1
|
Taylor JRA, Astbury M, Childers EC, Contractor K, Lin X, Mencarelli J, Prohroff EJ, Tapia K. Time-dependent Changes in Shrimp Armor and Escape Kinematics under Ocean Acidification and Warming. Integr Comp Biol 2024; 64:322-335. [PMID: 38719513 DOI: 10.1093/icb/icae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 09/18/2024] Open
Abstract
Pandalid shrimp use morphological and behavioral defenses against their numerous fish and invertebrate predators. Their rapid tail-flip escape and rigid exoskeleton armor may be sensitive to changes in ocean temperature and carbon chemistry in ways that alter their efficacy and impact mortality. Here we tested the hypothesis that ocean warming and acidification conditions affect the antipredator defenses of Pandalus gurneyi. To test this hypothesis, we exposed shrimp to a combination of pH (8.0, 7.7, 7.5) and temperature (13°C, 17°C) treatments and assessed their tail-flip escape and exoskeleton armor after short-term (2 weeks) and medium-term (3 months) exposure. Results revealed complex effects on escape kinematics, with changes in different variables explained by either pH, temperature, and/or their interaction; decreased pH, for instance, primarily explains reduced acceleration while cold temperature explains increased flexion duration. Carapace mineral content (Ca and Mg) was unaffected, but warmer temperatures primarily drove enhanced mechanical properties (increased hardness and stiffness). No effects were observed in the stiffness and strength of the rostrum. Furthermore, most of the observed effects were temporary, as they occurred after short-term exposure (2 weeks), but disappeared after longer exposure (3 months). This demonstrates that P. gurneyi defenses are affected by short-term exposure to temperature and pH variations; however, they can acclimate to these conditions over time. Nonetheless, changes in the tail-flip escape kinematics may be disadvantageous when trying to flee predators and the enhanced exoskeleton armor could make them more resistant to predation during short periods of environmental change.
Collapse
Affiliation(s)
- Jennifer R A Taylor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mia Astbury
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth C Childers
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kanisha Contractor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyu Lin
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenna Mencarelli
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elisa J Prohroff
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kendra Tapia
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Thomas JT, Huerlimann R, Schunter C, Watson SA, Munday PL, Ravasi T. Transcriptomic responses in the nervous system and correlated behavioural changes of a cephalopod exposed to ocean acidification. BMC Genomics 2024; 25:635. [PMID: 38918719 PMCID: PMC11202396 DOI: 10.1186/s12864-024-10542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.
Collapse
Affiliation(s)
- Jodi T Thomas
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, 4810, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Borges FO, Sampaio E, Santos CP, Rosa R. Climate-Change Impacts on Cephalopods: A Meta-Analysis. Integr Comp Biol 2023; 63:1240-1265. [PMID: 37468442 DOI: 10.1093/icb/icad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Aside from being one of the most fascinating groups of marine organisms, cephalopods play a major role in marine food webs, both as predators and as prey, while representing key living economic assets, namely for artisanal and subsistence fisheries worldwide. Recent research suggests that cephalopods are benefitting from ongoing environmental changes and the overfishing of certain fish stocks (i.e., of their predators and/or competitors), putting forward the hypothesis that this group may be one of the few "winners" of climate change. While many meta-analyses have demonstrated negative and overwhelming consequences of ocean warming (OW), acidification (OA), and their combination for a variety of marine taxa, such a comprehensive analysis is lacking for cephalopod molluscs. In this context, the existing literature was surveyed for peer-reviewed articles featuring the sustained (≥24 h) and controlled exposure of cephalopod species (Cephalopoda class) to these factors, applying a comparative framework of mixed-model meta-analyses (784 control-treatment comparisons, from 47 suitable articles). Impacts on a wide set of biological categories at the individual level (e.g., survival, metabolism, behavior, cell stress, growth) were evaluated and contrasted across different ecological attributes (i.e., taxonomic lineages, climates, and ontogenetic stages). Contrary to what is commonly assumed, OW arises as a clear threat to cephalopods, while OA exhibited more restricted impacts. In fact, OW impacts were ubiquitous across different stages of ontogeny, taxonomical lineages (i.e., octopuses, squids, and cuttlefish). These results challenge the assumption that cephalopods benefit from novel ocean conditions, revealing an overarching negative impact of OW in this group. Importantly, we also identify lingering literature gaps, showing that most studies to date focus on OW and early life stages of mainly temperate species. Our results raise the need to consolidate experimental efforts in a wider variety of taxa, climate regions, life stages, and other key environmental stressors, such as deoxygenation and hypoxia, to better understand how cephalopods will cope with future climate change.
