1
|
Teixidor-Rodríguez P, Brugada-Bellsolà F, Menéndez-Girón S, Parada-Arias L, Hostalot-Panisello C, Garcia-Armengol R, Castañer-Llanes S, Comas-Anton S, Domenech-Viñolas M, Carrato C, Izquierdo C, Busquets-Bonet J, Domínguez-Alonso CJ, Montané E. Periventricular gliomas: Evaluation of the risks associated with ventricular opening in two cohorts-one prospective with TachoSil® for ventricular sealing and the other without it retrospective. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109670. [PMID: 40009909 DOI: 10.1016/j.ejso.2025.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Historically, ventricular opening (VO) has been associated with a greater risk of postoperative complications and a risk of leptomeningeal spread (LMS) in periventricular gliomas especially high grade gliomas. There are no specific products on the market for ventricular sealing with registered studies. TachoSil® is widely used for supportive sealing of the dura mater. We wanted to assess the effectiveness and safety of TachoSil® as a ventricular sealant for periventricular gliomas surgery with VO. METHODS A single-center, analytical, and observational study was conducted. Two cohorts of patients with gliomas and VO were compared. A prospective cohort treated with TachoSil® (2020-2024) and a retrospective control cohort without TachoSil® (2017-2023). We recorded epidemiological, clinical, radiological, and surgical variables and the percentage of complications attributable to the VO: CSF leak, pseudomeningocele, infection, hydrocephalus, or leptomeningeal spread (LMS). RESULTS We included 68 patients: the prospective cohort treated with TachoSil® consisted of 37 patients and the control group of 31. The demographic, clinical, and radiologic characteristics of two cohorts were statistically homogeneous. Ventricular sealing with TachoSil® had wider resections (1.54cm3 ± SD 1.92 residual tumor volume vs. 3.71 cm3 ± SD 5.64, p = 0.032) and fewer postoperative complications related to VO (2 vs. 9 patients, p = 0.008). CONCLUSION This study demonstrates that the use of TachoSil® for sealing glioma patients with VO is safe and effective, reducing complications related to VO, increase the degree of resection and reduces readmissions and reinterventions resulting from complications arising from VO. A randomized clinical trial should be conducted.
Collapse
Affiliation(s)
- Pilar Teixidor-Rodríguez
- Department of Neurosurgery. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - Ferran Brugada-Bellsolà
- Department of Neurosurgery. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Sebastián Menéndez-Girón
- Department of Neurosurgery. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Luisa Parada-Arias
- Department of Neurosurgery. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | - Roser Garcia-Armengol
- Department of Neurosurgery. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Sara Castañer-Llanes
- Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Sílvia Comas-Anton
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO Badalona), Badalona, Spain
| | - Marta Domenech-Viñolas
- Department of Medical Oncology, Institut Català Oncologia Badalona, Badalona, Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Cristina Izquierdo
- Department of Neurology. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Jordi Busquets-Bonet
- Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | - Eva Montané
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Harland AJ, Perks CM. IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis. Int J Mol Sci 2025; 26:4749. [PMID: 40429889 PMCID: PMC12111820 DOI: 10.3390/ijms26104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation-most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent of a neurodevelopmental hierarchy, in which neural stem and progenitor markers are widely expressed by tumour stem-like cells. However, NSC fates and the cues that drive them are poorly understood. Studying the crosstalk within NSC niches may better inform our understanding of glioblastoma initiation and development. Insulin-like growth factor binding protein 2 (IGFBP-2) has a well-established prognostic role in glioblastoma, and cell-based mechanistic studies show the independent activation of downstream oncogenic pathways. However, IGFBP-2 is more commonly recognised as a modulator of insulin-like growth factors (IGFs) for receptor tyrosine kinase signal propagation or attenuation. In the adult human brain, both IGFBP-2 and IGF-II expression are retained in the choroid plexus (ChP) and secreted into the cerebral spinal fluid (CSF). Moreover, secretion by closely associated cells and NSCs themselves position IGFBP-2 and IGF-II as interesting factors within the NSC niche. In this review, we will highlight the experimental findings that show IGFBP-2 and IGF-II influence NSC behaviour. Moreover, we will link this to glioblastoma biology and demonstrate the requirement for further analysis of these factors in glioma stem cells (GSCs).
Collapse
Affiliation(s)
| | - Claire M. Perks
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK;
| |
Collapse
|
3
|
Moon HH, Wongsawaeng D, Park JE, Park SY, Baek S, Kim YH, Song SW, Hong CK, Kim JH, Lee MH, Park YW, Ahn SS, Pollock JM, Barajas RF, Kim HS. Maximum Resection of Noncontrast-enhanced Tumor at MRI Is a Favorable Prognostic Factor in IDH Wild-Type Glioblastoma. Radiology 2025; 315:e241393. [PMID: 40326876 DOI: 10.1148/radiol.241393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Background Isocitrate dehydrogenase (IDH) wild-type glioblastoma often includes a noncontrast-enhanced tumor (NET) component, and the extent of NET resection may serve as a prognostic marker. Purpose To assess clinical outcomes based on gross total resection (GTR) of NET, develop a real-world survival model incorporating GTR-NET for IDH wild-type glioblastoma, and validate the findings in multinational external cohorts. Materials and Methods A retrospective analysis included patients with IDH wild-type glioblastoma in a prospective registry (March 2017 to October 2020) as the training set. External validation used consecutive patients from two centers (March 2017 to January 2023). Patients were stratified into three groups: GTR-NET, GTR in contrast-enhanced tumor (CET) only, and no GTR. A conditional inference tree (CIT) model was developed using GTR type, age, and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status to predict overall survival (OS) and was externally validated. Kaplan-Meier analysis, log-rank test, time-dependent area under the receiver operating characteristic curve, and Harrell C-indexes were used for evaluation. Results In the training set (n = 201; mean age, 60 years ± 11.3; 109 males), four survival groups were identified. GTR-NET was associated with longer OS (median, 32.6 months; IQR, 18.7-46.7 months; P < .001). When GTR-NET was not achieved, OS was stratified as follows: younger than age 60 years (median OS, 23.4 months; IQR, 12.2-34.8 months), age 60 years or older and positive for MGMT (median OS, 19.1 months; IQR, 13.0-27.8 months), and age 60 years or older and negative for MGMT (median OS, 10.7 months; IQR, 6.5-14.1 months). External validation sets (352 patients in external validation set 1 and 60 patients external validation set 2) confirmed these groups (P < .001 and P = .04). Time-dependent areas under the receiver operating characteristic curve ranged from 0.684 (95% CI: 0.623, 0.745) to 0.694 (95% CI: 0.631, 0.758) and from 0.610 (95% CI: 0.449, 0.771) to 0.678 (95% CI: 0.512, 0.844), with CIT sensitivity for GTR-NET at 70.7%-77.3% and 87.6%-87.9% and C-indexes of 0.65 and 0.63. Conclusion A GTR-NET-based survival model was developed and validated, demonstrating that GTR-NET is an independent prognostic marker for longer OS in IDH-wildtype glioblastoma. ClinicalTrials.gov identifier: NCT02619890 © RSNA, 2025 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Hye Hyeon Moon
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea
| | - Doonyaporn Wongsawaeng
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| | - Seunghee Baek
- Department of Statistics and Epidemiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Woo Song
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Myung Hwan Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Ramon Francisco Barajas
- Department of Radiology, Oregon Health and Science University, Portland, Ore
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore
- Knight Cancer Institute, Oregon Health and Science University, Portland, Ore
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea
| |
Collapse
|
4
|
Tariq R, Hussain N, Bajwa MH, Aziz HF, Shamim MS, Enam SA. Multicentric low-grade glioma: A systematic review of a rare neuro-oncological disease. Clin Neurol Neurosurg 2025; 251:108821. [PMID: 40068356 DOI: 10.1016/j.clineuro.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Multicentric and multifocal gliomas are rare and mainly described in high-grade gliomas, however, they have rarely been reported with LGG in about 2-10 % of all cases. This study aims to identify the reported multicentric low-grade gliomas (mLGGs) in literature and review their pathologies, management, and outcomes. METHODS A systematic search using a pre-defined search strategy was conducted across three databases (PubMed, Cochrane Library, and Scopus). Following the PRISMA guidelines, relevant articles were selected. The data including demographic details, clinical presentations, lesion locations, pathology, neurosurgical interventions, extent of resection, adjuvant therapies, and survival outcomes were reported. RESULTS We identified 36 patients across 17 studies. Presenting symptoms varied, with seizures (27.7 %) and headaches (22.2 %) being the most common. Typical imaging features involve hypo- to isotense signals on T1-weighted images and hyperintensity on T2-weighted images, with MR spectroscopy aiding in differentiation. Histological consistency across tumor sites was observed in 29 cases, with some variability in a few. Survival was 66.6 % among patients, and initial reports in the 1960s indicated high mortality due to intracranial pressure shifts. Adjuvant therapies included chemotherapy (14 patients) and radiotherapy (9 patients), though many cases lacked complete therapy data. Although chemotherapy and radiotherapy lacked a significant impact on progression-free survival, early, extensive resection remains advocated, with a mean progression-free survival of 30.14 months. CONCLUSION Most of the current evidence surrounding mLGG consists of case reports with few retrospective case series. Early, extensive resection appears to be the most effective approach for managing mLGG, while adjuvant therapies have limited impact on progression-free survival, highlighting the need for more comprehensive molecular profiling to guide treatment. Further research into standardized protocols for adjuvant therapies and long-term outcomes is essential to optimize survival and improve management of unresectable or recurrent cases.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Nowal Hussain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Muhammad Shahzad Shamim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
5
|
Huang J, Li HY, Xu P, Ren XH, Lin S. Effects of Surgical Ventricular Entry on Gliomas Invading the Thalamus: Clinical Outcomes and Economic Burdens. World Neurosurg 2025; 196:123731. [PMID: 39929266 DOI: 10.1016/j.wneu.2025.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Surgical resection in gliomas invading the thalamus poses significant challenges due to the deep location and its localization near the ventricle. Ventricular entry (VE) during such operation is somewhat inevitable. However, the impact of VE on clinical outcomes is unclear. Additionally, it is unknown whether VE is associated with increased medical costs. METHODS This retrospective study was conducted on patients treated at Beijing Tiantan hospital from January 2013 to December 2021. Variables of interest were surgical VE and subventricular (SVZ) contact. Clinical outcomes of interest included perioperative complications, length of stay (LOS), postoperative hydrocephalus, leptomeningeal dissemination and distant parenchymal recurrence, progression-free survival (PFS) and overall survival (OS), and cost of illness was direct medical costs. Analysis was performed using multivariate logistic, Cox regression, and a multivariate generalized linear model. RESULTS Of the 100 patients pathologically diagnosed with glioma invading the thalamus, 64 (64.0%) patients underwent VE during resection. Multivariate analysis after adjusting confounders revealed that surgical VE, but not SVZ contact, was independently associated with the development of perioperative complications (odds ratio [OR] 3.52, 95% CI 1.19-10.40; P = 0.023), postoperative hydrocephalus (OR 3.70, 95%CI 1.10-12.45; P = 0.035), longer LOS (β 5.99, Wald X2 9.12; P = 0.003) and increased direct medical costs (β 5349.2, Wald X2 4.56; P = 0.033), but not with the distant parenchymal recurrence, PFS, and OS. CONCLUSIONS Although surgical VE does not impact survival, it may impose undesirable events and higher financial burdens for patients with gliomas invading the thalamus.
Collapse
Affiliation(s)
- Jian Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Xu
- Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Xiao-Hui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; National Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; National Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
6
|
Zhong S, Zuo J, Fu X, Wu C, Liu R, Huang Z, Li S. Leptomeningeal dissemination in H3 K27M- mutant diffuse midline gliomas: clinical characteristics, risk factors, and prognostic insights. J Neurooncol 2025; 172:437-445. [PMID: 39812935 PMCID: PMC11937158 DOI: 10.1007/s11060-024-04933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE This study aimed to describe the incidence, clinical and pathological features, and outcomes of H3 K27M- mutant Diffuse Midline Glioma (DMG) patients with leptomeningeal dissemination (LMD) and systematically investigate the predictive and prognostic factors to clarify the response to treatment after the onset of LMD. METHODS A total of 304 patients diagnosed with DMG from October 17, 2017, to October 17, 2023, were enrolled in this study, of which 32 patients were diagnosed with LMD. Logistic regression analyses were conducted to identify the predictors of LMD, including clinical, molecular, and imaging data. Univariable and multivariable cox regression analyses were used for overall survival (OS) and post-LMD survival (PLS) analysis. RESULTS The median OS and PLS were 12.5 and 8.0 months respectively. Tumor with contrast-enhanced lesions reaching ependyma (Ventricular contact type I) was the only independent risk factor for LMD. Male sex and ventricular contact type I were independent risk factors for primary LMD. In all LMD patients, Karnofsky Performance Status (KPS) of ≥ 90 and radiotherapy were statistically significantly associated with longer OS, and primary LMD was significantly associated with shorter OS. Supratentorial location and chemotherapy after LMD diagnosis were independent favorable prognostic factors on PLS. In primary LMD subgroup analysis, radiotherapy was the only independent favorable prognostic factor on OS. CONCLUSIONS The association between contrast-enhanced lesions and ventricular involvement is an independent predictive factor for LMD in DMG patients. Radiotherapy and preoperative KPS may contribute to improved overall survival in these patients. Chemotherapy is a potential treatment option following an LMD diagnosis.
