1
|
Nevoránková P, Šulcová M, Kavková M, Zimčík D, Balková SM, Peléšková K, Kristeková D, Jakešová V, Zikmund T, Kaiser J, Holá LI, Kolář M, Buchtová M. Region-specific gene expression profiling of early mouse mandible uncovered SATB2 as a key molecule for teeth patterning. Sci Rep 2024; 14:18212. [PMID: 39107332 PMCID: PMC11303781 DOI: 10.1038/s41598-024-68016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Mammalian dentition exhibits distinct heterodonty, with more simple teeth located in the anterior area of the jaw and more complex teeth situated posteriorly. While some region-specific differences in signalling have been described previously, here we performed a comprehensive analysis of gene expression at the early stages of odontogenesis to obtain complete knowledge of the signalling pathways involved in early jaw patterning. Gene expression was analysed separately on anterior and posterior areas of the lower jaw at two early stages (E11.5 and E12.5) of odontogenesis. Gene expression profiling revealed distinct region-specific expression patterns in mouse mandibles, including several known BMP and FGF signalling members and we also identified several new molecules exhibiting significant differences in expression along the anterior-posterior axis, which potentially can play the role during incisor and molar specification. Next, we followed one of the anterior molecules, SATB2, which was expressed not only in the anterior mesenchyme where incisor germs are initiated, however, we uncovered a distinct SATB2-positive region in the mesenchyme closely surrounding molars. Satb2-deficient animals demonstrated defective incisor development confirming a crucial role of SATB2 in formation of anterior teeth. On the other hand, ectopic tooth germs were observed in the molar area indicating differential effect of Satb2-deficiency in individual jaw regions. In conclusion, our data provide a rich source of fundamental information, which can be used to determine molecular regulation driving early embryonic jaw patterning and serve for a deeper understanding of molecular signalling directed towards incisor and molar development.
Collapse
Affiliation(s)
- Petra Nevoránková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Marie Šulcová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavková
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - David Zimčík
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simona Moravcová Balková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Kristýna Peléšková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Jozef Kaiser
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Lydie Izakovičová Holá
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Alvina FB, Chen TCY, Lim HYG, Barker N. Gastric epithelial stem cells in development, homeostasis and regeneration. Development 2023; 150:dev201494. [PMID: 37746871 DOI: 10.1242/dev.201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The stem/progenitor cell pool is indispensable for the development, homeostasis and regeneration of the gastric epithelium, owing to its defining ability to self-renew whilst supplying the various functional epithelial lineages needed to digest food efficiently. A detailed understanding of the intricacies and complexities surrounding the behaviours and roles of these stem cells offers insights, not only into the physiology of gastric epithelial development and maintenance, but also into the pathological consequences following aberrations in stem cell regulation. Here, we provide an insightful synthesis of the existing knowledge on gastric epithelial stem cell biology, including the in vitro and in vivo experimental techniques that have advanced such studies. We highlight the contributions of stem/progenitor cells towards patterning the developing stomach, specification of the differentiated cell lineages and maintenance of the mature epithelium during homeostasis and following injury. Finally, we discuss gaps in our understanding and identify key research areas for future work.
Collapse
Affiliation(s)
- Fidelia B Alvina
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Tanysha Chi-Ying Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Republic of Singapore
| |
Collapse
|
3
|
Zhang T, Qiu L, Cao J, Li Q, Zhang L, An G, Ni J, Jia H, Li S, Li K. ZFP36 loss-mediated BARX1 stabilization promotes malignant phenotypes by transactivating master oncogenes in NSCLC. Cell Death Dis 2023; 14:527. [PMID: 37587140 PMCID: PMC10432398 DOI: 10.1038/s41419-023-06044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality worldwide. Although the dysregulation of BARX1 expression has been shown to be associated with malignant cancers, including NSCLC, the underlying mechanism remains elusive. In this study, we identified BARX1 as a common differentially expressed gene in lung squamous cell carcinoma and adenocarcinoma. Importantly, we uncovered a novel mechanism behind the regulation of BARX1, in which ZFP36 interacted with 3'UTR of BARX1 mRNA to mediate its destabilization. Loss of ZFP36 led to the upregulation of BARX1, which further promoted the proliferation, migration and invasion of NSCLC cells. In addition, the knockdown of BARX1 inhibited tumorigenicity in mouse xenograft. We demonstrated that BARX1 promoted the malignant phenotypes by transactivating a set of master oncogenes involved in the cell cycle, DNA synthesis and metastasis. Overall, our study provides insights into the mechanism of BARX1 actions in NSCLC and aids a better understanding of NSCLC pathogenesis.
Collapse
Affiliation(s)
- Tongjia Zhang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Lizhen Qiu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jiashun Cao
- Department of Thoracic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Qiu Li
- Department of Research, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Lifan Zhang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Guoshun An
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Juhua Ni
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Hongti Jia
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Shuyan Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
4
|
Vaivads M, Akota I, Pilmane M. Immunohistochemical Evaluation of BARX1, DLX4, FOXE1, HOXB3, and MSX2 in Nonsyndromic Cleft Affected Tissue. Acta Med Litu 2022; 29:271-294. [PMID: 37733420 PMCID: PMC9799009 DOI: 10.15388/amed.2022.29.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Nonsyndromic craniofacial clefts are relatively common congenital malformations which could create a significant negative effect on the health status and life quality of affected individuals within the pediatric population. Multiple cleft candidate genes and their coded proteins have been described with their possible involvement during cleft formation. Some of these proteins like Homeobox Protein BarH-like 1 (BARX1), Distal-Less Homeobox 4 (DLX4), Forkhead Box E1 (FOXE1), Homeobox Protein Hox-B3 (HOXB3), and Muscle Segment Homeobox 2 (MSX2) have been associated with the formation of craniofacial clefts. Understanding the pathogenetic mechanisms of nonsyndromic craniofacial cleft formation could provide a better knowledge in cleft management and could be a possible basis for development and improvement of cleft treatment options. This study investigates the presence of BARX1, DLX4, FOXE1, HOXB3, and MSX2 positive cells by using immunohistochemistry in different types of cleft-affected tissue while determining their possible connection with cleft pathogenesis process. Materials and Methods Craniofacial cleft tissue material was obtained during cleft-correcting surgery from patients with nonsyndromic craniofacial cleft diagnosis. Tissue material was gathered from patients who had unilateral cleft lip (n=36), bilateral cleft lip (n=13), and cleft palate (n=26). Control group (n=7) tissue material was received from individuals without any craniofacial clefts. The number of factor positive cells in the control group and patient group tissue was evaluated by using the semiquantitative counting method. Data was evaluated with the use of nonparametric statistical methods. Results Statistically significant differences were identified between the number of BARX1, FOXE1, HOXB3, and MSX2-containing cells in controls and cleft patient groups but no statistically significant difference was found for DLX4. Statistically significant correlations between the evaluated factors were also notified in cleft patient groups. Conclusions HOXB3 could be more associated with morphopathogenesis of unilateral cleft lip during postnatal course of the disorder. FOXE1 and BARX1 could be involved with both unilateral and bilateral cleft lip morphopathogenesis. The persistence of MSX2 in all evaluated cleft types could indicate its possible interaction within multiple cleft types. DLX4 most likely is not involved with postnatal cleft morphopathogenesis process.