Collapse
Affiliation(s)
- Francisco O Borges
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
| | - Eduardo Sampaio
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitatsstrasse 10, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Biology, University of Konstanz, Universitatsstrasse 10, Konstanz 78464, Germany
| | - Catarina P Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, Carcavelos 2775-405, Portugal
- Sphyrna Association, Boa Vista Island, Sal Rei, Cape Verde
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisboa1 749-016, Portugal
| |
Collapse
|
4
|
Xie J, Sun X, Li P, Zhou T, Jiang R, Wang X. The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis). MARINE POLLUTION BULLETIN 2023; 190:114831. [PMID: 36944286 DOI: 10.1016/j.marpolbul.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.
Collapse
Affiliation(s)
- Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohan Sun
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Pengfei Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Rijin Jiang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Watson SA, Neo ML. Conserving threatened species during rapid environmental change: using biological responses to inform management strategies of giant clams. CONSERVATION PHYSIOLOGY 2021; 9:coab082. [PMID: 34912564 PMCID: PMC8666801 DOI: 10.1093/conphys/coab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Giant clams are threatened by overexploitation for human consumption, their valuable shells and the aquarium trade. Consequently, these iconic coral reef megafauna are extinct in some former areas of their range and are included in the International Union for Conservation of Nature (IUCN) Red List of Threatened Species and Convention on International Trade in Endangered Species of Wild Fauna and Flora. Now, giant clams are also threatened by rapid environmental change from both a suite of local and regional scale stressors and global change, including climate change, global warming, marine heatwaves and ocean acidification. The interplay between local- to regional-scale and global-scale drivers is likely to cause an array of lethal and sub-lethal effects on giant clams, potentially limiting their depth distribution on coral reefs and decreasing suitable habitat area within natural ranges of species. Global change stressors, pervasive both in unprotected and protected areas, threaten to diminish conservation efforts to date. International efforts urgently need to reduce carbon dioxide emissions to avoid lethal and sub-lethal effects of global change on giant clams. Meanwhile, knowledge of giant clam physiological and ecological responses to local-regional and global stressors could play a critical role in conservation strategies of these threatened species through rapid environmental change. Further work on how biological responses translate into habitat requirements as global change progresses, selective breeding for resilience, the capacity for rapid adaptive responses of the giant clam holobiont and valuing tourism potential, including recognizing giant clams as a flagship species for coral reefs, may help improve the prospects of these charismatic megafauna over the coming decades.
Collapse
Affiliation(s)
- Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, 70-102 Flinders Street, Townsville, Queensland, 4810, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland, 4811, Australia
| | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
6
|
Thomas JT, Spady BL, Munday PL, Watson SA. The role of ligand-gated chloride channels in behavioural alterations at elevated CO2 in a cephalopod. J Exp Biol 2021; 224:269059. [PMID: 34100547 DOI: 10.1242/jeb.242335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 11/20/2022]
Abstract
Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poorly understood. We pharmacologically tested the role of GABA-, glutamate-, acetylcholine- and dopamine-gated chloride channels in CO2-induced behavioural changes in a cephalopod, the two-toned pygmy squid (Idiosepius pygmaeus). We exposed squid to ambient (∼450 µatm) or elevated (∼1000 µatm) CO2 for 7 days. Squid were treated with sham, the GABAA receptor antagonist gabazine or the non-specific GABAA receptor antagonist picrotoxin, before measurement of conspecific-directed behaviours and activity levels upon mirror exposure. Elevated CO2 increased conspecific-directed attraction and aggression, as well as activity levels. For some CO2-affected behaviours, both gabazine and picrotoxin had a different effect at elevated compared with ambient CO2, providing robust support for the GABA hypothesis within cephalopods. In another behavioural trait, picrotoxin but not gabazine had a different effect in elevated compared with ambient CO2, providing the first pharmacological evidence, in fish and marine invertebrates, for altered functioning of ligand-gated chloride channels, other than the GABAAR, underlying CO2-induced behavioural changes. For some other behaviours, both gabazine and picrotoxin had a similar effect in elevated and ambient CO2, suggesting altered function of ligand-gated chloride channels was not responsible for these CO2-induced changes. Multiple mechanisms may be involved, which could explain the variability in the CO2 and drug treatment effects across behaviours.
