1
|
Deng X, Sandoval IC, Zhu S. Slit regulates compartment-specific targeting of dendrites and axons in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620851. [PMID: 39554193 PMCID: PMC11565903 DOI: 10.1101/2024.10.29.620851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Proper functioning of the nervous system requires precise neuronal connections at subcellular domains, which can be achieved by projection of axons or dendrites to subcellular domains of target neurons. Here we studied subcellular-specific targeting of dendrites and axons in the Drosophila mushroom body (MB), where mushroom body output neurons (MBONs) and local dopaminergic neurons (DAN) project their dendrites and axons, respectively, to specific compartments of MB axons. Through genetic ablation, we demonstrate that compartment-specific targeting of MBON dendrites and DAN axons involves mutual repulsion of MBON dendrites and/or DAN axons between neighboring compartments. We further show that Slit expressed in subset of DANs mediates such repulsion by acting through different Robo receptors in different neurons. Loss of Slit-mediated repulsion leads to projection of MBON dendrites and DAN axons into neighboring compartments, resulting formation of ectopic synaptic contacts between MBONs and DANs and changes in olfactory-associative learning. Together, our findings suggest that Slit-mediated repulsion controls compartment-specific targeting of MBON dendrites and DAN axons, which ensures precise connections between MBON dendrites and DAN axons and proper learning and memory formation.
Collapse
|
2
|
Vien KM, Duan Q, Yeung C, Barish S, Volkan PC. Atypical cadherin, Fat2, regulates axon terminal organization in the developing Drosophila olfactory receptor neurons. iScience 2024; 27:110340. [PMID: 39055932 PMCID: PMC11269957 DOI: 10.1016/j.isci.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.
Collapse
Affiliation(s)
- Khanh M. Vien
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chun Yeung
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Muralidharan B. Understanding brain development - Indian researchers' past, present and growing contribution. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 64:123-132. [PMID: 32659000 DOI: 10.1387/ijdb.190204bm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The brain is the seat of all higher-order functions in the body. Brain development and the vast array of neurons and glia it produces is a baffling mystery to be studied. Neuroscientists using a vast number of model systems have been able to crack many of the nitty-gritty details using various model systems. One way has been to size down the problem by utilizing the power of genetics using simple model systems such as Drosophila to create a fundamental framework in order to unravel the basic principles of brain development. Scientists have used simpler organisms to uncover the fundamental principles of brain development and also to study the evo-devo angle to brain development. Complex circuitry has been unraveled in complex model systems, such as the mouse, to reveal the intricacies and regional specialization of brain function. This is an ever-growing field, and with newer genetic and molecular tools, together with several new centers of excellence, India's contribution to this fascinating field of study is continually rising. Here, I review the pioneering work done by Indian developmental neurobiologists in the past and their mounting contribution in the present.
Collapse
Affiliation(s)
- Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|
4
|
Ryba AR, McKenzie SK, Olivos-Cisneros L, Clowney EJ, Pires PM, Kronauer DJC. Comparative Development of the Ant Chemosensory System. Curr Biol 2020; 30:3223-3230.e4. [PMID: 32559450 DOI: 10.1016/j.cub.2020.05.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
The insect antennal lobe (AL) contains the first synapses of the olfactory system, where olfactory sensory neurons (OSNs) contact second-order projection neurons (PNs). In Drosophila melanogaster, OSNs expressing specific receptor genes send stereotyped projections to one or two of about 50 morphologically defined glomeruli [1-3]. The mechanisms for this precise matching between OSNs and PNs have been studied extensively in D. melanogaster, where development is deterministic and independent of neural activity [4-6]. However, a number of insect lineages, most notably the ants, have receptor gene repertoires many times larger than D. melanogaster and exhibit more structurally complex antennal lobes [7-12]. Moreover, perturbation of OSN function via knockout of the odorant receptor (OR) co-receptor, Orco, results in drastic AL reductions in ants [13, 14], but not in Drosophila [15]. Here, we characterize AL development in the clonal raider ant, Ooceraea biroi. We find that, unlike in Drosophila, ORs and Orco are expressed before the onset of glomerulus formation, and Orco protein is trafficked to developing axon terminals, raising the possibility that ORs play a role during ant AL development. Additionally, ablating ant antennae at the onset of pupation results in AL defects that recapitulate the Orco mutant phenotype. Thus, early loss of functional OSN innervation reveals latent structure in the AL that develops independently of peripheral input, suggesting that the AL is initially pre-patterned and later refined in an OSN-dependent manner. This two-step process might increase developmental flexibility and thereby facilitate the rapid evolution and expansion of the ant chemosensory system.