Collapse
Affiliation(s)
- Mārtiņš Vaivads
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Ilze Akota
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Riga, Latvia
- Cleft Lip and Palate Centre, Institute of Stomatology, Riga Stradins University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
5
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
6
|
Marderstein AR, Davenport ER, Kulm S, Van Hout CV, Elemento O, Clark AG. Leveraging phenotypic variability to identify genetic interactions in human phenotypes. Am J Hum Genet 2021; 108:49-67. [PMID: 33326753 PMCID: PMC7820920 DOI: 10.1016/j.ajhg.2020.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although thousands of loci have been associated with human phenotypes, the role of gene-environment (GxE) interactions in determining individual risk of human diseases remains unclear. This is partly because of the severe erosion of statistical power resulting from the massive number of statistical tests required to detect such interactions. Here, we focus on improving the power of GxE tests by developing a statistical framework for assessing quantitative trait loci (QTLs) associated with the trait means and/or trait variances. When applying this framework to body mass index (BMI), we find that GxE discovery and replication rates are significantly higher when prioritizing genetic variants associated with the variance of the phenotype (vQTLs) compared to when assessing all genetic variants. Moreover, we find that vQTLs are enriched for associations with other non-BMI phenotypes having strong environmental influences, such as diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such as BMI can be used for GxE discovery in disease phenotypes such as diabetes. A clear conclusion is that strong GxE interactions mediate the genetic contribution to body weight and diabetes risk.
Collapse
Affiliation(s)
- Andrew R Marderstein
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Emily R Davenport
- Department of Biology, Huck Institutes of the Life Sciences, Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott Kulm
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Olivier Elemento
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
7
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
8
|
Raad S, David A, Que J, Faure C. Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells Dev 2020; 29:953-966. [PMID: 32515280 PMCID: PMC9839344 DOI: 10.1089/scd.2020.0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.
Collapse
Affiliation(s)
- Suleen Raad
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Anu David
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Center for Human Development, Columbia University, New York, New York, USA
| | - Christophe Faure
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada.,Esophageal Atresia Clinic and Division of Pediatric Gastroenterology Hepatology and Nutrition, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada.,Address correspondence to: Dr. Christophe Faure, Division of Pediatric Gastroenterology, Sainte-Justine Hospital, 3715 Côte Sainte Catherine, Montreal H3T1C5, Quebec, Canada
| |
Collapse
|
9
|
Fadista J, Skotte L, Geller F, Bybjerg-Grauholm J, Gørtz S, Romitti PA, Caggana M, Kay DM, Matsson H, Boyd HA, Hougaard DM, Nordenskjöld A, Mills JL, Melbye M, Feenstra B. Genome-wide meta-analysis identifies BARX1 and EML4-MTA3 as new loci associated with infantile hypertrophic pyloric stenosis. Hum Mol Genet 2019; 28:332-340. [PMID: 30281099 PMCID: PMC6322072 DOI: 10.1093/hmg/ddy347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 01/15/2023] Open
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is a disorder of young infants with a population incidence of ∼2/1000 live births, caused by hypertrophy of the pyloric sphincter smooth muscle. Reported genetic loci associated with IHPS explain only a minor proportion of IHPS risk. To identify new risk loci, we carried out a genome-wide meta-analysis on 1395 surgery-confirmed cases and 4438 controls, with replication in a set of 2427 cases and 2524 controls. We identified and replicated six independent genomic loci associated with IHPS risk at genome wide significance (P < 5 × 10-8), including novel associations with two single nucleotide polymorphisms (SNPs). One of these SNPs, rs6736913 [odds ratio (OR) = 2.32; P = 3.0 × 10-15], is a low frequency missense variant in EML4 at 2p21. The second SNP, rs1933683 (OR = 1.34; P = 3.1 × 10-9) is 1 kb downstream of BARX1 at 9q22.32, an essential gene for stomach formation in embryogenesis. Using the genome-wide complex trait analysis method, we estimated the IHPS SNP heritability to be 30%, and using the linkage disequilibrium score regression method, we found support for a previously reported genetic correlation of IHPS with lipid metabolism. By combining the largest collection of IHPS cases to date (3822 cases), with results generalized across populations of different ancestry, we elucidate novel mechanistic avenues of IHPS disease architecture.
Collapse
Affiliation(s)
- João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne Gørtz
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Hans Matsson
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heather A Boyd
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - David M Hougaard
- Department of Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Astrid Lindgren Children´s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
10
|
Gonçalves O, Freitas R, Ferreira P, Araújo M, Zhang G, Mazan S, Cohn MJ, Castro LFC, Wilson JM. Molecular ontogeny of the stomach in the catshark Scyliorhinus canicula. Sci Rep 2019; 9:586. [PMID: 30679499 PMCID: PMC6346038 DOI: 10.1038/s41598-018-36413-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
The origin of extracellular digestion in metazoans was accompanied by structural and physiological alterations of the gut. These adaptations culminated in the differentiation of a novel digestive structure in jawed vertebrates, the stomach. Specific endoderm/mesenchyme signalling is required for stomach differentiation, involving the growth and transcription factors: 1) Shh and Bmp4, required for stomach outgrowth; 2) Barx1, Sfrps and Sox2, required for gastric epithelium development and 3) Cdx1 and Cdx2, involved in intestinal versus gastric identity. Thus, modulation of endoderm/mesenchyme signalling emerges as a plausible mechanism linked to the origin of the stomach. In order to gain insight into the ancient mechanisms capable of generating this structure in jawed vertebrates, we characterised the development of the gut in the catshark Scyliorhinus canicula. As chondrichthyans, these animals retained plesiomorphic features of jawed vertebrates, including a well-differentiated stomach. We identified a clear molecular regionalization of their embryonic gut, characterised by the expression of barx1 and sox2 in the prospective stomach region and expression of cdx1 and cdx2 in the prospective intestine. Furthermore, we show that gastric gland development occurs close to hatching, accompanied by the onset of gastric proton pump activity. Our findings favour a scenario in which the developmental mechanisms involved in the origin of the stomach were present in the common ancestor of chondrichthyans and osteichthyans.
Collapse
Affiliation(s)
- Odete Gonçalves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. Porto, Porto, Portugal
| | - Renata Freitas
- I3S- Institute for Innovation and Health Research, Univ. Porto, Porto, Portugal. .,IBMC- Institute for Molecular and Cell Biology, Univ. Porto, Porto, Portugal.
| | - Patrícia Ferreira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. Porto, Porto, Portugal
| | - Mafalda Araújo
- I3S- Institute for Innovation and Health Research, Univ. Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Univ. Porto, Porto, Portugal
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Univ., Lafayette, USA.,Purdue Institute for Integrative Neuroscience, Purdue Univ., Lafayette, USA.,Purdue Univ. Center for Cancer, Purdue Univ., Lafayette, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue Univ., Lafayette, USA
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ. Paris, Observatoire Océanologique, Banyuls, France
| | - Martin J Cohn
- Howard Hughes Medical Institute, UF Genetics Institute, Univ. Florida, Florida, USA.,Department of Biology, UF Genetics Institute, Univ. Florida, Florida, USA.,Department of Molecular Genetics and Microbiology, UF Genetics Institute, Univ. Florida, Florida, USA
| | - L Filipe C Castro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal. .,Department of Biology, Faculty of Sciences, Univ. Porto, Porto, Portugal.
