1
|
Cui X, Gao X, Zhu B. CGRP: Does A Novel Neuroimmune Modulator Facilitate Tissue Repair? Neurosci Bull 2024:10.1007/s12264-024-01275-2. [PMID: 39096347 DOI: 10.1007/s12264-024-01275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/09/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
2
|
Devarajan J, Mena S, Cheng J. Mechanisms of complex regional pain syndrome. FRONTIERS IN PAIN RESEARCH 2024; 5:1385889. [PMID: 38828388 PMCID: PMC11140106 DOI: 10.3389/fpain.2024.1385889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is a chronic pain disorder characterized by a diverse array of symptoms, including pain that is disproportionate to the initial triggering event, accompanied by autonomic, sensory, motor, and sudomotor disturbances. The primary pathology of both types of CRPS (Type I, also known as reflex sympathetic dystrophy, RSD; Type II, also known as causalgia) is featured by allodynia, edema, changes in skin color and temperature, and dystrophy, predominantly affecting extremities. Recent studies started to unravel the complex pathogenic mechanisms of CRPS, particularly from an autoimmune and neuroimmune interaction perspective. CRPS is now recognized as a systemic disease that stems from a complex interplay of inflammatory, immunologic, neurogenic, genetic, and psychologic factors. The relative contributions of these factors may vary among patients and even within a single patient over time. Key mechanisms underlying clinical manifestations include peripheral and central sensitization, sympathetic dysregulation, and alterations in somatosensory processing. Enhanced understanding of the mechanisms of CRPS is crucial for the development of effective therapeutic interventions. While our mechanistic understanding of CRPS remains incomplete, this article updates recent research advancements and sheds light on the etiology, pathogenesis, and molecular underpinnings of CRPS.
Collapse
Affiliation(s)
- Jagan Devarajan
- Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shayla Mena
- Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jianguo Cheng
- Department of Pain Management and Neurosciences, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, Maruyama K, Akira S, Martino MM. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 2024; 628:604-611. [PMID: 38538784 PMCID: PMC11023938 DOI: 10.1038/s41586-024-07237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.
Collapse
Affiliation(s)
- Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Elle Yuan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Kenta Maruyama
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Morris AJ, Parker RS, Nazzal MK, Natoli RM, Fehrenbacher JC, Kacena MA, White FA. Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair. Curr Osteoporos Rep 2024; 22:193-204. [PMID: 38236511 PMCID: PMC10912155 DOI: 10.1007/s11914-023-00846-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Smith PA. The Known Biology of Neuropathic Pain and Its Relevance to Pain Management. Can J Neurol Sci 2024; 51:32-39. [PMID: 36799022 DOI: 10.1017/cjn.2023.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
8
|
Menon N, Kishen A. Nociceptor-Macrophage Interactions in Apical Periodontitis: How Biomolecules Link Inflammation with Pain. Biomolecules 2023; 13:1193. [PMID: 37627258 PMCID: PMC10452348 DOI: 10.3390/biom13081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Periradicular tissues have a rich supply of peripheral afferent neurons, also known as nociceptive neurons, originating from the trigeminal nerve. While their primary function is to relay pain signals to the brain, these are known to be involved in modulating innate and adaptive immunity by initiating neurogenic inflammation (NI). Studies have investigated neuroanatomy and measured the levels of biomolecules such as cytokines and neuropeptides in human saliva, gingival crevicular fluid, or blood/serum samples in apical periodontitis (AP) to validate the possible role of trigeminal nociceptors in inflammation and tissue regeneration. However, the contributions of nociceptors and the mechanisms involved in the neuro-immune interactions in AP are not fully understood. This narrative review addresses the complex biomolecular interactions of trigeminal nociceptors with macrophages, the effector cells of the innate immune system, in the clinical manifestations of AP.
Collapse
Affiliation(s)
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| |
Collapse
|
9
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
10
|
Autoantibodies from patients with complex regional pain syndrome (CRPS) induce pro-inflammatory effects and functional disturbances on endothelial cells in vitro. Pain 2022; 163:2446-2456. [PMID: 35384930 DOI: 10.1097/j.pain.0000000000002646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) is an inadequate local response after a limb trauma, which leads to severe pain and autonomic and trophic changes of the affected limb. Autoantibodies directed against human β2 adrenergic and muscarinic M2-receptors (hβ2AR and hM2R) have been described in CRPS-patients previously.We analyzed sera from CRPS-patients for autoantibodies against hß2AR, hM2R and endothelial cells, and investigated the functional effects of purified IgG, derived from 13 CRPS patients, on endothelial cells. Eleven healthy controls, seven radial fracture patients without CRPS, and 10 patients with peripheral arterial vascular disease served as controls.CRPS-IgG, but not control IgG, bound to the surface of endothelial cells (P < 0.001) and to hβ2AR and hM2R (P < 0.05), the latter being reversed by adding β2AR and M2R antagonists. CRPS-IgG led to an increased cytotoxicity and a reduced proliferation rate of endothelial cells, and by adding specific antagonists, the effect was neutralized. Regarding second messenger pathways, CRPS-IgG induced ERK-1/2-, P38-, and STAT1-phosphorylation, while AKT-phosphorylation was decreased at the protein level. In addition, increased expression of adhesion molecules (ICAM-1, VCAM-1) on the mRNA-level was induced by CRPS-IgG, thus inducing a pro-inflammatory condition of the endothelial cells.Our results show that patients with CRPS not only develop autoantibodies against hβ2AR and hM2R, but these antibodies interfere with endothelial cells, inducing functional effects on these in vitro, and thus might contribute to the pathophysiology of CRPS.
Collapse
|
11
|
Effectiveness of pulsed electromagnetic field therapy in the management of complex regional pain syndrome type 1: A randomized-controlled trial. Turk J Phys Med Rehabil 2022; 68:107-116. [PMID: 35949961 PMCID: PMC9305649 DOI: 10.5606/tftrd.2022.9074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: This study aims to investigate whether pulsed electromagnetic field (PEMF) therapy in addition to a conventional rehabilitation program is effective on pain and functioning in patients with type 1 complex regional pain syndrome (CRPS-1) of the hand.
Patients and methods: Between March 2013 and January 2015, a total of 32 patients (16 males, 16 females; mean age: 50.1±13.1 years; range, 25 to 75 years) were included. The patients were randomly allocated into two groups. The control group (n=16) received a conventional rehabilitation program consisting of physical modalities, exercises, and occupational therapy, whereas the PEMF group (n=16) received additional PEMF (8 Hz, 3.2 mT) to the affected hand. The primary outcome measure was pain intensity using the Numeric Rating Scale (NRS). Secondary outcome measures were grip and pinch strength, hand edema, hand dexterity, and hand activities. All patients received 20 therapy sessions (five sessions/week, four weeks in total) and were evaluated before and after the therapy and at the first-month follow-up.
Results: Both groups showed significant improvements in primary and secondary outcomes (p<0.05) after the therapy and at follow-up. When the groups were compared in terms of improvements in assessment parameters, no statistically significant difference was found between the two groups in any of the outcomes (p>0.05).
Conclusion: The PEMF in addition to conventional rehabilitation program did not provide additional benefit for pain and hand functions in CRPS-1. Future studies using different application parameters such as frequency, intensity, duration, and route may provide a better understanding of the role of PEMF in CRPS-1 treatment.
Collapse
|
12
|
Garbutcheon-Singh KB, Smith SD. Cannabinoids interaction with transient receptor potential family and implications in the treatment of rosacea. Dermatol Ther 2021; 34:e15162. [PMID: 34664381 DOI: 10.1111/dth.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
With the recent interest in medical marijuana, research into cannabinoids is regaining wider attention. Cannabinoids are collectively a group of active compounds that can be produced by animals (endocannabinoids), plants (phytocannabinoids), or synthetically. By acting on a number of different receptors like cannabinoids receptors and transient receptor potential ion channel family, cannabinoids are known to modulate cutaneous inflammation, pain, and itch. Rosacea is a highly prevalent disease and can be associated with a significant degree of morbidity associated with its symptom. Transient receptor potential ion channels are known to be triggered in rosacea and may underlie a portion of rosacea's pathophysiology. This article aims to detail the transient receptor potential channel pathways in rosacea and the known effects of cannabinoids on these pathways and further discussing the potential role of cannabinoids in treating rosacea.