Collapse
Affiliation(s)
- Anna R Ryba
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA; Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Mussells Pires
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Jae Y, Lee N, Moon DW, Koo J. Interhemispheric asymmetry of c-Fos expression in glomeruli and the olfactory tubercle following repeated odor stimulation. FEBS Open Bio 2020; 10:912-926. [PMID: 32237058 PMCID: PMC7193154 DOI: 10.1002/2211-5463.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022] Open
Abstract
Odor adaptation allows the olfactory system to regulate sensitivity to different stimulus intensities, which is essential for preventing saturation of the cell‐transducing machinery and maintaining high sensitivity to persistent and repetitive odor stimuli. Although many studies have investigated the structure and mechanisms of the mammalian olfactory system that responds to chemical sensation, few studies have considered differences in neuronal activation that depend on the manner in which the olfactory system is exposed to odorants, or examined activity patterns of olfactory‐related regions in the brain under different odor exposure conditions. To address these questions, we designed three different odor exposure conditions that mimicked diverse odor environments and analyzed c‐Fos‐expressing cells (c‐Fos+ cells) in the odor columns of the olfactory bulb (OB). We then measured differences in the proportions of c‐Fos‐expressing cell types depending on the odor exposure condition. Surprisingly, under the specific odor condition in which the olfactory system was repeatedly exposed to the odorant for 1 min at 5‐min intervals, one of the lateral odor columns and the ipsilateral hemisphere of the olfactory tubercle had more c‐Fos+ cells than the other three odor columns and the contralateral hemisphere of the olfactory tubercle. However, this interhemispheric asymmetry of c‐Fos expression was not observed in the anterior piriform cortex. To confirm whether the anterior olfactory nucleus pars externa (AONpE), which connects the left and right OB, contributes to this asymmetry, AONpE‐lesioned mice were analyzed under the specific odor exposure condition. Asymmetric c‐Fos expression was not observed in the OB or the olfactory tubercle. These data indicate that the c‐Fos expression patterns of the olfactory‐related regions in the brain are influenced by the odor exposure condition and that asymmetric c‐Fos expression in these regions was observed under a specific odor exposure condition due to synaptic linkage via the AONpE.
Collapse
Affiliation(s)
- YoonGyu Jae
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - NaHye Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | | | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, Korea.,Center for Bio-Convergence Spin System, DGIST, Daegu, Korea
| |
Collapse
|
6
|
Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L. Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell 2020; 180:373-386.e15. [PMID: 31955847 DOI: 10.1016/j.cell.2019.12.029] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pornchai Kaewsapsak
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Kaur R, Surala M, Hoger S, Grössmann N, Grimm A, Timaeus L, Kallina W, Hummel T. Pioneer interneurons instruct bilaterality in the Drosophila olfactory sensory map. SCIENCE ADVANCES 2019; 5:eaaw5537. [PMID: 31681838 PMCID: PMC6810332 DOI: 10.1126/sciadv.aaw5537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Interhemispheric synaptic connections, a prominent feature in animal nervous systems for the rapid exchange and integration of neuronal information, can appear quite suddenly during brain evolution, raising the question about the underlying developmental mechanism. Here, we show in the Drosophila olfactory system that the induction of a bilateral sensory map, an evolutionary novelty in dipteran flies, is mediated by a unique type of commissural pioneer interneurons (cPINs) via the localized activity of the cell adhesion molecule Neuroglian. Differential Neuroglian signaling in cPINs not only prepatterns the olfactory contralateral tracts but also prevents the targeting of ingrowing sensory axons to their ipsilateral synaptic partners. These results identified a sensitive cellular interaction to switch the sequential assembly of diverse neuron types from a unilateral to a bilateral brain circuit organization.
Collapse
Affiliation(s)
- Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Michael Surala
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Sebastian Hoger
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Nicole Grössmann
- Ludwig Boltzmann Institute, Health Technology Assessment (LBI-HTA), Garnisongasse7/20, 1090 Vienna, Austria
- Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alexandra Grimm
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Lorin Timaeus
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Wolfgang Kallina
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| |
Collapse
|
8
|
Inter-axonal recognition organizes Drosophila olfactory map formation. Sci Rep 2019; 9:11554. [PMID: 31399611 PMCID: PMC6689066 DOI: 10.1038/s41598-019-47924-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Olfactory systems across the animal kingdom show astonishing similarities in their morphological and functional organization. In mouse and Drosophila, olfactory sensory neurons are characterized by the selective expression of a single odorant receptor (OR) type and by the OR class-specific connection in the olfactory brain center. Monospecific OR expression in mouse provides each sensory neuron with a unique recognition identity underlying class-specific axon sorting into synaptic glomeruli. Here we show that in Drosophila, although OR genes are not involved in sensory neuron connectivity, afferent sorting via OR class-specific recognition defines a central mechanism of odortopic map formation. Sensory neurons mutant for the Ig-domain receptor Dscam converge into ectopic glomeruli with single OR class identity independent of their target cells. Mosaic analysis showed that Dscam prevents premature recognition among sensory axons of the same OR class. Single Dscam isoform expression in projecting axons revealed the importance of Dscam diversity for spatially restricted glomerular convergence. These data support a model in which the precise temporal-spatial regulation of Dscam activity controls class-specific axon sorting thereby indicating convergent evolution of olfactory map formation via self-patterning of sensory neurons.