Collapse
Affiliation(s)
- Jodi T Thomas
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Blake L Spady
- Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA.,ReefSense Pty Ltd., Cranbrook, QLD 4814, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, QLD 4810, Australia
| |
Collapse
|
7
|
Spady BL, Watson SA. Bigfin reef squid demonstrate capacity for conditional discrimination and projected future carbon dioxide levels have no effect on learning capabilities. PeerJ 2020; 8:e9865. [PMID: 33062415 PMCID: PMC7531335 DOI: 10.7717/peerj.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 11/20/2022] Open
Abstract
Anthropogenic carbon dioxide (CO2) emissions are being absorbed by the oceans, a process known as ocean acidification, and risks adversely affecting a variety of behaviours in a range of marine species, including inhibited learning in some fishes. However, the effects of elevated CO2 on learning in advanced invertebrates such as cephalopods are unknown. Any impacts to the learning abilities of cephalopods could have far-reaching consequences for their populations and the communities they inhabit. Cephalopods have some of the most advanced cognitive abilities among invertebrates and are one of the few invertebrate taxa in which conditional discrimination has been demonstrated, though the trait has not been demonstrated in any species of squid. Here, we tested for the first time the capacity for conditional discrimination in a squid species (Sepioteuthis lessoniana). Furthermore, we investigated the effects of projected future CO2 levels (1,084 µatm) on conditional discrimination and learning more generally. A three-task experiment within a two-choice arena was used to test learning and conditional discrimination. Learning was measured by improvements in task completion in repeated trials over time and the number of trials required to pass each task. Squid exhibited significant learning capabilities, with an increase in correct choices over successive trials and a decrease in the number of trials needed to complete the successive tasks. Six of the 12 squid tested successfully passed all three tasks indicating a capacity for conditional discrimination in the species. Elevated CO2 had no effect on learning or on the capacity for conditional discrimination in squid. This study highlights the remarkable cognitive abilities of S. lessoniana, demonstrated by their capacity for conditional discrimination, and suggests that ocean acidification will not compromise learning abilities. However, other behavioural traits in the species have been shown to be altered at comparable elevated CO2 conditions. It is not clear why some ecologically important behaviours are altered by elevated CO2 whereas others are unaffected. Future research should focus on the physiological mechanism responsible for altered behaviours in squid at elevated CO2.
Collapse
Affiliation(s)
- Blake L Spady
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia
| |
Collapse
|
8
|
Otjacques E, Repolho T, Paula JR, Simão S, Baptista M, Rosa R. Cuttlefish Buoyancy in Response to Food Availability and Ocean Acidification. BIOLOGY 2020; 9:E147. [PMID: 32630264 PMCID: PMC7407613 DOI: 10.3390/biology9070147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Carbon dioxide concentration in the atmosphere is expected to continue rising by 2100, leading to a decrease in ocean pH in a process known as ocean acidification (OA). OA can have a direct impact on calcifying organisms, including on the cuttlebone of the common cuttlefish Sepia officinalis. Moreover, nutritional status has also been shown to affect the cuttlebone structure and potentially affect buoyancy. Here, we aimed to understand the combined effects of OA (980 μatm CO2) and food availability (fed vs. non-fed) on the buoyancy of cuttlefish newborns and respective cuttlebone weight/area ratio (as a proxy for calcification). Our results indicate that while OA elicited negative effects on hatching success, it did not negatively affect the cuttlebone weight/area ratio of the hatchlings-OA led to an increase in cuttlebone weight/area ratio of fed newborns (but not in unfed individuals). The proportion of "floating" (linked to buoyancy control loss) newborns was greatest under starvation, regardless of the CO2 treatment, and was associated with a drop in cuttlebone weight/area ratio. Besides showing that cuttlefish buoyancy is unequivocally affected by starvation, here, we also highlight the importance of nutritional condition to assess calcifying organisms' responses to ocean acidification.
Collapse
Affiliation(s)
- Eve Otjacques
- MARE—Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; (T.R.); (J.R.P.); (S.S.); (M.B.); (R.R.)
| | | | | | | | | | | |
Collapse
|
9
|
Horwitz R, Norin T, Watson SA, Pistevos JCA, Beldade R, Hacquart S, Gattuso JP, Rodolfo-Metalpa R, Vidal-Dupiol J, Killen SS, Mills SC. Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc. Sci Rep 2020; 10:5461. [PMID: 32214174 PMCID: PMC7096400 DOI: 10.1038/s41598-020-62304-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/26/2020] [Indexed: 11/23/2022] Open
Abstract
Environmentally-induced changes in fitness are mediated by direct effects on physiology and behaviour, which are tightly linked. We investigated how predicted ocean warming (OW) and acidification (OA) affect key ecological behaviours (locomotion speed and foraging success) and metabolic rate of a keystone marine mollusc, the sea hare Stylocheilus striatus, a specialist grazer of the toxic cyanobacterium Lyngbya majuscula. We acclimated sea hares to OW and/or OA across three developmental stages (metamorphic, juvenile, and adult) or as adults only, and compare these to sea hares maintained under current-day conditions. Generally, locomotion speed and time to locate food were reduced ~1.5- to 2-fold when the stressors (OW or OA) were experienced in isolation, but reduced ~3-fold when combined. Decision-making was also severely altered, with correct foraging choice nearly 40% lower under combined stressors. Metabolic rate appeared to acclimate to the stressors in isolation, but was significantly elevated under combined stressors. Overall, sea hares that developed under OW and/or OA exhibited a less severe impact, indicating beneficial phenotypic plasticity. Reduced foraging success coupled with increased metabolic demands may impact fitness in this species and highlight potentially large ecological consequences under unabated OW and OA, namely in regulating toxic cyanobacteria blooms on coral reefs.