Collapse
Affiliation(s)
- Shuai Zhong
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jinyi Zuo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Rui Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zheng Huang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
7
|
Iwamoto M, Mori N, Shimatani Y, Yamamoto K, Imai Y, Ishihara H. [A case of multifocal glioblastoma with ring enhancement, mimicking cerebral toxoplasmosis with ring-enhanced lesions]. Rinsho Shinkeigaku 2025; 65:224-229. [PMID: 40010714 DOI: 10.5692/clinicalneurol.cn-002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A 57-year-old male patient with a history of daily contact with stray cats was transferred to our hospital with weakness in the left limb and mild disturbance of consciousness. At presentation, he had no fever or signs of meningeal irritation. Cerebrospinal fluid examination revealed lymphocytic pleocytosis; however, the cerebrospinal culture was negative. Computed tomography of the thorax and abdomen showed no abnormalities. Gadolinium-enhanced brain MRI revealed multiple contrast-enhanced lesions in the periventricular white matter and enhanced lateral ventricles. Under the suspicion of cerebral toxoplasmosis, trimethoprim-sulfamethoxazole was administered, but his symptoms gradually worsened. Histopathological findings of the first brain biopsy did not reach the definitive diagnosis. The tissue culture detected Propionibacterium acnes. Despite changes in antibiotics (ceftriaxone and ampicillin), his symptoms progressed. The second brain biopsy revealed diffuse proliferation of atypical glial cells with irregular size of nuclei and necrosis. The diagnosis was glioblastoma, IDH-wild type, CNS WHO grade 4. The radiological findings in this case were initially recognized as isolated multiple lesions with surrounding vasogenic edema, but we authors should have suspected the brain tumor which spreads through the corpus callosum. Multifocal glioblastomas, a rare type of glioblastoma, has worse prognosis than unifocal glioblastoma. This case also emphasizes the importance of the appropriate timing of brain biopsy and careful validation of biopsy sampling.
Collapse
Affiliation(s)
| | - Natsuki Mori
- Department of Neurology, Kakogawa Central City Hospital
| | | | | | - Yukihiro Imai
- Department of Diagnostic Pathology, Kakogawa Central City Hospital
| | | |
Collapse
|
8
|
Ruella ME, Caffaratti G, Del Pont FM, Muggeri A, Yorio F, Mormandi R, Cervio A. Ependymal invasion in High-Grade Glioma. Impact on surgical, functional outcomes, and survival rates. Experience in a Latin-American center. Neurosurg Rev 2025; 48:286. [PMID: 40050499 DOI: 10.1007/s10143-025-03445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
OBJECTIVE Analyze the impact of ependymal invasion in high-grade gliomas (HGG) on surgical, functional outcomes, and survival rates. MATERIALS AND METHODS Retrospective, single-center, analytical study of a cohort of adult patients who underwent surgery for HGG at an Argentine center between 2013 and 2023. Patients with Grade IV supratentorial gliomas, with at least 3 months of follow-up and pre-/postoperative volumetric MRI were evaluated for the presence of ependymal invasion and its impact on prognosis. RESULTS Out of 591 patients undergoing HGG surgery, 263 met the inclusion criteria, with a mean follow-up of 24.8 months (range 5-141). The mean age was 58.5 years with a predominance of male patients (63%). Glioblastomas accounted for 80% of cases, with frontal (28.5%) and temporal (21.6%) lobes as the most frequent tumor locations. Mean preoperative volume was 27.2 cm³, and the mean KPS at surgery was 82. Ependymal invasion was identified in 83 patients (31.5%) and was associated with significantly worse progression-free survival (PFS) and overall survival (OS). These patients had an increased risk of and earlier onset of multicentricity and leptomeningeal spread. Ependymal invasion also negatively impacted the extent of resection, increasing subtotal resections, and it was also associated with a higher risk of complications such as hydrocephalus and CSF leaks. CONCLUSION Ependymal invasion significantly and independently impacts prognosis of patients with HGG. These findings underscore the importance of recognizing ependymal invasion as a key prognostic factor to guide the management and treatment strategies for affected patients.
Collapse
Affiliation(s)
- Mauro Emiliano Ruella
- Department of Neurosurgery, Fleni. Montañeses, Montañeses, Buenos Aires, 2325, CP1428, Argentina.
| | - Guido Caffaratti
- Department of Neurosurgery, Fleni. Montañeses, Montañeses, Buenos Aires, 2325, CP1428, Argentina
| | - Francisco Marcó Del Pont
- Department of Neurosurgery, Fleni. Montañeses, Montañeses, Buenos Aires, 2325, CP1428, Argentina
| | - Alejandro Muggeri
- Department of Neuro-Oncology. Fleni, Montañeses, Buenos Aires, 2325, CP1428, Argentina
| | - Florencia Yorio
- Department of Neuro-Oncology. Fleni, Montañeses, Buenos Aires, 2325, CP1428, Argentina
| | - Ruben Mormandi
- Department of Neurosurgery, Fleni. Montañeses, Montañeses, Buenos Aires, 2325, CP1428, Argentina
| | - Andres Cervio
- Department of Neurosurgery, Fleni. Montañeses, Montañeses, Buenos Aires, 2325, CP1428, Argentina
| |
Collapse
|
9
|
Shimoda Y, Shibahara I, Kanamori M, Matsuda KI, Saito R, Hozawa A, Kumabe T, Endo H, Tominaga T, Sonoda Y. Clinical Effect of Ventricular Entry During Resection of Isocitrate Dehydrogenase-Wildtype Glioblastoma: A Multi-Institutional Analysis. World Neurosurg 2025; 195:123643. [PMID: 39793731 DOI: 10.1016/j.wneu.2024.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE Glioblastomas contacting the subventricular zone (SVZ) are associated with poor prognosis, and the impact of ventricular entry (VE) during resection remains controversial. Since glioblastomas with SVZ involvement often require VE, both SVZ involvement and VE are confounding factors. This study aimed to evaluate the effect of VE during glioblastoma resection by comparing patients with and without SVZ involvement. METHODS This multi-institutional retrospective study reviewed newly diagnosed isocitrate dehydrogenase-wildtype glioblastoma who underwent resection. The focus was on VE, complications, and recurrence patterns based on SVZ status. RESULTS A total of 418 patients were included with 278 (66.5%) undergoing VE and 140 (33.5%) without. Patients with VE had significantly shorter overall survival (OS) than those without VE (18.6 vs. 25.6 months, P = 0.008). VE was more common in patients with SVZ tumors (94.2%) compared to non-SVZ tumors (26.3%, P < 0.0001). Notably, 44 patients with non-SVZ tumors experienced VE, whereas 15 patients with SVZ tumors did not. Regardless of SVZ status, VE did not affect the rates of complications, such as symptomatic subdural effusion, hydrocephalus, infection, or nonlocal recurrence. OS was similar for each group: for SVZ tumors, OS was 17.7 months with VE versus 19.9 months without VE (P = 0.34), and for non-SVZ tumors, OS was 30.8 months with VE versus 25.6 months without VE (P = 0.63). CONCLUSIONS VE during glioblastoma resection does not impact complications or nonlocal recurrence. Surgeons may safely perform VE during resection of both SVZ and non-SVZ glioblastomas without adverse effects.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken-Ichiro Matsuda
- Department of Neurosurgery, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hozawa
- Division of Personalized Prevention and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University Graduate School of Medicine, Yamagata, Japan.
| |
Collapse
|
10
|
Jiang H, Wang X, Chen X, Zhang S, Ren Q, Li M, Li M, Ren X, Lin S, Cui Y. Unraveling the heterogeneity of WHO grade 4 gliomas: insights from clinical, imaging, and molecular characterization. Discov Oncol 2025; 16:111. [PMID: 39899184 PMCID: PMC11790548 DOI: 10.1007/s12672-025-01811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
PURPOSE The 2021 WHO classification of central nervous system tumors introduced molecular criteria to stratify Grade 4 gliomas, which remain heterogeneous. This study aims to elucidate the clinical, radiological, and molecular characteristics of WHO Grade 4 gliomas, focusing on their prognostic implications and the development of a predictive model for astrocytoma IDH-mutant WHO Grade 4 (A4). METHODS A retrospective cohort of 223 patients from Beijing Tiantan Hospital was analyzed. Clinical, radiological, and histopathological data were combined with molecular profiling, focusing on IDH mutations, TERT promoter mutations, and MGMT methylation. A predictive model was developed using LASSO regression to distinguish A4 from glioblastomas and validated with an external dataset from UCSF. RESULTS The cohort included 201 glioblastomas (90.1%) and 22 A4 cases (9.9%). A4 tumors were associated with younger age, higher MGMT promoter methylation, lower rates of TERT mutations, and distinct radiological features, such as cortical non-enhancing tumor infiltration (CnCE). Patients with A4 demonstrated significantly better survival outcomes compared to glioblastoma patients (p < 0.001). The predictive model for A4, incorporating age, tumor margin, and CnCE, achieved an AUC of 0.890 in the training set and 0.951 in the validation set. CONCLUSION Integrating molecular and clinical criteria improves prognostication in Grade 4 gliomas. The predictive model developed in this study effectively identifies A4 tumors, facilitating more personalized therapeutic strategies.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Chen
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Qingsen Ren
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
11
|
Griessmair M, Schramm S, Ziegenfeuter J, Canisius J, Jung K, Delbridge C, Schmidt-Graf F, Mitsdoerffer M, Zimmer C, Meyer B, Metz MC, Wiestler B. Advanced imaging reveals enhanced malignancy in glioblastomas involving the subventricular zone: evidence of increased infiltrative growth and perfusion. J Neurooncol 2025; 171:343-350. [PMID: 39387957 PMCID: PMC11695386 DOI: 10.1007/s11060-024-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Glioblastoma's infiltrative growth and heterogeneity are influenced by neural, molecular, genetic, and immunological factors, with the precise origin of these tumors remaining elusive. Neurogenic zones might serve as the tumor stem cells' nest, with tumors in contact with these zones exhibiting worse outcomes and more aggressive growth patterns. This study aimed to determine if these characteristics are reflected in advanced imaging, specifically diffusion and perfusion data. METHODS In this monocentric retrospective study, 137 glioblastoma therapy-naive patients (IDH-wildtype, grade 4) with advanced preoperative MRI, including perfusion and diffusion imaging, were analyzed. Tumors and neurogenic zones were automatically segmented. Advanced imaging metrics, including cerebral blood volume (CBV) from perfusion imaging, tissue volume mask (TVM), and free water corrected fractional anisotropy (FA-FWE) from diffusion imaging, were extracted. RESULTS SVZ infiltration positively correlated with CBV, indicating higher perfusion in tumors. Significant CBV differences were noted between high and low SVZ infiltration cases at specific percentiles. Negative correlation was observed with TVM and positive correlation with FA-FWE, suggesting more infiltrative tumor growth. Significant differences in TVM and FA-FWE values were found between high and low SVZ infiltration cases. DISCUSSION Glioblastomas with SVZ infiltration exhibit distinct imaging characteristics, including higher perfusion and lower cell density per voxel, indicating a more infiltrative growth and higher vascularization. Stem cell-like characteristics in SVZ-infiltrating cells could explain the increased infiltration and aggressive behavior. Understanding these imaging and biological correlations could enhance the understanding of glioblastoma evolution.