Collapse
|
9
|
Combinations of DIPs and Dprs control organization of olfactory receptor neuron terminals in Drosophila. PLoS Genet 2018; 14:e1007560. [PMID: 30102700 PMCID: PMC6107282 DOI: 10.1371/journal.pgen.1007560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/23/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 stereotypical glomeruli remains unclear. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. DIP/Dpr profiles are dynamic during development and correlate with sensilla type lineage for some ORN classes. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli. In the human brain there are over 80 billion neurons that form approximately 100 trillion specific connections. How the brain organizes the axon terminals of these neurons into distinct synaptic units on such a large scale is largely unknown. In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe, providing a complex yet workable model to understand the organization of glomerular structures and morphology. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli.
Collapse
|
10
|
Millard SS, Pecot MY. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev 2018; 13:11. [PMID: 29875010 PMCID: PMC5991427 DOI: 10.1186/s13064-018-0106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022] Open
Abstract
A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.
Collapse
Affiliation(s)
- S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew Y. Pecot
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
11
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex. Dev Cell 2017; 39:267-278. [PMID: 27780041 PMCID: PMC5084709 DOI: 10.1016/j.devcel.2016.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/29/2016] [Accepted: 08/25/2016] [Indexed: 11/05/2022]
Abstract
The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. In the Drosophila brain, mushroom bodies are a source of the Slit guidance cue Slit regulates axon growth in the vicinity of mushroom bodies via Robo receptors The phosphatase RPTP69D regulates Robo signaling in the brain RPTP69D regulates Robo3 membrane presentation independent of its enzymatic activity
Collapse
|
14
|
Hsieh YW, Alqadah A, Chuang CF. Mechanisms controlling diversification of olfactory sensory neuron classes. Cell Mol Life Sci 2017; 74:3263-3274. [PMID: 28357469 DOI: 10.1007/s00018-017-2512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Animals survive in harsh and fluctuating environments using sensory neurons to detect and respond to changes in their surroundings. Olfactory sensory neurons are essential for detecting food, identifying danger, and sensing pheromones. The ability to sense a large repertoire of different types of odors is crucial to distinguish between different situations, and is achieved through neuronal diversity within the olfactory system. Here, we review the developmental mechanisms used to establish diversity of olfactory sensory neurons in various model organisms, including Caenorhabditis elegans, Drosophila, and vertebrate models. Understanding and comparing how different olfactory neurons develop within the nervous system of different animals can provide insight into how the olfactory system is shaped in humans.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA.
| |
Collapse
|
15
|
The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles. J Neurosci 2016; 36:3860-70. [PMID: 27030770 DOI: 10.1523/jneurosci.4523-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED InDrosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns ofDrosophilaphosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons whenLarexpression is knocked down during development, but not in adults. Loss ofLarfunction eliminates sLNvdorsal projections, but PDF expression persists in sLNvand large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF,LarRNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate thatLaris required for sLNvdorsal projection development and suggest that PDF expression in LNvcell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather,Lardisrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lackLaranticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles.
Collapse
|
16
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
17
|
Barish S, Volkan PC. Mechanisms of olfactory receptor neuron specification in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:609-21. [PMID: 26088441 PMCID: PMC4744966 DOI: 10.1002/wdev.197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/04/2015] [Accepted: 05/16/2015] [Indexed: 11/05/2022]
Abstract
Detection of a broad range of chemosensory signals is necessary for the survival of multicellular organisms. Chemical signals are the main facilitators of foraging, escape, and social behaviors. To increase detection coverage, animal sensory systems have evolved to create a large number of neurons with highly specific functions. The olfactory system, much like the nervous system as a whole, is astonishingly diverse. The mouse olfactory system has millions of neurons with over a thousand classes, whereas the more compact Drosophila genome has approximately 80 odorant receptor genes that give rise to 50 neuronal classes and 1300 neurons in the adult.(4) Understanding how neuronal diversity is generated remains one of the central questions in developmental neurobiology. Here, we review the current knowledge on the development of the adult Drosophila olfactory system and the progress that has been made toward answering this central question.