| | - Jonathan M Wilson
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal. .,Department of Biology, Wilfrid Laurier Univ., Waterloo, Canada.
| |
Collapse
|
11
|
Li X, Zhang C, Gong T, Ni X, Li J, Zhan D, Liu M, Song L, Ding C, Xu J, Zhen B, Wang Y, Qin J. A time-resolved multi-omic atlas of the developing mouse stomach. Nat Commun 2018; 9:4910. [PMID: 30464175 PMCID: PMC6249217 DOI: 10.1038/s41467-018-07463-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian stomach is structurally highly diverse and its organ functionality critically depends on a normal embryonic development. Although there have been several studies on the morphological changes during stomach development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive, temporal proteome and transcriptome atlas of the mouse stomach at multiple developmental stages. Quantitative analysis of 12,108 gene products allows identifying three distinct phases based on changes in proteins and RNAs and the gain of stomach functions on a longitudinal time scale. The transcriptome indicates functionally important isoforms relevant to development and identifies several functionally unannotated novel splicing junction transcripts that we validate at the peptide level. Importantly, many proteins differentially expressed in stomach development are also significantly overexpressed in diffuse-type gastric cancer. Overall, our study provides a resource to understand stomach development and its connection to gastric cancer tumorigenesis.
Collapse
Affiliation(s)
- Xianju Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chunchao Zhang
- Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tongqing Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Department of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Department of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jianming Xu
- Department of Gastrointestinal Oncology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Byrnes KG, McDermott K, Coffey JC. Development of mesenteric tissues. Semin Cell Dev Biol 2018; 92:55-62. [PMID: 30347243 DOI: 10.1016/j.semcdb.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Mesothelial, neurovascular, lymphatic, adipose and mesenchymal tissues make up the mesentery. These tissues are pathobiologically important for numerous reasons. Collectively, they form a continuous, discrete and substantive organ. Additionally, they maintain abdominal digestive organs in position and in continuity with other systems. Furthermore, as they occupy a central position, they mediate transmission of signals between the abdominal digestive system and the remainder of the body. Despite this physiologic centrality, mesenteric tissue development has received little investigatory focus. However, recent advances in our understanding of anatomy demonstrate continuity between all mesenteric tissues, thereby linking previously unrelated studies. In this review, we examine the development of mesenteric tissue in normality and in the setting of congenital abnormalities.
Collapse
Affiliation(s)
- Kevin Gerard Byrnes
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Kieran McDermott
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - John Calvin Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
13
|
Samal J, Kelly S, Na-Shatal A, Elhakiem A, Das A, Ding M, Sanyal A, Gupta P, Melody K, Roland B, Ahmed W, Zakir A, Bility M. Human immunodeficiency virus infection induces lymphoid fibrosis in the BM-liver-thymus-spleen humanized mouse model. JCI Insight 2018; 3:120430. [PMID: 30232273 DOI: 10.1172/jci.insight.120430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
A major pathogenic feature associated with HIV infection is lymphoid fibrosis, which persists during antiretroviral therapy (ART). Lymphoid tissues play critical roles in the generation of antigen-specific immune response, and fibrosis disrupts the stromal network of lymphoid tissues, resulting in impaired immune cell trafficking and function, as well as immunodeficiency. Developing an animal model for investigating the impact of HIV infection-induced lymphoid tissue fibrosis on immunodeficiency and immune cell impairment is critical for therapeutics development and clinical translation. Said model will enable in vivo mechanistic studies, thus complementing the well-established surrogate model of SIV infection-induced lymphoid tissue fibrosis in macaques. We developed a potentially novel human immune system-humanized mouse model by coengrafting autologous fetal thymus, spleen, and liver organoids under the kidney capsule, along with i.v. injection of autologous fetal liver-derived hematopoietic stem cells, thus termed the BM-liver-thymus-spleen (BLTS) humanized mouse model. BLTS humanized mouse model supports development of human immune cells and human lymphoid organoids (human thymus and spleen organoids). HIV infection in BLTS humanized mice results in progressive fibrosis in human lymphoid tissues, which was associated with immunodeficiency in the lymphoid tissues, and lymphoid tissue fibrosis persists during ART, thus recapitulating clinical outcomes.
Collapse
|
14
|
Abstract
Chronic injury and inflammation in the esophagus can cause a change in cellular differentiation known as metaplasia. Most commonly, the differentiation changes manifest as Barrett's esophagus (BE), characterized by the normal stratified squamous epithelium converting into a cuboidal-columnar, glandular morphology. BE cells can phenotypically resemble specific normal cell types of the stomach or intestine, or they can have overlapping phenotypes in disorganized admixtures. The stomach can also undergo metaplasia characterized by aberrant gastric or intestinal differentiation patterns. In both organs, it has been argued that metaplasia may represent a recapitulation of the embryonic or juvenile gastrointestinal tract, as cells access a developmental progenitor genetic program that can help repair damaged tissue. Here, we review the normal development of esophagus and stomach, and describe how BE represents an intermixing of cells resembling gastric pseudopyloric (SPEM) and intestinal metaplasia. We discuss a cellular process recently termed "paligenosis" that governs how mature, differentiated cells can revert to a proliferating progenitor state in metaplasia. We discuss the "Cyclical Hit" theory in which paligenosis might be involved in the increased risk of metaplasia for progression to cancer. However, somatic mutations might occur in proliferative phases and then be warehoused upon redifferentiation. Through years of chronic injury and many rounds of paligenosis and dedifferentiation, eventually a cell with a mutation that prevents dedifferentiation may arise and clonally expand fueling stable metaplasia and potentially thereafter acquiring additional mutations and progressing to dysplasia and cancer.
Collapse
Affiliation(s)
- Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Ariza L, Cañete A, Rojas A, Muñoz-Chápuli R, Carmona R. Role of the Wilms' tumor suppressor gene Wt1 in pancreatic development. Dev Dyn 2018; 247:924-933. [PMID: 29708625 DOI: 10.1002/dvdy.24636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022] Open
Abstract
The Wilms tumor suppressor gene (Wt1) encodes a transcription factor involved in the development of a number of organs, but the role played by Wt1 in pancreatic development is unknown. The pancreas contains a population of pancreatic stellate cells (PSC) very important for pancreatic physiology. We described elsewhere that hepatic stellate cells originate from the WT1-expressing liver mesothelium. Thus, we checked if the origin of PSCs was similar. WT1 expression is restricted to the pancreatic mesothelium. Between embryonic day (E) 10.5 and E15.5, this mesothelium gives rise to mesenchymal cells that contribute to a major part of the PSC and other cell types including endothelial cells. Most WT1 systemic mutants show abnormal localization of the dorsal pancreas within the mesentery and intestinal malrotation by E14.0. Embryos with conditional deletion of WT1 between E9.5 and E12.5 showed normal dorsal pancreatic bud and intestine, but the number of acini in the ventral bud was reduced approximately 30% by E16.5. Proliferation of acinar cells was reduced in WT1 systemic mutants, but pancreatic differentiation was not impaired. Thus, mesothelial-derived cells constitute an important subpopulation of pancreatic mesodermal cells. WT1 expression is not essential for pancreas development, although it influences intestinal rotation and correct localization of the dorsal pancreas within the mesogastrium. Developmental Dynamics 247:924-933, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Ariza
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga (Spain) and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga (Spain) and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Anabel Rojas
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Sevilla, Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga (Spain) and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga (Spain) and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| |
Collapse
|
16
|
Id2 Determines Intestinal Identity through Repression of the Foregut Transcription Factor Irx5. Mol Cell Biol 2018; 38:MCB.00250-17. [PMID: 29463648 PMCID: PMC5902590 DOI: 10.1128/mcb.00250-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
The cellular components and function of the gastrointestinal epithelium exhibit distinct characteristics depending on the region, e.g., stomach or intestine. How these region-specific epithelial characteristics are generated during development remains poorly understood. Here, we report on the involvement of the helix-loop-helix inhibitor Id2 in establishing the specific characteristics of the intestinal epithelium. Id2−/− mice developed tumors in the small intestine. Histological analysis indicated that the intestinal tumors were derived from gastric metaplasia formed in the small intestine during development. Heterotopic Id2 expression in developing gastric epithelium induced a fate change to intestinal epithelium. Gene expression analysis revealed that foregut-enriched genes encoding Irx3 and Irx5 were highly induced in the midgut of Id2−/− embryos, and transgenic mice expressing Irx5 in the midgut endoderm developed tumors recapitulating the characteristics of Id2−/− mice. Altogether, our results demonstrate that Id2 plays a crucial role in the development of regional specificity in the gastrointestinal epithelium.