Collapse
Affiliation(s)
- Rael Horwitz
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.
- Laboratoire d'Excellence "CORAIL", Nouméa, Nouvelle-Calédonie, France.
| | - Tommy Norin
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom
- Technical University of Denmark, DTU Aqua: National Institute of Aquatic Resources, 2800 Kgs, Lyngby, Denmark
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jennifer C A Pistevos
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence "CORAIL", Nouméa, Nouvelle-Calédonie, France
| | - Ricardo Beldade
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Pontificia Universidad Católica de Chile, Departamento de Ecología, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Simon Hacquart
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Jean-Pierre Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230, Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007, Paris, France
| | - Riccardo Rodolfo-Metalpa
- Laboratoire d'Excellence "CORAIL", Nouméa, Nouvelle-Calédonie, France
- ENTROPIE IRD - Université de La Réunion - CNRS, Nouméa, 98848, Nouvelle-Calédonie, France
| | - Jeremie Vidal-Dupiol
- Laboratoire d'Excellence "CORAIL", Nouméa, Nouvelle-Calédonie, France
- IFREMER, UMR 241 EIO, BP 7004, 98719, Taravao, Tahiti, French Polynesia
- IHPE, Université Montpellier, CNRS, IFREMER, Université Perpignan Via Domitia, F-34095, Montpellier, France
| | - Shaun S Killen
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom
| | - Suzanne C Mills
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence "CORAIL", Nouméa, Nouvelle-Calédonie, France
| |
Collapse
|
10
|
Spady BL, Munday PL, Watson SA. Elevated seawater pCO 2 affects reproduction and embryonic development in the pygmy squid, Idiosepius pygmaeus. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104812. [PMID: 31610954 DOI: 10.1016/j.marenvres.2019.104812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The oceans are absorbing additional carbon dioxide (CO2) from the atmosphere and projected future CO2 levels and ocean acidification could have negative implications for many marine organisms, especially during early life stages. Cephalopods are ecologically important in marine ecosystems, yet the potential effects of increased partial pressure of CO2 (pCO2) in seawater on cephalopod reproduction and embryonic development are little studied. We allowed adult two-toned pygmy squid (Idiosepius pygmaeus) to breed in ambient control (~445 μatm; ~8.05 pHT) or elevated pCO2 conditions (~940 μatm; ~7.78 pHT) and compared reproductive traits in adults and developmental characteristics of their eggs, which remained in control or elevated pCO2 treatments until hatching. Breeding pairs at elevated pCO2 produced clutches with 40% fewer eggs, vitelli that were 14% smaller directly after spawning, embryos that were 5% smaller upon hatching, and eggs with an 8% increase in late-stage egg swelling compared with pairs at control conditions. Elevated pCO2 did not affect fertility, time to hatch, or hatching success. Eggs were laid 40% closer together in elevated pCO2 compared with control conditions, indicating a possible effect of elevated pCO2 on reproductive behaviour. These results show that elevated pCO2 can adversely affect reproduction and embryonic development of the two-toned pygmy squid. As the potential for adaptation is influenced by reproductive success, testing the capacity for squid to adapt to future ocean conditions should be a priority for future research.
Collapse
Affiliation(s)
- Blake L Spady
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, 4810, Australia
| |
Collapse
|
11
|
Cohen‐Rengifo M, Agüera A, Bouma T, M'Zoudi S, Flammang P, Dubois P. Ocean warming and acidification alter the behavioral response to flow of the sea urchin Paracentrotus lividus. Ecol Evol 2019; 9:12128-12143. [PMID: 31832148 PMCID: PMC6854335 DOI: 10.1002/ece3.5678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022] Open
Abstract
Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2-month experiment was performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 17°C-pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no-flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near- and far-future OW and OA, individuals fully balanced their acid-base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pHT7.7 while in the extreme treatment (21°C-pHT7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21°C-pHT7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.
