1
|
Francis RJB, San Agustin JT, Szabo Rogers HL, Cui C, Jonassen JA, Eguether T, Follit JA, Lo CW, Pazour GJ. Autonomous and non-cell autonomous role of cilia in structural birth defects in mice. PLoS Biol 2023; 21:e3002425. [PMID: 38079449 PMCID: PMC10735189 DOI: 10.1371/journal.pbio.3002425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Ciliopathies are associated with wide spectrum of structural birth defects (SBDs), indicating important roles for cilia in development. Here, we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140, an intraflagellar transport (IFT) protein regulating ciliogenesis. Ift140-deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula (TEF), randomized heart looping, congenital heart defects (CHDs), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAGGCre-ER deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD were not observed with 4 Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest-mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathies.
Collapse
Affiliation(s)
- Richard J. B. Francis
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
- Discipline of Biomedical Sciences and Molecular Biology; College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Australia
| | - Jovenal T. San Agustin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Heather L. Szabo Rogers
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cheng Cui
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
| | - Julie A. Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Thibaut Eguether
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - John A. Follit
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
2
|
Francis R, San Agustin JT, Szabo Rogers HL, Cui C, Jonassen JA, Eguether T, Follit JA, Lo CW, Pazour GJ. Autonomous and non-cell autonomous etiology of ciliopathy associated structural birth defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544132. [PMID: 37333142 PMCID: PMC10274801 DOI: 10.1101/2023.06.07.544132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ciliopathies are associated with wide spectrum of structural birth defects (SBD), indicating important roles for cilia in development. Here we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140 , an intraflagellar transport protein regulating ciliogenesis. Ift140 deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula, randomized heart looping, congenital heart defects (CHD), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAG-Cre deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD was not observed with four Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathy.
Collapse
|
3
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
4
|
Abstract
For many years, the laboratory mouse has been the favored model organism to study mammalian development, biology and disease. Among its advantages for these studies are its close concordance with human biology, the syntenic relationship between the mouse and other mammalian genomes, the existence of many inbred strains, its short gestation period, its relatively low cost for housing and husbandry, and the wide array of tools for genome modification, mutagenesis, and for cryopreserving embryos, sperm and eggs. The advent of CRISPR genome modification techniques has considerably broadened the landscape of model organisms available for study, including other mammalian species. However, the mouse remains the most popular and utilized system to model human development, biology, and disease processes. In this review, we will briefly summarize the long history of mice as a preferred mammalian genetic and model system, and review current large-scale mutagenesis efforts using genome modification to produce improved models for mammalian development and disease.
Collapse
Affiliation(s)
- Thomas Gridley
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States.
| | | |
Collapse
|
5
|
Unlocking the Secrets of the Regenerating Fish Heart: Comparing Regenerative Models to Shed Light on Successful Regeneration. J Cardiovasc Dev Dis 2021; 8:jcdd8010004. [PMID: 33467137 PMCID: PMC7830602 DOI: 10.3390/jcdd8010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
The adult human heart cannot repair itself after injury and, instead, forms a permanent fibrotic scar that impairs cardiac function and can lead to incurable heart failure. The zebrafish, amongst other organisms, has been extensively studied for its innate capacity to repair its heart after injury. Understanding the signals that govern successful regeneration in models such as the zebrafish will lead to the development of effective therapies that can stimulate endogenous repair in humans. To date, many studies have investigated cardiac regeneration using a reverse genetics candidate gene approach. However, this approach is limited in its ability to unbiasedly identify novel genes and signalling pathways that are essential to successful regeneration. In contrast, drawing comparisons between different models of regeneration enables unbiased screens to be performed, identifying signals that have not previously been linked to regeneration. Here, we will review in detail what has been learnt from the comparative approach, highlighting the techniques used and how these studies have influenced the field. We will also discuss what further comparisons would enhance our knowledge of successful regeneration and scarring. Finally, we focus on the Astyanax mexicanus, an intraspecies comparative fish model that holds great promise for revealing the secrets of the regenerating heart.