Collapse
Affiliation(s)
- Scott Barish
- Department of Biology, Duke University, Durham, NC, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC, USA.,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Abstract
Precise connections established between pre- and postsynaptic partners during development are essential for the proper function of the nervous system. The olfactory system detects a wide variety of odorants and processes the information in a precisely connected neural circuit. A common feature of the olfactory systems from insects to mammals is that the olfactory receptor neurons (ORNs) expressing the same odorant receptor make one-to-one connections with a single class of second-order olfactory projection neurons (PNs). This represents one of the most striking examples of targeting specificity in developmental neurobiology. Recent studies have uncovered central roles of transmembrane and secreted proteins in organizing this one-to-one connection specificity in the olfactory system. Here, we review recent advances in the understanding of how this wiring specificity is genetically controlled and focus on the mechanisms by which transmembrane and secreted proteins regulate different stages of the Drosophila olfactory circuit assembly in a coordinated manner. We also discuss how combinatorial coding, redundancy, and error-correcting ability could contribute to constructing a complex neural circuit in general.
Collapse
|
19
|
Nair IS, Rodrigues V, Reichert H, VijayRaghavan K. The zinc finger transcription factor Jing is required for dendrite/axonal targeting in Drosophila antennal lobe development. Dev Biol 2013; 381:17-27. [PMID: 23810656 DOI: 10.1016/j.ydbio.2013.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
An important role in olfactory system development is played by transcription factors which act in sensory neurons or in their interneuron targets as cell autonomous regulators of downstream effectors such as cell surface molecules and signalling systems that control neuronal identity and process guidance. Some of these transcriptional regulators have been characterized in detail in the development of the neural elements that innervate the antennal lobe in the olfactory system of Drosophila. Here we identify the zinc finger transcription factor Jing as a cell autonomously acting transcriptional regulator that is required both for dendrite targeting of projection neurons and local interneurons as well as for axonal targeting of olfactory sensory neurons in Drosophila olfactory system development. Immunocytochemical analysis shows that Jing is widely expressed in the neural cells during postembryonic development. MARCM-based clonal analysis of projection neuron and local interneuron lineages reveals a requirement for Jing in dendrite targeting; Jing loss-of-function results in loss of innervation in specific glomeruli, ectopic innervation of inappropriate glomeruli, aberrant profuse dendrite arborisation throughout the antennal lobe, as well as mistargeting to other parts of the CNS. ey-FLP-based MARCM analysis of olfactory sensory neurons reveals an additional requirement for Jing in axonal targeting; mutational inactivation of Jing causes specific mistargeting of some olfactory sensory neuron axons to the DA1 glomerulus, reduction of targeting to other glomeruli, as well as aberrant stalling of axons in the antennal lobe. Taken together, these findings indicate that Jing acts as a key transcriptional control element in wiring of the circuitry in the developing olfactory sensory system in Drosophila.
Collapse
Affiliation(s)
- Indu S Nair
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | |
Collapse
|
20
|
Brown EB, Layne JE, Zhu C, Jegga AG, Rollmann SM. Genome-wide association mapping of natural variation in odour-guided behaviour inDrosophila. GENES BRAIN AND BEHAVIOR 2013; 12:503-15. [DOI: 10.1111/gbb.12048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/01/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022]
|
21
|
Melnattur KV, Berdnik D, Rusan Z, Ferreira CJ, Nambu JR. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit. Dev Neurobiol 2012; 73:107-26. [PMID: 22648855 DOI: 10.1002/dneu.22038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 05/16/2012] [Indexed: 11/07/2022]
Abstract
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
22
|
Venkatesh CR, Shyamala BV. GAL4 enhancer trap strains with reporter gene expression during the development of adult brain in Drosophila melanogaster. J Genet 2010; 89:e38-42. [PMID: 21273707 DOI: 10.1007/s12041-011-0007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C R Venkatesh
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570 006, India.
| | | |
Collapse
|
23
|
Brochtrup A, Hummel T. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability. Curr Opin Neurobiol 2010; 21:85-92. [PMID: 21112768 DOI: 10.1016/j.conb.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing.