Collapse
Affiliation(s)
- Mishal Cohen‐Rengifo
- Laboratoire de Biologie des Organismes Marins et BiomimétismeInstitut de recherches en BiosciencesUniversité de MonsMonsBelgium
- Laboratoire de Biologie Marine (CP160/15)Université Libre de BruxellesBrusselsBelgium
| | - Antonio Agüera
- Laboratoire de Biologie Marine (CP160/15)Université Libre de BruxellesBrusselsBelgium
- Institute of Marine ResearchAustevoll Research StationStorebøNorway
| | - Tjeerd Bouma
- Department of Estuarine and Delta SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Utrecht UniversityYersekeThe Netherlands
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine (CP160/15)Université Libre de BruxellesBrusselsBelgium
| | - Patrick Flammang
- Laboratoire de Biologie des Organismes Marins et BiomimétismeInstitut de recherches en BiosciencesUniversité de MonsMonsBelgium
| | - Philippe Dubois
- Laboratoire de Biologie Marine (CP160/15)Université Libre de BruxellesBrusselsBelgium
| |
Collapse
|
12
|
Zlatkin RL, Heuer RM. Ocean acidification affects acid-base physiology and behaviour in a model invertebrate, the California sea hare ( Aplysia californica). ROYAL SOCIETY OPEN SCIENCE 2019; 6:191041. [PMID: 31824711 PMCID: PMC6837219 DOI: 10.1098/rsos.191041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/06/2019] [Indexed: 06/07/2023]
Abstract
Behavioural impairment following exposure to ocean acidification-relevant CO2 levels has been noted in a broad array of taxa. The underlying cause of these disruptions is thought to stem from alterations of ion gradients ( HC O 3 - / C l - ) across neuronal cell membranes that occur as a consequence of maintaining pH homeostasis via the accumulation of HC O 3 - . While behavioural impacts are widely documented, few studies have measured acid-base parameters in species showing behavioural disruptions. In addition, current studies examining mechanisms lack resolution in targeting specific neural pathways corresponding to a given behaviour. With these considerations in mind, acid-base parameters and behaviour were measured in a model organism used for decades as a research model to study learning, the California sea hare (Aplysia californica). Aplysia exposed to elevated CO2 increased haemolymph HC O 3 - , achieving full and partial pH compensation at 1200 and 3000 µatm CO2, respectively. Increased CO2 did not affect self-righting behaviour. In contrast, both levels of elevated CO2 reduced the time of the tail-withdrawal reflex, suggesting a reduction in antipredator response. Overall, these results confirm that Aplysia are promising models to examine mechanisms underlying CO2-induced behavioural disruptions since they regulate HC O 3 - and have behaviours linked to neural networks amenable to electrophysiological testing.
Collapse
Affiliation(s)
| | - Rachael M. Heuer
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
13
|
Moura É, Pimentel M, Santos CP, Sampaio E, Pegado MR, Lopes VM, Rosa R. Cuttlefish Early Development and Behavior Under Future High CO 2 Conditions. Front Physiol 2019; 10:975. [PMID: 31404314 PMCID: PMC6676914 DOI: 10.3389/fphys.2019.00975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023] Open
Abstract
The oceanic uptake of carbon dioxide (CO2) is increasing and changing the seawater chemistry, a phenomenon known as ocean acidification (OA). Besides the expected physiological impairments, there is an increasing evidence of detrimental OA effects on the behavioral ecology of certain marine taxa, including cephalopods. Within this context, the main goal of this study was to investigate, for the first time, the OA effects (∼1000 μatm; ΔpH = 0.4) in the development and behavioral ecology (namely shelter-seeking, hunting and response to a visual alarm cue) of the common cuttlefish (Sepia officinalis) early life stages, throughout the entire embryogenesis until 20 days after hatching. There was no evidence that OA conditions compromised the cuttlefish embryogenesis - namely development time, hatching success, survival rate and biometric data (length, weight and Fulton's condition index) of newly hatched cuttlefish were similar between the normocapnic and hypercapnic treatments. The present findings also suggest a certain behavioral resilience of the cuttlefish hatchlings toward near-future OA conditions. Shelter-seeking, hunting and response to a visual alarm cue did not show significant differences between treatments. Thus, we argue that cuttlefishes' nekton-benthic (and active) lifestyle, their adaptability to highly dynamic coastal and estuarine zones, and the already harsh conditions (hypoxia and hypercapnia) inside their eggs provide a degree of phenotypic plasticity that may favor the odds of the recruits in a future acidified ocean. Nonetheless, the interacting effects of multiple stressors should be further addressed, to accurately predict the resilience of this ecologically and economically important species in the oceans of tomorrow.