Collapse
Affiliation(s)
- Michael Griessmair
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| | - Severin Schramm
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Julian Ziegenfeuter
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Julian Canisius
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Kirsten Jung
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | | | | | - Meike Mitsdoerffer
- Dept. of Neurology, Klinikum Rechts der Isar, TU Munich, 81675, Munich, Germany
| | - Claus Zimmer
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Dept. of Neurosurgery, Klinikum Rechts der Isar, TU Munich, 81675, Munich, Germany
| | - Marie-Christin Metz
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Benedikt Wiestler
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
- TranslaTUM, TU Munich, 81675, Munich, Germany
| |
Collapse
|
12
|
Shao Z, Yan H, Zhu M, Liu Z, Chen Z, Li W, Wang C, Zhang L, Zheng J. The impact of the subventricular zone invasion types and MGMT methylation status on tumor recurrence and prognosis in glioblastoma. Heliyon 2024; 10:e40558. [PMID: 39687126 PMCID: PMC11647857 DOI: 10.1016/j.heliyon.2024.e40558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Purpose The prognosis of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) with the subventricular zone (SVZ) invasion is extremely unfavorable but the underlying mechanism remains unclear. We aimed to conduct a retrospective study to mainly investigate the prognostic value of SVZ invasion and MGMT status, and developed a novel clinical prediction model based on our findings. Methods 139 patients with IDH wild-type GBM were retrospectively studied. They were categorized into four types, taking into consideration of the spatial positional relationship between tumor, SVZ and the cerebral cortex (Ctx) on the preoperative T1-weighted contrast-enhanced images (T1WI + C). Survival analysis was conducted to identify significant variables, which were then included in a clinical model to predict patient survival outcomes. Results Among the included patients, 41 (29.5 %) were type I, 23 (16.5 %) were type II, 59 (42.4 %) were type III, and 16 (11.5 %) were type IV. In Cox regression analysis, partial surgical resection, SVZ invasion, MGMT unmethylation, short adjuvant chemotherapy cycles, and distant recurrence were identified as independent risk factors of prognosis. A clinical prediction model based on these factors was developed to accurately predicted the survival outcome at 6, 12, and 18 months. Conclusion Both SVZ invasion and MGMT unmethylation negatively influenced the prognosis of patients with IDH wild-type GBM. The clinical model developed in this study accurately predicts the survival outcome, providing a basis and reference for clinical practice.
Collapse
Affiliation(s)
- Zhiying Shao
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hao Yan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Min Zhu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zhengyang Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ziqin Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Weiqi Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chenyang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
13
|
Woo PYM, Law THP, Lee KKY, Chow JSW, Li LF, Lau SSN, Chan TKT, Ho JMK, Lee MWY, Chan DTM, Poon WS. Repeat resection for recurrent glioblastoma in the temozolomide era: a real-world multi-centre study. Br J Neurosurg 2024; 38:1381-1389. [PMID: 36654527 DOI: 10.1080/02688697.2023.2167931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
INTRODUCTION In contrast to standard-of-care treatment of newly diagnosed glioblastoma, there is limited consensus on therapy upon disease progression. The role of resection for recurrent glioblastoma remains unclear. This study aimed to identify factors for overall survival (OS) and post-progression survival (PPS) as well as to validate an existing prediction model. METHODS This was a multi-centre retrospective study that reviewed consecutive adult patients from 2006 to 2019 that received a repeat resection for recurrent glioblastoma. The primary endpoint was PPS defined as from the date of second surgery until death. RESULTS 1032 glioblastoma patients were identified and 190 (18%) underwent resection for recurrence. Patients that had second surgery were more likely to be younger (<70 years) (adjusted OR: 0.3; 95% CI: 0.1-0.6), to have non-eloquent region tumours (aOR: 1.7; 95% CI: 1.1-2.6) and received temozolomide chemoradiotherapy (aOR: 0.2; 95% CI: 0.1-0.4). Resection for recurrent tumour was an independent predictor for OS (aOR: 1.5; 95% CI: 1.3-1.7) (mOS: 16.9 months versus 9.8 months). For patients that previously received temozolomide chemoradiotherapy and subsequent repeat resection (137, 13%), the median PPS was 9.0 months (IQR: 5.0-17.5). Independent PPS predictors for this group were a recurrent tumour volume of >50cc (aOR: 0.6; 95% CI: 0.4-0.9), local recurrence (aOR: 1.7; 95% CI: 1.1-3.3) and 5-ALA fluorescence-guided resection during second surgery (aOR: 1.7; 95% CI: 1.1-2.8). A National Institutes of Health Recurrent Glioblastoma Multiforme Scale score of 0 conferred an mPPS of 10.0 months, a score of 1-2, 9.0 months and a score of 3, 4.0 months (log-rank test, p-value < 0.05). CONCLUSION Surgery for recurrent glioblastoma can be beneficial in selected patients and carries an acceptable morbidity rate. The pattern of recurrence influenced PPS and the NIH Recurrent GBM Scale was a reliable prognostication tool.
Collapse
Affiliation(s)
- Peter Y M Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Tiffany H P Law
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Kelsey K Y Lee
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Joyce S W Chow
- Department of Neurosurgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Lai-Fung Li
- Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Sarah S N Lau
- Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Tony K T Chan
- Department of Neurosurgery, Princess Margaret Hospital, Hong Kong, China
| | - Jason M K Ho
- Department of Neurosurgery, Tuen Mun Hospital, Hong Kong, China
| | - Michael W Y Lee
- Department of Neurosurgery, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Danny T M Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
14
|
Fattahi E, Kankam SB, Khoshnevisan A, Hashemi AP. Evaluating prognosis and survival in patients with glioblastoma in contact with subventricular zone: Tumor location and its correlation with prognosis. Med J Armed Forces India 2024; 80:S21-S28. [PMID: 39734827 PMCID: PMC11670616 DOI: 10.1016/j.mjafi.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background To explore the altered malignant behavior, prognosis and survival of glioblastoma in contact with Subventricular Zone (SVZ) and independent predictors on patients' overall survival. Method The records of 131 patients with supratentorial primary glioblastoma who underwent surgery at our hospital between 2012 and 2018 were reviewed retrospectively. The authors reviewed preoperative MRI images and divided patients into two groups: Glioblastoma not in contact with SVZ (G-SVZ) and glioblastoma in contact with SVZ (G + SVZ). They computed and compared the overall survival (OS) of these two groups using the Kaplan-Meier method. The correlation between G + SVZ and OS was investigated using the Cox Proportional Hazard Ratio Model. Results The median progression-free survival (PFS) of the patient was 10 months (Interquartile Range), and the median OS was 13 months. At six months and one year, the OS was 81 percent and 51.1 percent, respectively. Patients with G + SVZ and G-SVZ had a median OS of 12 months and 15 months, respectively (p = 0.0093). According to Cox Multivariate model, repeat surgery (p = 0.001), among other independent predictors, including age ≥60, Karnofsky Performance Score (KPS) < 70, and extent of resection (Subtotal/biopsy vs total resection), had the strongest associated decreased OS. G + SVZ independently correlated significantly with reduced patient survival (p = 0.014). Conclusion Repeat surgery had the strongest association with decreased OS among the independent predictors of survival in patients with G + SVZ lesions. Prospective studies about molecular mechanisms are needed to explain why G + SVZ lesions are thought to be aggressive and associated with a poor prognosis.
Collapse
Affiliation(s)
- Ehsan Fattahi
- Department of Neurosurgery, Zanjan University of Medical Sciences, Kesharvaz Street, Zanjan, Iran
- Department of Neurosurgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Kesharvaz Street, Tehran, Iran
| | - Samuel Berchi Kankam
- Department of Neurosurgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Kesharvaz Street, Tehran, Iran
| | - Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Kesharvaz Street, Tehran, Iran
| | - Amir Pajman Hashemi
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Kesharvaz Street, Tehran, Iran
| |
Collapse
|
15
|
Toader C, Radoi MP, Dumitru A, Glavan LA, Covache-Busuioc RA, Popa AA, Costin HP, Corlatescu AD, Ciurea AV. High-Grade Thalamic Glioma: Case Report with Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1667. [PMID: 39459454 PMCID: PMC11509817 DOI: 10.3390/medicina60101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024]
Abstract
This case report delves into the case of a 56-year-old female patient presenting with progressive cephalalgia syndrome, nausea, vomiting, and gait disorders, diagnosed with a high-grade thalamic glioma. Glioma is the most common form of central nervous system (CNS) neoplasm that originates from glial cells. Gliomas are diffusely infiltrative tumors that affect the surrounding brain tissue. Glioblastoma is the most malignant type, while pilocytic astrocytomas are the least malignant brain tumors. In the past, these diffuse gliomas were classified into different subtypes and grades based on histopathologies such as a diffuse astrocytoma, oligodendrogliomas, or mixed gliomas/oligoastrocytomas. Currently, gliomas are classified based on molecular and genetic markers. After the gross total resection, a postoperative brain CT scan was conducted, which confirmed the quasi-complete resection of the tumor. The successful gross total resection of the tumor in this case, coupled with significant neurological improvement postoperatively, illustrates the potential benefits of aggressive surgical management for thalamic gliomas. This report advocates for further research to assess the efficacy of such interventions in malignant cases and to establish standardized treatment protocols, considering the heterogeneity in prognostic outcomes and the advancements in molecular diagnostics that offer deeper insights into glioma oncogenesis and progression.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020021 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020021 Bucharest, Romania
| | - Adrian Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
| | - Andrei Adrian Popa
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
| | - Alexandru Vladimir Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.-A.G.); (R.-A.C.-B.); (A.A.P.); (H.-P.C.); (A.-D.C.); (A.V.C.)
- Department of Neurosurgery, Sanador Clinical Hospital, 011038 Bucharest, Romania
| |
Collapse
|
16
|
Park YW, Jang G, Kim SB, Choi K, Han K, Shin NY, Ahn SS, Chang JH, Kim SH, Lee SK, Jain R. Leptomeningeal metastases in isocitrate dehydrogenase-wildtype glioblastomas revisited: Comprehensive analysis of incidence, risk factors, and prognosis based on post-contrast fluid-attenuated inversion recovery. Neuro Oncol 2024; 26:1921-1932. [PMID: 38822538 PMCID: PMC11449090 DOI: 10.1093/neuonc/noae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The incidence of leptomeningeal metastases (LM) has been reported diversely. This study aimed to investigate the incidence, risk factors, and prognosis of LM in patients with isocitrate dehydrogenase (IDH)-wildtype glioblastoma. METHODS A total of 828 patients with IDH-wildtype glioblastoma were enrolled between 2005 and 2022. Baseline preoperative MRI including post-contrast fluid-attenuated inversion recovery (FLAIR) was used for LM diagnosis. Qualitative and quantitative features, including distance between tumor and subventricular zone (SVZ) and tumor volume by automatic segmentation of the lateral ventricles and tumor, were assessed. Logistic analysis of LM development was performed using clinical, molecular, and imaging data. Survival analysis was performed. RESULTS The incidence of LM was 11.4%. MGMTp unmethylation (odds ratio [OR] = 1.92, P = .014), shorter distance between tumor and SVZ (OR = 0.94, P = .010), and larger contrast-enhancing tumor volume (OR = 1.02, P < .001) were significantly associated with LM. The overall survival (OS) was significantly shorter in patients with LM than in those without (log-rank test; P < .001), with median OS of 12.2 and 18.5 months, respectively. The presence of LM remained an independent prognostic factor for OS in IDH-wildtype glioblastoma (hazard ratio = 1.42, P = .011), along with other clinical, molecular, imaging, and surgical prognostic factors. CONCLUSIONS The incidence of LM is high in patients with IDH-wildtype glioblastoma, and aggressive molecular and imaging factors are correlated with LM development. The prognostic significance of LM based on post-contrast FLAIR imaging suggests the acknowledgment of post-contrast FLAIR as a reliable diagnostic tool for clinicians.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Geon Jang
- Department of Industrial Engineering, Yonsei University, Seoul, Korea
| | - Si Been Kim
- Undergraduate School of Biomedical Engineering, Korea University College of Health Science, Seoul, Korea
| | - Kaeum Choi
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Rajan Jain
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Duan H, Xie Y, Wu S, Zhao G, Zeng Z, Hu H, Yu Y, Hu W, Yang Y, Chen Y, Xie H, Chen Z, Zhang G, Flaherty KT, Hu S, Xu H, Ma W, Mou Y. Effect of the mRNA decapping enzyme scavenger (DCPS) inhibitor RG3039 on glioblastoma. J Transl Med 2024; 22:880. [PMID: 39350123 PMCID: PMC11443721 DOI: 10.1186/s12967-024-05658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Patients with glioblastoma (GBM) have a poor prognosis and limited treatment options. The mRNA decapping enzyme scavenger (DCPS) is a cap-hydrolyzing enzyme. The DCPS inhibitor RG3039 exhibited excellent central nervous system bioavailability in vivo and was safe and well tolerated in healthy volunteers in a phase 1 clinical trial. In this study, we investigated the expression of DCPS in GBM and the anti-tumor activity of RG3039 in various preclinical models of GBM. METHODS DCPS expression was examined in human GBM and paired peritumoral tissues. Its prognostic role was evaluated together with clinicopathological characteristics of patients. The anti-GBM effect of RG3039 was determined using GBM cell lines, patient-derived organoids, and orthotopic mouse models. The therapeutic mechanisms of DCPS inhibition were explored. RESULTS DCPS is overexpressed in GBM and is associated with poor survival of patients with GBM. The DCPS inhibitor RG3039 exhibited robust anti-GBM activities in GBM cell lines, patient-derived organoids and orthotopic mouse models, with drug exposure achievable in humans. Mechanistically, RG3039 downregulated STAT5B expression, thereby suppressing proliferation, survival and colony formation of GBM cells. CONCLUSIONS DCPS is a promising target for GBM. Inhibition of DCPS with RG3039 at doses achievable in humans downregulates STAT5B expression and reduces proliferation, survival and colony formation of GBM cells. Given the excellent anti-cancer activity and central nervous system bioavailability in vivo and good tolerance in humans, RG3039 warrants further study as a potential GBM therapy.