Collapse
Affiliation(s)
- Anna Brochtrup
- Institut für Neurobiologie, Universität Münster, Badestr. 9, D-48149 Münster, Germany
| | | |
Collapse
|
24
|
Sen S, Hartmann B, Reichert H, Rodrigues V. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster. Development 2010; 137:3687-95. [PMID: 20940227 DOI: 10.1242/dev.052407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
25
|
Developmentally regulated expression of reporter gene in adult brain specific GAL4 enhancer traps of Drosophila melanogaster. J Genet 2010; 89:e1-6. [DOI: 10.1007/s12041-011-0001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Venkatesh CR, Shyamala BV. Developmentally regulated expression of reporter gene in adult brain specific GAL4 enhancer traps of Drosophila melanogaster. J Genet 2010. [DOI: 10.1007/s12041-010-0021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
28
|
Differentially expressed Drl and Drl-2 play opposing roles in Wnt5 signaling during Drosophila olfactory system development. J Neurosci 2009; 29:4972-80. [PMID: 19369566 DOI: 10.1523/jneurosci.2821-08.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, odor information received by olfactory receptor neurons (ORNs) is processed by glomeruli, which are organized in a stereotypic manner in the antennal lobe (AL). This glomerular organization is regulated by Wnt5 signaling. In the embryonic CNS, Wnt5 signaling is transduced by the Drl receptor, a member of the Ryk family. During development of the olfactory system, however, it is antagonized by Drl. Here, we identify Drl-2 as a receptor mediating Wnt5 signaling. Drl is found in the neurites of brain cells in the AL and specific glia, whereas Drl-2 is predominantly found in subsets of growing ORN axons. A drl-2 mutation produces only mild deficits in glomerular patterning, but when it is combined with a drl mutation, the phenotype is exacerbated and more closely resembles the Wnt5 phenotype. Wnt5 overexpression in ORNs induces aberrant glomeruli positioning. This phenotype is ameliorated in the drl-2 mutant background, indicating that Drl-2 mediates Wnt5 signaling. In contrast, forced expression of Drl-2 in the glia of drl mutants rescues the glomerular phenotype caused by the loss of antagonistic Drl function. Therefore, Drl-2 can also antagonize Wnt5 signaling. Additionally, our genetic data suggest that Drl localized to developing glomeruli mediates Wnt5 signaling. Thus, these two members of the Ryk family are capable of carrying out a similar molecular function, but they can play opposing roles in Wnt5 signaling, depending on the type of cells in which they are expressed. These molecules work cooperatively to establish the olfactory circuitry in Drosophila.
Collapse
|
29
|
Rodrigues V, Hummel T. Development of the Drosophila olfactory system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 628:82-101. [PMID: 18683640 DOI: 10.1007/978-0-387-78261-4_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The olfactory system throughout the animal kingdom is characterized by a large number of highly specialized neuronal cell types. Olfactory receptor neurons (ORNs) in the peripheral sensory epithelium display two main differentiation features: the selective expression of a single odorant receptor out of a large genomic repertoire of receptor genes and the synaptic connection to a single type of relay neuron in the primary olfactory CNS target area. In the mouse olfactory system, odorant receptors themselves play a central role in the coordination of both types of ORN differentiation. The olfactory system of Drosophila, although similar in structural and functional organization compared to mammals, does not seem to involve odorant receptors in the selection of OR gene expression and target cell recognition, suggesting distinct developmental control mechanisms. In this chapter we summarize recent findings in Drosophila of how gene networks regulate ORN specification and differentiation in the peripheral sensory organs as well as how different cellular interactions and patterning signals organize the class-specific axonal and dendritic connectivity in the CNS target area.
Collapse
Affiliation(s)
- Veronica Rodrigues
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
30
|
Abstract
Slit was identified in Drosophila embryo as a gene involved in the patterning of larval cuticle. It was later shown that Slit is synthesized in the fly central nervous system by midline glia cells. Slit homologues have since been found in C. elegans and many vertebrate species, from amphibians, fishes, birds to mammals. A single slit was isolated in invertebrates, whereas there are three slit genes (slit1-slit3) in mammals, that have around 60% homology. All encodes large ECM glycoproteins of about 200 kDa (Fig. 1A), comprising, from their N terminus to their C terminus, a long stretch of four leucine rich repeats (LRR) connected by disulphide bonds, seven to nine EGF repeats, a domain, named ALPS (Agrin, Perlecan, Laminin, Slit) or laminin G-like module (see ref 17), and a cystein knot (Fig. 1A). Alternative spliced transcripts have been reported for Drosophila Slit2, human Slit2 and Slit3, and Slit1. Moreover, two Slit1 isoforms exist in zebrafish as a consequence of gene duplication. Last, in mammals, two Slit2 isoforms can be purified from brain extracts, a long 200 kDa one and a shorter 150 kDa form (Slit2-N) that was shown to result from the proteolytic processing of full-length Slit2. Human Slit and Slit3 and Drosophila Slit are also cleaved by an unknown protease in a large N-terminal fragment and a shorter C-terminal fragment, suggesting conserved mechanisms for Slit cleavage across species. Moreover, Slit fragments have different cell association characteristics in cell culture suggesting that they may also have different extents of diffusion, different binding properties, and, hence, different functional activities in vivo. This conclusion is supported by in vitro data showing that full-length Slit2 functions as an antagonist of Slit2-N in the DRG branching assay, and that Slit2-N, not full-length Slit2, causes collapse of OB growth cones. In addition, Slit1-N and full-length Slit1 can induce branching of cortical neurons (see below), but only full-length Slit1 repels cortical axons. Structure-function analysis in vertebrates and Drosophila demonstrated that the LRRs of Slits are required and sufficient to mediate their repulsive activities in neurons. More recent detailed structure function analysis of the LRR domains of Drosophila Slit, revealed that the active site of Slit (at least regarding its pro-angiogenic activity) is located on the second of the fourth LRR (LRR2), which is highly conserved between Slits. Slit can also dimerize through the LRR4 domain and the cystein knot.However, a Slit1 spliced-variant that lacks the cysteine knot and does not dimerize is still able to repel OB axons.
