given a systemic administration of riluzole (5 mg/kg), an approved neuroprotective agent activating glutamate reuptake. Visceral hypersensitivity was assessed using colorectal distension (40 mm Hg). Somatic nociception was quantified using Hot Plate, Randall-Sellito, and Hargreaves tests. Spinal proteins were quantified using immunofluorescence and Western blot. The dependence of visceral sensory function upon spinal glutamate transport was evaluated by intrathecal injection of glutamate transport antagonist DL-threo-beta-benzyloxyaspartate (TBOA). For in vitro testing of riluzole and TBOA, primary cultures of astrocytes were used. RESULTS We show that riluzole counteracts stress-induced visceral hypersensitivity without affecting visceral response in nonseparated rats or altering nociceptive responses to somatic pain stimulation. In addition, maternal separation produces a reduction in glial excitatory amino acid transporter (EAAT)-1 with no change in EAAT-2 or gamma-amino butyric acid transporters. Stress was not associated with changes in glial fibrillary acidic protein or astrocytic morphology per se. Furthermore, visceral normosensitivity relies on spinal EAAT, as intrathecal TBOA is sufficient to induce hypersensitivity in normal rats. CONCLUSIONS We identify spinal EAAT as a therapeutic target, and establish riluzole as a candidate to counteract gastrointestinal hypersensitivity in disorders such as irritable bowel syndrome.
Collapse
Affiliation(s)
- Romain-Daniel Gosselin
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
Bhattacharya A, Wickenden AD, Chaplan SR. Sodium channel blockers for the treatment of neuropathic pain. Neurotherapeutics 2009; 6:663-78. [PMID: 19789071 PMCID: PMC5084288 DOI: 10.1016/j.nurt.2009.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drugs that block voltage-gated sodium channels are efficacious in the management of neuropathic pain. Accordingly, this class of ion channels has been a major focus of analgesic research both in academia and in the pharmaceutical/biotechnology industry. In this article, we review the history of the use of sodium channel blockers, describe the current status of sodium channel drug discovery, highlight the challenges and hurdles to attain sodium channel subtype selectivity, and review the potential usefulness of selective sodium channel blockers in neuropathic pain.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- grid.417429.dPain & Related Disorders Team, Johnson & Johnson Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, 92121 San Diego, CA
| | - Alan D. Wickenden
- grid.417429.dPain & Related Disorders Team, Johnson & Johnson Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, 92121 San Diego, CA
| | - Sandra R. Chaplan
- grid.417429.dPain & Related Disorders Team, Johnson & Johnson Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, 92121 San Diego, CA
| |
Collapse
|
23
|
Kovalsky Y, Amir R, Devor M. Simulation in Sensory Neurons Reveals a Key Role for Delayed Na+ Current in Subthreshold Oscillations and Ectopic Discharge: Implications for Neuropathic Pain. J Neurophysiol 2009; 102:1430-42. [DOI: 10.1152/jn.00005.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Somata of primary sensory neurons are thought to contribute to the ectopic neural discharge that is implicated as a cause of some forms of neuropathic pain. Spiking is triggered by subthreshold membrane potential oscillations that reach threshold. Oscillations, in turn, appear to result from reciprocation of a fast active tetrodotoxin-sensitive Na+ current ( INa+) and a passive outward IK+ current. We previously simulated oscillatory behavior using a transient Hodgkin–Huxley-type voltage-dependent INa+ and ohmic leak. This model, however, diverged from oscillatory parameters seen in live cells and failed to produce characteristic ectopic discharge patterns. Here we show that use of a more complete set of Na+ conductances—which includes several delayed components—enables simulation of the entire repertoire of oscillation-triggered electrogenic phenomena seen in live dorsal root ganglion (DRG) neurons. This includes a physiological window of induction and natural patterns of spike discharge. An INa+ component at 2–20 ms was particularly important, even though it represented only a tiny fraction of overall INa+ amplitude. With the addition of a delayed rectifier IK+ the singlet firing seen in some DRG neurons can also be simulated. The model reveals the key conductances that underlie afferent ectopia, conductances that are potentially attractive targets in the search for more effective treatments of neuropathic pain.