Collapse
|
17
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
18
|
Guo S, Zhang Y, Zhou T, Wang D, Weng Y, Chen Q, Ma J, Li YP, Wang L. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ 2018. [PMID: 29523871 PMCID: PMC6219484 DOI: 10.1038/s41418-018-0083-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of GATA-binding protein 4 (GATA4) in neural crest cells (NCCs) is poorly defined. Here we showed that mouse NCCs lacking GATA4 exhibited developmental defects in craniofacial bone, teeth, and heart. The defects likely occurred due to decreased cell proliferation at the developmental stage. The in vitro results were consistent with the mouse model. The isobaric tags for relative and absolute quantitation assay revealed that BARX1 is one of the differentially expressed proteins after GATA4 knockdown in NCCs. On the basis of the results of dual-luciferase, electro-mobility shift, and chromatin immunoprecipitation assays, Barx1 expression is directly regulated by GATA4 in NCCs. In zebrafish, gata4 knockdown affects the development of NCCs derivatives. However, the phenotype in zebrafish could be partly rescued by co-injection of gata4 morpholino oligomers and barx1 mRNA. This study identified new downstream targets of GATA4 in NCCs and uncovered additional evidence of the complex regulatory functions of GATA4 in NCC development.
Collapse
Affiliation(s)
- Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Boulevard, Birmingham, AL, 35294-2182, USA.
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
19
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
O'Neil A, Petersen CP, Choi E, Engevik AC, Goldenring JR. Unique Cellular Lineage Composition of the First Gland of the Mouse Gastric Corpus. J Histochem Cytochem 2016; 65:47-58. [PMID: 27872404 DOI: 10.1369/0022155416678182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glandular stomach has two major zones: the acid secreting corpus and the gastrin cell-containing antrum. Nevertheless, a single gland lies at the transition between the forestomach and corpus in the mouse stomach. We have sought to define the lineages that make up this gland unit at the squamocolumnar junction. The first gland in mice showed a notable absence of characteristic corpus lineages, including parietal cells and chief cells. In contrast, the gland showed strong staining of Griffonia simplicifolia-II (GSII)-lectin-positive mucous cells at the bases of glands, which were also positive for CD44 variant 9 and Clusterin. Prominent numbers of doublecortin-like kinase 1 (DCLK1) positive tuft cells were present in the first gland. The first gland contained Lgr5-expressing putative progenitor cells, and a large proportion of the cells were positive for Sox2. The cells of the first gland stained strongly for MUC4 and EpCAM, but both were absent in the normal corpus mucosa. The present studies indicate that the first gland in the corpus represents a unique anatomic entity. The presence of a concentration of progenitor cells and sensory tuft cells in this gland suggests that it may represent a source of reserve reparative cells for adapting to severe mucosal damage.
Collapse
Affiliation(s)
- Andrew O'Neil
- Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine P Petersen
- Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Nashville VA Medical Center (EC, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy C Engevik
- Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Nashville VA Medical Center (EC, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cell and Developmental Biology (CPP, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dyn 2016; 246:28-40. [PMID: 27756109 DOI: 10.1002/dvdy.24465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Syngnathia is a congenital craniofacial disorder characterized by bony or soft tissue fusion of upper and lower jaws. Previous studies suggested some causative signals, such as Foxc1 or Bmp4, cause the disruption of maxillomandibular identity, but their location and the interactive signals involved remain unexplored. We wanted to examine the embryonic origin of syngnathia based on the assumption that it may be located at the separation between the maxillary and mandibular processes. This region, known as the maxillomandibular junction (MMJ), is involved in segregation of cranial neural crest-derived mesenchyme into the presumptive upper and lower jaws. RESULTS Here we investigated the role of Fgf, Bmp, and retinoid signaling during development of MMJ in chicken embryos. By changing the levels of these signals with bead implants, we induced syngnathia with microstomia on the treated side, which showed increased Barx1 and neural cell adhesion molecule (NCAM) expression. Redistribution of proliferating cells was also observed at the proximal region to maxillary and mandibular arch around MMJ. CONCLUSIONS We propose that interactive molecular signaling by Fgfs, Bmps, and retinoids around MMJ is required for normal separation of the maxilla and mandible, as well as the proper positioning of beak commissure during early facial morphogenesis. Developmental Dynamics 246:28-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae-Jin Park
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Zhenngu Piao
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical College, GuangZhou City, China
| | - Sang-Hwy Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
22
|
Muñoz-Bravo JL, Flores-Martínez A, Herrero-Martin G, Puri S, Taketo MM, Rojas A, Hebrok M, Cano DA. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity. PLoS One 2016; 11:e0164714. [PMID: 27736991 PMCID: PMC5063371 DOI: 10.1371/journal.pone.0164714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries.
Collapse
Affiliation(s)
- Jose Luis Muñoz-Bravo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Griselda Herrero-Martin
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Makoto Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - David A. Cano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
23
|
Abstract
The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
24
|
Abstract
Gastric diseases cause considerable worldwide burden. However, the stomach is still poorly understood in terms of the molecular-cellular processes that govern its development and homeostasis. In particular, the complex relationship between the differentiated cell types located within the stomach and the stem and progenitor cells that give rise to them is significantly understudied relative to other organs. In this review, we will highlight the current state of the literature relating to specification of gastric cell lineages from embryogenesis to adulthood. Special emphasis is placed on substantial gaps in knowledge about stomach specification that we think should be tackled to advance the field. For example, it has long been assumed that adult gastric units have a granule-free stem cell that gives rise to all differentiated lineages. Here we will point out that there are also other models that fit all extant data, such as long-lived lineage-committed progenitors that might serve as a source of new cells during homeostasis.
Collapse
Affiliation(s)
- Spencer G. Willet
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence Address correspondence to: Jason C. Mills, MD, PhD, Washington University School of Medicine, Box 8124, 660 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-7487.Washington University School of MedicineBox 8124, 660 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
25
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
26
|
Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol Life Sci 2015; 72:3883-96. [PMID: 26126787 DOI: 10.1007/s00018-015-1975-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/16/2022]
Abstract
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.