Collapse
Affiliation(s)
- Érica Moura
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Marta Pimentel
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Catarina P. Santos
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Eduardo Sampaio
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Maria Rita Pegado
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Vanessa Madeira Lopes
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Rui Rosa
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| |
Collapse
|
14
|
Draper AM, Weissburg MJ. Impacts of Global Warming and Elevated CO2 on Sensory Behavior in Predator-Prey Interactions: A Review and Synthesis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Spady BL, Munday PL, Watson SA. Predatory strategies and behaviours in cephalopods are altered by elevated CO 2. GLOBAL CHANGE BIOLOGY 2018; 24:2585-2596. [PMID: 29460508 DOI: 10.1111/gcb.14098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that projected near-future carbon dioxide (CO2 ) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2 on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy squid, Idiosepius pygmaeus, and the bigfin reef squid, Sepioteuthis lessoniana. Both species exhibited an increased latency to attack and altered body pattern choice during the attack sequence at elevated CO2 . I. pygmaeus also exhibited a 20% decrease in predation rate, an increased striking distance, and reduced preference for attacking the posterior end of prey at elevated CO2 . Elevated CO2 increased activity levels of S. lessoniana comparable to those previously shown in I. pygmaeus, which could adversely affect their energy budget and increase their potential to be preyed upon. The effects of elevated CO2 on predatory behaviours, predation strategies and activity levels of cephalopods reported here could have far-reaching consequences in marine ecosystems due to the ecological importance of cephalopods in the marine food web.
Collapse
Affiliation(s)
- Blake L Spady
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
16
|
Birk MA, McLean EL, Seibel BA. Ocean acidification does not limit squid metabolism via blood oxygen supply. J Exp Biol 2018; 221:jeb.187443. [DOI: 10.1242/jeb.187443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
Ocean acidification is hypothesized to limit the performance of squids due to their exceptional oxygen demand and pH-sensitivity of blood-oxygen binding, which may reduce oxygen supply in acidified waters. The critical oxygen partial pressure (Pcrit), the PO2 below which oxygen supply cannot match basal demand, is a commonly reported index of hypoxia tolerance. Any CO2-induced reduction in oxygen supply should be apparent as an increase in Pcrit. In this study, we assessed the effects of CO2 (46-143 Pa; 455-1410 μatm) on the metabolic rate and Pcrit of two squid species - Dosidicus gigas and Doryteuthis pealeii - through manipulative experiments. We also developed a model, with inputs for hemocyanin pH-sensitivity, blood PCO2, and buffering capacity that simulates blood oxygen supply under varying seawater CO2 partial pressures. We compare model outputs to measured Pcrit in squids. Using blood-O2 parameters from the literature for model inputs, we estimated that, in the absence of blood acid-base regulation, an increase in seawater PCO2 to 100 Pa (≈ 1000 μatm) would result in a maximum drop in arterial hemocyanin-O2 saturation by 1.6% at normoxia and a Pcrit increase of ≈0.5 kPa. Our live-animal experiments support this supposition, as CO2 had no effect on measured metabolic rate or Pcrit in either squid species.
Collapse
Affiliation(s)
- Matthew A. Birk
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Erin L. McLean
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Brad A. Seibel
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
17
|
Watson SA, Fields JB, Munday PL. Ocean acidification alters predator behaviour and reduces predation rate. Biol Lett 2017; 13:rsbl.2016.0797. [PMID: 28148828 DOI: 10.1098/rsbl.2016.0797] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO2) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min-1) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades.
Collapse
Affiliation(s)
- Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | | | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
18
|
Jellison BM, Ninokawa AT, Hill TM, Sanford E, Gaylord B. Ocean acidification alters the response of intertidal snails to a key sea star predator. Proc Biol Sci 2017; 283:rspb.2016.0890. [PMID: 27358371 DOI: 10.1098/rspb.2016.0890] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023] Open
Abstract
Organism-level effects of ocean acidification (OA) are well recognized. Less understood are OA's consequences for ecological species interactions. Here, we examine a behaviourally mediated predator-prey interaction within the rocky intertidal zone of the temperate eastern Pacific Ocean, using it as a model system to explore OA's capacity to impair invertebrate anti-predator behaviours more broadly. Our system involves the iconic sea star predator, Pisaster ochraceus, that elicits flee responses in numerous gastropod prey. We examine, in particular, the capacity for OA-associated reductions in pH to alter flight behaviours of the black turban snail, Tegula funebralis, an often-abundant and well-studied grazer in the system. We assess interactions between these species at 16 discrete levels of pH, quantifying the full functional response of Tegula under present and near-future OA conditions. Results demonstrate the disruption of snail anti-predator behaviours at low pH, with decreases in the time individuals spend in refuge locations. We also show that fluctuations in pH, including those typical of rock pools inhabited by snails, do not materially change outcomes, implying little capacity for episodically benign pH conditions to aid behavioural recovery. Together, these findings suggest a strong potential for OA to induce cascading community-level shifts within this long-studied ecosystem.