Collapse
|
24
|
Chizh BA, Priestley T, Rowbotham M, Schaffler K. Predicting therapeutic efficacy — Experimental pain in human subjects. ACTA ACUST UNITED AC 2009; 60:243-54. [DOI: 10.1016/j.brainresrev.2008.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 02/05/2023]
|
25
|
Pittenger C, Coric V, Banasr M, Bloch M, Krystal JH, Sanacora G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs 2008; 22:761-86. [PMID: 18698875 DOI: 10.2165/00023210-200822090-00004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances implicate amino acid neurotransmission in the pathophysiology and treatment of mood and anxiety disorders. Riluzole, which is approved and marketed for the treatment of amyotrophic lateral sclerosis, is thought to be neuroprotective through its modulation of glutamatergic neurotransmission. Riluzole has multiple molecular actions in vitro; the two that have been documented to occur at physiologically realistic drug concentrations and are therefore most likely to be clinically relevant are inhibition of certain voltage-gated sodium channels, which can lead to reduced neurotransmitter release, and enhanced astrocytic uptake of extracellular glutamate.Although double-blind, placebo-controlled trials are lacking, several open-label trials have suggested that riluzole, either as monotherapy or as augmentation of standard therapy, reduces symptoms of obsessive-compulsive disorder, unipolar and bipolar depression, and generalized anxiety disorder. In studies of psychiatrically ill patients conducted to date, the drug has been quite well tolerated; common adverse effects include nausea and sedation. Elevation of liver function tests is common and necessitates periodic monitoring, but has been without clinical consequence in studies conducted to date in psychiatric populations. Case reports suggest utility in other conditions, including trichotillomania and self-injurious behaviour associated with borderline personality disorder. Riluzole may hold promise for the treatment of several psychiatric conditions, possibly through its ability to modulate pathologically dysregulated glutamate levels, and merits further investigation.
Collapse
Affiliation(s)
- Christopher Pittenger
- Clinical Neuroscience Research Unit, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Stacey BR, Barrett JA, Whalen E, Phillips KF, Rowbotham MC. Pregabalin for postherpetic neuralgia: placebo-controlled trial of fixed and flexible dosing regimens on allodynia and time to onset of pain relief. THE JOURNAL OF PAIN 2008; 9:1006-17. [PMID: 18640074 DOI: 10.1016/j.jpain.2008.05.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/12/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED Time to onset of pain relief and improvement in allodynia in 269 patients with postherpetic neuralgia was examined in a 4-week randomized trial comparing flexibly dosed pregabalin (150-600 mg/d), fixed-dose pregabalin (300 mg/d), and placebo. For each patient with clinically meaningful pain reduction (>or=30%) at end point, onset of pain relief was defined as the first study day on which a patient reported >or=1-point reduction in pain relative to baseline. Average dose achieved was 396 mg/d in the flexible-dose group compared with 295 mg/d in the fixed-dose group. Median pain relief onset times were 3.5 days (flexible-dose), 1.5 days (fixed-dose), and >4 weeks (placebo). Compared with placebo, significantly more patients in both pregabalin treatment groups achieved >or=30% and >or=50% pain reduction at end point. Almost 95% of patients had brush-evoked allodynia, with 68% having moderate to severe allodynia (>or=40/100 mm). At baseline, pain and allodynia were highly correlated. Independent of treatment assignment, improvement in pain and improvement in allodynia were significantly correlated. Allodynia could serve as a useful surrogate outcome measure in future studies. Pregabalin was significantly better than placebo in alleviating allodynia (flexible-dose reduction, 26 mm; fixed-dose, 21 mm; placebo, 12 mm). Discontinuation rates due to adverse events were more frequent in the fixed-dose group. PERSPECTIVE A flexible-dose regimen reduces discontinuations, facilitates higher final doses, and results in a slightly greater pain relief. Allodynia (touch-evoked pain) can be of disabling severity and is present in nearly all patients with postherpetic neuralgia. Allodynia severity is correlated with pain severity and improvement in allodynia is correlated with clinical response.