Collapse
Affiliation(s)
| | - Saxon D Smith
- The Dermatology and Skin Cancer Centre, St Leonards, New South Wales, Australia.,Discipline of Dermatology, School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Sinhorim L, Amorim MDS, Ortiz ME, Bittencourt EB, Bianco G, da Silva FC, Horewicz VV, Schleip R, Reed WR, Mazzardo-Martins L, Martins DF. Potential Nociceptive Role of the Thoracolumbar Fascia: A Scope Review Involving In Vivo and Ex Vivo Studies. J Clin Med 2021; 10:jcm10194342. [PMID: 34640360 PMCID: PMC8509394 DOI: 10.3390/jcm10194342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Nociceptive innervation of the thoracolumbar fascia (TLF) has been investigated over the past few decades; however, these studies have not been compiled or collectively appraised. The purpose of this scoping review was to assess current knowledge regarding nociceptive innervation of the TLF to better inform future mechanistic and clinical TLF research targeting lower back pain (LBP) treatment. PubMed, ScienceDirect, Cochrane, and Embase databases were searched in January 2021 using relevant descriptors encompassing fascia and pain. Eligible studies satisfied the following: (a) published in English; (b) preclinical and clinical (in vivo and ex vivo) studies; (c) original data; (d) included quantification of at least one TLF nociceptive component. Two-phase screening procedures were conducted by a pair of independent reviewers, after which data were extracted and summarized from eligible studies. The search resulted in 257 articles of which 10 met the inclusion criteria. Studies showed histological evidence of nociceptive nerve fibers terminating in lower back fascia, suggesting a TLF contribution to LBP. Noxious chemical injection or electrical stimulation into fascia resulted in longer pain duration and higher pain intensities than injections into subcutaneous tissue or muscle. Pre-clinical and clinical research provides histological and functional evidence of nociceptive innervation of TLF. Additional knowledge of fascial neurological components could impact LBP treatment.
Collapse
Affiliation(s)
- Larissa Sinhorim
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Brazil
| | - Mayane dos Santos Amorim
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Human Movement Sciences Graduate Program, College of Health and Sport Science at Santa Catarina State University, Florianópolis 88080-350, Brazil
| | - Maria Eugênia Ortiz
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Brazil
| | - Edsel Balduino Bittencourt
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Coastal Health Institute, Jacksonville, FL 32224, USA
| | - Gianluca Bianco
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, 00147 Rome, Italy
- Istituto di Formazione in Agopuntura e Neuromodulazione IFAN, 00147 Roma, Italy
| | | | - Verônica Vargas Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Brazil
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University of Munich, 80799 Munich, Germany
- Department for Medical Professions, DIPLOMA University of Applied Sciences, 37242 Bad Sooden-Allendorf, Germany
- Correspondence: ; Tel.: +49-89-346016
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Rehabilitation Science Program, Departments of Physical and Occupational Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Leidiane Mazzardo-Martins
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Daniel F. Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Brazil; (L.S.); (M.d.S.A.); (M.E.O.); (E.B.B.); (G.B.); (V.V.H.); (D.F.M.)
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Brazil
| |
Collapse
|
14
|
Rodrigues-Braz D, Zhao M, Yesilirmak N, Aractingi S, Behar-Cohen F, Bourges JL. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Mol Vis 2021; 27:323-353. [PMID: 34035646 PMCID: PMC8131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Rosacea is a chronic inflammatory disease that affects the face skin. It is clinically classified into the following four subgroups depending on its location and severity: erythematotelangiectatic, papulopustular, phymatous, and ocular. Rosacea is a multifactorial disease triggered by favoring factors, the pathogenesis of which remains imperfectly understood. Recognized mechanisms include the innate immune system, with the implication of Toll-like receptors (TLRs) and cathelicidins; neurovascular deregulation involving vascular endothelial growth factor (VEGF), transient receptor potential (TRP) ion channels, and neuropeptides; and dysfunction of skin sebaceous glands and ocular meibomian glands. Microorganisms, genetic predisposition, corticosteroid treatment, and ultraviolet B (UVB) radiation are favoring factors. In this paper, we review the common and specific molecular mechanisms involved in the pathogenesis of cutaneous and ocular rosacea and discuss laboratory and clinical studies, as well as experimental models.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
| | - Nilufer Yesilirmak
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Department of Ophthalmology, Ankara Yildirim Beyazit University, Ankara, Turkey
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Selim Aractingi
- Department of Dermatology, AP-HP, Cochin Hospital, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| |
Collapse
|
15
|
Sun X, Cao L, Ge JL, Ge JY, Yang XF, Du BX, Song J. The NLRP3-related inflammasome modulates pain behavior in a rat model of trigeminal neuropathic pain. Life Sci 2021; 277:119489. [PMID: 33862118 DOI: 10.1016/j.lfs.2021.119489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS Nod-like receptor family pyrin domain containing 3 (NLRP3) may play an important role in neuropathic pain. Treatment for trigeminal neuropathic pain remains a challenge, as common drugs either do not demonstrate beneficial therapeutic effects or induce intolerance in patients. MAIN METHODS In a rat model of trigeminal neuropathic pain, pain caused by the malpositioning of dental implants is similar to that experienced by humans. We used masculine Sprague-Dawley rats with inferior alveolar nerve damage as a model to investigate the differential regulation of NLRP3. First, we confirmed the level of NLRP3 in the medullary dorsal horn and variation of pain response behavior after silencing the expression of NLRP3 inflammasome bodies in rats with trigeminal neuropathic pain. Second, under localized anesthesia, we extracted the lower left second molar, implanted a micro-dental implant, and deliberately injured the inferior alveolar nerve. KEY FINDINGS After nerve damage, the level of NLRP3-related inflammasomes was upregulated in microglia and the expression of a component of the inflammasome gradually increased during postoperative days 3-21. The suppression of adenovirus-shRNA-NLRP3 on postoperative day 1 markedly inhibited the expression of pro-inflammatory cytokines and the activation of the inflammasome and mechanical allodynia. Furthermore, it attenuated cell death in microglia, as evidenced by increased Bcl-2, Bcl-xL, Bax, and Bik expression. SIGNIFICANCE The level of NLRP3 in the dorsal horn is a pivotal factor in trigeminal neuropathic pain, and inhibition of the early expression of NLRP3 might serve as a potential therapeutic approach.
Collapse
Affiliation(s)
- Xin Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Liang Cao
- ICU, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian-Lin Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian-Yun Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xue-Feng Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Bo-Xiang Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Jie Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
16
|
Wang H, Huang M, Wang W, Zhang Y, Ma X, Luo L, Xu X, Xu L, Shi H, Xu Y, Wang A, Xu T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res 2021; 165:105482. [PMID: 33549727 DOI: 10.1016/j.phrs.2021.105482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this work was to investigate the role and signal transduction of toll-like receptor 4 (TLR4), TGF-β-activated kinase 1 (TAK1) and nod-like receptor protein 3 (NLRP3) in microglial in the development of morphine-induced antinociceptive tolerance. METHODS TLR4 and NLRP3 knockout mice and 5Z-7-oxozeaeno (a selective inhibitor against TAK1 activity) were used to observe their effect on the development of morphine tolerance. Intrathecal injections of morphine (0.75 mg/kg once daily for 7 days) were used to establish anti-nociceptive tolerance, which was measured by the tail-flick test. Spinal TLR4, TAK1, and NLRP3 expression levels and phosphorylation of TAK1 were evaluated by Western blotting and immunofluorescence. RESULTS Repeated treatment with morphine increased total expression of spinal TLR4, TAK1, and NLRP3 and phosphorylation of TAK1 in wild-type mice. TLR4 knockout attenuated morphine-induced tolerance and inhibited the chronic morphine-induced increase in NLRP3 and phosphorylation of TAK1. Compared with controls, mice that received 5Z-7-oxozeaenol showed decreased development of morphine tolerance and inhibition on repeated morphine-induced increase of NLRP3 but not TLR4. NLRP3 knockout mice showed resistance to morphine-induced analgesic tolerance with no effect on chronic morphine-induced expression of TLR4 and TAK1. TLR4, TAK1, and NLRP3 were collectively co-localized together and with the microglia marker Iba1. CONCLUSIONS Microglial TLR4 regulates TAK1 expression and phosphorylation and results in NLRP3 activation contributes to the development of morphine tolerance through regulating neuroinflammation. Targeting TLR4-TAK1-NLRP3 signaling to regulate neuro-inflammation will be alternative therapeutics and strategies for chronic morphine-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Min Huang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Wenying Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Yu Zhang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Limin Luo
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Liang Xu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yongming Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|
17
|
Afshari K, Dehdashtian A, Haddad NS, Jazaeri SZ, Ursu DC, Khalilzadeh M, Haj-Mirzaian A, Shakiba S, Burns TC, Tavangar SM, Ghasemi M, Dehpour AR. Sumatriptan improves the locomotor activity and neuropathic pain by modulating neuroinflammation in rat model of spinal cord injury. Neurol Res 2020; 43:29-39. [PMID: 32935647 DOI: 10.1080/01616412.2020.1819090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the therapeutic effects of sumatriptan in a rat model of spinal cord injury (SCI) and possible anti-inflammatory and analgesic mechanisms underlying this effect. METHODS Using an aneurysm mini-clip model of contusive SCI, T9-10 laminectomies were performed for 60 male rats. Animals were divided into six experimental groups (n = 10 per group) as follows: a minocycline administered positive control group, a saline-vehicle negative control group, a sham-operated group, and three experimental groups which received separate doses of sumatriptan (0.1, 0.3 and 1 mg/kg). Behavioural assessments were used to evaluate locomotor activity and neuropathic pain for 28 days. At the end of the study, spinal cord tissues were collected from sacrificed animals for histopathological analysis. Levels of calcitonin gene-related peptide (CGRP) and two pro-inflammatory cytokines (tumor necrosis factor [TNF]-α and interleukin [IL]-1β) were assessed by the enzyme-linked immunosorbent assay (ELISA). RESULTS Sumatriptan significantly (P < 0.001) improved the locomotor activity in SCI group. Sumatriptan was also more effective than the positive control, i.e. minocycline (0.3 mg/kg). Additionally, sumatriptan and minocycline similarly attenuated the mechanical and thermal allodynia in SCI (P < 0.001). TNF-α, IL-1β and CGRP levels in sumatriptan- and minocycline-treated groups significantly (P < 0.001) decreased compared to controls. Histopathological analysis also revealed a markedly improvement in hemorrhage followed by inflammatory cell invasion, neuronal vacuolation, and cyst formation in both sumatriptan- and minocycline-treated groups compared to control animals. CONCLUSIONS Sumatriptan improves functional recovery from SCI through its anti-inflammatory effects and reducing pro-inflammatory and pain mediators.