Collapse
|
6
|
Schiavo G, Bovo S, Tinarelli S, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association analyses for coat colour patterns in the autochthonous Nero Siciliano pig breed. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Sánchez-Piña J, Lorenzale M, Fernández MC, Durán AC, Sans-Coma V, Fernández B. Pigmentation of the aortic and pulmonary valves in C57BL/6J x Balb/cByJ hybrid mice of different coat colours. Anat Histol Embryol 2019; 48:429-436. [PMID: 31259435 DOI: 10.1111/ahe.12463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/19/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
Neural crest-derived melanocytes have been recorded in several parts of the mammalian heart but not in the pulmonary valve. We report here the presence of melanin-containing cells in the leaflets (cusps) of both the aortic and pulmonary valves. A total of 158 C57BL/6J x Balb/cByJ hybrid mice exhibiting four coat colours, namely black, white, agouti and non-agouti brown, were examined. We sought for any relationship between the presence of melanocytes in the valves and the coat colour of the animals. The pigmentation levels of the leaflets were accomplished using a scale of five pigment intensities. White mice lacked pigment in the heart. In 10.5% of the remaining animals, there were melanocytes in the pulmonary valve leaflets. Thus, this is the first study to report the presence of such cells in the pulmonary valve of mammals. Melanocytes occurred in the leaflets of the aortic valves of 87.2% of mice. The incidence of melanocytes and the pigmentation level of the leaflets did not statistically differ according to the coat colours of the animals. This disagrees with previous observations, indicating that the amount of melanocytes in the heart reflects that of the skin. The incidence and distribution of melanocytes in aortic and pulmonary valves are consistent with the notion that the formation of the arterial valves is mediated by specific subpopulations of neural crest cells. We hypothesize that melanocytes, even not producing melanin, may be more frequent in the heart than previously thought, exerting presumably an immunological function.
Collapse
Affiliation(s)
- Jaira Sánchez-Piña
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Miguel Lorenzale
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - María Carmen Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Ana C Durán
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Valentín Sans-Coma
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain.,CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| |
Collapse
|
8
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
9
|
Hill JT. Identifying Toxicant-Interacting Genes Using Forward Genetic Screening in Zebrafish. Methods Mol Biol 2019; 1965:251-259. [PMID: 31069680 DOI: 10.1007/978-1-4939-9182-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Forward genetic screening is an extremely powerful method for identifying novel genes driving a broad range of phenotypes. This protocol describes the complete process for conducting a forward genetic screen in zebrafish, including mutagenesis with N-ethyl-N-nitrosourea (ENU), mating, phenotypic screening, and genetic mapping.
Collapse
Affiliation(s)
- Jonathon T Hill
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
10
|
Al-Zahrani RS, Alharbi SH, Tuwaijri RMA, Alzomaili BT, Althubaiti A, Yelbuz TM. Transposition of the great arteries: A laterality defect in the group of heterotaxy syndromes or an outflow tract malformation? Ann Pediatr Cardiol 2018; 11:237-249. [PMID: 30271012 PMCID: PMC6146851 DOI: 10.4103/apc.apc_24_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIM Transposition of the great arteries (TGA) is traditionally classified as a "conotruncal heart defect", implying that TGA evolves from abnormal development of the outflow tract (OFT) of the embryonic heart. However, recently published genetic data suggest that TGA may be linked to laterality gene defects rather than OFT gene defects. The aim of our study was to clarify whether there is any statistically significant link between TGA and clinically diagnosed laterality defects (heterotaxy). METHODS Retrospective cross-sectional analysis of 533 patients diagnosed with TGA at our cardiac center over a period of 13 years (2002-2015). Hospital informatics and digital data recording systems were used for collecting patients' data and all patients were reviewed to check the echocardiograms for verification of the diagnosis, type (TGA, congenitally corrected TGA (ccTGA), and levo-position of the great arteries (LGA)), complexity of TGA, and all other variables (e.g., abdominal organ arrangement, cardiac position, presence or absence of other cardiac defects). RESULTS Of 533 TGA patients, 495 (92.9%) had the usual arrangement of the internal organs, 21 (3.9%) had mirror-imagery, 7 (1.3%) had left and 10 (1.8%) had right isomerism. 444 (83.3%) patients had TGA. The number of patients who had usual visceral arrangement in each TGA type was: 418 (94.1%) in TGA, 49 (92.4%) in ccTGA, and 28 (77.7%) in LGA. 6 (1.4%) TGA patients, 4 (11.1%) patients with LGA were found to have right isomerism, while no ccTGA patient presented with this asymmetry. 4 (0.9%) TGA patients, 1 (1.9%) ccTGA patient and 2 (5.6%) patients with LGA had left isomerism. Heterotaxy (mirror-imagery, left and right isomerism) was more associated with LGA than TGA or ccTGA with a statistically significant difference (P value of 0.001). CONCLUSION In contrast to recently published genetic data, our morphological data do not disclose a significant link between TGA and heterotaxy.