Collapse
Affiliation(s)
- Brett R Stacey
- Oregon Health and Science University, Comprehensive Pain Center, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
28
|
Rog DJ, Nurmikko TJ, Friede T, Young CA. Validation and Reliability of the Neuropathic Pain Scale (NPS) in Multiple Sclerosis. Clin J Pain 2007; 23:473-81. [PMID: 17575486 DOI: 10.1097/ajp.0b013e31805d0c5d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Central neuropathic pain occurs in around 28% of patients with multiple sclerosis (MS). The Neuropathic Pain Scale (NPS) has received preliminary validation in peripheral neuropathic pain conditions. The aim of this study was to validate its use in MS central pain syndromes. METHODS We administered the NPS to 141 patients with MS, together with the Short Form McGill Pain Questionnaire (SFMPQ), the Hospital Anxiety and Depression Scale (HADS), and Short Form 36 Health Survey (SF-36). RESULTS Cronbach's alpha was 0.78 (95% CI 0.69; 0.83), implying a high degree of internal consistency. Three factors, "Familiar," "Superficial," and "Alien Perception," were extracted, accounting for 64% of the variance. The NPS 10-item total correlates with: the SFMPQ 15-item total score, rho=0.63 (95% CI 0.49; 0.74), its Visual Analog Scale, rho=0.49 (95% CI 0.33; 0.64), the transformed Pain domain of the SF-36 rho=-0.49 (95% CI -0.63; -0.32), but not with its remaining seven health domains, or with either the HADS anxiety or the depression scores. Limits of agreement for short-term test or re-test reliability of the 100 point NPS total (median 2 days, range 1 to 7) were -12 to 14 and when administered to 78 patients who rated their neuropathic pain the "Same" [median interval 33 days (range 19 to 126), the long-term test or re-test correlation coefficient was 0.71 (95% CI 0.6; 0.79)]. DISCUSSION The NPS appears a useful tool in the assessment of neuropathic pain in MS patients and possibly in measuring outcomes of therapeutic interventions.
Collapse
Affiliation(s)
- David J Rog
- Walton Centre for Neurology and Neurosurgery, Liverpool, UK.
| | | | | | | |
Collapse
|
29
|
Attal N, Cruccu G, Haanpää M, Hansson P, Jensen TS, Nurmikko T, Sampaio C, Sindrup S, Wiffen P. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol 2006; 13:1153-69. [PMID: 17038030 DOI: 10.1111/j.1468-1331.2006.01511.x] [Citation(s) in RCA: 504] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropathic pain treatment remains unsatisfactory despite a substantial increase in the number of trials. This EFNS Task Force aimed at evaluating the existing evidence about the pharmacological treatment of neuropathic pain. Studies were identified using first the Cochrane Database then Medline. Trials were classified according to the aetiological condition. All class I and II controlled trials (according to EFNS classification of evidence) were assessed, but lower-class studies were considered in conditions that had no top level studies. Only treatments feasible in an outpatient setting were evaluated. Effects on pain symptoms/signs, quality of life and comorbidities were particularly searched for. Most of the randomized controlled trials included patients with postherpetic neuralgia (PHN) and painful polyneuropathies (PPN) mainly caused by diabetes. These trials provide level A evidence for the efficacy of tricyclic antidepressants, gabapentin, pregabalin and opioids, with a large number of class I trials, followed by topical lidocaine (in PHN) and the newer antidepressants venlafaxine and duloxetine (in PPN). A small number of controlled trials were performed in central pain, trigeminal neuralgia, other peripheral neuropathic pain states and multiple-aetiology neuropathic pains. The main peripheral pain conditions respond similarly well to tricyclic antidepressants, gabapentin, and pregabalin, but some conditions, such as HIV-associated polyneuropathy, are more refractory. There are too few studies on central pain, combination therapy, and head-to-head comparison. For future trials, we recommend to assess quality of life and pain symptoms or signs with standardized tools.