Collapse
Affiliation(s)
- Khashayar Afshari
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Amir Dehdashtian
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Nazgol-Sadat Haddad
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Daniel C Ursu
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan , USA
| | - Mina Khalilzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Saeed Shakiba
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic Rochester , USA
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences , Tehran, Iran.,Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine , Worcester, MA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran.,Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
18
|
Longitudinal translocator protein-18 kDa-positron emission tomography imaging of peripheral and central myeloid cells in a mouse model of complex regional pain syndrome. Pain 2020; 160:2136-2148. [PMID: 31095093 PMCID: PMC6527343 DOI: 10.1097/j.pain.0000000000001607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is Available in the Text. Longitudinal positron emission tomography of translocator protein-18 kDa revealed early central, and persistent peripheral, myeloid activation in a mouse tibial fracture model of complex regional pain syndrome. Complex regional pain syndrome (CRPS) is a severely disabling disease characterized by pain, temperature changes, motor dysfunction, and edema that most often occurs as an atypical response to a minor surgery or fracture. Inflammation involving activation and recruitment of innate immune cells, including both peripheral and central myeloid cells (ie, macrophages and microglia, respectively), is a key feature of CRPS. However, the exact role and time course of these cellular processes relative to the known acute and chronic phases of the disease are not fully understood. Positron emission tomography (PET) of translocator protein-18 kDa (TSPO) is a method for noninvasively tracking these activated innate immune cells. Here, we reveal the temporal dynamics of peripheral and central inflammatory responses over 20 weeks in a tibial fracture/casting mouse model of CRPS through longitudinal TSPO-PET using [18F]GE-180. Positron emission tomography tracer uptake quantification in the tibia revealed increased peripheral inflammation as early as 2 days after fracture and lasting 7 weeks. Centralized inflammation was detected in the spinal cord and brain of fractured mice at 7 and 21 days after injury. Spinal cord tissue immunofluorescent staining revealed TSPO expression in microglia (CD11b+) at 7 days but was restricted mainly to endothelial cells (PECAM1+) at baseline and 7 weeks. Our data suggest early and persistent peripheral myeloid cell activation and transient central microglial activation are limited to the acute phase of CRPS. Moreover, we show that TSPO-PET can be used to noninvasively monitor the spatiotemporal dynamics of myeloid cell activation in CRPS progression with potential to inform disease phase–specific therapeutics.
Collapse
|
19
|
Xu X, Tao X, Huang P, Lin F, Liu Q, Xu L, Xu J, Huang Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav Immun 2020; 87:579-590. [PMID: 32032782 PMCID: PMC8922412 DOI: 10.1016/j.bbi.2020.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The spinal N-methyl-d-aspartate (NMDA) receptor, and particularly its NR2B subunit, plays a pivotal role in neuropathic pain. However, the role of peripheral NMDA receptor in neuropathic pain is less well understood. We first treated cultured human keratinocytes, HaCaT cells with NMDA or NR2B-specific antagonist, ifenprodil and evaluated the level of total and phosphorylated NR2B at 24 h using Western blot. Next, using the chronic post-ischemia pain (CPIP) model, we administered NMDA or ifenprodil subcutaneously into the hind paws of male rats. Nociceptive behaviors were assessed by measuring mechanical and thermal withdrawal thresholds. Expression and phosphorylation of NR2B on keratinocyte were analyzed at 6, 12, 18, and 24 h on day 1 (initiation of pain) as well as day 2, 6, 10 and 14 (development and maintenance of pain) after the ischemia. The level of peripheral sensitization-related proteins (nuclear factor-κB (NF-κB), extracellular regulated protein kinases (ERK), and interleukin-1β (IL-1β)) in epidermis and dorsal root ganglion (DRG) were evaluated by immunofluorescence and western blot. Central sensitization-related C-fos induction, as well as astrocytes and microglia activation in the spinal cord dorsal horn (SDH) were studied using immunofluorescence. Administration of NMDA upregulated NR2B phosphorylation on HaCaT cells. CPIP-induced mechanical allodynia and thermal hyperalgesia were intensified by NMDA and alleviated by ifenprodil. CPIP resulted in an early upregulation of NR2B (peaked at 24 h) and late phosphorylation of NR2B (peaked at 14d) in hindpaw keratinocytes. CPIP led to an upregulation and phosphorylation of NF-κB and ERK, as well as an increased IL-1β production in the ipsilateral skin and DRG. CPIP-associated c-fos induction in SDH persisted from acute to chronic stages after ischemia, while microglia and astrocyte activation were only observed in chronic phase. These CPIP-induced changes were also suppressed by ifenprodil administered subcutaneously in the hind paw. Our findings reveal a previously unrecognized role of keratinocyte NMDA receptor subunit 2B in peripheral and central nociceptive sensitization induced by CPIP.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xin Tao
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China,Department of Infectious Disease, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Ping Huang
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Qing Liu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Yuguang Huang
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
20
|
Involvement of 5-HT1B/1D receptors in the inflammatory response and oxidative stress in intestinal ischemia/reperfusion in rats. Eur J Pharmacol 2020; 882:173265. [PMID: 32574671 DOI: 10.1016/j.ejphar.2020.173265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
Acute mesenteric ischemia (AMI) is caused by an abrupt cessation of blood flow to the small intestine. Reperfusion is the return of blood flow to the ischemic bowel. Intestinal ischemia/reperfusion (I/R) leads to the formation of reactive oxygen species, local inflammatory response, and may lead to the patient's death. Pre-treatment of the intestinal may reduce the high mortality associated with AMI. 5-Hydroxytryptamine 1B (5-HT1B) and 5-HT1D receptors have anti-inflammatory and neuroprotective effects in different experimental studies. We aimed to investigate the potential involvement of these receptors in intestinal I/R injury. Firstly, we assessed the expression and localization of 5-HT1B and 5-HT1D receptors in the enteric nervous system using an immunofluorescence-based method. Intestinal I/R in rats was induced by 30 min occlusion of superior mesenteric artery and reperfusion for 2 h. Rats were randomly divided in different control and I/R groups (n = 6) receiving either vehicle, sumatriptan (5-HT1B/1D receptors agonist; 0.1 mg/kg), GR127,935 (5-HT1B/1D receptors antagonist; 0.1 mg/kg) and combination of sumatriptan (0.1 mg/kg) + GR127,935 (0.1 mg/kg) before determination of biochemical and histological parameters. In the enteric nervous system, 5-HT1B and 5-HT1D receptors were expressed 17% and 11.5%, respectively. Pre-treatment with sumatriptan decreased 5-hydroxytryptamine (5HT) level by 53%, and significantly decreased calcitonin gene-related peptide (CGRP) levels, lipid pereoxidation, neutrophil infiltration, and level of pro-inflammatory markers in the serum. Histopathologic studies also showed a remarkable decrease in intestinal tissue injury. These findings suggest that sumatriptan may inhibit intestinal injury induced by I/R through modulating the inflammatory response by activation of 5-HT1B/1D receptors.
Collapse
|
21
|
Changes in TRPV1-Mediated Physiological Function in Rats Systemically Treated With Capsaicin on the Neonate. Int J Mol Sci 2020. [PMID: 32365623 DOI: 10.3390/ijms21093143.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Capsaicin is the active component of chili peppers and is a hydrophobic, colorless, odorless, and crystalline to waxy compound. The transient receptor potential vanilloid 1 (TRPV1) is the capsaicin receptor channels that are involved in a variety of functions like transduction and transmission of the physiological stimulus. Subcutaneous injection of capsaicin to a newborn rat leads to involuntary lifelong TRPV1 desensitization. Various physiological changes including sensory and homeostatic actions in the body associated with neonatal capsaicin treatment are induced by direct TRPV1 channel targeting. Interesting changes include unique phenomena such as the reduction in pain perception, abnormal body temperature, increase in infection, infectious or neuropathological itching, and irregular circadian core body temperature rhythm. These symptoms are associated with relatively higher fever or loss of sensory c-fiber related to TRPV1 desensitization. The aforementioned outcomes not only provide a warning about the risk of capsaicin exposure in newborns but also indicate the possible occurrence of relatively rare diseases that are difficult to diagnose. Therefore, Therefore, the present review aims to summarize the unique phenomena caused by systemic capsaicin administration in neonatal rats.