Collapse
Affiliation(s)
- Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Xie
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suwen Wu
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guangyin Zhao
- Experimental Animal Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Zeng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongrong Hu
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanjiao Yu
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanzhong Yang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yukun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haoqun Xie
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, China
| | - Gao Zhang
- Faculty of Dentistry, University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Shanshan Hu
- Department of Statistics, Rutgers University, New Brunswick, NJ, USA
| | - Haineng Xu
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wenjuan Ma
- Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
18
|
Azizova A, Prysiazhniuk Y, Wamelink IJHG, Petr J, Barkhof F, Keil VC. Ten Years of VASARI Glioma Features: Systematic Review and Meta-Analysis of Their Impact and Performance. AJNR Am J Neuroradiol 2024; 45:1053-1062. [PMID: 38937115 PMCID: PMC11383402 DOI: 10.3174/ajnr.a8274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/01/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Visually Accessible Rembrandt (Repository for Molecular Brain Neoplasia Data) Images (VASARI) features, a vocabulary to establish reproducible terminology for glioma reporting, have been applied for a decade, but a systematic performance evaluation is lacking. PURPOSE Our aim was to conduct a systematic review and meta-analysis of the performance of the VASARI features set for glioma assessment. DATA SOURCES MEDLINE, Web of Science, EMBASE, and the Cochrane Library were systematically searched until September 26, 2023. STUDY SELECTION Original articles predicting diagnosis, progression, and survival in patients with glioma were included. DATA ANALYSIS The modified Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to evaluate the risk-of-bias. The meta-analysis used a random effects model and forest plot visualizations, if ≥5 comparable studies with a low or medium risk of bias were provided. DATA SYNTHESIS Thirty-five studies (3304 patients) were included. Risk-of-bias scores were medium (n = 33) and low (n = 2). Recurring objectives were overall survival (n = 18) and isocitrate dehydrogenase mutation (IDH; n = 12) prediction. Progression-free survival was examined in 7 studies. In 4 studies (glioblastoma n = 2, grade 2/3 glioma n = 1, grade 3 glioma n = 1), a significant association was found between progression-free survival and single VASARI features. The single features predicting overall survival with the highest pooled hazard ratios were multifocality (hazard ratio = 1.80; 95%-CI, 1.21-2.67; I2 = 53%), ependymal invasion (hazard ratio = 1.73; 95% CI, 1.45-2.05; I2 = 0%), and enhancing tumor crossing the midline (hazard ratio = 2.08; 95% CI, 1.35-3.18; I2 = 52%). IDH mutation-predicting models combining VASARI features rendered a pooled area under the receiver operating characteristic curve of 0.82 (95% CI, 0.76-0.88) at considerable heterogeneity (I2 = 100%). Combined input models using VASARI plus clinical and/or radiomics features outperformed single data-type models in all relevant studies (n = 17). LIMITATIONS Studies were heterogeneously designed and often with a small sample size. Several studies used The Cancer Imaging Archive database, with likely overlapping cohorts. The meta-analysis for IDH was limited due to a high study heterogeneity. CONCLUSIONS Some VASARI features perform well in predicting overall survival and IDH mutation status, but combined models outperform single features. More studies with less heterogeneity are needed to increase the evidence level.
Collapse
Affiliation(s)
- Aynur Azizova
- From the Radiology and Nuclear Medicine Department (A.A., I.J.H.G.W., J.P., F.B., V.C.K.), Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Imaging and Biomarkers (A.A., I.J.H.G.W., V.C.K.), Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Yeva Prysiazhniuk
- The Second Faculty of Medicine (Y.P.), Department of Pathophysiology, Charles University, Prague, Czech Republic
| | - Ivar J H G Wamelink
- From the Radiology and Nuclear Medicine Department (A.A., I.J.H.G.W., J.P., F.B., V.C.K.), Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Imaging and Biomarkers (A.A., I.J.H.G.W., V.C.K.), Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jan Petr
- From the Radiology and Nuclear Medicine Department (A.A., I.J.H.G.W., J.P., F.B., V.C.K.), Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Institute of Radiopharmaceutical Cancer Research (J.P.), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Frederik Barkhof
- From the Radiology and Nuclear Medicine Department (A.A., I.J.H.G.W., J.P., F.B., V.C.K.), Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Brain Imaging (F.B., V.C.K.), Amsterdam Neuroscience, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing (F.B.), University College London, London, United Kingdom
| | - Vera C Keil
- From the Radiology and Nuclear Medicine Department (A.A., I.J.H.G.W., J.P., F.B., V.C.K.), Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Imaging and Biomarkers (A.A., I.J.H.G.W., V.C.K.), Cancer Center Amsterdam, Amsterdam, the Netherlands
- Brain Imaging (F.B., V.C.K.), Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Norton ES, Whaley LA, Jones VK, Brooks MM, Russo MN, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann YW, Lam TT, Chaichana KL, Anastasiadis PZ, Quiñones-Hinojosa A, Guerrero-Cázares H. Cell-specific cross-talk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. SCIENCE ADVANCES 2024; 10:eadn1607. [PMID: 39110807 PMCID: PMC11305394 DOI: 10.1126/sciadv.adn1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially because of subventricular zone contact. Despite this, cross-talk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. In addition, GBM brain tumor-initiating cells (BTICs) increase expression of cathepsin B (CTSB) upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal that both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Last, we show LV-proximal CTSB up-regulation in patients, showing the relevance of this cross-talk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM.
Collapse
Affiliation(s)
- Emily S. Norton
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
- Regenerative Sciences Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lauren A. Whaley
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Vanessa K. Jones
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Mieu M. Brooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marissa N. Russo
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Erik Jessen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - TuKiet T. Lam
- Keck MS and Proteomics Resource, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
20
|
Toyoda M, Shibahara I, Shigeeda R, Fujitani K, Tanihata Y, Hyakutake Y, Handa H, Komai H, Sato S, Inukai M, Hide T, Shimoda Y, Kanamori M, Endo H, Saito R, Matsuda KI, Sonoda Y, Kumabe T. Clinical and molecular features of patients with IDH1 wild-type primary glioblastoma presenting unexpected short-term survival after gross total resection. J Neurooncol 2024; 169:39-50. [PMID: 38839702 DOI: 10.1007/s11060-024-04687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND This study investigated the factors influencing short-term survivors (STS) after gross total resection (GTR) in patients with IDH1 wild-type primary glioblastoma. METHODS We analyzed five independent cohorts who underwent GTR, including 83 patients from Kitasato University (K-cohort), and four validation cohorts of 148 patients from co-investigators (V-cohort), 66 patients from the Kansai Molecular Diagnosis Network for the Central Nervous System tumors, 109 patients from the Cancer Genome Atlas, and 40 patients from the Glioma Longitudinal AnalySiS. The study defined STS as those who had an overall survival ≤ 12 months after GTR with subsequent radiation therapy, and concurrent and adjuvant temozolomide (TMZ). RESULTS The study included 446 patients with glioblastoma. All cohorts experienced unexpected STS after GTR, with a range of 15.0-23.9% of the cases. Molecular profiling revealed no significant difference in major genetic alterations between the STS and non-STS groups, including MGMT, TERT, EGFR, PTEN, and CDKN2A. Clinically, the STS group had a higher incidence of non-local recurrence early in their treatment course, with 60.0% of non-local recurrence in the K-cohort and 43.5% in the V-cohort. CONCLUSIONS The study revealed that unexpected STS after GTR in patients with glioblastoma is not uncommon and such tumors tend to present early non-local recurrence. Interestingly, we did not find any significant genetic alterations in the STS group, indicating that such major alterations are characteristics of GB rather than being reliable predictors for recurrence patterns or development of unexpected STS.
Collapse
Affiliation(s)
- Mariko Toyoda
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Ryota Shigeeda
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazuko Fujitani
- Gene Analysis Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoko Tanihata
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuri Hyakutake
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hajime Handa
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hideto Komai
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Sumito Sato
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiteru Shimoda
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Ken-Ichiro Matsuda
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
21
|
Rhodes CT, Wang Y, Lin CHA. Differential Gene Expression in MRI-classified Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600091. [PMID: 38979247 PMCID: PMC11230240 DOI: 10.1101/2024.06.21.600091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Previous characterization of the genome and transcriptome of glioblastoma (GBM) has revealed molecular alterations that potentially drive GBM pathogenesis and heterogeneity 1-6 . These open-resources are evolving, such as The Cancer Genome Atlas (TCGA) and The Cancer Imaging Atlas (TCIA) at the National Institute of Health comprising a large cohort of molecular and MRI data. Yet, no report deciphers the link between molecular signatures and MRI-classified GBM. The necessity to re-form molecular and imaging data motivated our computational approach to integrate TCIA and TCGA datasets derived from GBM. We uncovered common and distinct molecular signatures across GBM patients and specific to tumor locations, respectively. Despite heterogeneity in GBM, the top 12 genes from our analysis highlights that the dysregulation of a subset of neurotransmitter receptor or transporter and synaptic activity is common across GBM patients. The coherent layer of imaging and molecular information would help us stratify precision neuro-oncology and treatment options in ways that are not possible through MRI or genomic data alone. Our findings provide molecular targets in the disrupted neurocircuit of GBM, suggesting imbalanced excitation and inhibition. Given the fact that GBM patients exhibit similar symptoms resembling patients with neurodegenerative diseases and seizures, our results supported the hypothesis-GBM in the context of neurological disorders beyond a solely cancerous disease.
Collapse
|
22
|
Jung K, Kempter J, Prokop G, Herrmann T, Griessmair M, Kim SH, Delbridge C, Meyer B, Bernhardt D, Combs SE, Zimmer C, Wiestler B, Schmidt-Graf F, Metz MC. Quantitative Assessment of Tumor Contact with Neurogenic Zones and Its Effects on Survival: Insights beyond Traditional Predictors. Cancers (Basel) 2024; 16:1743. [PMID: 38730694 PMCID: PMC11083354 DOI: 10.3390/cancers16091743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
So far, the cellular origin of glioblastoma (GBM) needs to be determined, with prevalent theories suggesting emergence from transformed endogenous stem cells. Adult neurogenesis primarily occurs in two brain regions: the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Whether the proximity of GBM to these neurogenic niches affects patient outcome remains uncertain. Previous studies often rely on subjective assessments, limiting the reliability of those results. In this study, we assessed the impact of GBM's relationship with the cortex, SVZ and SGZ on clinical variables using fully automated segmentation methods. In 177 glioblastoma patients, we calculated optimal cutpoints of minimal distances to the SVZ and SGZ to distinguish poor from favorable survival. The impact of tumor contact with neurogenic zones on clinical parameters, such as overall survival, multifocality, MGMT promotor methylation, Ki-67 and KPS score was also examined by multivariable regression analysis, chi-square test and Mann-Whitney-U. The analysis confirmed shorter survival in tumors contacting the SVZ with an optimal cutpoint of 14 mm distance to the SVZ, separating poor from more favorable survival. In contrast, tumor contact with the SGZ did not negatively affect survival. We did not find significant correlations with multifocality or MGMT promotor methylation in tumors contacting the SVZ, as previous studies discussed. These findings suggest that the spatial relationship between GBM and neurogenic niches needs to be assessed differently. Objective measurements disprove prior assumptions, warranting further research on this topic.
Collapse
Affiliation(s)
- Kirsten Jung
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Johanna Kempter
- Department of Neurology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (J.K.); (G.P.); (F.S.-G.)
| | - Georg Prokop
- Department of Neurology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (J.K.); (G.P.); (F.S.-G.)
| | - Tim Herrmann
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Michael Griessmair
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Su-Hwan Kim
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Claire Delbridge
- Department of Pathology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany;
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine and Health, Technical University of Munich, 81675 München, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (D.B.); (S.E.C.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (D.B.); (S.E.C.)