Collapse
Affiliation(s)
- N Attal
- Centre d'Evaluation at de Traitement de la Douleur, Hôspital Ambroise Paré, Boulogne-Billancourt, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Coderre TJ, Kumar N, Lefebvre CD, Yu JSC. A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain. J Neurochem 2006; 100:1289-99. [PMID: 17241130 DOI: 10.1111/j.1471-4159.2006.04304.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of treatment with the anti-convulsant agents, lamotrigine and riluzole were compared with gabapentin in a rat experimental model of neuropathic pain. Rats were treated intraperitoneally, with gabapentin (30, 100 and 300 mg/kg), lamotrigine (2, 10 and 50 mg/kg) or riluzole (6 and 12 mg/kg) prior to, and every 12 h for 4 days following chronic constriction injury (CCI) of the sciatic nerve. Mechanical and cold sensitivity were assessed prior to surgery (baseline) and then at 4, 8 and 12 days following CCI. The four-day treatment with each of the agents was effective at producing reductions in the development of mechanical and cold hypersensitivity for periods ranging from the fourth to 12th day. The highest doses of each of the agents were also assessed on formalin-induced nociceptive behaviors and on formalin-induced increases in extracellular glutamate (Glu) and aspartate (Asp) in the spinal cord dorsal horn (SCDH) of awake behaving rats using in vivo microdialysis. Nociceptive scores in formalin test were significantly decreased by gabapentin (300 mg/kg i.p.) and riluzole (12 mg/kg i.p.), but not by lamotrigine (50 mg/kg i.p.). Formalin-induced increases in glutamate levels in SCDH were lowered significantly, as compared with the controls, with all drugs both in the first phase and second phases, with the greatest effects for riluzole and gabapentin. Similar suppressive effects of the drugs were observed on formalin-induced increases in spinal aspartate, except that gabapentin and lamotrigine produced effects only during the second phase. Riluzole produced profound and prolonged reductions in the spinal levels of glutamate and aspartate both for basal and formalin-stimulated release. In conclusion, the results suggest that the anti-convulsant agents gabapentin, lamotrigine and riluzole may reduce the development of hyperalgesia in a rat model of neuropathic pain by reducing the spinal release of glutamate. Riluzole's pronounced suppressive effects on spinal EAA levels is attributed to its established role as a glutamate release inhibitor and an enhancer of glutamate transporter activity.
Collapse
Affiliation(s)
- T J Coderre
- Department of Anesthesia, McGill University, Montreal, Canada.
| | | | | | | |
Collapse
|
31
|
Niederberger E, Schmidtko A, Coste O, Marian C, Ehnert C, Geisslinger G. The glutamate transporter GLAST is involved in spinal nociceptive processing. Biochem Biophys Res Commun 2006; 346:393-9. [PMID: 16765320 DOI: 10.1016/j.bbrc.2006.05.163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/13/2006] [Indexed: 12/19/2022]
Abstract
GLAST and GLT-1 are the most abundant glutamate transporters in the CNS and protect neurons from glutamate neurotoxicity. Here, we investigated the role of GLAST in spinal nociceptive processing. GLAST protein expression was not altered after treatment of rats with either formalin or zymosan. Surprisingly, knock-down of GLAST in the spinal cord using antisense-oligonucleotides decreased glutamate concentrations in cerebrospinal fluid (CSF) and reduced the nociceptive behaviour in the rat formalin assay. However, it did not influence thermal hyperalgesia in the zymosan-induced paw inflammation model indicating that GLAST is associated with spontaneous rather than inflammatory nociception. Mechanisms that might explain the decreased response in the formalin assay may include compensatory activation of other glutamate transporters, inhibition of glutamate release or disturbance of glutamate recycling. In conclusion, these data suggest that inhibition of GLAST expression in the spinal cord reduces excitatory synaptic activity and thereby spontaneous responses after nociceptive stimulation of the paw.
Collapse
Affiliation(s)
- Ellen Niederberger
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai 7, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Tao YX, Gu J, Stephens RL. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states. Mol Pain 2005; 1:30. [PMID: 16242033 PMCID: PMC1274343 DOI: 10.1186/1744-8069-1-30] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/21/2005] [Indexed: 11/10/2022] Open
Abstract
Glutamate is a neurotransmitter critical for spinal excitatory synaptic transmission and for generation and maintenance of spinal states of pain hypersensitivity via activation of glutamate receptors. Understanding the regulation of synaptically and non-synaptically released glutamate associated with pathological pain is important in exploring novel molecular mechanisms and developing therapeutic strategies of pathological pain. The glutamate transporter system is the primary mechanism for the inactivation of synaptically released glutamate and the maintenance of glutamate homeostasis. Recent studies demonstrated that spinal glutamate transporter inhibition relieved pathological pain, suggesting that the spinal glutamate transporter might serve as a therapeutic target for treatment of pathological pain. However, the exact function of glutamate transporter in pathological pain is not completely understood. This report will review the evidence for the role of the spinal glutamate transporter during normal sensory transmission and pathological pain conditions and discuss potential mechanisms by which spinal glutamate transporter is involved in pathological pain.