Collapse
|
22
|
Jeong KY. Changes in TRPV1-Mediated Physiological Function in Rats Systemically Treated With Capsaicin on the Neonate. Int J Mol Sci 2020; 21:3143. [PMID: 32365623 PMCID: PMC7247669 DOI: 10.3390/ijms21093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Capsaicin is the active component of chili peppers and is a hydrophobic, colorless, odorless, and crystalline to waxy compound. The transient receptor potential vanilloid 1 (TRPV1) is the capsaicin receptor channels that are involved in a variety of functions like transduction and transmission of the physiological stimulus. Subcutaneous injection of capsaicin to a newborn rat leads to involuntary lifelong TRPV1 desensitization. Various physiological changes including sensory and homeostatic actions in the body associated with neonatal capsaicin treatment are induced by direct TRPV1 channel targeting. Interesting changes include unique phenomena such as the reduction in pain perception, abnormal body temperature, increase in infection, infectious or neuropathological itching, and irregular circadian core body temperature rhythm. These symptoms are associated with relatively higher fever or loss of sensory c-fiber related to TRPV1 desensitization. The aforementioned outcomes not only provide a warning about the risk of capsaicin exposure in newborns but also indicate the possible occurrence of relatively rare diseases that are difficult to diagnose. Therefore, Therefore, the present review aims to summarize the unique phenomena caused by systemic capsaicin administration in neonatal rats.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- MetiMedi Pharmaceuticals Co., Research Center, Incheon 22006, Korea
| |
Collapse
|
23
|
Talagas M, Lebonvallet N, Berthod F, Misery L. Lifting the veil on the keratinocyte contribution to cutaneous nociception. Protein Cell 2020; 11:239-250. [PMID: 31907794 PMCID: PMC7093357 DOI: 10.1007/s13238-019-00683-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cutaneous nociception is essential to prevent individuals from sustaining injuries. According to the conventional point of view, the responses to noxious stimuli are thought to be exclusively initiated by sensory neurons, whose activity would be at most modulated by keratinocytes. However recent studies have demonstrated that epidermal keratinocytes can also act as primary nociceptive transducers as a supplement to sensory neurons. To enlighten our understanding of cutaneous nociception, this review highlights recent and relevant findings on the cellular and molecular elements that underlie the contribution of epidermal keratinocytes as nociceptive modulators and noxious sensors, both under healthy and pathological conditions.
Collapse
Affiliation(s)
- Matthieu Talagas
- Univ Brest, LIEN, 29200, Brest, France.
- Laboratoire d'Organogenèse Expérimentale (LOEX), University of Laval, Quebec, Canada.
- Department of Dermatology, Brest University Hospital, Brest, France.
- Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200, Brest, France.
| | - Nicolas Lebonvallet
- Univ Brest, LIEN, 29200, Brest, France
- Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200, Brest, France
| | - François Berthod
- Laboratoire d'Organogenèse Expérimentale (LOEX), University of Laval, Quebec, Canada
| | - Laurent Misery
- Univ Brest, LIEN, 29200, Brest, France
- Department of Dermatology, Brest University Hospital, Brest, France
- Univ Brest, IBSAM (Institut Brestois de Santé Agro matière), 29200, Brest, France
| |
Collapse
|
24
|
Najjar SA, Davis BM, Albers KM. Epithelial-Neuronal Communication in the Colon: Implications for Visceral Pain. Trends Neurosci 2020; 43:170-181. [PMID: 31983457 DOI: 10.1016/j.tins.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Visceral hypersensitivity and pain result, at least in part, from increased excitability of primary afferents that innervate the colon. In addition to intrinsic changes in these neurons, emerging evidence indicates that changes in lining epithelial cells may also contribute to increased excitability. Here we review recent studies on how colon epithelial cells communicate directly with colon afferents. Specifically, anatomical studies revealed specialized synaptic connections between epithelial cells and nerve fibers and studies using optogenetic activation of the epithelium showed initiation of pain-like responses. We review the possible mechanisms of epithelial-neuronal communication and provide an overview of the possible neurotransmitters and receptors involved. Understanding the biology of this interface and how it changes in pathological conditions may provide new treatments for visceral pain conditions.
Collapse
Affiliation(s)
- Sarah A Najjar
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian M Davis
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Karaaslan Z, Özçelik P, Ulukan Ç, Ulusoy C, Orhan KS, Orhan EK, Küçükali Cİ, Tüzün E, Baykan B, Akdal G. Plasma levels of inflammatory mediators in vestibular migraine. Int J Neurosci 2019; 130:330-335. [DOI: 10.1080/00207454.2019.1681994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zerrin Karaaslan
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Pınar Özçelik
- Faculty of Medicine, Department of Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Çağrı Ulukan
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Kadir Serkan Orhan
- Istanbul Faculty of Medicine, Department of Otorhinolaryngology, Istanbul University, Istanbul, Turkey
| | - Elif Kocasoy Orhan
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Gülden Akdal
- Faculty of Medicine, Department of Neurology, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
26
|
Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models. J Neurosci 2019; 39:4323-4331. [PMID: 30962278 DOI: 10.1523/jneurosci.0364-19.2019] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Migraine is the second leading cause for disability worldwide and the most common neurological disorder. It is also three times more common in women; reasons for this sex difference are not known. Using preclinical behavioral models of migraine, we show that application of calcitonin gene-related peptide (CGRP) to the rat dura mater produces cutaneous periorbital hypersensitivity. Surprisingly, this response was observed only in females; dural CGRP at doses from 1 pg to 3.8 μg produce no responses in males. In females, dural CGRP causes priming to a pH 7.0 solution after animals recover from the initial CGRP-induced allodynia. Dural application of interleukin-6 causes acute responses in males and females but only causes priming to subthreshold dural CGRP (0.1 pg) in females. Intracisternal application of BDNF also causes similar acute hypersensitivity responses in males and females but only priming to subthreshold dural CGRP (0.1 pg) in females. Females were additionally primed to a subthreshold dose of the NO-donor sodium nitroprusside (0.1 mg/kg) following dural CGRP. Finally, the sexually dimorphic responses to dural CGRP were not specific to rats as similar female-specific hypersensitivity responses were seen in mice, where increased grimace responses were also observed. These data are the first to demonstrate that CGRP-induced headache-like behavioral responses at doses up to 3.8 μg are female-specific both acutely and following central and peripheral priming. These data further implicate dural CGRP signaling in the pathophysiology of migraine and propose a model where dural CGRP-based mechanisms contribute to the sexual disparity of this female-biased disorder.SIGNIFICANCE STATEMENT Calcitonin gene-related peptide (CGRP) has long been implicated in the pathophysiology of migraine, and CGRP-based therapeutics are efficacious for the treatment of migraine in humans. However, the location of action for CGRP in migraine remains unclear. We show here that application of CGRP to the cranial meninges causes behavioral responses consistent with headache in preclinical rodent models. Surprisingly, however, these responses are only observed in females. Acute responses to meningeal CGRP are female-specific and sensitization to CGRP after two distinct stimuli are also female-specific. These data implicate the dura mater as a primary location of action for CGRP in migraine and suggest that female-specific mechanisms downstream of CGRP receptor activation contribute to the higher prevalence of migraine in women.
Collapse
|
27
|
Lönndahl L, Rasul A, Lonne-Rahm SB, Holst M, Johansson B, El-Nour H, Radu Djurfeldt D, Nordlind K. Tachykinin upregulation in atopic dermatitis. Immunopharmacol Immunotoxicol 2019; 41:117-122. [PMID: 30773959 DOI: 10.1080/08923973.2018.1558235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: Atopic dermatitis (AD) is a chronic, inflammatory, itching skin disorder, which may worsen due to stress, depression and anxiety. Tachykinins may be involved in inflammation signaling as well as they may have a role in stress, depression and anxiety. Objective: This study aimed to measure the expression of tachykinin markers, in the skin of patients with AD, and the correlation of these tachykinins with clinical and psychodemographic parameters. Materials and methods: Twenty-eight adult patients with AD were investigated regarding tachykinin expression in skin biopsies, using an immunohistochemical technique. The patients were characterized with clinical and psychodemographic parameters. Results: The number of substance P and neurokinin (NK)A positive nerve fibers, as well as NKA positive mononuclear dermal cells, was increased in lesional compared to non-lesional skin. Interestingly, the depression score and the number of dermal NK-1 receptor (R) positive cells in lesional as well as in non-lesional skin showed a correlation. Conclusion: These findings indicate an upregulation of the tachykinergic system in the inflamed skin of AD.