Collapse
Affiliation(s)
- Rana S Al-Zahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Samaher H Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Rawan M A Tuwaijri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Bayan T Alzomaili
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Alaa Althubaiti
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Talat Mesud Yelbuz
- Department of Cardiac Sciences, King Abdulaziz Cardiac Center, Section of Pediatric Cardiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
In Vivo Evaluation of the Cardiovascular System of Mouse Embryo and Fetus Using High Frequency Ultrasound. Methods Mol Biol 2018. [PMID: 29564759 DOI: 10.1007/978-1-4939-7714-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Genetically engineered mice have been widely used for studying cardiovascular development, physiology and diseases. In the past decade, high frequency ultrasound imaging technology has been significantly advanced and applied to observe the cardiovascular structure, function, and blood flow dynamics with high spatial and temporal resolution in mice. This noninvasive imaging approach has made possible longitudinal studies of the mouse embryo/fetus in utero. In this chapter, we describe detailed methods for: (1) the assessment of the structure, function, and flow dynamics of the developing heart of the mouse embryo during middle gestation (E10.5-E13.5); and (2) the measurement of flow distribution throughout the circulatory system of the mouse fetus at late gestation (E17.5). With the described protocols, we are able to illustrate the main cardiovascular structures and the corresponding functional and flow dynamic events at each stage of development, and generate baseline physiological information about the normal mouse embryo/fetus. These data will serve as the reference material for the identification of cardiovascular abnormalities in numerous mouse models with targeted genetic manipulations.
Collapse
|
12
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
13
|
Liu X, Kim AJ, Reynolds W, Wu Y, Lo CW. Phenotyping cardiac and structural birth defects in fetal and newborn mice. Birth Defects Res 2017; 109:778-790. [PMID: 28544620 DOI: 10.1002/bdr2.1048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 11/07/2022]
Abstract
Mouse models are invaluable for investigating the developmental etiology and molecular pathogenesis of structural birth defects. While this has been deployed for studying a wide spectrum of birth defects, mice are particularly valuable for modeling congenital heart disease, given they have the same four-chamber cardiac anatomy as in humans. We have developed the use of noninvasive fetal ultrasound together with micro-computed tomography (micro-CT) imaging for high throughput phenotyping of mice for congenital heart defects (CHD) and other developmental anomalies. We showed the efficacy of fetal ultrasound and micro-CT imaging for diagnosis of a wide spectrum of CHD. With fetal ultrasound, longitudinal scans can be conducted to track the developmental profile of disease pathogenesis, providing both structural information with two-dimensional (2D) imaging, as well as functional data from hemodynamic assessments with color flow and spectral Doppler imaging. In contrast, with micro-CT imaging, virtual necropsies can be conducted rapidly postmortem for diagnosis of not only CHD, but also other structural birth defects. To validate the CHD diagnosis, we further showed the use of a novel histological technique with episcopic confocal microscopy to obtain rapid 3D reconstructions for accurate diagnosis of even the most complex anatomical defect. The latter histological imaging technique when combined with the use of ultrasound and micro-CT imaging provides a powerful combination of imaging modalities that will be invaluable in meeting the accelerating demands for high throughput mouse phenotyping of genetically engineered mice in the coming age of functional genomics. Birth Defects Research 109:778-790, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William Reynolds
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Jay PY, Akhirome E, Magnan RA, Zhang MR, Kang L, Qin Y, Ugwu N, Regmi SD, Nogee JM, Cheverud JM. Transgenerational cardiology: One way to a baby's heart is through the mother. Mol Cell Endocrinol 2016; 435:94-102. [PMID: 27555292 PMCID: PMC5014674 DOI: 10.1016/j.mce.2016.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Despite decades of progress, congenital heart disease remains a major cause of mortality and suffering in children and young adults. Prevention would be ideal, but formidable biological and technical hurdles face any intervention that seeks to target the main causes, genetic mutations in the embryo. Other factors, however, significantly modify the total risk in individuals who carry mutations. Investigation of these factors could lead to an alternative approach to prevention. To define the risk modifiers, our group has taken an "experimental epidemiologic" approach via inbred mouse strain crosses. The original intent was to map genes that modify an individual's risk of heart defects caused by an Nkx2-5 mutation. During the analysis of >2000 Nkx2-5(+/-) offspring from one cross we serendipitously discovered a maternal-age associated risk, which also exists in humans. Reciprocal ovarian transplants between young and old mothers indicate that the incidence of heart defects correlates with the age of the mother and not the oocyte, which implicates a maternal pathway as the basis of the risk. The quantitative risk varies between strain backgrounds, so maternal genetic polymorphisms determine the activity of a factor or factors in the pathway. Most strikingly, voluntary exercise by the mother mitigates the risk. Therefore, congenital heart disease can in principle be prevented by targeting a maternal pathway even if the embryo carries a causative mutation. Further mechanistic insight is necessary to develop an intervention that could be implemented on a broad scale, but the physiology of maternal-fetal interactions, aging, and exercise are notoriously complex and undefined. This suggests that an unbiased genetic approach would most efficiently lead to the relevant pathway. A genetic foundation would lay the groundwork for human studies and clinical trials.