Collapse
Affiliation(s)
- Yuan-Xiang Tao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 355 Ross, 720 Rutland Ave., Baltimore, Maryland 21205, USA
| | - Jianguo Gu
- Department of Oral and Maxillofacial Surgery, Mcknight Brain Institute and College of Dentistry, University of Florida, Gainesville, Florida, 32610, USA
| | - Robert L Stephens
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| |
Collapse
|
33
|
Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005; 118:289-305. [PMID: 16213659 DOI: 10.1016/j.pain.2005.08.013] [Citation(s) in RCA: 785] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/14/2005] [Accepted: 08/08/2005] [Indexed: 12/18/2022]
Abstract
New studies of the treatment of neuropathic pain have increased the need for an updated review of randomized, double-blind, placebo-controlled trials to support an evidence based algorithm to treat neuropathic pain conditions. Available studies were identified using a MEDLINE and EMBASE search. One hundred and five studies were included. Numbers needed to treat (NNT) and numbers needed to harm (NNH) were used to compare efficacy and safety of the treatments in different neuropathic pain syndromes. The quality of each trial was assessed. Tricyclic antidepressants and the anticonvulsants gabapentin and pregabalin were the most frequently studied drug classes. In peripheral neuropathic pain, the lowest NNT was for tricyclic antidepressants, followed by opioids and the anticonvulsants gabapentin and pregabalin. For central neuropathic pain there is limited data. NNT and NNH are currently the best way to assess relative efficacy and safety, but the need for dichotomous data, which may have to be estimated retrospectively for old trials, and the methodological complexity of pooling data from small cross-over and large parallel group trials, remain as limitations.
Collapse
Affiliation(s)
- N B Finnerup
- Department of Neurology, Danish Pain Research Centre, Aarhus University Hospital, Aarhus Sygehus, Noerrebrogade 44, Aarhus 8000, Denmark Department of Neurology, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark Pain Relief Unit, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | | | | | |
Collapse
|
34
|
Abstract
Increasing knowledge of the molecular consequences of nerve injury and the availability of genome databases has greatly increased the range of potential targets for the pharmacological management of neuropathic pain. Controlling neuronal sensitization and the associated alterations in gene expression, protein modification, and neuronal excitability is the key to managing neuropathic pain. Control of neuronal sensitization can occur through inhibition of nerve injury-associated production of cytokines, activation of glial cells, modulation of potassium channel subtypes, mitogen-activated protein kinases, the ubiquitin-proteasome system, or the protection and amplification of spinal cord dorsal horn inhibitory systems. These new and already established targets promise unparalleled opportunities for the prevention, management, and resolution of persistent pain states following nerve injury.
Collapse
Affiliation(s)
- Donald C Manning
- Clinical Research and Development, Celgene Corporation, Seven Powder Horn Drive, Warren, NJ 07059, USA.