Collapse
Affiliation(s)
- Louise Lönndahl
- a Department of Medicine Solna, Dermatology and Venereology Unit , Karolinska Institutet , Stockholm , Sweden.,b Department of Dermatology , Karolinska University Hospital Solna , Stockholm , Sweden
| | - Aram Rasul
- a Department of Medicine Solna, Dermatology and Venereology Unit , Karolinska Institutet , Stockholm , Sweden.,c Diagnostiskt Centrum Hud , Stockholm , Sweden
| | - Sol-Britt Lonne-Rahm
- a Department of Medicine Solna, Dermatology and Venereology Unit , Karolinska Institutet , Stockholm , Sweden
| | - Mikael Holst
- d Department of Woman and Child Health, Pediatric Endocrinology Unit , Astrid Lindgren Children's Hospital , Stockholm , Sweden
| | - Björn Johansson
- e Department of Molecular Medicine and Surgery , Karolinska Institutet , Stockholm , Sweden
| | - Husameldin El-Nour
- a Department of Medicine Solna, Dermatology and Venereology Unit , Karolinska Institutet , Stockholm , Sweden.,f College of Dentistry , King Faisal University , Al-Ahsa , Kingdom of Saudi Arabia
| | - Diana Radu Djurfeldt
- g Centre for Psychiatry Research, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Klas Nordlind
- a Department of Medicine Solna, Dermatology and Venereology Unit , Karolinska Institutet , Stockholm , Sweden.,b Department of Dermatology , Karolinska University Hospital Solna , Stockholm , Sweden
| |
Collapse
|
28
|
De Logu F, Landini L, Janal MN, Li Puma S, De Cesaris F, Geppetti P, Nassini R. Migraine-provoking substances evoke periorbital allodynia in mice. J Headache Pain 2019; 20:18. [PMID: 30764776 PMCID: PMC6734434 DOI: 10.1186/s10194-019-0968-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
Background Administration of endogenous mediators or exogenous chemicals in migraine patients provoke early headaches and delayed migraine-like attacks. Although migraine provoking substances are normally vasodilators, dilation of arterial vessels does not seem to be the sole contributing factor, and the underlying mechanisms of the delayed migraine pain are mostly unknown. Sustained mechanical allodynia is a common response associated with the local administration of various proalgesic substances in experimental animals and humans. Here, we investigated the ability of a series of endogenous mediators which provoke or do not provoke migraine in patients, to cause or not cause mechanical allodynia upon their injection in the mouse periorbital area. Methods Mechanical allodynia was assessed with the von Frey filament assay. Stimuli were given by subcutaneous injection in the periorbital area of C57BL/6J mice; antagonists were administered by local and systemic injections. Results Calcitonin gene related peptide (CGRP), but not adrenomedullin and amylin, pituitary adenylyl cyclase activating peptide (PACAP), but not vasoactive intestinal polypeptide (VIP), histamine, prostaglandin E2 (PGE2) and prostacyclin (PGI2), but not PGF2α, evoked a dose-dependent periorbital mechanical allodynia. The painful responses were attenuated by systemic or local (periorbital) administration of antagonists for CGRP (CLR/RAMP1), PACAP (PAC-1), histamine H1, PGE2 (EP4), and PGI2 (IP) receptors, respectively. Conclusions The correspondence between substances that provoke (CGRP; PACAP, histamine, PGE2, PGI2), or do not provoke (VIP and PGF2α), migraine-like attacks in patients and periorbital allodynia in mice suggests that the study of allodynia in mice may provide information on the proalgesic mechanisms of migraine-provoking agents in humans. Results underline the ability of migraine-provoking substances to initiate mechanical allodynia by acting on peripheral terminals of trigeminal afferents.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, USA
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Francesco De Cesaris
- Headache Centre, Careggi University Hospital, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy. .,Headache Centre, Careggi University Hospital, University of Florence, Florence, Italy.
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
29
|
Chen K, Fan J, Luo ZF, Yang Y, Xin WJ, Liu CC. Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J Neuroinflammation 2018; 15:292. [PMID: 30342528 PMCID: PMC6195754 DOI: 10.1186/s12974-018-1327-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background Bortezomib is a frequently used chemotherapeutic drug for the treatment of multiple myeloma and other nonsolid malignancies. Accumulating evidence has demonstrated that bortezomib-induced persistent pain serves as the most frequent reason for treatment discontinuation. Methods The von Frey test was performed to evaluate neuropathic pain behavior, and real-time quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, western blot, immunohistochemistry, and small interfering RNA were performed to explore the molecular mechanisms in adult male Sprague-Dawley rats. Results We found that application of bortezomib significantly increased the expression of NALP1 protein and mRNA levels in spinal dorsal horn neurons, and intrathecal application of NALP1 siRNA attenuated the bortezomib-induced mechanical allodynia. In addition, bortezomib also decreased the SIRT1 expression, and treatment with SIRT1 activator resveratrol ameliorated the NALP1 upregulation and mechanical allodynia induced by bortezomib. Meanwhile, knockdown of SIRT1 using the SIRT1 siRNA induced the NALP1 upregulation in dorsal horn and mechanical allodynia in normal animal. These results suggested that reduction of SIRT1 induced the NALP1 upregulation in dorsal horn neurons, and participated in bortezomib-induced mechanical allodynia. Importantly, we found that the binding of SIRT1 and NALP1 promoter region did not change before and after bortezomib treatment, but SIRT1 downregulation increased p-STAT3 expression. Furthermore, the activation of STAT3 enhanced the recruitment of p-STAT3 to the Nalp1 gene promoter, which increased the acetylation of histone H3 and H4 in NALP1 promoter regions and epigenetically upregulated NALP1 expression in the rodents with bortezomib treatment. Conclusion These findings suggested a new epigenetic mechanism for NALP1 upregulation involving SIRT1 reduction and subsequent STAT3-mediated histone hyperacetylation in NALP1 promoter region in dorsal horn neurons, which contributed to the bortezomib-induced mechanical allodynia.
Collapse
Affiliation(s)
- Kun Chen
- The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou, 510006, China.
| | - Jing Fan
- The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou, 510006, China
| | - Zhao-Fan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518017, China
| | - Ying Yang
- The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou, 510006, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
30
|
Birklein F, Ibrahim A, Schlereth T, Kingery WS. The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. THE JOURNAL OF PAIN 2018; 19:1102.e1-1102.e19. [PMID: 29684510 PMCID: PMC6163066 DOI: 10.1016/j.jpain.2018.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
Distal limb fracture is the most common cause of complex regional pain syndrome (CRPS), thus the rodent tibia fracture model (TFM) was developed to study CRPS pathogenesis. This comprehensive review summarizes the published TFM research and compares these experimental results with the CRPS literature. The TFM generated spontaneous and evoked pain behaviors, inflammatory symptoms (edema, warmth), and trophic changes (skin thickening, osteoporosis) resembling symptoms in early CRPS. Neuropeptides, inflammatory cytokines, and nerve growth factor (NGF) have been linked to pain behaviors, inflammation, and trophic changes in the TFM model and proliferating keratinocytes were identified as the primary source of cutaneous cytokines and NGF. Tibia fracture also activated spinal glia and upregulated spinal neuropeptide, cytokine, and NGF expression, and in the brain it changed dendritic architecture. B cell-expressed immunoglobulin M antibodies also contributed to pain behavior, indicating a role for adaptive immunity. These results modeled many findings in early CRPS, but significant differences were also noted. PERSPECTIVE Multiple neuroimmune signaling mechanisms contribute to the pain, inflammation, and trophic changes observed in the injured limb of the rodent TFM. This model replicates many of the symptoms, signs, and pathophysiology of early CRPS, but most post-fracture changes resolve within 5 months and may not contribute to perpetuating chronic CRPS.
Collapse
Affiliation(s)
- Frank Birklein
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Alaa Ibrahim
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Tanja Schlereth
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
31
|
Zhang H, Li F, Li WW, Stary C, Clark JD, Xu S, Xiong X. The inflammasome as a target for pain therapy. Br J Anaesth 2018; 117:693-707. [PMID: 27956668 DOI: 10.1093/bja/aew376] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The interleukin-1 family of cytokines are potent inducers of inflammation and pain. Proteolytic activation of this family of cytokines is under the control of several innate immune receptors that coordinate to form large multiprotein signalling platforms, termed inflammasomes. Recent evidence suggests that a wide range of inflammatory diseases, cancers, and metabolic and autoimmune disorders, in which pain is a common complaint, may be coordinated by inflammasomes. Activation of inflammasomes results in cleavage of caspase-1, which subsequently induces downstream initiation of several potent pro-inflammatory cascades. Therefore, it has been proposed that targeting inflammasome activity may be a novel and effective therapeutic strategy for these pain-related diseases. The purpose of this narrative review article is to provide the reader with an overview of the activation and regulation of inflammasomes and to investigate the potential therapeutic role of inflammasome inhibition in the treatment of diseases characterized by pain, including the following: complex regional pain syndrome, gout, rheumatoid arthritis, inflammatory pain, neuropathic pain, chronic prostatitis, chronic pelvic pain syndrome, and fibromyalgia. We conclude that the role of the inflammasome in pain-associated diseases is likely to be inflammasome subtype and disease specific. The currently available evidence suggests that disease-specific targeting of the assembly and activity of the inflammasome complex may be a novel therapeutic opportunity for the treatment of refractory pain in many settings.