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
- TranslaTUM, Technical University of Munich, 81675 München, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (J.K.); (G.P.); (F.S.-G.)
| | - Marie-Christin Metz
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| |
Collapse
|
23
|
Cofano F, Bianconi A, De Marco R, Consoli E, Zeppa P, Bruno F, Pellerino A, Panico F, Salvati LF, Rizzo F, Morello A, Rudà R, Morana G, Melcarne A, Garbossa D. The Impact of Lateral Ventricular Opening in the Resection of Newly Diagnosed High-Grade Gliomas: A Single Center Experience. Cancers (Basel) 2024; 16:1574. [PMID: 38672655 PMCID: PMC11049264 DOI: 10.3390/cancers16081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Given the importance of maximizing resection for prognosis in patients with HGG and the potential risks associated with ventricle opening, this study aimed to assess the actual increase in post-surgical complications related to lateral ventricle opening and its influence on OS and PFS. A retrospective study was conducted on newly diagnosed HGG, dividing the patients into two groups according to whether the lateral ventricle was opened (69 patients) or not opened (311 patients). PFS, OS, subependymal dissemination, distant parenchymal recurrences, the development of hydrocephalus and CSF leak were considered outcome measures. A cohort of 380 patients (154 females (40.5%) and 226 males (59.5%)) was involved in the study (median age 61 years). The PFS averaged 10.9 months (±13.3 SD), and OS averaged 16.6 months (± 16.3 SD). Among complications, subependymal dissemination was registered in 15 cases (3.9%), multifocal and multicentric progression in 56 cases (14.7%), leptomeningeal dissemination in 12 (3.2%) and hydrocephalus in 8 (2.1%). These occurrences could not be clearly justified by ventricular opening. The act of opening the lateral ventricles itself does not carry an elevated risk of dissemination, hydrocephalus or cerebrospinal fluid (CSF) leak. Therefore, if necessary, it should be pursued to achieve radical removal of the disease.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Neurosurgery Unit, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Raffaele De Marco
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Elena Consoli
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Francesco Bruno
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Division of Neuro-Oncology, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Alessia Pellerino
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Division of Neuro-Oncology, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Flavio Panico
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | | | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Alberto Morello
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Roberta Rudà
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Division of Neuro-Oncology, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Giovanni Morana
- Division of Neuroradiology, Department of Diagnostic Imaging and Radiotherapy, “Città della Salute e della Scienza” University Hospital, University of Turin, 10124 Turin, Italy
| | - Antonio Melcarne
- Neurosurgery Unit, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Neurosurgery Unit, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| |
Collapse
|
24
|
Ehret F, Zühlke O, Schweizer L, Kahn J, Csapo-Schmidt C, Roohani S, Zips D, Capper D, Adeberg S, Abdollahi A, Knoll M, Kaul D. Validation of a methylation-based signature for subventricular zone involvement in glioblastoma. J Neurooncol 2024; 167:89-97. [PMID: 38376766 PMCID: PMC10978677 DOI: 10.1007/s11060-024-04570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE Glioblastomas (GBM) with subventricular zone (SVZ) contact have previously been associated with a specific epigenetic fingerprint. We aim to validate a reported bulk methylation signature to determine SVZ contact. METHODS Methylation array analysis was performed on IDHwt GBM patients treated at our institution. The v11b4 classifier was used to ensure the inclusion of only receptor tyrosine kinase (RTK) I, II, and mesenchymal (MES) subtypes. Methylation-based assignment (SVZM ±) was performed using hierarchical cluster analysis. Magnetic resonance imaging (MRI) (T1ce) was independently reviewed for SVZ contact by three experienced readers. RESULTS Sixty-five of 70 samples were classified as RTK I, II, and MES. Full T1ce MRI-based rater consensus was observed in 54 cases, which were retained for further analysis. Epigenetic SVZM classification and SVZ were strongly associated (OR: 15.0, p = 0.003). Thirteen of fourteen differential CpGs were located in the previously described differentially methylated LRBA/MAB21L2 locus. SVZ + tumors were linked to shorter OS (hazard ratio (HR): 3.80, p = 0.02) than SVZM + at earlier time points (time-dependency of SVZM, p < 0.05). Considering the SVZ consensus as the ground truth, SVZM classification yields a sensitivity of 96.6%, specificity of 36.0%, positive predictive value (PPV) of 63.6%, and negative predictive value (NPV) of 90.0%. CONCLUSION Herein, we validated the specific epigenetic signature in GBM in the vicinity of the SVZ and highlighted the importance of methylation of a part of the LRBA/MAB21L2 gene locus. Whether SVZM can replace MRI-based SVZ assignment as a prognostic and diagnostic tool will require prospective studies of large, homogeneous cohorts.
Collapse
Affiliation(s)
- Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Oliver Zühlke
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Leonille Schweizer
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Johannes Kahn
- Department of Radiology, Health and Medical University, Potsdam, Germany
| | - Christoph Csapo-Schmidt
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Siyer Roohani
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Capper
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, University Hospital Marburg/Gießen, Marburg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Lombard A, Isci D, Reuter G, Di Valentin E, Hego A, Martin D, Rogister B, Neirinckx V. Development of an intraventricular adeno-associated virus-based labeling strategy for glioblastoma cells nested in the subventricular zone. Neurooncol Adv 2024; 6:vdae161. [PMID: 39445338 PMCID: PMC11497599 DOI: 10.1093/noajnl/vdae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Background Glioblastoma (GBM) is a dreadful brain tumor, with a particular relationship to the adult subventricular zone (SVZ) that has been described as relevant to disease initiation, progression, and recurrence. Methods We propose a novel strategy for the detection and tracking of xenografted GBM cells that are located in the SVZ, based on an intracerebroventricular (icv) recombinant adeno-associated virus (AAV)-mediated color conversion method. We used different patient-derived GBM stem-like cells (GSCs), which we transduced first with a retroviral vector (LRLG) that included a lox-dsRed-STOP-lox cassette, upstream of the eGFP gene, then with rAAVs expressing the Cre-recombinase. Red and green fluorescence is analyzed in vitro and in vivo using flow cytometry and fluorescence microscopy. Results After comparing the efficiency of diverse rAAV serotypes, we confirmed that the in vitro transduction of GSC-LRLG with rAAV-Cre induced a switch from red to green fluorescence. In parallel, we verified that rAAV transduction was confined to the walls of the lateral ventricles. We, therefore, applied this conversion approach in 2 patient-derived orthotopic GSC xenograft models and showed that the icv injection of an rAAV-DJ-Cre after GSC-LRLG tumor implantation triggered the conversion of red GSCs to green, in the periventricular region. Green GSCs were also found at distant places, including the migratory tract and the tumor core. Conclusions This study not only sheds light on the putative outcome of SVZ-nested GBM cells but also shows that icv injection of rAAV vectors allows to transduce and potentially modulate gene expression in hard-to-reach GBM cells of the periventricular area.
Collapse
Affiliation(s)
- Arnaud Lombard
- Neurosurgery Department, CHR Citadelle, Liège, Belgium
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Gilles Reuter
- Neurosurgery Department, University Hospital, Liège, Belgium
| | | | - Alexandre Hego
- GIGA Cell Imaging Platform, University of Liège, Liège, Belgium
| | - Didier Martin
- Neurosurgery Department, University Hospital, Liège, Belgium
| | - Bernard Rogister
- Neurology Department, University Hospital, Liège, Belgium
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Karatsu K, Tamura R, Yo M, Nogawa H, Hino U, Kitamura Y, Ueda R, Toda M. The Role of Genetic Analysis in Distinguishing Multifocal and Multicentric Glioblastomas: An Illustrative Case. Case Rep Oncol 2024; 17:113-121. [PMID: 38260034 PMCID: PMC10803013 DOI: 10.1159/000536051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Glioblastomas can manifest as multiple, simultaneous, noncontiguous lesions. We genetically analyzed multiple glioblastomas and discuss their etiological origins in this report. Case Presentation We present the case of a 47-year-old woman who presented with memory impairment and left partial paralysis. Radiographic imaging revealed three apparently noncontiguous lesions in the right temporal and parietal lobes extending into the corpus callosum, leading to diagnosis of multicentric glioblastomas. All three lesions were excised. Genetic analysis of the lesions revealed a TERT promoter C228T mutation, a roughly equivalent amplification of EGFR, and homozygous deletion of CDKN2A/B exclusively in the two contrast-enhanced lesions. Additionally, the contrast-enhanced lesions exhibited the same two-base pair mutations of PTEN, whereas the non-enhanced lesion showed a partially distinct 13-base pair mutation. The other genetic characteristics were consistent. Rather than each having arisen de novo, we believe that they had developed by infiltration and are therefore best classified as multifocal glioblastomas. Conclusion Our findings underscore anew the possibility of infiltration by glioblastomas, even within regions devoid of signal alterations on T2-weighted images or fluid-attenuated inversion recovery images. Genetic analysis can play a crucial role in differentiating whether multiple glioblastomas are multifocal or multicentric.
Collapse
Affiliation(s)
- Kosuke Karatsu
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Yo
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirotsugu Nogawa
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Utaro Hino
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Kitamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Liu RZ, Choi WS, Jain S, Xu X, Elsherbiny ME, Glubrecht DD, Tessier AG, Easaw JC, Fallone BG, Godbout R. Stationary-to-migratory transition in glioblastoma stem-like cells driven by a fatty acid-binding protein 7-RXRα neurogenic pathway. Neuro Oncol 2023; 25:2177-2190. [PMID: 37499046 PMCID: PMC10708933 DOI: 10.1093/neuonc/noad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) stem-like cells (GSCs) are crucial drivers of treatment resistance and tumor recurrence. While the concept of "migrating" cancer stem cells was proposed a decade ago, the roles and underlying mechanisms of the heterogeneous populations of GSCs remain poorly defined. METHODS Cell migration using GBM cell lines and patient-derived GSCs was examined using Transwell inserts and the scratch assay. Single-cell RNA sequencing data analysis were used to map GSC drivers to specific GBM cell populations. Xenografted mice were used to model the role of brain-type fatty acid-binding protein 7 (FABP7) in GBM infiltration and expansion. The mechanism by which FABP7 and its fatty acid ligands promote GSC migration was examined by gel shift and luciferase gene reporter assays. RESULTS A subpopulation of FABP7-expressing migratory GSCs was identified, with FABP7 upregulating SOX2, a key modulator for GBM stemness and plasticity, and ZEB1, a prominent factor in GBM epithelial-mesenchymal transition and invasiveness. Our data indicate that GSC migration is driven by nuclear FABP7 through activation of RXRα, a nuclear receptor activated by polyunsaturated fatty acids (PUFAs). CONCLUSION Infiltrative progression in GBM is driven by migratory GSCs through activation of a PUFA-FABP7-RXRα neurogenic pathway.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Saket Jain
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | | | - Darryl D Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Jacob C Easaw
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - B Gino Fallone
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
28
|
Rathore S, Iftikhar MA, Chaddad A, Singh A, Gillani Z, Abdulkadir A. Imaging phenotypes predict overall survival in glioma more accurate than basic demographic and cell mutation profiles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107812. [PMID: 37757566 DOI: 10.1016/j.cmpb.2023.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/14/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI), digital pathology imaging (PATH), demographics, and IDH mutation status predict overall survival (OS) in glioma. Identifying and characterizing predictive features in the different modalities may improve OS prediction accuracy. PURPOSE To evaluate the OS prediction accuracy of combinations of prognostic markers in glioma patients. MATERIALS AND METHODS Multi-contrast MRI, comprising T1-weighted, T1-weighted post-contrast, T2-weighted, T2 fluid-attenuated-inversion-recovery, and pathology images from glioma patients (n = 160) were retrospectively collected (1983-2008) from TCGA alongside age and sex. Phenotypic profiling of tumors was performed by quantifying the radiographic and histopathologic descriptors extracted from the delineated region-of-interest in MRI and PATH images. A Cox proportional hazard model was trained with the MRI and PATH features, IDH mutation status, and basic demographic variables (age and sex) to predict OS. The performance was evaluated in a split-train-test configuration using the concordance-index, computed between the predicted risk score and observed OS. RESULTS The average age of patients was 51.2years (women: n = 77, age-range=18-84years; men: n = 83, age-range=21-80years). The median OS of the participants was 494.5 (range,3-4752), 481 (range,7-4752), and 524.5 days (range,3-2869), respectively, in complete dataset, training, and test datasets. The addition of MRI or PATH features improved prediction of OS when compared to models based on age, sex, and mutation status alone or their combination (p < 0.001). The full multi-omics model integrated MRI, PATH, clinical, and genetic profiles and predicted the OS best (c-index= 0.87). CONCLUSION The combination of imaging, genetic, and clinical profiles leads to a more accurate prognosis than the clinical and/or mutation status.