Collapse
Affiliation(s)
| | - Aaron T Ninokawa
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA
| | - Tessa M Hill
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA Department of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Eric Sanford
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA Department of Evolution and Ecology, University of California at Davis, Davis, CA 95616, USA
| | - Brian Gaylord
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA Department of Evolution and Ecology, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Villanueva R, Perricone V, Fiorito G. Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits. Front Physiol 2017; 8:598. [PMID: 28861006 PMCID: PMC5563153 DOI: 10.3389/fphys.2017.00598] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of mechanoreceptor structures and the presence of long and filamentous arms are more abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in disguise, among others are known modes of hunting in cephalopods. Cannibalism and scavenger behavior is also known for some species and the development of current culture techniques offer evidence of their ability to feed on inert and artificial foods. Feeding requirements and prey choice change throughout development and in some species, strong ontogenetic changes in body form seem associated with changes in their diet and feeding strategies, although this is poorly understood in planktonic and larval stages. Feeding behavior is altered during senescence and particularly in brooding octopus females. Cephalopods are able to feed from a variety of food sources, from detritus to birds. Their particular requirements of lipids and copper may help to explain why marine crustaceans, rich in these components, are common prey in all cephalopod diets. The expected variation in climate change and ocean acidification and their effects on chemoreception and prey detection capacities in cephalopods are unknown and needs future research.
Collapse
Affiliation(s)
- Roger Villanueva
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC)Barcelona, Spain
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNapoli, Italy
| |
Collapse
|
20
|
Benítez S, Duarte C, Opitz T, Lagos NA, Pulgar JM, Vargas CA, Lardies MA. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: The cost of living in hypercapnic habitats. MARINE POLLUTION BULLETIN 2017; 118:57-63. [PMID: 28215555 DOI: 10.1016/j.marpolbul.2017.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Tide pools habitats are naturally exposed to a high degree of environmental variability. The consequences of living in these extreme habitats are not well established. In particular, little it is known about of the effects of hypercanic seawater (i.e. high pCO2 levels) on marine vertebrates such as intertidal pool fish. The aim of this study was to evaluate the effects of increased pCO2 on the physiology and behavior in juveniles of the intertidal pool fish Girella laevifrons. Two nominal pCO2 concentrations (400 and 1600μatm) were used. We found that exposure to hypercapnic conditions did not affect oxygen consumption and absorption efficiency. However, the lateralization and boldness behavior was significantly disrupted in high pCO2 conditions. In general, a predator-risk cost of boldness is assumed, thus the increased occurrence of shy personality in juvenile fishes may result in a change in the balance of this biological interaction, with significant ecological consequences.
Collapse
Affiliation(s)
- S Benítez
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Center for the Study of Multiple-drivers on Marine Socio-Ecological System (MUSELS), Universidad de Concepción, Concepción, Chile
| | - C Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile; Center for the Study of Multiple-drivers on Marine Socio-Ecological System (MUSELS), Universidad de Concepción, Concepción, Chile.
| | - T Opitz
- Facultad de Ingeniería & Ciencias y Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - N A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Center for the Study of Multiple-drivers on Marine Socio-Ecological System (MUSELS), Universidad de Concepción, Concepción, Chile
| | - J M Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - C A Vargas
- Laboratorio de Funcionamiento de Ecosistemas Acuáticos (LAFE), Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales, Universidad de Concepción, Chile; Center for the Study of Multiple-drivers on Marine Socio-Ecological System (MUSELS), Universidad de Concepción, Concepción, Chile
| | - M A Lardies
- Facultad de Ingeniería & Ciencias y Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile; Center for the Study of Multiple-drivers on Marine Socio-Ecological System (MUSELS), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
21
|
Domenici P, Torres R, Manríquez PH. Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc. J Exp Biol 2017; 220:667-676. [DOI: 10.1242/jeb.151779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 01/18/2023]
Abstract
ABSTRACT
Recent work has shown that the behaviour of marine organisms can be affected by elevated PCO2, although little is known about the effect of multiple stressors. We therefore investigated the effect of elevated PCO2 and temperature on locomotion and behaviour during prey searching in the marine gastropod Concholepas concholepas, a predator characteristic of the southeastern Pacific coast. Movement duration, decision time, route finding and lateralization were measured using a T-maze tank with a prey positioned behind a barrier. Four treatments, representing present day and near-future scenarios of ocean acidification and warming were used in rearing the individuals for 6 months. Regardless of the treatment, no significant differences were found in relative and absolute lateralization before and after exposure for 6 months. However, relative lateralization was not repeatable for animals tested after 6 months at elevated PCO2 at both experimental temperatures, whereas it was repeatable in individuals kept at the present day level of PCO2. We suggest that these effects may be related to a behavioural malfunction caused by elevated PCO2. Movement duration, decision time and route finding were not repeatable. However, movement duration and decision time increased and route finding decreased in elevated PCO2 (at 15°C), suggesting that elevated PCO2 has negative effects on the locomotor and sensory performance of C. concholepas in the presence of a prey odour, thereby decreasing their ability to forage efficiently.