Collapse
Affiliation(s)
- H Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - F Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - W-W Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - C Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J D Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - S Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - X Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
32
|
Guo TZ, Wei T, Huang TT, Kingery WS, Clark JD. Oxidative Stress Contributes to Fracture/Cast-Induced Inflammation and Pain in a Rat Model of Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2018; 19:1147-1156. [PMID: 29715519 DOI: 10.1016/j.jpain.2018.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Clinical evidence suggests that vitamin C (Vit C) may protect against the development of complex regional pain syndrome (CRPS) after fracture or surgery. Tibia fracture followed by 4 weeks of cast immobilization (fracture/cast) in rats results in nociceptive, vascular, and bone changes resembling clinical CRPS. In this study, fracture/cast rats were treated with the oxidative stress inhibitors Vit C, N-acetyl cysteine, or 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl to examine their effects on CRPS-related nociceptive and vascular changes. Administration of these agents significantly reduced fracture/cast-induced cutaneous allodynia by 64 to 78%, muscle hyperalgesia by 34 to 40%, and hind limb unweighting by 48 to 89%. Treatments with Vit C and N-acetyl cysteine reduced the oxidative stress markers malondialdehyde in the skin, muscle, and sciatic nerve, and lactate in the gastrocnemius muscle of the fracture/cast limb. Furthermore, Vit C treatment inhibited the post-fracture upregulation of substance P and calcitonin gene-related peptide in the sciatic nerve and the increased expression of the pain-related inflammatory mediators, including interleukin (IL)-6, and nerve growth factor in the skin and IL-1β, and IL-6 in the muscle of the post-fracture/cast limb. These data suggest that oxidative stress may contribute to the nociceptive features of the rat CRPS model. PERSPECTIVE Vit C reduced the CRPS-like signs, oxidative stress, and the upregulation of neuropeptide production and inflammatory mediators observed after tibia fracture and casting in rats. Limiting oxidative stress by use of Vit C or alternative strategies could reduce the risk of developing CRPS after surgery or other forms of trauma.
Collapse
Affiliation(s)
- Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Palo Alto, California.
| | - Ting-Ting Huang
- Department of Neurology, Stanford University School of Medicine, Stanford, California; Health Science, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, California
| | - John David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
33
|
Jia M, Wu C, Gao F, Xiang H, Sun N, Peng P, Li J, Yuan X, Li H, Meng X, Tian B, Shi J, Li M. Activation of NLRP3 inflammasome in peripheral nerve contributes to paclitaxel-induced neuropathic pain. Mol Pain 2018; 13:1744806917719804. [PMID: 28714351 PMCID: PMC5562344 DOI: 10.1177/1744806917719804] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Paclitaxel is commonly used as a cancer chemotherapy drug that frequently causes peripheral neuropathic pain. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein, and caspase-1, which functions to switch on the inflammatory process and the release of interleukin-1β. Growing evidences have supported that peripheral interleukin-1β is critical in enhancing paclitaxel-induced neuropathic pain. However, whether activation of NLRP3 inflammasome in peripheral nerve contributes to paclitaxel-induced neuropathic pain is still unclear. Results Paclitaxel induced mechanical allodynia of rats from day 3 and worsened gradually till 3 weeks after injection. Paclitaxel resulted in expression of NLRP3 and activated fragments of caspase-1 and interleukin-1β in L4-6 dorsal root ganglia and sciatic nerve three weeks after injection, indicating activation of NLRP3 inflammasome. The expression of NLRP3 was located in CD68-labeled macrophages infiltrating in L4-6 dorsal root ganglia and sciatic nerve, and paclitaxel increased the expression of NLRP3 in macrophage. Moreover, the paclitaxel elicited mitochondria damage, which became swollen and enlarged in macrophages and axons of sciatic nerve three weeks after injection. In vitro, paclitaxel increased the number of damaged mitochondria and mitochondrial reactive oxygen species production in the rat alveolar macrophage cell line NR8383. The administration of a non-specific reactive oxygen species scavenger, phenyl-N-tert-butylnitrone, markedly alleviated mechanical allodynia and inhibited the activation of NLRP3 inflammasome in L4-6 dorsal root ganglia and sciatic nerve of the paclitaxel-induced neuropathic pain model. Conclusions Paclitaxel induced mechanical allodynia and activation of NLRP3 inflammasome in infiltrated macrophages of L4-6 dorsal root ganglia and sciatic nerve. Paclitaxel elicited mitochondria damage and reactive oxygen species production may result in activation of NLRP3 inflammasome in peripheral nerve, which contributes to paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Min Jia
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,2 Clinical Laboratories of Wuhan First Hospital, Wuhan, P.R. China
| | - Caihua Wu
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,2 Clinical Laboratories of Wuhan First Hospital, Wuhan, P.R. China
| | - Fang Gao
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongchun Xiang
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ning Sun
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ping Peng
- 3 Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingjing Li
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaocui Yuan
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hongping Li
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xianfang Meng
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,4 The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bo Tian
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,4 The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Shi
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,4 The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Man Li
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,4 The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
34
|
Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol 2018; 40:249-259. [PMID: 29713744 DOI: 10.1007/s00281-018-0675-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
The epidermis closely interacts with nerve endings, and both epidermis and nerves produce substances for mutual sustenance. Neuropeptides, like substance P (SP) and calcitonin gene-related protein (CGRP), are produced by sensory nerves in the dermis; they induce mast cells to release vasoactive amines that facilitate infiltration of neutrophils and T cells. Some receptors are more important than others in the generation of itch. The Mas-related G protein-coupled receptors (Mrgpr) family as well as transient receptor potential ankyrin 1 (TRPA1) and protease activated receptor 2(Par2) have important roles in itch and inflammation. The activation of MrgprX1 degranulates mast cells to communicate with sensory nerve and cutaneous cells for developing neurogenic inflammation. Mrgprs and transient receptor potential vanilloid 4 (TRPV4) are crucial for the generation of skin diseases like rosacea, while SP, CGRP, somatostatin, β-endorphin, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP) can modulate the immune system during psoriasis development. The increased level of SP, in atopic dermatitis, induces the release of interferon (IFN)-γ, interleukin (IL)-4, tumor necrosis factor (TNF)-α, and IL-10 from the peripheral blood mononuclear leukocytes. We are finally starting to understand the intricate connections between the skin neurons and resident skin cells and how their interaction can be key to controlling inflammation and from there the pathogenesis of diseases like atopic dermatitis, psoriasis, and rosacea.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive #0869, La Jolla, CA, 92093, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Urits I, Shen AH, Jones MR, Viswanath O, Kaye AD. Complex Regional Pain Syndrome, Current Concepts and Treatment Options. Curr Pain Headache Rep 2018; 22:10. [PMID: 29404787 DOI: 10.1007/s11916-018-0667-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Complex regional pain syndrome (CRPS) refers to a chronic pain condition that is characterized by progressively worsening spontaneous regional pain without dermatomal distribution. The symptomatology includes pain out of proportion in time and severity to the inciting event. The purpose of this review is to present the most current information concerning epidemiology, diagnosis, pathophysiology, and therapy for CRPS. RECENT FINDINGS In recent years, discovery of pathophysiologic mechanisms of CRPS has led to significant strides in the understanding of the disease process. Continued elucidation of the underlying pathophysiological mechanisms will allow for the development of more targeted and effective evidence-based therapy protocols. Further large clinical trials are needed to investigate mechanisms and treatment of the disorder.
Collapse
Affiliation(s)
- Ivan Urits
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Mark R Jones
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Lousiana State University Health Science Center, 1542 Tulane Avenue Suite 659, New Orleans, LA, 70112, USA.
| |
Collapse
|
36
|
Patel AB, Tsilioni I, Weng Z, Theoharides TC. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp Dermatol 2018; 27:135-143. [PMID: 29105195 DOI: 10.1111/exd.13461] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
Psoriasis is an autoimmune skin disease characterized by keratinocyte hyperproliferation and chronic inflammation. The pathogenesis of psoriasis involves proinflammatory cytokines, such as tumor necrosis factor (TNF), but the mechanism of keratinocyte activation is not well understood. Here, we show that TNF (10 or 50 ng/mL) stimulates a significant (P < .0001) gene expression and secretion of proinflammatory IL-6, CXCL8 and VEGF from both cultured human HaCaT and normal epidermal human keratinocytes (NHEKs). This effect occurs via activation of the mammalian target of rapamycin (mTOR) signalling complex as shown by Western blot analysis and phospho-ELISAs. Pretreatment with the novel natural flavonoid tetramethoxyluteolin (10-100 μmol L-1 ) significantly (P < .0001) inhibits gene expression and secretion (P < .0001) of all 3 mediators in a concentration-dependent manner. Moreover, tetramethoxyluteolin (50 μmol L-1 ) appears to be a potent inhibitor of the phosphorylated mTOR substrates (pmTORSer2448 , pp70S6KThr389 and p4EBP1Thr37/46 ) as compared to known mTOR inhibitors in keratinocytes. The present findings indicate that TNF stimulates skin inflammation via mTOR signalling. Inhibition by tetramethoxyluteolin may be used in the treatment for psoriasis.
