1
|
Pleyerová I, Hamet J, Konrádová H, Lipavská H. Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else? PLANTA 2022; 256:13. [PMID: 35713726 DOI: 10.1007/s00425-022-03925-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Sorbitol metabolism plays multiple roles in many plants, including energy and carbon enrichment, effective defence against various stresses and other emerging specific roles. The underlying mechanisms are, however, incompletely understood. This review provides the current state-of-the-art, highlights missing knowledge and poses several remaining questions. The basic properties of sugar alcohols are summarised and pathways of sorbitol metabolism, including biosynthesis, degradation and key enzymes are described. Sorbitol transport within the plant body is discussed and individual roles of sorbitol in different organs, specific cells or even cellular compartments, are elaborated, clarifying the critical importance of sorbitol allocation and distribution. In addition to plants that accumulate and transport significant quantities of sorbitol (usual producers), there are some that synthesize small amounts of sorbitol or only possess sorbitol metabolising enzymes (non-usual producers). Modern analytical methods have recently enabled large amounts of data to be acquired on this topic, although numerous uncertainties and questions remain. For a long time, it has been clear that enriching carbohydrate metabolism with a sorbitol branch improves plant fitness under stress. Nevertheless, this is probably valid only when appropriate growth and defence trade-offs are ensured. Information on the ectopic expression of sorbitol metabolism genes has contributed substantially to our understanding of the sorbitol roles and raises new questions regarding sorbitol signalling potential. We finally examine strategies in plants producing sorbitol compared with those producing mannitol. Providing an in-depth understanding of sugar alcohol metabolism is essential for the progress in plant physiology as well as in targeted, knowledge-based crop breeding.
Collapse
Affiliation(s)
- Iveta Pleyerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Jaromír Hamet
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Hana Konrádová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
2
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
3
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
4
|
Lo Piccolo E, Landi M, Massai R, Remorini D, Guidi L. Girled-induced anthocyanin accumulation in red-leafed Prunus cerasifera: Effect on photosynthesis, photoprotection and sugar metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110456. [PMID: 32234225 DOI: 10.1016/j.plantsci.2020.110456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
The feedback regulation of photosynthesis depends on the cooperation of multiple signals, including sugars. Herein, the effect of shoot girdling was monitored on a daily basis for three days in green- and red-leafed Prunus cerasifera plants (GLP and RLP, respectively). The effect of anthocyanin presence was investigated in terms of photosynthesis, sugar metabolism and photoprotection. Net photosynthesis (A390) and stomatal conductance were reduced on the first day at 12:00 only in the girdled GLP (29 and 33 %, respectively). Moreover, the girdled GLP displayed at 12:00 higher sucrose, glucose and fructose concentrations than control leaves. Conversely, girdled RLP showed the first reduction of A390 at 18:00, with no significant differences at 12:00 in sucrose and glucose concentrations. The increased biosynthesis of anthocyanins that was only detected in girdled RLP contributed to lowering the accumulation of hexoses. Overall, these results revealed a sugar-buffering role exerted by anthocyanins that positively influence the feedback regulation of photosynthesis. Moreover, non-photochemical quenching, namely pNPQ, revealed the ability of anthocyanins to photoprotect photosystem II from supernumerary photons reaching the chloroplast, whose function was compromised by girdling. The present study provides a starting point to understand the possible link between photosynthesis regulation through sugar signalling and anthocyanin upregulation.
Collapse
Affiliation(s)
- Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy.
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| |
Collapse
|
5
|
Nardozza S, Boldingh HL, Kashuba MP, Feil R, Jones D, Thrimawithana AH, Ireland HS, Philippe M, Wohlers MW, McGhie TK, Montefiori M, Lunn JE, Allan AC, Richardson AC. Carbon starvation reduces carbohydrate and anthocyanin accumulation in red-fleshed fruit via trehalose 6-phosphate and MYB27. PLANT, CELL & ENVIRONMENT 2020; 43:819-835. [PMID: 31834629 DOI: 10.1111/pce.13699] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/08/2019] [Indexed: 05/14/2023]
Abstract
Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.