Collapse
|
27
|
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1. Dev Biol 2015; 405:21-32. [PMID: 26057579 DOI: 10.1016/j.ydbio.2015.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
Abstract
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors.
Collapse
|
28
|
Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, Zhang X, Evans SM, Cui Y, Cui S. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol 2014; 12:25. [PMID: 24674670 PMCID: PMC4021819 DOI: 10.1186/1741-7007-12-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/13/2014] [Indexed: 01/11/2023] Open
Abstract
Background Abnormalities in pyloric development or in contractile function of the pylorus cause reflux of duodenal contents into the stomach and increase the risk of gastric metaplasia and cancer. Abnormalities of the pyloric region are also linked to congenital defects such as the relatively common neonatal hypertrophic pyloric stenosis, and primary duodenogastric reflux. Therefore, understanding pyloric development is of great clinical relevance. Here, we investigated the role of the LIM homeodomain transcription factor Isl1 in pyloric development. Results Examination of Isl1 expression in developing mouse stomach by immunohistochemistry, whole mount in situ hybridization and real-time quantitative PCR demonstrated that Isl1 is highly expressed in developing mouse stomach, principally in the smooth muscle layer of the pylorus. Isl1 expression was also examined by immunofluorescence in human hypertrophic pyloric stenosis where the majority of smooth muscle cells were found to express Isl1. Isl1 function in embryonic stomach development was investigated utilizing a tamoxifen-inducible Isl1 knockout mouse model. Isl1 deficiency led to nearly complete absence of the pyloric outer longitudinal muscle layer at embryonic day 18.5, which is consistent with Gata3 null mouse phenotype. Chromatin immunoprecipitation, luciferase assays, and electrophoretic mobility shift assays revealed that Isl1 ensures normal pyloric development by directly targeting Gata3. Conclusions This study demonstrates that the Isl1-Gata3 transcription regulatory axis is essential for normal pyloric development. These findings are highly clinically relevant and may help to better understand pathways leading to pyloric disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| | | |
Collapse
|
29
|
Udager AM, Prakash A, Saenz DA, Schinke M, Moriguchi T, Jay PY, Lim KC, Engel JD, Gumucio DL. Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3. Gastroenterology 2014; 146:157-165.e10. [PMID: 24120474 PMCID: PMC3889663 DOI: 10.1053/j.gastro.2013.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Infantile hypertrophic pyloric stenosis is a common birth anomaly characterized by obstruction of the pyloric lumen. A genome-wide association study implicated NKX2-5, which encodes a transcription factor that is expressed in embryonic heart and pylorus, in the pathogenesis of infantile hypertrophic pyloric stenosis. However, the function of the NKX2-5 in pyloric smooth muscle development has not been examined directly. We investigated the pattern of Nkx2-5 during the course of murine pyloric sphincter development and examined coexpression of Nkx2-5 with Gata3 and Sox9-other transcription factors with pyloric-specific mesenchymal expression. We also assessed pyloric sphincter development in mice with disruption of Nkx2-5 or Gata3. METHODS We used immunofluorescence analysis to compare levels of NKX2-5, GATA3, and SOX9 in different regions of smooth muscle cells. Pyloric development was assessed in mice with conditional or germline deletion of Nkx2-5 or Gata3, respectively. RESULTS Gata3, Nkx2-5, and Sox9 are coexpressed in differentiating smooth muscle cells of a distinct fascicle of the pyloric outer longitudinal muscle. Expansion of this fascicle coincides with development of the pyloric sphincter. Disruption of Nkx2-5 or Gata3 causes severe hypoplasia of this fascicle and alters pyloric muscle shape. Although expression of Sox9 requires Nkx2-5 and Gata3, there is no apparent hierarchical relationship between Nkx2-5 and Gata3 during pyloric outer longitudinal muscle development. CONCLUSIONS Nkx2-5 and Gata3 are independently required for the development of a pyloric outer longitudinal muscle fascicle, which is required for pyloric sphincter morphogenesis in mice. These data indicate that regulatory changes that alter Nkx2-5 or Gata3 expression could contribute to pathogenesis of infantile hypertrophic pyloric stenosis.
Collapse
Affiliation(s)
- Aaron M. Udager
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| | - Ajay Prakash
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| | - David A. Saenz
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| | - Martina Schinke
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Takashi Moriguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Patrick Y. Jay
- Departments of Pediatrics and Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Verzi MP, Shivdasani RA. Wnt signaling in gut organogenesis. Organogenesis 2012; 4:87-91. [PMID: 19279719 DOI: 10.4161/org.4.2.5854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/11/2023] Open
Abstract
Wnt signaling regulates some aspect of development of nearly all endoderm-derived organs and Wnts mediate both differentiation and proliferation at different steps during visceral organogenesis. Wnt2b induces liver formation in zebrafish 1 and may combine with other inducers, Fibroblast Growth Factors 1 & 4 and Bone Morphogenetic Protein 4, to specify the mammalian liver.2-5 Later in development, Wnts are critical for liver expansion and, finally, for terminal hepatocyte differentiation,6-12 as reviewed elsewhere in this issue (Monga). Likewise, in the pancreas, Wnts drive proliferation of exocrine and endocrine cells13,14 and promote acinar cell differentiation,13,15 as reviewed in the chapter by Murtaugh. Here we examine the intricate involvement of Wnt signaling in growth and differentiation of the digestive tract.
Collapse
Affiliation(s)
- Michael P Verzi
- Department of Medical Oncology; Dana-Farber Cancer Institute; and Department of Medicine; Harvard Medical School; Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
Jeong J, Cesario J, Zhao Y, Burns L, Westphal H, Rubenstein JLR. Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate. Dev Dyn 2012; 241:1757-69. [PMID: 22972697 DOI: 10.1002/dvdy.23867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mice lacking the activities of Dlx1 and Dlx2 (Dlx1/2-/-) exhibit cleft palate, one of the most common human congenital defects, but the etiology behind this phenotype has been unknown. Therefore, we analyzed the morphological, cellular, and molecular changes caused by inactivation of Dlx1 and Dlx2 as related to palate development. RESULTS Dlx1/2-/- mutants exhibited lack of vertical growth in the posterior palate during the earliest stage of palatogenesis. We attributed this growth deficiency to reduced cell proliferation. Expression of a cell cycle regulator Ccnd1 was specifically down-regulated in the same region. Previous studies established that the epithelial-mesenchymal signaling loop involving Shh, Bmp4, and Fgf10 is important for cell proliferation and tissue growth during palate development. This signaling loop was disrupted in Dlx1/2-/- palate. Interestingly, however, the decreases in Ccnd1 expression and mitosis in Dlx1/2-/- mutants were independent of this signaling loop. Finally, Dlx1/2 activity was required for normal expression of several transcription factor genes whose mutation results in palate defects. CONCLUSIONS The functions of Dlx1 and Dlx2 are crucial for the initial formation of the posterior palatal shelves, and that the Dlx genes lie upstream of multiple signaling molecules and transcription factors important for later stages of palatogenesis.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Stringer EJ, Duluc I, Saandi T, Davidson I, Bialecka M, Sato T, Barker N, Clevers H, Pritchard CA, Winton DJ, Wright NA, Freund JN, Deschamps J, Beck F. Cdx2 determines the fate of postnatal intestinal endoderm. Development 2012; 139:465-74. [PMID: 22190642 PMCID: PMC3252350 DOI: 10.1242/dev.070722] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 12/19/2022]
Abstract
Knock out of intestinal Cdx2 produces different effects depending upon the developmental stage at which this occurs. Early in development it produces histologically ordered stomach mucosa in the midgut. Conditional inactivation of Cdx2 in adult intestinal epithelium, as well as specifically in the Lgr5-positive stem cells, of adult mice allows long-term survival of the animals but fails to produce this phenotype. Instead, the endodermal cells exhibit cell-autonomous expression of gastric genes in an intestinal setting that is not accompanied by mesodermal expression of Barx1, which is necessary for gastric morphogenesis. Cdx2-negative endodermal cells also fail to express Sox2, a marker of gastric morphogenesis. Maturation of the stem cell niche thus appears to be associated with loss of ability to express positional information cues that are required for normal stomach development. Cdx2-negative intestinal crypts produce subsurface cystic vesicles, whereas untargeted crypts hypertrophy to later replace the surface epithelium. These observations are supported by studies involving inactivation of Cdx2 in intestinal crypts cultured in vitro. This abolishes their ability to form long-term growing intestinal organoids that differentiate into intestinal phenotypes. We conclude that expression of Cdx2 is essential for differentiation of gut stem cells into any of the intestinal cell types, but they maintain a degree of cell-autonomous plasticity that allows them to switch on a variety of gastric genes.