Collapse
|
31
|
Nguyen-Ba-Charvet KT, Di Meglio T, Fouquet C, Chédotal A. Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. J Neurosci 2008; 28:4244-9. [PMID: 18417704 PMCID: PMC6670299 DOI: 10.1523/jneurosci.5671-07.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/18/2008] [Accepted: 03/13/2008] [Indexed: 12/13/2022] Open
Abstract
Odorants are detected by olfactory receptor neurons (ORNs) located in the olfactory epithelium. In mice, ORNs expressing the same odorant receptor (OR) project to a single glomerulus out of 1800 in the olfactory bulb (OB). It has been proposed that OR-derived cAMP signals guide ORN axons to their glomeruli rather than OR themselves. Recently, it has also been shown that the axon guidance molecule Slit1 and its receptor Robo2 control the dorsoventral segregation of ORN axons as they are projecting to the OB. We have analyzed the development of olfactory projections in Slit1/Slit2 and Robo1/Robo2 single and double mutants. We show that in Robo1-/-;Robo2-/- mice, most ORN axons fail to enter the OB and instead project caudally into the diencephalon. Moreover, in these mice, ORN axons expressing the same OR project to several glomeruli at ectopic positions. Thus, Slit1, Slit2, Robo1, and Robo2 cooperate to control the convergence of ORN axons to the OB and the precise targeting of ORN axons to specific glomeruli.
Collapse
Affiliation(s)
- Kim T. Nguyen-Ba-Charvet
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Thomas Di Meglio
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Coralie Fouquet
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Alain Chédotal
- Université Pierre et Marie Curie and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, F-75013 Paris, France
| |
Collapse
|
32
|
Berni J, Beckwith EJ, Fernández MP, Ceriani MF. The axon-guidance roundabout gene alters the pace of the Drosophila circadian clock. Eur J Neurosci 2008; 27:396-407. [PMID: 18215236 DOI: 10.1111/j.1460-9568.2007.06010.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Great efforts have been directed to the dissection of the cell-autonomous circadian oscillator in Drosophila. However, less information is available regarding how this oscillator controls rhythmic rest-activity cycles. We have identified a viable allele of roundabout, robo(hy), where the period of locomotor activity is shortened. From its role in axon-pathfinding, we anticipated developmental defects in clock-relevant structures. However, robo(hy) produced minor defects in the architecture of the circuits essential for rhythmic behaviour. ROBO's presence within the circadian circuit strengthened the possibility of a novel role for ROBO at this postdevelopmental stage. Genetic interactions between pdf (01) and robo(hy) suggest that ROBO could alter the communication within different clusters of the circadian network, thus impinging on two basic properties, periodicity and/or rhythmicity. Early translocation of PERIOD to the nucleus in robo(hy) pacemaker cells indicated that shortened activity rhythms were derived from alterations in the molecular oscillator. Herein we present a mutation affecting clock function associated with a molecule involved in circuit assembly and maintenance.
Collapse
Affiliation(s)
- Jimena Berni
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires (IIBBA, CONICET), Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | | | |
Collapse
|
33
|
Cho JH, Lépine M, Andrews W, Parnavelas J, Cloutier JF. Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. J Neurosci 2007; 27:9094-104. [PMID: 17715346 PMCID: PMC6672192 DOI: 10.1523/jneurosci.2217-07.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2(-/-) (roundabout) and slit-1(-/-) mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2(-/-) and slit-1(-/-) mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues.