Collapse
Affiliation(s)
- Patrick Y Jay
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA; Departments of Genetics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Ehiole Akhirome
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rachel A Magnan
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - M Rebecca Zhang
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Lillian Kang
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Yidan Qin
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Nelson Ugwu
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suk Dev Regmi
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Julie M Nogee
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Gregg CL, Butcher JT. Comparative analysis of metallic nanoparticles as exogenous soft tissue contrast for live in vivo micro-computed tomography imaging of avian embryonic morphogenesis. Dev Dyn 2016; 245:1001-10. [PMID: 27447729 DOI: 10.1002/dvdy.24433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Gestationally survivable congenital malformations arise during mid-late stages of development that are inaccessible in vivo with traditional optical imaging for assessing long-term abnormal patterning. MicroCT is an attractive technology to rapidly and inexpensively generate quantitative three-dimensional (3D) datasets but requires exogenous contrast media. Here we establish dose-dependent toxicity, persistence, and biodistribution of three different metallic nanoparticles in day 4 chick embryos. RESULTS We determined that 110-nm alkaline earth metal particles were nontoxic and persisted in the chick embryo for up to 24 hr postinjection with contrast enhancement levels at high as 1,600 Hounsfield units (HU). The 15-nm gold nanoparticles persisted with x-ray attenuation higher than that of the surrounding yolk and albumen for up to 8 hr postinjection, while 1.9-nm particles resulted in lethality by 8 hr. We identified spatial and temporally heterogeneous contrast enhancement ranging from 250 to 1,600 HU. With the most optimal 110-nm alkaline earth metal particles, we quantified an exponential increase in the tissue perfusion vs. distance from the dorsal aorta into the flank over 8 hr with a peak perfusion rate of 0.7 μm(2) /s measured at a distance of 0.3 mm. CONCLUSIONS These results demonstrate the safety, efficacy, and opportunity of nanoparticle based contrast media in live embryos for quantitative analysis of embryogenesis. Developmental Dynamics 245:1001-1010, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chelsea L Gregg
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
16
|
Greco A, Coda ARD, Albanese S, Ragucci M, Liuzzi R, Auletta L, Gargiulo S, Lamagna F, Salvatore M, Mancini M. High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System. Reprod Sci 2015; 22:1649-1655. [DOI: 10.1177/1933719115594017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
17
|
Abstract
Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors choreograph gene expression at each stage of differentiation by interacting with cofactors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease, and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac transcription factors, cis-regulatory elements, and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Elphège P Nora
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Benoit G Bruneau
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| |
Collapse
|
18
|
Karunamuni G, Gu S, Doughman YQ, Noonan AI, Rollins AM, Jenkins MW, Watanabe M. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure. Dev Dyn 2015; 244:607-18. [PMID: 25546089 DOI: 10.1002/dvdy.24246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of fetal alcohol syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. RESULTS The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrioventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3D reconstructed the late-stage cardiac valves in precise detail to examine their morphology and dimensions. CONCLUSIONS We believe, therefore, that optical coherence tomography, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models.