Collapse
Affiliation(s)
- Saima Rathore
- AVID Radiopharmaceuticals, Philadelphia, PA, USA; Eli Lilly and Company, Indianapolis, IN, USA.
| | | | - Ahmad Chaddad
- School of Artificial Intelligence, GUET, Guilin, China
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeeshan Gillani
- Comsats University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ahmed Abdulkadir
- Center for Research in Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Artificial Intelligence, Zurich University of Applied Sciences, Winterthur, ZH, Switzerland
| |
Collapse
|
29
|
Liu X, Zhang Q, Li J, Xu Q, Zhuo Z, Li J, Zhou X, Lu M, Zhou Q, Pan H, Wu N, Zhou Q, Shi F, Lu G, Liu Y, Zhang Z. Coordinatized lesion location analysis empowering ROI-based radiomics diagnosis on brain gliomas. Eur Radiol 2023; 33:8776-8787. [PMID: 37382614 DOI: 10.1007/s00330-023-09871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES To assess the value of coordinatized lesion location analysis (CLLA), in empowering ROI-based imaging diagnosis of gliomas by improving accuracy and generalization performances. METHODS In this retrospective study, pre-operative contrasted T1-weighted and T2-weighted MR images were obtained from patients with gliomas from three centers: Jinling Hospital, Tiantan Hospital, and the Cancer Genome Atlas Program. Based on CLLA and ROI-based radiomic analyses, a fusion location-radiomics model was constructed to predict tumor grades, isocitrate dehydrogenase (IDH) status, and overall survival (OS). An inter-site cross-validation strategy was used for assessing the performances of the fusion model on accuracy and generalization with the value of area under the curve (AUC) and delta accuracy (ACC) (ACCtesting-ACCtraining). Comparisons of diagnostic performances were performed between the fusion model and the other two models constructed with location and radiomics analysis using DeLong's test and Wilcoxon signed ranks test. RESULTS A total of 679 patients (mean age, 50 years ± 14 [standard deviation]; 388 men) were enrolled. Based on tumor location probabilistic maps, fusion location-radiomics models (averaged AUC values of grade/IDH/OS: 0.756/0.748/0.768) showed the highest accuracy in contrast to radiomics models (0.731/0.686/0.716) and location models (0.706/0.712/0.740). Notably, fusion models ([median Delta ACC: - 0.125, interquartile range: 0.130]) demonstrated improved generalization than that of radiomics model ([- 0.200, 0.195], p = 0.018). CONCLUSIONS CLLA could empower ROI-based radiomics diagnosis of gliomas by improving the accuracy and generalization of the models. CLINICAL RELEVANCE STATEMENT This study proposed a coordinatized lesion location analysis for glioma diagnosis, which could improve the performances of the conventional ROI-based radiomics model in accuracy and generalization. KEY POINTS • Using coordinatized lesion location analysis, we mapped anatomic distribution patterns of gliomas with specific pathological and clinical features and constructed glioma prediction models. • We integrated coordinatized lesion location analysis into ROI-based analysis of radiomics to propose new fusion location-radiomics models. • Fusion location-radiomics models, with the advantages of being less influenced by variabilities, improved accuracy, and generalization performances of ROI-based radiomics models on predicting the diagnosis of gliomas.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China
| | - Qirui Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China
| | - Jianrui Li
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China
| | - Qiang Xu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xian Zhou
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China
| | - Mengjie Lu
- School of Public Health, Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Qingqing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Hao Pan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Nan Wu
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qing Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 200232, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 200232, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, 305#, Eastern Zhongshan Rd, Nanjing, 210002, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
30
|
Kahng JY, Kang BH, Lee ST, Choi SH, Kim TM, Park CK, Won JK, Park SH, Son J, Lee JH. Clinicogenetic characteristics and the effect of radiation on the neural stem cell niche in subventricular zone-contacting glioblastoma. Radiother Oncol 2023; 186:109800. [PMID: 37423479 DOI: 10.1016/j.radonc.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Neural stem cells (NSCs) in the subventricular zone (SVZ) are recognized as the cellular origin of glioblastoma (GBM) and a potential therapeutic target. However, the characteristics of SVZ contacting GBM (SVZ + GBM) and radiotherapeutic strategies for NSCs are still controversial. Here, we investigated the clinicogenetic features of SVZ + GBM and evaluated the dose effect of NSC irradiation depending on SVZ involvement. MATERIALS AND METHODS We identified 125 patients with GBM treated with surgery followed by chemoradiotherapy. The genomic profiles were obtained by next-generation sequencing targeting 82 genes. NSCs in the SVZ and hippocampus were contoured using standardized methods, and dosimetric factors were analyzed. SVZ + GBM was defined as GBM with SVZ involvement in a T1 contrast-enhanced image. Progression-free survival (PFS) and overall survival (OS) were used as endpoints. RESULTS The number of patients with SVZ + GBM was 95 (76%). SVZ + GBM showed lower PFS than GBM without SVZ involvement (SVZ-GBM) (median 8.6 vs. 11.5 months, p = 0.034). SVZ contact was not associated with any specific genetic profile but was an independent prognostic factor in multivariate analysis. In SVZ + GBM, patients receiving high doses to the ipsilateral NSC region showed significantly better OS (HR = 1.89, p = 0.011) and PFS (HR = 1.77, p = 0.013). However, in SVZ-GBM, high doses to the ipsilateral NSC region were associated with worse OS (HR = 0.27, p = 0.013) and PFS (HR = 0.37, p = 0.035) in both univariate and multivariate analyses. CONCLUSION SVZ involvement in GBM was not associated with distinct genetic features. However, irradiation of NSCs was associated with better prognosis in patients with tumors contacting the SVZ.
Collapse
Affiliation(s)
- Jee Ye Kahng
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Hee Kang
- Department of Radiation Oncology, Ewha Womans University Medical Center Seoul Hospital, Seongnam, Republic of Korea
| | - Soon-Tae Lee
- Departments of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Departments of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Departments of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
31
|
She L, Mao X, Su L, Liu Z. Prognostic evaluation of patients with glioblastoma using a new score prediction model. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106902. [PMID: 37076410 DOI: 10.1016/j.ejso.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/21/2023]
Abstract
Despite the wide reportage of prognostic factors for glioblastoma (GBM), it is difficult to determine how these factors interact to affect patients' survival. To determine the combination of prognostic factors, we retrospectively analyzed the clinic data of 248 IDH wild-type GBM patients and built a novel prediction model. The survival variables of patients were identified via univariate and multivariate analyses. In addition, the score prediction models were constructed by combining classification and regression tree (CART) analysis with Cox regression analysis. Finally, the prediction model was internally validated using the bootstrap method. Patients were followed for a median of 34.4 (interquartile range, 26.1-46.0) months. Multivariate analysis identified gross total resection (GTR) (HR 0.50, 95% CI: 0.38-0.67), unopened ventricles (HR 0.75 [0.57-0.99]), and MGMT methylation (HR 0.56 [0.41-0.76]) as favorable independent prognostic factors for PFS. GTR (HR 0.67 [0.49-0.92]), unopened ventricles (HR 0.60 [0.44-0.82]), and MGMT methylation (HR 0.54 [0.38-0.76]) were favorable independent prognostic factors for OS. In the process of building the model, we incorporated GTR, ventricular opening, MGMT methylation status, and age. The model had six and five terminal nodules in PFS and OS respectively. We grouped terminal nodes with similar hazard ratios together to form three sub-groups with different PFS and OS (P < 0.001). After the internal verification of bootstrap method, the model had a good fitting and calibration. GTR, unopened ventricles, and MGMT methylation were independently associated with more satisfactory survival. The novel score prediction model which we construct can provide a prognostic reference for GBM.
Collapse
Affiliation(s)
- Lei She
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
32
|
Kim JE, Park JE, Park SY, Kim YH, Hong CK, Kim JH, Kim HS. Defining subventricular zone involvement to predict the survival of patients in isocitrate dehydrogenase-wild type glioblastoma: validation in a prospective registry. Eur Radiol 2023; 33:6448-6458. [PMID: 37060448 DOI: 10.1007/s00330-023-09625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVES The prognostic value of subventricular zone distance (SVD) is unclear because of different definitions and lack of evaluation of clinical survival models. The aim of this study was to define SVD and evaluate its prognostic value in a survival nomogram for glioblastoma. METHODS This retrospective study included 158 (SVD biomarker) from historical glioblastoma patients and 187 (survival modeling) with IDH-wild type glioblastoma from a prospective registry (NCT02619890). SVD was assessed by two radiologists: definition 1, the distance between the tumor edge to subventricular zone (SVZ); definition 2, the distance between the tumor centroid to SVZ; definition 3, enhancement at the ventricular wall. The associations between SVD and overall survival (OS) were evaluated using multivariable Cox proportional hazards regression analysis. Performance of an updated SVD survival model was compared with that of the Radiation Therapy Oncology Group (RTOG) 0525 nomogram. RESULTS SVD according to both definition 1 (hazard ratio [HR]: 0.97, 95% CI: 0.94-0.99; p = .011) and definition 2 (HR: 0.96, 0.94-0.98, p < .001) was adversely associated with OS. Definition 1 was adversely associated with PFS (HR: 0.96, 0.94-0.99, p = .008) and showed the highest reproducibility (intraclass correlation coefficient, 0.90). The SVD-updated model showed similar to better performance than the RTOG model for predicting OS of up to 3 years (AUC: 0.735-0.738 vs. 0.687-0.708), with higher time-dependent specificity for 1-year (89.9% vs. 70.6%) and 3-year OS (93.3% vs. 80.0%). CONCLUSION SVZ distance is an independent adverse prognostic factor in patients with IDH-wild type glioblastoma. Updating the survival model with SVZ provides better time-dependent specificity and reproducibility. KEY POINTS • Subventricular zone distance (SVD) measurement from tumor edge showed high reproducibility. • Longer SVD was independently associated with longer overall survival. • Adding SVD improved time-dependent specificity for survival model in a prospective registry.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-gu, Seoul, 05505, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-gu, Seoul, 05505, Korea.
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-gu, Seoul, 05505, Korea
| |
Collapse
|
33
|
Norton ES, Whaley LA, Jones VK, Brooks MM, Russo MN, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann YW, Lam TT, Chaichana KL, Anastasiadis PZ, Quiñones-Hinojosa A, Guerrero-Cázares H. Cell-specific crosstalk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553966. [PMID: 37662251 PMCID: PMC10473635 DOI: 10.1101/2023.08.19.553966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially due to subventricular zone (SVZ) contact. Despite this, crosstalk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. Additionally, GBM brain tumor initiating cells (BTICs) increase expression of CTSB upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Finally, we show LV-proximal CTSB upregulation in patients, showing the relevance of this crosstalk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM. Highlights Periventricular GBM is more malignant and disrupts neurogenesis in a rodent model.Cell-specific proteomics elucidates tumor-promoting crosstalk between GBM and NPCs.NPCs induce upregulated CTSB expression in GBM, promoting tumor progression.GBM stalls neurogenesis and promotes NPC senescence via CTSB.
Collapse
|
34
|
Otsuji R, Hata N, Funakoshi Y, Kuga D, Togao O, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Sako A, Kikuchi K, Yoshitake T, Yamamoto H, Mizoguchi M, Yoshimoto K. Supramaximal Resection Can Prolong the Survival of Patients with Cortical Glioblastoma: A Volumetric Study. Neurol Med Chir (Tokyo) 2023; 63:364-374. [PMID: 37423755 PMCID: PMC10482486 DOI: 10.2176/jns-nmc.2022-0351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 07/11/2023] Open
Abstract
We aimed to retrospectively determine the resection rate of fluid-attenuated inversion recovery (FLAIR) lesions to evaluate the clinical effects of supramaximal resection (SMR) on the survival of patients with glioblastoma (GBM). Thirty-three adults with newly diagnosed GBM who underwent gross total tumor resection were enrolled. The tumors were classified into cortical and deep-seated groups according to their contact with the cortical gray matter. Pre- and postoperative FLAIR and gadolinium-enhanced T1-weighted imaging tumor volumes were measured using a three-dimensional imaging volume analyzer, and the resection rate was calculated. To evaluate the association between SMR rate and outcome, we subdivided patients whose tumors were totally resected into the SMR and non-SMR groups by moving the threshold value of SMR in 10% increments from 0% and compared their overall survival (OS) change. An improvement in OS was observed when the threshold value of SMR was 30% or more. In the cortical group (n = 23), SMR (n = 8) tended to prolong OS compared with gross total resection (GTR) (n = 15), with the median OS of 69.6 and 22.1 months, respectively (p = 0.0945). Contrastingly, in the deep-seated group (n = 10), SMR (n = 4) significantly shortened OS compared with GTR (n = 6), with median OS of 10.2 and 27.9 months, respectively (p = 0.0221). SMR could help prolong OS in patients with cortical GBM when 30% or more volume reduction is achieved in FLAIR lesions, although the impact of SMR for deep-seated GBM must be validated in larger cohorts.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
- Department of Neurosurgery, Oita University Faculty of Medicine
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Hidetaka Yamamoto
- Department of Pathology, Graduate School of Medical Sciences, Kyushu University
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
35
|
Farhat M, Fuller GN, Wintermark M, Chung C, Kumar VA, Chen M. Multifocal and multicentric glioblastoma: Imaging signature, molecular characterization, patterns of spread, and treatment. Neuroradiol J 2023:19714009231193162. [PMID: 37559514 DOI: 10.1177/19714009231193162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Multifocal and multicentric glioblastoma (GBM) or collectively, m-GBM, is an imaging diagnosis present in up to 34% of patients with GBM. Compared to unifocal disease, patients with m-GBM have worse outcomes owing to the enhanced aggressive nature of the disease and its resistance to currently available treatments. To improve the understanding of its complex behavior, many associations have been established between the radiologic findings of m-GBM and its gross histology, genetic composition, and patterns of spread. Additionally, the holistic knowledge of the exact mechanisms of m-GBM genesis and progression is crucial for identifying potential targets permitting enhanced diagnosis and treatment. In this review, we aim to provide a comprehensive summary of the cumulative knowledge of the unique molecular biology and behavior of m-GBM and the association of these features with neuroimaging.