Collapse
Affiliation(s)
- Arti B Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Zuyi Weng
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Gao F, Xiang HC, Li HP, Jia M, Pan XL, Pan HL, Li M. Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain Behav Immun 2018; 67:91-100. [PMID: 28782714 DOI: 10.1016/j.bbi.2017.08.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
The therapeutic effect of electroacupuncture (EA) on inflammatory pain has been well recognized clinically. The inflammasome promotes the maturation of the inflammatory cytokines, and EA can stimulate cannabinoid CB2 receptors in inflamed tissues. In this study we investigated whether EA inhibits NLRP3 inflammasome activation through CB2 receptors and thus relieving inflammatory pain. Assay of Caspase-1 activity and western blotting revealed that complete Freund's adjuvant (CFA) injection activated the NLRP3 inflammasome in the skin tissue in rats, which was attenuated by EA treatment. Immunofluorescence labeling showed that NLRP3 inflammasome elicited by CFA in the skin macrophages were decreased by EA. Nociceptive behavioral tests demonstrated that in CB2 receptor knockout mice, the EA effects on NLRP3 inflammasomes were largely attenuated. In addition, in vitro studies in a macrophage cell line showed that CB2 receptor stimulation inhibited the NLRP3 inflammasome activation. Thus, our results suggest a novel signaling pathway through which CB2 receptors are involved in the analgesic effect of EA on inflammatory pain. Stimulation of CB2 receptors inhibits NLRP3 inflammasome activation in inflamed skin tissues. These results suggest that EA reduces the inflammatory pain by inhibiting the activation of NLRP3 inflammasome through CB2 receptors. Our findings provide novel information about the mechanisms through which EA and CB2 receptor activation reduce inflammatory pain.
Collapse
Affiliation(s)
- Fang Gao
- Department of Neurobiology, The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong-Chun Xiang
- Department of Neurobiology, The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong-Ping Li
- Department of Neurobiology, The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Jia
- Department of Neurobiology, The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Laboratories of Wuhan First Hospital, Wuhan 430030, China
| | - Xiao-Li Pan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Li
- Department of Neurobiology, The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
38
|
Schou WS, Ashina S, Amin FM, Goadsby PJ, Ashina M. Calcitonin gene-related peptide and pain: a systematic review. J Headache Pain 2017; 18:34. [PMID: 28303458 PMCID: PMC5355411 DOI: 10.1186/s10194-017-0741-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/28/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is widely distributed in nociceptive pathways in human peripheral and central nervous system and its receptors are also expressed in pain pathways. CGRP is involved in migraine pathophysiology but its role in non-headache pain has not been clarified. METHODS We performed a systematic literature search on PubMed, Embase and ClinicalTrials.gov for articles on CGRP and non-headache pain covering human studies including experimental studies and randomized clinical trials. RESULTS The literature search identified 375 citations of which 50 contained relevant original data. An association between measured CGRP levels and somatic, visceral, neuropathic and inflammatory pain was found. In 13 out of 20 studies in somatic pain conditions, CGRP levels had a positive correlation with pain. Increased CGRP levels were reported in plasma, synovial and cerebrospinal fluid in subjects with musculoskeletal pain. A randomized clinical trial on monoclonal antibody, which selectively binds to and inhibits the activity of CGRP (galcanezumab) in patients with osteoarthritis knee pain, failed to demonstrate improvement of pain compared with placebo. No studies to date have investigated the efficacy of monoclonal antibodies against CGRP receptor in non-headache pain conditions. CONCLUSION The present review revealed the association between measured CGRP levels and somatic, visceral, neuropathic and inflammatory pain. These data suggest that CGRP may act as a neuromodulator in non-headache pain conditions. However, more studies are needed to fully understand the role of CGRP in nociceptive processing and therapy of chronic pain.
Collapse
Affiliation(s)
- Wendy Sophie Schou
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Sait Ashina
- Department of Neurology, NYU Lutheran Headache Center, New York University School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Peter J Goadsby
- Basic & Clinical Neuroscience, and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Hirsch S, Ibrahim A, Krämer L, Escolano-Lozano F, Schlereth T, Birklein F. Bone Trauma Causes Massive but Reversible Changes in Spinal Circuitry. THE JOURNAL OF PAIN 2017; 18:468-476. [PMID: 28062308 DOI: 10.1016/j.jpain.2016.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
Bone fracture with subsequent immobilization of the injured limb can cause complex regional pain syndrome (CRPS) in humans. Mechanisms of CRPS are still not completely understood but bone fracture with casting in mice leads to a similar post-traumatic inflammation as seen in humans and might therefore be an analog to human CRPS. In this article we report behavioral and spinal electrophysiological changes in mice that developed swelling of the paw, warming of the skin, and pain in the injured limb after bone fracture. The receptive field sizes of spinal neurons representing areas of the hind paws increased after trauma and recovered over time-as did the behavioral signs of inflammation and pain. Interestingly, both sides-the ipsi- and the contralateral limb-showed changes in mechanical sensitivity and neuronal network organization after the trauma. The characteristics of evoked neuronal responses recorded in the dorsal horn of the mice were similar between uninjured controls and fractured animals. However, we saw a caudal extension of the represented area of the hind paw in the spinal cord at the injured side and an occurrence of large receptive fields of wide dynamic range neurons. The findings in mice compare with human symptoms in CRPS with ipsi- and also contralateral allodynia and pain. In all mice tested, all signs subsided 12 weeks after trauma. Our data suggest a significant reorganization of spinal circuitry after limb trauma, in a degree more comprehensive than most models of neuropathies. This process seems to be reversible in the rodent. PERSPECTIVE The discovery of enlarged spinal neuronal receptive fields and caudal extension of the representation area of the injured body part, which subsides several weeks after a bone trauma in mice, might give hope to patients of CRPS if-in the future-we are able to translate the rodent recovery mechanisms to post-traumatic humans.
Collapse
Affiliation(s)
- Silke Hirsch
- Department of Neurology, University of Mainz, Mainz, Germany.
| | - Alaa Ibrahim
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Laura Krämer
- Department of Neurology, University of Mainz, Mainz, Germany
| | | | - Tanja Schlereth
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University of Mainz, Mainz, Germany
| |
Collapse
|
40
|
Keppel Hesselink JM, Kopsky DJ, Bhaskar AK. Skin matters! The role of keratinocytes in nociception: a rational argument for the development of topical analgesics. J Pain Res 2016; 10:1-8. [PMID: 28031725 PMCID: PMC5179230 DOI: 10.2147/jpr.s122765] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of neuropathic pain using topical formulations is still in its infancy. Only few topical analgesic formulations have become available for clinical use, and among these, analgesic creams are still rare. This is unfortunate because analgesic creams offer a number of advantages over patches, such as convenience, ease of adapting the frequency of application, and dose, and “rubbing cream where it hurts” involves the patient much more in the therapeutic process compared to patches and other localized treatment modalities. Although the literature supporting the efficacy and safety of analgesic creams (mostly compounded) is growing since the last decade, most pain physicians have not yet noticed and appreciated the therapeutic potential and clinical value of these creams. This is most probably due to a prejudice that topical application should need to act transdermally, more or less as a slow-release formulation, such as in patches delivering opioids. We will discuss this prejudice and show that there are multiple important targets in the skin to be reached by topical analgesic or anti-inflammatory compounds, and that the keratinocyte is one of those targets. By specifically targeting the keratinocyte, analgesia seems possible, effective, and safe, and thus topical analgesic creams may hold promise as a novel treatment modality for neuropathic pain.
Collapse
Affiliation(s)
| | - David J Kopsky
- Institute for Neuropathic Pain, Vespuccistraat 64-III, Amsterdam, the Netherlands
| | - Arun K Bhaskar
- Pain management Centre, Charing Cross Hospital Imperial Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
41
|
Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol 2016; 38:5-19. [PMID: 27793571 DOI: 10.1016/j.it.2016.10.001] [Citation(s) in RCA: 624] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Nociceptor sensory neurons protect organisms from danger by eliciting pain and driving avoidance. Pain also accompanies many types of inflammation and injury. It is increasingly clear that active crosstalk occurs between nociceptor neurons and the immune system to regulate pain, host defense, and inflammatory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In turn, nociceptor neurons release neuropeptides and neurotransmitters from nerve terminals that regulate vascular, innate, and adaptive immune cell responses. Therefore, the dialog between nociceptor neurons and the immune system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat chronic pain and inflammatory diseases.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA; Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Holmes AD, Steinhoff M. Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics. Exp Dermatol 2016; 26:659-667. [DOI: 10.1111/exd.13143] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin Steinhoff
- Department of Dermatology; UCD Charles Institute for Translational Dermatology; University College Dublin; Dublin Ireland
| |
Collapse
|
43
|
Botti M, Ragionieri L, Cacchioli A, Panu R, Gazza F. Immunohistochemical Properties of the Peripheral Neurons Projecting to the Pig Bulbospongiosus Muscle. Anat Rec (Hoboken) 2016; 299:1192-202. [DOI: 10.1002/ar.23389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Maddalena Botti
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Luisa Ragionieri
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Antonio Cacchioli
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Rino Panu
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| | - Ferdinando Gazza
- Department of Veterinary Sciences; University of Parma; via Del Taglio Parma 10 43126 Italy
| |
Collapse
|
44
|
Zappia KJ, Garrison SR, Palygin O, Weyer AD, Barabas ME, Lawlor MW, Staruschenko A, Stucky CL. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes. PLoS One 2016; 11:e0151602. [PMID: 26978657 PMCID: PMC4792390 DOI: 10.1371/journal.pone.0151602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.