Collapse
Affiliation(s)
- Ganga Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
19
|
Czarnecki PG, Gabriel GC, Manning DK, Sergeev M, Lemke K, Klena NT, Liu X, Chen Y, Li Y, San Agustin JT, Garnaas MK, Francis RJ, Tobita K, Goessling W, Pazour GJ, Lo CW, Beier DR, Shah JV. ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning. Nat Commun 2015; 6:6023. [PMID: 25599650 PMCID: PMC4361001 DOI: 10.1038/ncomms7023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
The ciliary kinase NEK8 plays a critical role in situs determination and cystic kidney disease, yet its exact function remains unknown. In this study, we identify ANKS6 as a target and activator of NEK8. ANKS6 requires NEK8 for localizing to the ciliary inversin compartment (IC) and activates NEK8 by binding to its kinase domain. Here we demonstrate the functional importance of this interaction through the analysis of two novel mouse mutations, Anks6(Streaker) and Nek8(Roc). Both display heterotaxy, cardiopulmonary malformations and cystic kidneys, a syndrome also characteristic of mutations in Invs and Nphp3, the other known components of the IC. The Anks6(Strkr) mutation decreases ANKS6 interaction with NEK8, precluding NEK8 activation. The Nek8(Roc) mutation inactivates NEK8 kinase function while preserving ANKS6 localization to the IC. Together, these data reveal the crucial role of NEK8 kinase activation within the IC, promoting proper left-right patterning, cardiopulmonary development and renal morphogenesis.
Collapse
Affiliation(s)
- Peter G Czarnecki
- 1] Department of Systems Biology, Harvard Medical School, 4 Blackfan Circle, HIM 568, Boston, Massachussetts 02115, USA [2] Renal Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA [3] Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachussetts 02215, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Danielle K Manning
- Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Mikhail Sergeev
- 1] Department of Systems Biology, Harvard Medical School, 4 Blackfan Circle, HIM 568, Boston, Massachussetts 02115, USA [2] Renal Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Kristi Lemke
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Nikolai T Klena
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Yu Chen
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - You Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachussetts 01655, USA
| | - Maija K Garnaas
- Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Richard J Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachussetts 01655, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - David R Beier
- 1] Genetics Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA [2] Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| | - Jagesh V Shah
- 1] Department of Systems Biology, Harvard Medical School, 4 Blackfan Circle, HIM 568, Boston, Massachussetts 02115, USA [2] Renal Division, Brigham and Women's Hospital, Boston, Massachussetts 02115, USA
| |
Collapse
|
20
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
21
|
Tomanek RJ, Yu Q, Lo CW. Coronary anomalies in mice with congenital heart defects. Anat Rec (Hoboken) 2014; 298:408-17. [PMID: 25266175 DOI: 10.1002/ar.23056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/19/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Coronary anomalies are frequently associated with congenital cardiac defects. Accordingly, we tested the hypothesis that the development of the tunica media of coronary arteries/arterioles is compromised in mice with cardiac defects of the outflow tract (persistent truncus arteriosus, double outlet right ventricle and transposition of the great arteries) by studying hearts of G7-9 generation mice bred from mutagenized mice caused by N-ethyl-N-nitrosourea. Mice were studied at embryonic days E16.5, E17.5, and postnatal days 1 and 11. Data were based on immunohistochemistry of serial sections. RESULTS In 21 of 24 mice with outflow tract defects, the development of smooth muscle in arteries and arterioles was retarded; most commonly arterioles had an incomplete layer of smooth muscle or in a few instances, lacked a tunica media. In this model, an absence of a coronary ostium occurred in only 2 mice, indicating that the mechanisms underlying the formation of coronary ostia and the recruitment and differentiation of vascular smooth muscle differ. Coronary fistulas were present in 20% and dilated vessels in 30% of the hearts with cardiac defects. CONCLUSIONS The data suggest that vascular smooth muscle recruitment and differentiation are not necessarily linked to other coronary anomalies, such as absence of a main coronary artery or branching patterns.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
22
|
Weiner L, Fu W, Chirico WJ, Brissette JL. Skin as a living coloring book: how epithelial cells create patterns of pigmentation. Pigment Cell Melanoma Res 2014; 27:1014-31. [PMID: 25104547 DOI: 10.1111/pcmr.12301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/05/2014] [Indexed: 12/23/2022]
Abstract
The pigmentation of mammalian skin and hair develops through the interaction of two basic cell types - pigment donors and recipients. The pigment donors are melanocytes, which produce and distribute melanin through specialized structures. The pigment recipients are epithelial cells, which acquire melanin and put it to use, collectively yielding the pigmentation visible to the eye. This review will focus on the pigment recipients, the historically less understood cell type. These end-users of pigment are now known to exert a specialized control over the patterning of pigmentation, as they identify themselves as melanocyte targets, recruit pigment donors, and stimulate the transfer of melanin. As such, this review will discuss the evidence that the skin is like a coloring book: the pigment recipients create a 'picture,' a blueprint for pigmentation, which is colorless initially but outlines where pigment should be placed. Melanocytes then melanize the recipients and 'color in' the picture.