Collapse
Affiliation(s)
- Maguy Farhat
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
García-Montaño LA, Licón-Muñoz Y, Martinez FJ, Keddari YR, Ziemke MK, Chohan MO, Piccirillo SG. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling. Mol Cancer Res 2023; 21:755-767. [PMID: 37255362 PMCID: PMC10390891 DOI: 10.1158/1541-7786.mcr-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.
Collapse
Affiliation(s)
- Leopoldo A. García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Frank J. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yasine R. Keddari
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of California, Merced, California
| | - Michael K. Ziemke
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Muhammad O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
37
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
38
|
Da-Veiga MA, Coppieters N, Lombard A, Rogister B, Neirinckx V, Piette C. Comprehensive profiling of stem-like features in pediatric glioma cell cultures and their relation to the subventricular zone. Acta Neuropathol Commun 2023; 11:96. [PMID: 37328883 PMCID: PMC10276389 DOI: 10.1186/s40478-023-01586-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/20/2023] [Indexed: 06/18/2023] Open
Abstract
Pediatric high-grade gliomas (pHGG) are brain tumors occurring in children and adolescents associated with a dismal prognosis despite existing treatments. Therapeutic failure in both adult and pHGG has been partially imputed to glioma stem cells (GSC), a subset of cancer cells endowed with stem-like cell potential and malignant, invasive, adaptative, and treatment-resistant capabilities. Whereas GSC have largely been portrayed in adult tumors, less information has been provided in pHGG. The aim of our study was to comprehensively document the stem-like capacities of seven in-use pediatric glioma cell cultures (Res259, UW479, SF188, KNS42, SF8628, HJSD-DIPG-007 and HJSD-DIPG-012) using parallel in vitro assays assessing stem cell-related protein expression, multipotency, self-renewal and proliferation/quiescence, and in vivo investigation of their tumorigenicity and invasiveness. Data obtained from in vitro experiments revealed glioma subtype-dependent expression of stem cell-related markers and varying abilities for differentiation, self-renewal, and proliferation/quiescence. Among tested cultures, DMG H3-K27 altered cultures displayed a particular pattern of stem-like markers expression and a higher fraction of cells with self-renewal potential. Four cultures displaying distinctive stem-like profiles were further tested for their ability to initiate tumors and invade the brain tissue in mouse orthotopic xenografts. The selected cell cultures all showed a great tumor formation capacity, but only DMG H3-K27 altered cells demonstrated a highly infiltrative phenotype. Interestingly, we detected DMG H3-K27 altered cells relocated in the subventricular zone (SVZ), which has been previously described as a neurogenic area, but also a potential niche for brain tumor cells. Finally, we observed an SVZ-induced phenotypic modulation of the glioma cells, as evidenced by their increased proliferation rate. In conclusion, this study recapitulated a systematic stem-like profiling of various pediatric glioma cell cultures and call to a deeper characterization of DMG H3-K27 altered cells nested in the SVZ.
Collapse
Affiliation(s)
- Marc-Antoine Da-Veiga
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Neurosurgery, CHU Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Neurology, CHU Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, Liège, Belgium
| |
Collapse
|
39
|
Russo MN, Whaley LA, Norton ES, Zarco N, Guerrero-Cázares H. Extracellular vesicles in the glioblastoma microenvironment: A diagnostic and therapeutic perspective. Mol Aspects Med 2023; 91:101167. [PMID: 36577547 PMCID: PMC10073317 DOI: 10.1016/j.mam.2022.101167] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM), is the most malignant form of gliomas and the most common and lethal primary brain tumor in adults. Conventional cancer treatments have limited to no efficacy on GBM. GBM cells respond and adapt to the surrounding brain parenchyma known as tumor microenvironment (TME) to promote tumor preservation. Among specific TME, there are 3 of particular interest for GBM biology: the perivascular niche, the subventricular zone neurogenic niche, and the immune microenvironment. GBM cells and TME cells present a reciprocal feedback which results in tumor maintenance. One way that these cells can communicate is through extracellular vesicles. These vesicles include exosomes and microvesicles that have the ability to carry both cancerous and non-cancerous cargo, such as miRNA, RNA, proteins, lipids, and DNA. In this review we will discuss the booming topic that is extracellular vesicles, and how they have the novelty to be a diagnostic and targetable vehicle for GBM.
Collapse
Affiliation(s)
- Marissa N Russo
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Biology Graduate Program, University of North Florida, Jacksonville, FL, USA
| | - Emily S Norton
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA; Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Natanael Zarco
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
40
|
Li S, Dong L, Pan Z, Yang G. Targeting the neural stem cells in subventricular zone for the treatment of glioblastoma: an update from preclinical evidence to clinical interventions. Stem Cell Res Ther 2023; 14:125. [PMID: 37170286 PMCID: PMC10173522 DOI: 10.1186/s13287-023-03325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most common and aggressive adult brain tumors. The conventional treatment strategy, surgery combined with chemoradiotherapy, did not change the fact that the recurrence rate was high and the survival rate was low. Over the years, accumulating evidence has shown that the subventricular zone has an important role in the recurrence and treatment resistance of glioblastoma. The human adult subventricular zone contains neural stem cells and glioma stem cells that are probably a part of reason for therapy resistance and recurrence of glioblastoma. MAIN BODY Over the years, both bench and bedside evidences strongly support the view that the presence of neural stem cells and glioma stem cells in the subventricular zone may be the crucial factor of recurrence of glioblastoma after conventional therapy. It emphasizes the necessity to explore new therapy strategies with the aim to target subventricular zone to eradicate neural stem cells or glioma stem cells. In this review, we summarize the recent preclinical and clinical advances in targeting neural stem cells in the subventricular zone for glioblastoma treatment, and clarify the prospects and challenges in clinical application. CONCLUSIONS Although there remain unresolved issues, current advances provide us with a lot of evidence that targeting the neural stem cells and glioma stem cells in subventricular zone may have the potential to solve the dilemma of glioblastoma recurrence and treatment resistance.
Collapse
Affiliation(s)
- Sijia Li
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
| | - Zhenyu Pan
- Department of Radiation Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000 China
| | - Guozi Yang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
- Department of Radiation Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000 China
| |
Collapse
|
41
|
Loras A, Gonzalez-Bonet LG, Gutierrez-Arroyo JL, Martinez-Cadenas C, Marques-Torrejon MA. Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life (Basel) 2023; 13:life13040905. [PMID: 37109434 PMCID: PMC10145968 DOI: 10.3390/life13040905] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor in adults and it remains incurable. These tumors are very heterogeneous, resistant to cytotoxic therapies, and they show high rates of invasiveness. Therefore, patients face poor prognosis, and the survival rates remain very low. Previous research states that GBM contains a cell population with stem cell characteristics called glioma stem cells (GSCs). These cells are able to self-renew and regenerate the tumor and, therefore, they are partly responsible for the observed resistance to therapies and tumor recurrence. Recent data indicate that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells of origin of GBM, that is, the cell type acquiring the initial tumorigenic mutation. The involvement of SVZ-NSCs is also associated with GBM progression and recurrence. Identifying the cellular origin of GBM is important for the development of early detection techniques and the discovery of early disease markers. In this review, we analyze the SVZ-NSC population as a potential GBM cell of origin, and its potential role for GBM therapies.
Collapse
Affiliation(s)
- Alba Loras
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | - Julia L. Gutierrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | | | - Maria Angeles Marques-Torrejon
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Correspondence: ; Tel.: +34-964-387-478
| |
Collapse
|
42
|
Ermiş E, Althaus A, Blatti M, Uysal E, Leiser D, Norouzi S, Riggenbach E, Hemmatazad H, Ahmadli U, Wagner F. Therapy Resistance of Glioblastoma in Relation to the Subventricular Zone: What Is the Role of Radiotherapy? Cancers (Basel) 2023; 15:cancers15061677. [PMID: 36980563 PMCID: PMC10046464 DOI: 10.3390/cancers15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Glioblastoma is a highly heterogeneous primary malignant brain tumor with marked inter-/intratumoral diversity and a poor prognosis. It may contain a population of neural stem cells (NSC) and glioblastoma stem cells that have the capacity for migration, self-renewal and differentiation. While both may contribute to resistance to therapy, NSCs may also play a role in brain tissue repair. The subventricular zone (SVZ) is the main reservoir of NSCs. This study investigated the impact of bilateral SVZ radiation doses on patient outcomes. We included 147 patients. SVZs were delineated and the dose administered was extracted from dose–volume histograms. Tumors were classified based on their spatial relationship to the SVZ. The dose and outcome correlations were analyzed using the Kaplan–Meier and Cox proportional hazards regression methods. Median progression-free survival (PFS) was 7 months (range: 4–11 months) and median overall survival (OS) was 14 months (range: 9–23 months). Patients with an ipsilateral SVZ who received ≥50 Gy showed significantly better PFS (8 versus 6 months; p < 0.001) and OS (16 versus 11 months; p < 0.001). Furthermore, lower doses (<32 Gy) to the contralateral SVZ were associated with improved PFS (8 versus 6 months; p = 0.030) and OS (15 versus 11 months; p = 0.001). Targeting the potential tumorigenic cells in the ipsilateral SVZ while sparing contralateral NSCs correlated with an improved outcome. Further studies should address the optimization of dose distribution with modern radiotherapy techniques for the areas surrounding infiltrated and healthy SVZs.
Collapse
Affiliation(s)
- Ekin Ermiş
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| | - Alexander Althaus
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Marcela Blatti
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Emre Uysal
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Shokoufe Norouzi
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Elena Riggenbach
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Uzeyir Ahmadli
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
43
|
Liu H, Zhang L, Tan Y, Jiang Y, Lu H. Observation of the delineation of the target volume of radiotherapy in adult-type diffuse gliomas after temozolomide-based chemoradiotherapy: analysis of recurrence patterns and predictive factors. Radiat Oncol 2023; 18:16. [PMID: 36691100 PMCID: PMC9872393 DOI: 10.1186/s13014-023-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation therapy is the cornerstone of treatment for adult-type diffuse gliomas, but recurrences are inevitable. Our study assessed the prognosis and recurrence pattern of different radiotherapy volumes after temozolomide-based chemoradiation in our institution. METHODS The treatment plans were classified into two groups, the plan 1 intentionally involved the entire edema area while plan 2 did not. Retrospectively investigate the differences in outcomes of 118 adult-type diffuse gliomas patients between these two treatment plans. Then, patients who underwent relapse were selected to analyze their recurrence patterns. Continuous dynamic magnetic resonance images (MRI) were collected to categorized the recurrence patterns into central, in-field, marginal, distant, and cerebrospinal fluid dissemination (CSF-d) recurrence. Finally, the clinical and molecular characteristics which influenced progression were analyzed. RESULTS Plan 1 (n = 63) showed a median progression-free survival (PFS) and overall survival (OS) of 9.5 and 26.4 months while plan 2 (n = 55) showed a median PFS and OS of 9.4 and 36.5 months (p = 0.418; p = 0.388). Treatment target volume had no effect on the outcome in patients with adult-type diffuse gliomas. And there was no difference in radiation toxicity (p = 0.388). Among the 90 relapsed patients, a total of 58 (64.4%) patients had central recurrence, 10 (11.1%) patients had in-field recurrence, 3 (3.3%) patients had marginal recurrence, 11 (12.2.%) patients had distant recurrence, and 8 (8.9%) patients had CSF-d recurrence. By treatment plans, the recurrence patterns were similar and there was no significant difference in survival. Reclassifying the progression pattern into local and non-local groups, we observed that oligodendroglioma (n = 10) all relapsed in local and no difference in PFS and OS between the two groups (p > 0.05). Multivariable analysis showed that subventricular zone (SVZ) involvement was the independent risk factor for non-local recurrence in patients with GBM (p < 0.05). CONCLUSION In our study, deliberately including or not the entire edema had no impact on prognosis and recurrence. Patients with varied recurrence patterns had diverse clinical and genetic features.