Collapse
Affiliation(s)
- Jin Hyung Cho
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec, Canada H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada H3A 2B4, and
| | - Manon Lépine
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec, Canada H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada H3A 2B4, and
| | - William Andrews
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - John Parnavelas
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, Montréal, Québec, Canada H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada H3A 2B4, and
| |
Collapse
|
34
|
Lattemann M, Zierau A, Schulte C, Seidl S, Kuhlmann B, Hummel T. Semaphorin-1a controls receptor neuron-specific axonal convergence in the primary olfactory center of Drosophila. Neuron 2007; 53:169-84. [PMID: 17224401 DOI: 10.1016/j.neuron.2006.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/24/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
In the olfactory system of Drosophila, 50 functional classes of sensory receptor neurons (ORNs) project in a highly organized fashion into the CNS, where they sort out from one another and converge into distinct synaptic glomeruli. We identified the transmembrane molecule Semaphorin-1a (Sema-1a) as an essential component to ensure glomerulus-specific axon segregation. Removal of sema-1a in ORNs does not affect the pathfinding toward their target area but disrupts local axonal convergence into a single glomerulus, resulting in two distinct targeting phenotypes: axons either intermingle with adjacent ORN classes or segregate according to their odorant receptor identity into ectopic sites. Differential Sema-1a expression can be detected among neighboring glomeruli, and mosaic analyses show that sema-1a functions nonautonomously in ORN axon sorting. These findings provide insights into the mechanism by which afferent interactions lead to synaptic specificity in the olfactory system.
Collapse
Affiliation(s)
- Marc Lattemann
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Sweeney LB, Couto A, Chou YH, Berdnik D, Dickson BJ, Luo L, Komiyama T. Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions. Neuron 2007; 53:185-200. [PMID: 17224402 DOI: 10.1016/j.neuron.2006.12.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/19/2006] [Accepted: 12/01/2006] [Indexed: 11/24/2022]
Abstract
Axon-axon interactions have been implicated in neural circuit assembly, but the underlying mechanisms are poorly understood. Here, we show that in the Drosophila antennal lobe, early-arriving axons of olfactory receptor neurons (ORNs) from the antenna are required for the proper targeting of late-arriving ORN axons from the maxillary palp (MP). Semaphorin-1a is required for targeting of all MP but only half of the antennal ORN classes examined. Sema-1a acts nonautonomously to control ORN axon-axon interactions, in contrast to its cell-autonomous function in olfactory projection neurons. Phenotypic and genetic interaction analyses implicate PlexinA as the Sema-1a receptor in ORN targeting. Sema-1a on antennal ORN axons is required for correct targeting of MP axons within the antennal lobe, while interactions amongst MP axons facilitate their entry into the antennal lobe. We propose that Sema-1a/PlexinA-mediated repulsion provides a mechanism by which early-arriving ORN axons constrain the target choices of late-arriving axons.
Collapse
Affiliation(s)
- Lora B Sweeney
- Howard Hughes Medical Institute, Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Endo K, Aoki T, Yoda Y, Kimura KI, Hama C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neurosci 2007; 10:153-60. [PMID: 17220884 DOI: 10.1038/nn1832] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/15/2006] [Indexed: 11/09/2022]
Abstract
An essential feature of the organization and function of the vertebrate and insect olfactory systems is the generation of a variety of olfactory receptor neurons (ORNs) that have different specificities in regard to both odorant receptor expression and axonal targeting. Yet the underlying mechanisms that generate this neuronal diversity remain elusive. Here we demonstrate that the Notch signal is involved in the diversification of ORNs in Drosophila melanogaster. A systematic clonal analysis showed that a cluster of ORNs housed in each sensillum were differentiated into two classes, depending on the level of Notch activity in their sibling precursors. Notably, ORNs of different classes segregated their axonal projections into distinct domains in the antennal lobes. In addition, both the odorant receptor expression and the axonal targeting of ORNs were specified according to their Notch-mediated identities. Thus, Notch signaling contributes to the diversification of ORNs, thereby regulating multiple developmental events that establish the olfactory map in Drosophila.
Collapse
Affiliation(s)
- Keita Endo
- Laboratory for Neural Network Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | |
Collapse
|
37
|
Gerber B, Stocker RF. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 2006; 32:65-89. [PMID: 17071942 DOI: 10.1093/chemse/bjl030] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.
Collapse
Affiliation(s)
- Bertram Gerber
- Universität Würzburg, Biozentrum, Am Hubland, Lehrstuhl für Genetik und Neurobiologie, D-97074 Würzburg, Germany.