Collapse
Affiliation(s)
- Emma J. Stringer
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Isabelle Duluc
- INSERM, U682, Université de Strasbourg, Strasbourg, France
| | | | - Irwin Davidson
- CNRS, UMR7104, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Monika Bialecka
- Hubrecht Institute, Developmental Biology and Stem Cell Research, and Utrecht University Medical Center, Utrecht, The Netherlands
| | - Toshiro Sato
- Hubrecht Institute, Developmental Biology and Stem Cell Research, and Utrecht University Medical Center, Utrecht, The Netherlands
| | - Nick Barker
- Institute of Medical Biology, 8A Biomedical Grove, 06-06 Immunos, Singapore 138648
| | - Hans Clevers
- Hubrecht Institute, Developmental Biology and Stem Cell Research, and Utrecht University Medical Center, Utrecht, The Netherlands
| | - Catrin A. Pritchard
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Doug J. Winton
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Nicholas A. Wright
- St Bartholomew’s and The Royal London School of Medicine and Dentistry, Turner Street, Whitechapel, London E1 2DD, UK
| | | | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, and Utrecht University Medical Center, Utrecht, The Netherlands
| | - Felix Beck
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
33
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
34
|
Boundaries, junctions and transitions in the gastrointestinal tract. Exp Cell Res 2011; 317:2711-8. [PMID: 21802415 DOI: 10.1016/j.yexcr.2011.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023]
Abstract
Contiguous regions along the mammalian gastrointestinal tract, from the esophagus to the rectum, serve distinct digestive functions. Some organs, such as the esophagus and glandular stomach or the small bowel and colon, are separated by sharp boundaries. The duodenal, jejunal and ileal segments of the small intestine, by contrast, have imprecise borders. Because human esophageal and gastric cancers frequently arise in a background of tissue metaplasia and some intestinal disorders are confined to discrete regions, it is useful to appreciate the molecular and cellular basis of boundary formation and preservation. Here we review the anatomy and determinants of boundaries and transitions in the alimentary canal with respect to tissue morphology, gene expression, and, especially, transcriptional control of epithelial identity. We discuss the evidence for established and candidate molecular mechanisms of boundary formation, including the solitary and combinatorial actions of tissue-restricted transcription factors. Although the understanding remains sparse, genetic studies in mice do provide insights into dominant mechanisms and point the way for future investigation.
Collapse
|
35
|
Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 2011; 6:e22493. [PMID: 21799872 PMCID: PMC3142160 DOI: 10.1371/journal.pone.0022493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal cells underlying the definitive endoderm in vertebrate animals play a vital role in digestive and respiratory organogenesis. Although several signaling pathways are implicated in foregut patterning and morphogenesis, and despite the clinical importance of congenital tracheal and esophageal malformations in humans, understanding of molecular mechanisms that allow a single tube to separate correctly into the trachea and esophagus is incomplete. The homoebox gene Barx1 is highly expressed in prospective stomach mesenchyme and required to specify this organ. We observed lower Barx1 expression extending contiguously from the proximal stomach domain, along the dorsal anterior foregut mesenchyme and in mesenchymal cells between the nascent esophagus and trachea. This expression pattern exactly mirrors the decline in Wnt signaling activity in late development of the adjacent dorsal foregut endoderm and medial mainstem bronchi. The hypopharynx in Barx1(-/-) mouse embryos is abnormally elongated and the point of esophago-tracheal separation shows marked caudal displacement, resulting in a common foregut tube that is similar to human congenital tracheo-esophageal fistula and explains neonatal lethality. Moreover, the Barx1(-/-) esophagus displays molecular and cytologic features of respiratory endoderm, phenocopying abnormalities observed in mouse embryos with activated ß-catenin. The zone of canonical Wnt signaling is abnormally prolonged and expanded in the proximal Barx1(-/-) foregut. Thus, as in the developing stomach, but distinct from the spleen, Barx1 control of thoracic foregut specification and tracheo-esophageal septation is tightly associated with down-regulation of adjacent Wnt pathway activity.
Collapse
|
36
|
Hörnblad A, Eriksson AU, Sock E, Hill RE, Ahlgren U. Impaired spleen formation perturbs morphogenesis of the gastric lobe of the pancreas. PLoS One 2011; 6:e21753. [PMID: 21738788 PMCID: PMC3128080 DOI: 10.1371/journal.pone.0021753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/−, Bapx1−/− and Sox11−/−, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and duodenal pancreatic lobes. Altogether, this study provides new information regarding the developmental dynamics underlying the formation of the gastric lobe of the pancreas and recognizes lobular heterogeneities regarding the time course of pancreatic cellular differentiation. Collectively, these data are likely to constitute important elements in future interpretations of the developing and/or diseased pancreas.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anna U. Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert E. Hill
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
37
|
Czömpöly T, Lábadi A, Kellermayer Z, Olasz K, Arnold HH, Balogh P. Transcription factor Nkx2-3 controls the vascular identity and lymphocyte homing in the spleen. THE JOURNAL OF IMMUNOLOGY 2011; 186:6981-9. [PMID: 21593383 DOI: 10.4049/jimmunol.1003770] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The vasculature in the spleen and peripheral lymph nodes (pLNs) is considerably different, which affects both homing of lymphocytes and antigenic access to these peripheral lymphoid organs. In this paper, we demonstrate that in mice lacking the homeodomain transcription factor Nkx2-3, the spleen develops a pLN-like mRNA expression signature, coupled with the appearance of high endothelial venules (HEVs) that mediate L-selectin-dependent homing of lymphocytes into the mutant spleen. These ectopic HEV-like vessels undergo postnatal maturation and progressively replace MAdCAM-1 by pLN addressin together with the display of CCL21 arrest chemokine in a process that is reminiscent of HEV formation in pLNs. Similarly to pLNs, development of HEV-like vessels in the Nkx2-3-deficient spleen depends on lymphotoxin-β receptor-mediated signaling. The replacement of splenic vessels with a pLN-patterned vasculature impairs the recirculation of adoptively transferred lymphocytes and reduces the uptake of blood-borne pathogens. The Nkx2-3 mutation in BALB/c background causes a particularly disturbed splenic architecture, characterized by the near complete lack of the red pulp, without affecting lymph nodes. Thus, our observations reveal that the organ-specific patterning of splenic vasculature is critically regulated by Nkx2-3, thereby profoundly affecting the lymphocyte homing mechanism and blood filtering capacity of the spleen in a tissue-specific manner.