Collapse
Affiliation(s)
- Hongbo Liu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tan
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Jiang
- grid.412521.10000 0004 1769 1119Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Laurenge A, Huillard E, Bielle F, Idbaih A. Cell of Origin of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:85-101. [PMID: 36587383 DOI: 10.1007/978-3-031-14732-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A better understanding of cellular and molecular biology of primary central nervous system (CNS) tumors is a critical step toward the design of innovative treatments. In addition to improving knowledge, identification of the cell of origin in tumors allows for sharp and efficient targeting of specific tumor cells promoting and driving oncogenic processes. The World Health Organization identifies approximately 150 primary brain tumor subtypes with various ontogeny and clinical outcomes. Identification of the cell of origin of each tumor type with its lineage and differentiation level is challenging. In the current chapter, we report the suspected cell of origin of various CNS primary tumors including gliomas, glioneuronal tumors, medulloblastoma, meningioma, atypical teratoid rhabdoid tumor, germinomas, and lymphoma. Most of them have been pinpointed through transgenic mouse models and analysis of molecular signatures of tumors. Identification of the cell or cells of origin in primary brain tumors will undoubtedly open new therapeutic avenues, including the reactivation of differentiation programs for therapeutic perspectives.
Collapse
Affiliation(s)
- Alice Laurenge
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- INSERM, CNRS, APHP, Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Paris, France
| | - Franck Bielle
- AP-HP, SIRIC CURAMUS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de La Moelle Épinière, ICM, Service de Neuropathologie Escourolle, 75013, Paris, France
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
45
|
Makino R, Higa N, Akahane T, Yonezawa H, Uchida H, Takajo T, Fujio S, Kirishima M, Hamada T, Yamahata H, Kamimura K, Yoshiura T, Yoshimoto K, Tanimoto A, Hanaya R. Alterations in EGFR and PDGFRA are associated with the localization of contrast-enhancing lesions in glioblastoma. Neurooncol Adv 2023; 5:vdad110. [PMID: 37744696 PMCID: PMC10516461 DOI: 10.1093/noajnl/vdad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Background Glioblastoma (GBM) is a malignant brain tumor, with radiological and genetic heterogeneity. We examined the association between radiological characteristics and driver gene alterations. Methods We analyzed the driver genes of 124 patients with IDH wild-type GBM with contrast enhancement using magnetic resonance imaging. We used a next-generation sequencing panel to identify mutations in driver genes and matched them with radiological information. Contrast-enhancing lesion localization of GBMs was classified into 4 groups based on their relationship with the subventricular zone (SVZ) and cortex (Ctx). Results The cohort included 69 men (55.6%) and 55 women (44.4%) with a mean age of 66.4 ± 13.3 years. EGFR and PDGFRA alterations were detected in 28.2% and 22.6% of the patients, respectively. Contrast-enhancing lesion touching both the SVZ and Ctx was excluded because it was difficult to determine whether it originated from the SVZ or Ctx. Contrast-enhancing lesions touching the SVZ but not the Ctx had significantly worse overall survival than non-SVZ lesions (441 days vs. 897 days, P = .002). GBM touching only the Ctx had a better prognosis (901 days vs. 473 days, P < .001) than non-Ctx lesions and was associated with EGFR alteration (39.4% vs. 13.2%, P = .015). Multiple contrast lesions were predominant in PDGFRA alteration and RB1-wild type (P = .036 and P = .031, respectively). Conclusions EGFR alteration was associated with cortical lesions. And PDGFRA alteration correlated with multiple lesions. Our results suggest that clarifying the association between driver genes and tumor localization may be useful in clinical practice, including prognosis prediction.
Collapse
Affiliation(s)
- Ryutaro Makino
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hitoshi Yamahata
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
46
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Sangatsuda Y, Takigawa K, Funakoshi Y, Sako A, Yamamoto H, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid biopsy with multiplex ligation-dependent probe amplification targeting cell-free tumor DNA in cerebrospinal fluid from patients with adult diffuse glioma. Neurooncol Adv 2023; 5:vdac178. [PMID: 36875626 PMCID: PMC9977236 DOI: 10.1093/noajnl/vdac178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Copy number alterations (CNAs) are common in diffuse gliomas and have been shown to have diagnostic significance. While liquid biopsy for diffuse glioma has been widely investigated, techniques for detecting CNAs are currently limited to methods such as next-generation sequencing. Multiplex ligation-dependent probe amplification (MLPA) is an established method for copy number analysis in pre-specified loci. In this study, we investigated whether CNAs could be detected by MLPA using patients' cerebrospinal fluid (CSF). Methods Twenty-five cases of adult diffuse glioma with CNAs were selected. Cell-free DNA (cfDNA) was extracted from the CSF, and DNA sizes and concentrations were recorded. Twelve samples, which had appropriate DNA sizes and concentrations, were subsequently used for analysis. Results MLPA could be successfully performed in all 12 cases, and the detected CNAs were concordant with those detected using tumor tissues. Cases with epidermal growth factor receptor (EGFR) amplification, combination of gain of chromosome 7 and loss of chromosome 10, platelet-derived growth factor receptor alpha amplification, cyclin-dependent kinase 4 amplification, and cyclin-dependent kinase inhibitor 2A (CDKN2A) homozygous deletion were clearly distinguished from those with normal copy numbers. Moreover, EGFR variant III was accurately detected based on CNA. Conclusions Thus, our results demonstrate that copy number analysis can be successfully performed by MLPA of cfDNA extracted from the CSF of patients with diffuse glioma.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
47
|
Hohmann U, von Widdern JC, Ghadban C, Giudice MCL, Lemahieu G, Cavalcanti-Adam EA, Dehghani F, Hohmann T. Jamming Transitions in Astrocytes and Glioblastoma Are Induced by Cell Density and Tension. Cells 2022; 12:cells12010029. [PMID: 36611824 PMCID: PMC9818602 DOI: 10.3390/cells12010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Collective behavior of cells emerges from coordination of cell-cell-interactions and is important to wound healing, embryonic and tumor development. Depending on cell density and cell-cell interactions, a transition from a migratory, fluid-like unjammed state to a more static and solid-like jammed state or vice versa can occur. Here, we analyze collective migration dynamics of astrocytes and glioblastoma cells using live cell imaging. Furthermore, atomic force microscopy, traction force microscopy and spheroid generation assays were used to study cell adhesion, traction and mechanics. Perturbations of traction and adhesion were induced via ROCK or myosin II inhibition. Whereas astrocytes resided within a non-migratory, jammed state, glioblastoma were migratory and unjammed. Furthermore, we demonstrated that a switch from an unjammed to a jammed state was induced upon alteration of the equilibrium between cell-cell-adhesion and tension from adhesion to tension dominated, via inhibition of ROCK or myosin II. Such behavior has implications for understanding the infiltration of the brain by glioblastoma cells and may help to identify new strategies to develop anti-migratory drugs and strategies for glioblastoma-treatment.
Collapse
Affiliation(s)
- Urszula Hohmann
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Julian Cardinal von Widdern
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Maria Cristina Lo Giudice
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Grégoire Lemahieu
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Correspondence:
| |
Collapse
|
48
|
Ferrés A, Di Somma A, Mosteiro A, Topczewski TE, Roldán P, Pedrosa L, Diao D, Pineda E, Sierra À, Enseñat J, González-Sánchez JJ. Photodynamic therapy in glioblastoma: Detection of intraoperative inadvertent 5-ALA mediated photodynamic therapeutical effect after gross total resection. Front Oncol 2022; 12:1080685. [DOI: 10.3389/fonc.2022.1080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
IntroductionGlioblastoma (GBM) remains the most frequent and lethal primary brain tumor in adults, despite advancements in surgical resection techniques and adjuvant chemo- and radiotherapy. The most frequent recurrence pattern (75-90%) occurs in the form of continuous growth from the border of the surgical cavity, thus emphasizing the need for locoregional tumor control. Fluorescence-guided surgical resection using 5-ALA has been widely implemented in surgical protocols for such tumors. Recent literature also highlights the applicability of 5-ALA-mediated photodynamic therapy to obtain locoregional tumor control further. This study aims to identify if 5-ALA mediated photodynamic therapeutic effect after gross total glioblastoma resection has inadvertently occurred due to the exposition of protoporphyrin IX charged peripheral tumoral cells to operative room light sources.MethodsOf 146 patients who were intervened from glioblastoma between 2015 and 2020, 33 were included in the present study. Strict gross total resection (without supralocal resection) had been accomplished, and adjuvant chemoradiotherapy protocol was administered. Two comparison groups were created regarding the location of the recurrence (group A: up to 1 centimeter from the surgical cavity, and group B: beyond 1 centimeter from the surgical cavity). The cutoff point was determined to be 1 centimeter because of the visible light penetrance to the normal brain tissue.ResultsIn univariate analysis, both groups only differed regarding 5-ALA administration, which was significantly related to a minor relative risk of presenting the recurrence within the first centimeter from the surgical cavity (Relative Risk = 0,655 (95% CI 0,442-0,970), p-value=0,046). Results obtained in univariate analysis were corroborated posteriorly in multivariate analysis (RR=0,730 (95% CI 0,340-0,980), p=0,017).DiscussionIn the present study, a probable inadvertent 5-ALA photodynamic therapeutical effect has been detected in vivo. This finding widely opens the door for further research on this promising theragnostic tool.
Collapse
|
49
|
Chen J, Wang T, Liu W, Qiu H, Zhang N, Chen X, Ding X, Zhang L. Extended adjuvant temozolomide in newly diagnosed glioblastoma: A single-center retrospective study. Front Oncol 2022; 12:1000501. [PMID: 36483042 PMCID: PMC9723160 DOI: 10.3389/fonc.2022.1000501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To investigate whether extending adjuvant temozolomide (TMZ) improved the prognosis of newly diagnosed glioblastoma (GBM) patients with different mutation statuses of O6-methylguanine DNA methyltransferase (MGMT), isocitrate dehydrogenase 1 (IDH1), p53 and different expression level of Ki67. METHODS This study was a retrospective cohort study that postoperative patients with newly diagnosed GBM who did not progress after receiving radiotherapy with concomitant and 6 cycles of adjuvant TMZ were enrolled in control group, and those received more than 6 cycles of adjuvant TMZ were incorporated in extended group. Patients were stratified by MGMT expression, IDH1 mutation, p53 mutation and expression level of Ki67. The primary endpoints were overall survival (OS) and progression-free survival (PFS). RESULT A total of 93 postoperative patients with newly diagnosed GBM were included in this study, 40 and 53 cases were included in control group and extended group, respectively. On the whole, extended adjuvant TMZ chemotherapy significantly prolonged OS and PFS of patients with newly diagnosed GBM [median OS (mOS): 29.00 months vs. 16.70 months, P < 0.001; median PFS (mPFS): 13.80 months vs. 9.60 months, P = 0.002]. The results of subgroup analysis showed that patients with methylated MGMT in extended group had significantly longer OS and PFS than those in control group; patients with IDH1 mutation benefited more from extended adjuvant TMZ chemotherapy than those with wild-type IDH1; there was no significant difference in the effect of extended TMZ chemotherapy on OS between GBM patients with wild-type p53 and those with mutant p53; compared with GBM patients with lower expression of Ki67, extended adjuvant TMZ treatment dramatically improved the OS and PFS of those with higher expression of Ki67. CONCLUSION The therapeutic schedule of extended adjuvant TMZ significantly prolonged OS and PFS of patients with newly diagnosed GBM regardless of p53 mutation status, and patients with different MGMT methylation, IDH1 mutation and Ki67 expression level benefited differently from extended adjuvant TMZ chemotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China,Cancer Center, Xuzhou Medical University, Xuzhou, China
| | - Tingting Wang
- First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Wanming Liu
- First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Hui Qiu
- Cancer Center, Xuzhou Medical University, Xuzhou, China
| | - Nie Zhang
- First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Xueting Chen
- First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China,*Correspondence: Longzhen Zhang, ; Xin Ding,
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China,Cancer Center, Xuzhou Medical University, Xuzhou, China,*Correspondence: Longzhen Zhang, ; Xin Ding,
| |
Collapse
|
50
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|