Collapse
Affiliation(s)
- Simona Nardozza
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Helen L Boldingh
- Sustainable Production, The New Zealand Institute for Plant and Food Research Limited (PFR), Hamilton, New Zealand
| | - M Peggy Kashuba
- Sustainable Production, The New Zealand Institute for Plant and Food Research Limited (PFR), Kerikeri, New Zealand
| | - Regina Feil
- System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Dan Jones
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Amali H Thrimawithana
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Hilary S Ireland
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Marine Philippe
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Mark W Wohlers
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Tony K McGhie
- Food Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Mirco Montefiori
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - John E Lunn
- System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew C Allan
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annette C Richardson
- Sustainable Production, The New Zealand Institute for Plant and Food Research Limited (PFR), Kerikeri, New Zealand
| |
Collapse
|
6
|
Espley RV, Leif D, Plunkett B, McGhie T, Henry-Kirk R, Hall M, Johnston JW, Punter MP, Boldingh H, Nardozza S, Volz RK, O’Donnell S, Allan AC. Red to Brown: An Elevated Anthocyanic Response in Apple Drives Ethylene to Advance Maturity and Fruit Flesh Browning. FRONTIERS IN PLANT SCIENCE 2019; 10:1248. [PMID: 31649709 PMCID: PMC6794385 DOI: 10.3389/fpls.2019.01248] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/06/2019] [Indexed: 05/22/2023]
Abstract
The elevation of anthocyanin contents in fruits and vegetables is a breeding target for many crops. In some fruit, such as tomato, higher anthocyanin concentrations enhance storage and shelf life. In contrast, highly anthocyanic red-fleshed apples (Malus x domestica) have an increased incidence of internal browning flesh disorder (IBFD). To determine the mechanisms underlying this, 'Royal Gala' cultivar apples over-expressing the anthocyanin-related transcription factor (TF) MYB10 (35S:MYB10), which produces fruit with highly pigmented flesh, were compared with standard 'Royal Gala' Wild Type (WT) grown under the same conditions. We saw no incidence of IBFD in WT 'Royal Gala' but the over-expression of MYB10 in the same genetic background resulted in a high rate of IBDF. We assessed concentrations of potential substrates for IBDF and a comparison of metabolites in these apples showed that anthocyanins, chlorogenic acid, pro-cyanidins, flavon-3-ols, and quercetin were all higher in the MYB10 lines. For the flavol-3-ols sub-group, epicatechin rather than catechin was elevated in MYB10 lines compared with the control fruit. Internal ethylene concentrations were measured throughout fruit development and were significantly higher in 35S:MYB10 lines, and ethylene was detected at an earlier developmental stage pre-harvest. Expression analysis of key genes associated with ethylene biosynthesis (aminocyclopropane-1-carboxylic acid synthase and oxidase; ACS and ACO) and polyphenol oxidase (PPO) showed the potential for increased ethylene production and the mechanism for enhanced PPO-mediated browning. The expression of a transcription factor of the ethylene response factor (ERF) class, ERF106, was elevated in red flesh. Analysis of transcriptional activation by MYB10 showed that this transcription factor could activate the expression of apple ACS, ACO, and ERF106 genes. Our data show a link between the elevation of anthocyanin-related transcription factors and an undesirable fruit disorder. The accelerated advancement of maturity via premature ethylene induction has implications for the breeding and storage of these more highly pigmented plant products.
Collapse
Affiliation(s)
| | - Davin Leif
- Plant & Food Research, Auckland, New Zealand
| | | | - Tony McGhie
- Plant & Food Research, Palmerston North, New Zealand
| | | | - Miriam Hall
- Plant & Food Research, Auckland, New Zealand
| | - Jason W. Johnston
- Hawke’s Bay Research Centre, Plant & Food Research, Havelock North, New Zealand
| | - Matthew P. Punter
- Hawke’s Bay Research Centre, Plant & Food Research, Havelock North, New Zealand
| | | | | | - Richard K. Volz
- Hawke’s Bay Research Centre, Plant & Food Research, Havelock North, New Zealand
| | | | - Andrew C. Allan
- Plant & Food Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Andrew C. Allan,
| |
Collapse
|
7
|
Meng D, He M, Bai Y, Xu H, Dandekar AM, Fei Z, Cheng L. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica). THE NEW PHYTOLOGIST 2018; 217:641-656. [PMID: 29027668 DOI: 10.1111/nph.14824] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/28/2017] [Indexed: 05/19/2023]
Abstract
Sugars produced by photosynthesis not only fuel plant growth and development, but may also act as signals to regulate plant growth and development. This work focuses on the role of sorbitol, a sugar alcohol, in flower development and pollen tube growth of apple (Malus domestica). Transgenic 'Greensleeves' apple trees with decreased sorbitol synthesis had abnormal stamen development, a decreased pollen germination rate and reduced pollen tube growth, which were all closely related to lower sorbitol concentrations in stamens. RNA sequencing and quantitative RT-PCR analyses identified reduced transcript levels during stamen development and pollen tube growth in the transgenic trees of a stamen-specific MYB39-like transcription factor, MdMYB39L, and of its putative target genes involved in hexose uptake, cell wall formation and microsporogenesis. Suppressing MdMYB39L expression in pollen via antisense oligonucleotide transfection significantly reduced the expression of its putative target genes and pollen tube growth. Exogenous sorbitol application during flower development partially restored MdMYB39L expression, stamen development, and pollen germination and tube growth of the transgenic trees. Addition of sorbitol to the germination medium also partially restored pollen germination and tube growth of the transgenic trees. We conclude that sorbitol plays an essential role in stamen development and pollen tube growth via MdMYB39L in apple.
Collapse
Affiliation(s)
- Dong Meng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Mingyang He
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yang Bai
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Hongxia Xu
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|