Collapse
Affiliation(s)
- Tamás Czömpöly
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
38
|
Kim BM, Woo J, Kanellopoulou C, Shivdasani RA. Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development 2011; 138:1081-6. [PMID: 21307095 DOI: 10.1242/dev.056317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although microRNAs (miRNAs) are postulated to fine-tune many developmental processes, their relationships with specific targets and tissues remain largely undefined. The mesenchymal transcription factor Barx1 controls spleen and stomach morphogenesis and is required to specify stomach-specific epithelium in adjacent endoderm. Barx1 expression is precisely regulated in space and time, with a sharp drop in stomach levels after epithelial specification. We tested the hypothesis that specific miRNAs mediate this marked decline in Barx1 levels. Depletion of the miRNA-processing enzyme Dicer in cultured stomach mesenchyme and conditional Dicer gene deletion in mice significantly increased Barx1 levels, disrupted stomach and intestine development and caused spleen agenesis. Computational and experimental studies identified miR-7a and miR-203 as candidate miRNAs that regulate Barx1 and are expressed in inverse proportion to it in the fetal mouse stomach. Through specific interactions with cognate sequences in the Barx1 3' untranslated region, miR-7a and miR-203 repress Barx1 expression in stomach mesenchymal cells and its function in inducing gastric epithelium. These results indicate that miRNAs are required for proper digestive tract organogenesis and that miR-7a and miR-203 control expression of the stomach homeotic regulator Barx1.
Collapse
Affiliation(s)
- Byeong-Moo Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
39
|
MILLS JASONC, SHIVDASANI RAMESHA. Gastric epithelial stem cells. Gastroenterology 2011; 140:412-24. [PMID: 21144849 PMCID: PMC3708552 DOI: 10.1053/j.gastro.2010.12.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 12/11/2022]
Abstract
Advances in our understanding of stem cells in the gastrointestinal tract include the identification of molecular markers of stem and early progenitor cells in the small intestine. Although gastric epithelial stem cells have been localized, little is known about their molecular biology. Recent reports describe the use of inducible Cre recombinase activity to indelibly label candidate stem cells and their progeny in the distal stomach, (ie, the antrum and pylorus). No such lineage labeling of epithelial stem cells has been reported in the gastric body (corpus). Among stem cells in the alimentary canal, those of the adult corpus are unique in that they lie close to the lumen and increase proliferation following loss of a single mature progeny lineage, the acid-secreting parietal cell. They are also unique in that they neither depend on Wnt signaling nor express the surface marker Lgr5. Because pathogenesis of gastric adenocarcinoma has been associated with abnormal patterns of gastric differentiation and with chronic tissue injury, there has been much research on the response of stomach epithelial stem cells to inflammation. Chronic inflammation, as induced by infection with Helicobacter pylori, affects differentiation and promotes metaplasias. Several studies have identified cellular and molecular mechanisms in spasmolytic polypeptide-expressing (pseudopyloric) metaplasia. Researchers have also begun to identify signaling pathways and events that take place during embryonic development that eventually establish the adult stem cells to maintain the specific features and functions of the stomach mucosa. We review the cytologic, molecular, functional, and developmental properties of gastric epithelial stem cells.
Collapse
Affiliation(s)
- JASON C. MILLS
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - RAMESH A. SHIVDASANI
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Abstract
The Cdx (Caudal-type homeobox) group of ParaHox genes (Cdx1, Cdx2 and Cdx4 in the mouse) perform multiple functions in mammalian development. Cdx1 is concerned with axial positional information, and its deletion appears to have no important effect other than a disturbance of axial patterning. In contrast, Cdx2 is required for trophoblast differentiation, axial patterning and extension, as well as for morphological specification (i.e. patterning) of gut endoderm. Cdx4-knockout animals do not present an abnormal phenotype, but, when combined with Cdx2 haploinsufficiency, present a dramatic picture involving abnormal cloacal specification. The latter is probably due in large part to defective paraxial mesodermal development in the caudal region, but may also involve defective endodermal growth. A significant degree of redundancy is apparent between the Cdx genes with respect to caudal extension and possibly also during gut development.
Collapse
|
41
|
Miller RK, McCrea PD. Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis. Dev Dyn 2010; 239:77-93. [PMID: 19681164 DOI: 10.1002/dvdy.22059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial tubes are crucial to the function of organ systems including the cardiovascular system, pulmonary system, gastrointestinal tract, reproductive organ systems, excretory system, and auditory system. Using a variety of animal model systems, recent studies have substantiated the role of Wnt signaling via the canonical/beta-catenin-mediated trajectory, the non-canonical Wnt trajectories, or both, in forming epithelial tubular tissues. This review focuses on the involvement of the Wnt pathways in the induction, specification, proliferation, and morphogenesis involved in tubulogenesis within tissues including the lungs, kidneys, ears, mammary glands, gut, and heart. The ultimate goal is to describe the developmental processes forming the various tubulogenic organ systems to determine the relationships between these processes.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
42
|
Roy S, Thakur AR. 20ns molecular dynamics simulation of the antennapedia homeodomain-DNA complex: water interaction and DNA structure analysis. J Biomol Struct Dyn 2010; 27:443-56. [PMID: 19916566 DOI: 10.1080/07391102.2010.10507329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Homeodomains are one of the important families of eukaryotic DNA-binding motifs and provide an important model system for studying protein-DNA interactions. The crystal structure and NMR structure of the antennapedia homeodomain-DNA complex and comparison between them is available. Although earlier works have shown that the direct contacts and water mediated contacts are important for the binding and specificity. The detail dynamical structural characteristics of the complex, water mediating interactions in the complex and also the detail study of the free DNA and protein has not done. In the present paper we have reported the results of 20ns MD simulation of this complex with the presence of explicit water and also the 20ns MD simulation of the protein and the DNA separately in explicit water. The results show that the complex remains stable during the last 8ns of the simulation. The part of the protein which is interacting with the DNA has fewer fluctuations than other part of the protein. The pattern of water distribution around the interacting center has a typical pattern for this complex and it is quite different from the free protein and the free DNA. Water molecules penetrate into the interacting center during the simulation. Several water bridges have been identified which is responsible for recognition but not observed in the crystal structure. The recognized DNA sequence (14 mer) has been characterized by helical and step parameters. The correlated motions of the DNA and the protein in the complexed form and the free form has been analyzed.