| |
Collapse
|
35
|
Vrancken AFJE, van Schaik IN, Hughes RAC, Notermans NC. Drug therapy for chronic idiopathic axonal polyneuropathy. Cochrane Database Syst Rev 2004:CD003456. [PMID: 15106203 DOI: 10.1002/14651858.cd003456.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES To assess whether drug therapy for chronic idiopathic axonal polyneuropathy reduces disability, ameliorates neurological symptoms and associated impairments, and whether treatment is safe. SEARCH STRATEGY We searched Cochrane Library (Cochrane Neuromuscular Disease Review Group Register, Cochrane Database of Systematic Reviews, Cochrane Database of Abstracts of Reviews of Effectiveness, and the Cochrane Central Register of Controlled Trials), MEDLINE, EMBASE, ISI, and ACP Journal Club's Best Evidence, from 1981 until December 2002. We also hand searched the reference lists of relevant articles, reviews and textbooks identified electronically, and contacted authors and other experts in the field to identify additional studies. SELECTION CRITERIA We sought all randomised or quasi-randomised (alternate or other systematic treatment allocation), unconfounded trials that examined the effects of any drug therapy in patients with chronic idiopathic axonal polyneuropathy at least one year after the onset of treatment. Patients with chronic idiopathic axonal polyneuropathy had to fulfil the following criteria: age 40 years or older, distal sensory or sensorimotor polyneuropathy, absence of systemic or other neurological disease, chronic clinical course not reaching a nadir in less than two months, exclusion of any recognised cause of the polyneuropathy by medical history taking, clinical or laboratory investigations, electrophysiological studies in agreement with axonal polyneuropathy without evidence of demyelinating features. The primary outcome was the proportion of patients with a significant improvement in disability. Secondary outcomes were change in the mean disability score, change in the proportion of patients who make use of walking aids, change in the mean Medical Research Council sum score, degree of pain relief and/or reduction of other positive sensory symptoms, change in the proportion of patients with pain or other positive sensory symptoms, and frequency of adverse effects. DATA COLLECTION AND ANALYSIS Two reviewers independently reviewed and extracted details of trial methodology and outcome data of all potentially relevant trials. MAIN RESULTS Eighteen studies were identified and assessed for possible inclusion in the review, but all were excluded because of insufficient quality or lack of relevance. REVIEWERS' CONCLUSIONS Even though chronic idiopathic axonal polyneuropathy has been clearly described and delineated, no adequate randomised or quasi-randomised controlled clinical treatment trials have been performed. In their absence there is no proven efficacious drug therapy.
Collapse
Affiliation(s)
- A F J E Vrancken
- Neurology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, Utrecht, Netherlands, 3508 GA
| | | | | | | |
Collapse
|
36
|
Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003. [PMID: 12684477 DOI: 10.1523/jneurosci.23-07-02899.2003] [Citation(s) in RCA: 300] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The central glutamatergic system has been implicated in the pathogenesis of neuropathic pain, and a highly active central glutamate transporter (GT) system regulates the uptake of endogenous glutamate. Here we demonstrate that both the expression and uptake activity of spinal GTs changed after chronic constriction nerve injury (CCI) and contributed to neuropathic pain behaviors in rats. CCI induced an initial GT upregulation up to at least postoperative day 5 primarily within the ipsilateral spinal cord dorsal horn, which was followed by a GT downregulation when examined on postoperative days 7 and 14 by Western blot and immunohistochemistry. Intrathecal administration of the tyrosine kinase receptor inhibitor K252a and the mitogen-activated protein kinase inhibitor PD98059 for postoperative days 1-4 reduced and nearly abolished the initial GT upregulation in CCI rats, respectively. Prevention of the CCI-induced GT upregulation by PD98059 resulted in exacerbated thermal hyperalgesia and mechanical allodynia reversible by the noncompetitive NMDA receptor antagonist MK-801, indicating that the initial GT upregulation hampered the development of neuropathic pain behaviors. Moreover, CCI significantly reduced glutamate uptake activity of spinal GTs when examined on postoperative day 5, which was prevented by riluzole (a positive GT activity regulator) given intrathecally twice a day for postoperative days 1-4. Consistently, riluzole attenuated and gradually reversed neuropathic pain behaviors when the 4 d riluzole treatment was given for postoperative days 1-4 and 5-8, respectively. These results indicate that changes in the expression and glutamate uptake activity of spinal GTs may play a critical role in both the induction and maintenance of neuropathic pain after nerve injury via the regulation of regional glutamate homeostasis, a new mechanism relevant to the pathogenesis of neuropathic pain.
Collapse
|
37
|
Abstract
Damage to peripheral nerves triggers a cascade of events in axotomized sensory neurones that are generally believed to be responsible for the generation of neuropathic pain. Recent data in animal models show that alterations in the properties of undamaged neurones that project into a damaged nerve can also play an important role. These new findings could explain some of the enigmatic clinical signs and symptoms of pain following nerve injury such as the spread of symptoms into areas not affected by the primary lesion. The basis by which uninjured nerves could be affected is a reduced supply of neurotrophic factors, an abnormal interaction in the Remak bundles of partially denervated Schwann cells and unmyelinated axons, or the byproducts of Wallerian degeneration.
Collapse
Affiliation(s)
- M Koltzenburg
- Institute of Neurology, University College London and National Hospital for Neurology and Neurosurgery, London, UK.
| | | |
Collapse
|