Collapse
Affiliation(s)
- Katherine J. Zappia
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sheldon R. Garrison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andy D. Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Marie E. Barabas
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
45
|
Cordero MD. The inflammasome in fibromyalgia and CRPS: a microglial hypothesis? Nat Rev Rheumatol 2015; 11:630. [PMID: 26416596 DOI: 10.1038/nrrheum.2015.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mario D Cordero
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Avda Manuel Siurot s/n, 41013 Seville, Spain
| |
Collapse
|
46
|
Barry CM, Kestell G, Gillan M, Haberberger RV, Gibbins IL. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience 2015; 291:106-17. [PMID: 25681518 DOI: 10.1016/j.neuroscience.2015.01.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Chronic pain is a significant burden and much is attributed to back muscles. Back muscles and their associated fasciae make important and distinct contributions to back pain. Peptidergic nociceptors innervating these structures contribute to central transmission and pain modulation by peripheral and central actions. Plastic changes that augment and prolong pain are exhibited by neurons containing calcitonin gene-related peptide (CGRP) following muscle injury. Subpopulations of neurons containing this peptide have been identified in dorsal root ganglia but the distribution of their fibers in skeletal muscles and associated fasciae has not been fully documented. This study used multiple-labeling immunofluorescence and retrograde axonal tracing to identify dorsal root ganglion cells associated with muscle, and to characterize the distribution and density of their nerve fibers in mouse gastrocnemius and back muscles and in the thoracolumbar fascia. Most nerve fibers in these tissues contained CGRP and two major subpopulations of neurons were found: those containing CGRP and substance P (SP) and those containing CGRP but not SP. Innervation density was three times higher in the thoracolumbar fascia than in muscles of the back. These studies show mouse back and leg muscles are predominantly innervated by neurons containing CGRP, an important modulator of pain signal transmission. There are two distinct populations of neurons containing this peptide and their fibers were three times more densely distributed in the thoracolumbar fascia than back muscles.
Collapse
Affiliation(s)
- C M Barry
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia.
| | - G Kestell
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - M Gillan
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - R V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - I L Gibbins
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| |
Collapse
|
47
|
Bullock CM, Wookey P, Bennett A, Mobasheri A, Dickerson I, Kelly S. Peripheral calcitonin gene-related peptide receptor activation and mechanical sensitization of the joint in rat models of osteoarthritis pain. Arthritis Rheumatol 2014; 66:2188-200. [PMID: 24719311 PMCID: PMC4314689 DOI: 10.1002/art.38656] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Objective To investigate the role of the sensory neuropeptide calcitonin gene-related peptide (CGRP) in peripheral sensitization in experimental models of osteoarthritis (OA) pain. Methods Experimental knee OA was induced in rats by intraarticular injection of monosodium iodoacetate (MIA) or by transection of the medial meniscus (MMT). Single-unit recordings of joint-innervating nociceptors were obtained in MIA- and saline-treated rats following administration of CGRP or the CGRP receptor antagonist CGRP 8–37. Effects of CGRP 8–37 were also examined in rats that underwent MMT and sham operations. Protein and messenger RNA (mRNA) levels of CGRP receptor components in the L3–L4 dorsal root ganglion (DRG) were investigated following MIA treatment. Results In both the MIA and MMT groups, the mechanical sensitivity of joint nociceptors was enhanced compared to that in the control groups. Exogenous CGRP increased mechanical sensitivity in a greater proportion of joint nociceptors in the MIA-treated rats than in the saline-treated rats. Local blockade of endogenous CGRP by CGRP 8–37 reversed both the MIA- and MMT-induced enhancement of joint nociceptor responses. Joint afferent cell bodies coexpressed the receptor for CGRP, called the calcitonin-like receptor (CLR), and the intracellular accessory CGRP receptor component protein. MIA treatment increased the levels of mRNA for CLR in the L3–L4 DRG and the levels of CLR protein in medium and large joint afferent neurons. Conclusion Our findings provide new and compelling evidence implicating a role of CGRP in peripheral sensitization in experimental OA. Our novel finding of CGRP-mediated control of joint nociceptor mechanosensitivity suggests that the CGRP receptor system may be an important target for the modulation of pain during OA. CGRP receptor antagonists recently developed for migraine pain should be investigated for their efficacy against pain in OA.
Collapse
Affiliation(s)
- Craig M Bullock
- University of Nottingham, Nottingham, UK, and University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK
| | | | | | | | | | | |
Collapse
|
48
|
Bullock CM, Kelly S. Calcitonin gene-related peptide receptor antagonists: beyond migraine pain--a possible analgesic strategy for osteoarthritis? Curr Pain Headache Rep 2014; 17:375. [PMID: 24068339 PMCID: PMC3824306 DOI: 10.1007/s11916-013-0375-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) pain is poorly understood and managed, as current analgesics have only limited efficacy and unwanted side effect profiles. A broader understanding of the pathological mechanisms driving OA joint pain is vital for the development of improved analgesics. Both clinical and preclinical data suggest an association between joint levels of the sensory neuropeptide calcitonin gene-related peptide (CGRP) and pain during OA. Whether a direct causative link exists remains an important unanswered question. Given the recent development of small molecule CGRP receptor antagonists with clinical efficacy against migraine pain, the interrogation of the role of CGRP in OA pain mechanisms is extremely timely. In this article, we provide the background to the importance of CGRP in pain mechanisms and review the emerging clinical and preclinical evidence implicating a role for CGRP in OA pain. We suggest that the CGRP receptor antagonists developed for migraine pain warrant further investigation in OA.
Collapse
Affiliation(s)
- C. M. Bullock
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| | - S. Kelly
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| |
Collapse
|
49
|
Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction. Diabetes 2014; 63:1698-711. [PMID: 24222351 DOI: 10.2337/db13-0863] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet amyloid polypeptide (IAPP) aggregates to form amyloid fibrils in patients with type 2 diabetes and acts as a potent stimulus for interleukin (IL)-1β secretion by bone marrow-derived macrophages. We sought to determine the contribution of resident islet macrophages to IAPP-induced inflammation and β-cell dysfunction. In cultured islets, macrophages (F4/80(+)CD11b(+)CD11c(+) cells) were required for IAPP-induced mRNA expression of the proinflammatory cytokines IL-1β, tumor necrosis factor-α, and IL-6 and the anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist. Moreover, IAPP-induced IL-1β synthesis and caspase-1 activation were detected in macrophages but not other islet cell types. Transgenic mice with β-cell human IAPP (hIAPP) expression had impaired glucose tolerance, elevated islet Il1b mRNA, and decreased Il10 and Il1rn expression following high-fat feeding. Islet macrophages were the major source of these transcripts and expressed increased cell surface Ly6C and CD11c in hIAPP transgenic mice. Clodronate liposome-mediated depletion of islet macrophages improved glucose tolerance and blocked proinflammatory gene expression in hIAPP-expressing mice, despite increasing the amount of islet amyloid. These data provide the first evidence that IAPP aggregates skew resident islet macrophages toward a proinflammatory phenotype and suggest a mechanism by which anti-inflammatory therapies may protect β-cells from IAPP-induced islet dysfunction.
Collapse
Affiliation(s)
- Clara Y Westwell-Roper
- Department of Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
50
|
Nekovarova T, Yamamotova A, Vales K, Stuchlik A, Fricova J, Rokyta R. Common mechanisms of pain and depression: are antidepressants also analgesics? Front Behav Neurosci 2014; 8:99. [PMID: 24723864 PMCID: PMC3971163 DOI: 10.3389/fnbeh.2014.00099] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/09/2014] [Indexed: 12/16/2022] Open
Abstract
Neither pain, nor depression exist as independent phenomena per se, they are highly subjective inner states, formed by our brain and built on the bases of our experiences, cognition and emotions. Chronic pain is associated with changes in brain physiology and anatomy. It has been suggested that the neuronal activity underlying subjective perception of chronic pain may be divergent from the activity associated with acute pain. We will discuss the possible common pathophysiological mechanism of chronic pain and depression with respect to the default mode network of the brain, neuroplasticity and the effect of antidepressants on these two pathological conditions. The default mode network of the brain has an important role in the representation of introspective mental activities and therefore can be considered as a nodal point, common for both chronic pain and depression. Neuroplasticity which involves molecular, cellular and synaptic processes modifying connectivity between neurons and neuronal circuits can also be affected by pathological states such as chronic pain or depression. We suppose that pathogenesis of depression and chronic pain shares common negative neuroplastic changes in the central nervous system (CNS). The positive impact of antidepressants would result in a reduction of these pathological cellular/molecular processes and in the amelioration of symptoms, but it may also increase survival times and quality of life of patients with chronic cancer pain.
Collapse
Affiliation(s)
- Tereza Nekovarova
- Institute of Physiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Zoology, Ecology and Ethology Research Group, Faculty of Natural Science, Charles University in PraguePrague, Czech Republic
| | - Anna Yamamotova
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in PraguePrague, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Jitka Fricova
- Department of Anesthesiology and Intensive Care Medicine, Pain Management Center, First Faculty of Medicine and General University Hospital, Charles University in PraguePrague, Czech Republic
| | - Richard Rokyta
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in PraguePrague, Czech Republic
| |
Collapse
|