Collapse
Affiliation(s)
- Sujata Roy
- Department of Bioinformatics, West Bengal University of Technology BF-142. Sector-I Salt Lake Kolkata-700064 India
| | | |
Collapse
|
43
|
Grainger S, Savory JGA, Lohnes D. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 2010; 339:155-65. [PMID: 20043902 DOI: 10.1016/j.ydbio.2009.12.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022]
Abstract
Cdx1, Cdx2 and Cdx4 encode homeodomain transcription factors that are involved in vertebral anterior-posterior (AP) patterning. Cdx1 and Cdx2 are also expressed in the intestinal epithelium during development, suggesting a role in this tissue. Intestinal defects have not been reported in Cdx1 null mutants, while Cdx2 null mutants die at embryonic day 3.5 (E3.5), thus precluding assessment of the null phenotype at later stages. To circumvent this latter shortcoming, we have used a conditional Cre-lox strategy to inactivate Cdx2 in the intestinal epithelium. Using this approach, we found that ablation of Cdx2 at E13.5 led to a transformation of the small intestine to a pyloric stomach-like identity, although the molecular nature of the underlying mesenchyme remained unchanged. Further analysis of Cdx1-Cdx2 double mutants suggests that Cdx1 does not play a critical role in the development of the small intestine, at least after E13.5.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
44
|
Udager A, Prakash A, Gumucio DL. Dividing the tubular gut: generation of organ boundaries at the pylorus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:35-62. [PMID: 21075339 DOI: 10.1016/b978-0-12-381280-3.00002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discrete organs that comprise the gastrointestinal tract (esophagus, stomach, small intestine, and large intestine) arise embryonically by regional differentiation of a single tube that is initially morphologically similar along its length. Regional organ differentiation programs, for example, for stomach or intestine, involve signaling cross-talk between epithelium and mesenchyme and result in the formation of precise boundaries between organs, across which dramatic differences in both morphology and gene expression are seen. The pylorus is a unique area of the gut tube because it not only marks an important organ boundary in the tubular gut (the stomach/intestinal boundary) but is also the hub for the development of multiple accessory organs (liver, pancreas, gall bladder, and spleen). This chapter examines: (a) our current understanding of the molecular and morphogenic processes that underlie the generation of the dramatic epithelial tissue boundary that compartmentalizes stomach and intestine; (b) the tissue interactions that promote development of the accessory organs in this area; and (c) the molecular interactions that specify patterning of the pyloric sphincter. Though the focus here is primarily on the mouse as a model organism, the molecular underpinnings of organ patterning near the pylorus are shared by chick and frog. Thus, further study of these conserved developmental programs could potentially shed light on the mechanisms underlying human pyloric malformations such as infantile hypertrophic pyloric stenosis.
Collapse
Affiliation(s)
- Aaron Udager
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
45
|
|
46
|
Khurana S, Mills JC. The gastric mucosa development and differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:93-115. [PMID: 21075341 DOI: 10.1016/b978-0-12-381280-3.00004-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development and differentiation of the gastric mucosa are controlled by a complex interplay of signaling proteins and transcriptional regulators. This process is complicated by the fact that the stomach is derived from two germ layers, the endoderm and the mesoderm, with the first giving rise to the mature epithelium and the latter contributing the smooth muscle required for peristalsis. Reciprocal epithelial-mesenchymal interactions dictate the formation of the stomach during fetal development, and also contribute to its continuous regeneration and differentiation throughout adult life. In this chapter, we discuss the discoveries that have been made in different model systems, from zebrafish to human, which show that the Hedgehog, Wnt, Notch, bone morphogenetic protein, and fibroblast growth factor (FGF) signaling systems play essential roles during various stages of stomach development.
Collapse
Affiliation(s)
- Shradha Khurana
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
47
|
Abstract
The gastrointestinal tract is an asymmetrically patterned organ system. The signals which initiate left-right asymmetry in the developing embryo have been extensively studied, but the downstream steps required to confer asymmetric morphogenesis on the gut organ primordia are less well understood. In this paper we outline key findings on the tissue mechanics underlying gut asymmetry, across a range of species, and use these to synthesise a conserved model for asymmetric gut morphogenesis. We also discuss the importance of correct establishment of left-right asymmetry for gut development and the consequences of perturbations in this process.
Collapse
Affiliation(s)
- Sally F Burn
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
48
|
Verzi MP, Stanfel MN, Moses KA, Kim BM, Zhang Y, Schwartz RJ, Shivdasani RA, Zimmer WE. Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology 2009; 136:1701-10. [PMID: 19208343 PMCID: PMC2955323 DOI: 10.1053/j.gastro.2009.01.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 12/15/2008] [Accepted: 01/08/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Expansion and patterning of the endoderm generate a highly ordered, multiorgan digestive system in vertebrate animals. Among distal foregut derivatives, the gastric corpus, antrum, pylorus, and duodenum are distinct structures with sharp boundaries. Some homeodomain transcription factors expressed in gut mesenchyme convey positional information required for anterior-posterior patterning of the digestive tract. Barx1, in particular, controls stomach differentiation and morphogenesis. The Nirenberg and Kim homeobox gene Bapx1 (Nkx3-2) has an established role in skeletal development, but its function in the mammalian gut is less clear. METHODS We generated a Bapx1(Cre) knock-in allele to fate map Bapx1-expressing cells and evaluate its function in gastrointestinal development. RESULTS Bapx1-expressing cells populate the gut mesenchyme with a rostral boundary in the hindstomach near the junction of the gastric corpus and antrum. Smooth muscle differentiation and distribution of early regional markers are ostensibly normal in Bapx1(Cre/Cre) gut, but there are distinctive morphologic abnormalities near this rostral Bapx1 domain: the antral segment of the stomach is markedly shortened, and the pyloric constriction is lost. Comparison of expression domains and examination of stomach phenotypes in single and compound Barx1 and Bapx1 mutant mice suggests a hierarchy between these 2 factors; Bapx1 expression is lost in the absence of Barx1. CONCLUSIONS This study reveals the nonredundant requirement for Bapx1 in distal stomach development, places it within a Barx1-dependent pathway, and illustrates the pervasive influence of gut mesenchyme homeobox genes on endoderm differentiation and digestive organogenesis.
Collapse
Affiliation(s)
- Michael P. Verzi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA
| | - Monique N. Stanfel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Kelvin A. Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Byeong-Moo Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA
| | - Yan Zhang
- Department of Systems Biology and Translational Medicine, Texas A&M University, College of Medicine, College Station, TX
| | - Robert J. Schwartz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, Center for Environmental and Rural Health, Texas A&M University, College of Medicine, College Station, TX, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA,Address correspondence to: Warren E. Zimmer, Ph.D., Texas A&M Health Science Center, 310B Joe H. Reynold’s Bldg, College Station, TX 77843, Tel. 617-632-5746 Fax 617-582-8490, OR Ramesh A. Shivdasani, M.D., Ph.D., Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 Tel. 979-845-2896 Fax 979-862-4638,
| | - Warren E. Zimmer
- Department of Systems Biology and Translational Medicine, Texas A&M University, College of Medicine, College Station, TX, Center for Environmental and Rural Health, Texas A&M University, College of Medicine, College Station, TX,Address correspondence to: Warren E. Zimmer, Ph.D., Texas A&M Health Science Center, 310B Joe H. Reynold’s Bldg, College Station, TX 77843, Tel. 617-632-5746 Fax 617-582-8490, OR Ramesh A. Shivdasani, M.D., Ph.D., Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 Tel. 979-845-2896 Fax 979-862-4638,
| |
Collapse
|
49
|
Blumberg RS, Li L, Nusrat A, Parkos CA, Rubin DC, Carrington JL. Recent insights into the integration of the intestinal epithelium within the mucosal environment in health and disease. Mucosal Immunol 2008; 1:330-4. [PMID: 19079196 DOI: 10.1038/mi.2008.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
50
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Wend
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexandra Klaus
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|