| | | |
Collapse
|
38
|
Zhang D, Zhou W, Yin C, Chen W, Ozawa R, Ang LH, Anandan L, Aigaki T, Hing H. Misexpression screen for genes altering the olfactory map in Drosophila. Genesis 2006; 44:189-201. [PMID: 16607613 DOI: 10.1002/dvg.20202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the identification of a number of guidance molecules, a comprehensive picture has yet to emerge to explain the precise anatomy of the olfactory map. From a misexpression screen of 1,515 P{GS} lines, we identified 23 genes that, when forcibly expressed in the olfactory receptor neurons, disrupted the stereotyped anatomy of the Drosophila antennal lobes. These genes, which have not been shown previously to control olfactory map development, encode novel proteins as well as proteins with known roles in axonal outgrowth and cytoskeletal remodeling. We analyzed Akap200, which encodes a Protein Kinase A-binding protein. Overexpression of Akap200 resulted in fusion of the glomeruli, while its loss resulted in misshapen and ectopic glomeruli. The requirement of Akap200 validates our screen as an effective approach for recovering genes controlling glomerular map patterning. Our finding of diverse classes of genes reveals the complexity of the mechanisms that underlie olfactory map development.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The fruitfly brain learns about the olfactory world by reading the activity of about 50 distinct channels of incoming information. The receptor neurons that compose each channel have their own distinctive odour response profile governed by a specific receptor molecule. These receptor neurons form highly specific connections in the first olfactory relay of the fly brain, each synapsing with specific second order partner neurons. We use this system to discuss the logic of wiring specificity in the brain and to review the cellular and molecular mechanisms that allow such precise wiring to develop.
Collapse
Affiliation(s)
- Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | | |
Collapse
|
40
|
Komiyama T, Luo L. Development of wiring specificity in the olfactory system. Curr Opin Neurobiol 2006; 16:67-73. [PMID: 16377177 DOI: 10.1016/j.conb.2005.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 12/12/2005] [Indexed: 11/21/2022]
Abstract
The olfactory system discriminates a large number of odorants using precisely wired neural circuits. It offers an excellent opportunity to study mechanisms of neuronal wiring specificity at the single synapse level. Each olfactory receptor neuron typically expresses only one olfactory receptor from many receptor genes (1000 in mice). In mice, this striking singularity appears to be ensured by a negative feedback mechanism. Olfactory receptor neurons expressing the same receptor converge their axons to stereotypical positions with high precision, a feature that is conserved from insects to mammals. Several molecules have recently been identified that control this process, including olfactory receptors themselves in mice. The second order neurons, mitral cells in mammals and projection neurons in insects, have a similar degree of wiring specificity: studies in Drosophila suggest that projection neuron-intrinsic mechanisms regulate their precise dendritic targeting. Finally, recent studies have revealed interactions of different cell types during circuit assembly, including axon-axon interactions among olfactory receptor neurons and dendro-dendritic interactions of projection neurons, that are essential in establishing wiring specificity of the olfactory circuit.
Collapse
Affiliation(s)
- Takaki Komiyama
- Howard Hughes Medical Institute, Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
41
|
Sen A, Shetty C, Jhaveri D, Rodrigues V. Distinct types of glial cells populate the Drosophila antenna. BMC DEVELOPMENTAL BIOLOGY 2005; 5:25. [PMID: 16281986 PMCID: PMC1310525 DOI: 10.1186/1471-213x-5-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 11/11/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. RESULTS We have used different P(Gal4) lines to drive Green Fluorescent Protein (GFP) in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional approximately 30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. CONCLUSION We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting zone cells described in Manduca.
Collapse
Affiliation(s)
- Anindya Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
- Dept. of Physiology and Cellular Biophysics, Columbia University, New York. USA
| | - Chetak Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
| | - Dhanisha Jhaveri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Veronica Rodrigues
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
- National Centre for Biological Sciences, TIFR, GKVK PO, Bellary Rd., Bangalore 560065, India
| |
Collapse
|
42
|
Miyasaka N, Sato Y, Yeo SY, Hutson LD, Chien CB, Okamoto H, Yoshihara Y. Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system. Development 2005; 132:1283-93. [PMID: 15716341 DOI: 10.1242/dev.01698] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory,consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the astphenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.
Collapse
Affiliation(s)
- Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Komiyama T, Carlson JR, Luo L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nat Neurosci 2004; 7:819-25. [PMID: 15247920 DOI: 10.1038/nn1284] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 06/28/2004] [Indexed: 11/08/2022]
Abstract
From insects to mammals, olfactory receptor neurons (ORNs) expressing a common olfactory receptor target their axons to specific glomeruli with high precision. Here we show in Drosophila that the POU transcription factor Acj6 controls the axon targeting specificity of a subset of ORN classes, as defined by the olfactory receptors that they express. Of these classes, some require Acj6 cell-autonomously, whereas others require Acj6 cell-nonautonomously. Mosaic analyses show that cooperative targeting occurs between axon terminals of the same ORN classes and that there are hierarchical interactions among different ORN classes. We propose that the precision of ORN axon targeting derives from both intrinsic transcriptional control and extensive axon-axon interactions.
Collapse
Affiliation(s)
- Takaki Komiyama
- Department of Biological Sciences & Neurosciences Program, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|