Collapse
Affiliation(s)
- Paolo Domenici
- CNR-IAMC - Istituto per l′Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique 5950000, Chile
- Centro de Investigación: Dinámica de Ecosistemas marinos de Altas Latitudes (IDEAL), Punta Arenas 6200000, Chile
| | - Patricio H. Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1780000, Chile
| |
Collapse
|
22
|
Rossi T, Connell SD, Nagelkerken I. Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate. Proc Biol Sci 2016; 283:20153046. [PMID: 26984624 DOI: 10.1098/rspb.2015.3046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats.
Collapse
Affiliation(s)
- Tullio Rossi
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, South Australia 5005, Australia
| |
Collapse
|
23
|
Seibel BA. Cephalopod Susceptibility to Asphyxiation via Ocean Incalescence, Deoxygenation, and Acidification. Physiology (Bethesda) 2016; 31:418-429. [DOI: 10.1152/physiol.00061.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Squids are powerful swimmers with high metabolic rates despite constrained oxygen uptake and transport. They have evolved novel physiological strategies for survival in extreme environments that provide insight into their susceptibility to asphyxiation under anthropogenic ocean incalescence (warming), deoxygenation, and acidification. Plasticity of ecological and physiological traits, in conjunction with vertical and latitudinal mobility, may explain their evolutionary persistence and ensure their future survival.
Collapse
Affiliation(s)
- Brad A. Seibel
- College of Marine Science, University of South Florida, St. Petersburg, Florida
| |
Collapse
|
24
|
Lefevre S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. CONSERVATION PHYSIOLOGY 2016; 4:cow009. [PMID: 27382472 PMCID: PMC4922249 DOI: 10.1093/conphys/cow009] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 05/22/2023]
Abstract
With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences,
University of Oslo, Oslo NO-0316,
Norway
| |
Collapse
|
25
|
Nagelkerken I, Munday PL. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. GLOBAL CHANGE BIOLOGY 2016; 22:974-89. [PMID: 26700211 DOI: 10.1111/gcb.13167] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 05/04/2023]
Abstract
Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far-reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies.
Collapse
Affiliation(s)
- Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, DX 650 418, Adelaide, SA, 5005, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
26
|
Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 2016; 529:383-6. [DOI: 10.1038/nature16156] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023]
|
27
|
Lefevre S, Watson SA, Munday PL, Nilsson GE. Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus. J Exp Biol 2015; 218:2991-3001. [DOI: 10.1242/jeb.120717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT
Tropical coral reef organisms are predicted to be especially sensitive to ocean warming because many already live close to their upper thermal limit, and the expected rise in ocean CO2 is proposed to further reduce thermal tolerance. Little, however, is known about the thermal sensitivity of a diverse and abundant group of reef animals, the gastropods. The humpbacked conch (Gibberulus gibberulus gibbosus), inhabiting subtidal zones of the Great Barrier Reef, was chosen as a model because vigorous jumping, causing increased oxygen uptake (ṀO2), can be induced by exposure to odour from a predatory cone snail (Conus marmoreus). We investigated the effect of present-day ambient (417–454 µatm) and projected-future (955–987 µatm) PCO2 on resting (ṀO2,rest) and maximum (ṀO2,max) ṀO2, as well as ṀO2 during hypoxia and critical oxygen tension (PO2,crit), in snails kept at present-day ambient (28°C) or projected-future temperature (33°C). ṀO2,rest and ṀO2,max were measured both at the acclimation temperature and during an acute 5°C increase. Jumping caused a 4- to 6-fold increase in ṀO2, and ṀO2,max increased with temperature so that absolute aerobic scope was maintained even at 38°C, although factorial scope was reduced. The humpbacked conch has a high hypoxia tolerance with a PO2,crit of 2.5 kPa at 28°C and 3.5 kPa at 33°C. There was no effect of elevated CO2 on respiratory performance at any temperature. Long-term temperature records and our field measurements suggest that habitat temperature rarely exceeds 32.6°C during the summer, indicating that these snails have aerobic capacity in excess of current and future needs.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo NO-0316, Norway
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Göran E. Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo NO-0316, Norway
| |
Collapse
|