Collapse
Affiliation(s)
- Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
23
|
Chryssostomidis G, Kanakis M, Fotiadou V, Laskari C, Kousi T, Apostolidis C, Azariadis P, Chatzis A. Diversity of congenital cardiac defects and skeletal deformities associated with the Holt-Oram syndrome. Int J Surg Case Rep 2014; 5:389-92. [PMID: 24879328 PMCID: PMC4064427 DOI: 10.1016/j.ijscr.2014.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/12/2014] [Accepted: 04/28/2014] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The Holt–Oram syndrome is a rare congenital disorder involving the skeletal and cardiovascular systems. It is characterized by upper limb deformities and cardiac malformations, atrial septal defects in particular. PRESENTATION OF CASE Four consecutive patients 1–15 years old with the Holt–Oram syndrome presented over a 10 year span for surgical treatment of their cardiac maladies. The spectrum of the heart defects and skeletal deformities encountered in these patients are described and discussed. DISCUSSION The Holt–Oram syndrome is an autosomal dominant condition; however absence of the morphological features of the trait in close family members is not rare. Although patients are known to predominately present with atrial septal defects, other cardiovascular anomalies, including rhythm abnormalities, are not uncommon. Skeletal disorders vary as well. CONCLUSION Cardiovascular disorders, skeletal malformations and familial expression of the Holt–Oram syndrome, vary widely.
Collapse
Affiliation(s)
- Gregory Chryssostomidis
- Department of Paediatric and Congenital Cardiac Surgery, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Meletios Kanakis
- Department of Paediatric and Congenital Cardiac Surgery, Onassis Cardiac Surgery Centre, Athens, Greece
| | | | - Cleo Laskari
- Department of Paediatric Cardiology, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Theofili Kousi
- Department of Anaesthesiology, Onassis Cardiac Surgery Centre, Athens, Greece
| | | | - Prodromos Azariadis
- Department of Paediatric and Congenital Cardiac Surgery, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Andrew Chatzis
- Department of Paediatric and Congenital Cardiac Surgery, Onassis Cardiac Surgery Centre, Athens, Greece.
| |
Collapse
|
24
|
Liu X, Tobita K, Francis RJB, Lo CW. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. ACTA ACUST UNITED AC 2014; 99:93-105. [PMID: 23897594 DOI: 10.1002/bdrc.21037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
25
|
Liu X, Francis R, Kim AJ, Ramirez R, Chen G, Subramanian R, Anderton S, Kim Y, Wong L, Morgan J, Pratt HC, Reinholdt L, Devine W, Leatherbury L, Tobita K, Lo CW. Interrogating congenital heart defects with noninvasive fetal echocardiography in a mouse forward genetic screen. Circ Cardiovasc Imaging 2013; 7:31-42. [PMID: 24319090 DOI: 10.1161/circimaging.113.000451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) has a multifactorial pathogenesis, but a genetic contribution is indicated by heritability studies. To investigate the spectrum of CHD with a genetic pathogenesis, we conducted a forward genetic screen in inbred mice using fetal echocardiography to recover mutants with CHD. Mice are ideally suited for these studies given that they have the same four-chamber cardiac anatomy that is the substrate for CHD. METHODS AND RESULTS Ethylnitrosourea mutagenized mice were ultrasound-interrogated by fetal echocardiography using a clinical ultrasound system, and fetuses suspected to have cardiac abnormalities were further interrogated with an ultrahigh-frequency ultrasound biomicroscopy. Scanning of 46 270 fetuses revealed 1722 with cardiac anomalies, with 27.9% dying prenatally. Most of the structural heart defects can be diagnosed using ultrasound biomicroscopy but not with the clinical ultrasound system. Confirmation with analysis by necropsy and histopathology showed excellent diagnostic capability of ultrasound biomicroscopy for most CHDs. Ventricular septal defect was the most common CHD observed, whereas outflow tract and atrioventricular septal defects were the most prevalent complex CHD. Cardiac/visceral organ situs defects were observed at surprisingly high incidence. The rarest CHD found was hypoplastic left heart syndrome, a phenotype never seen in mice previously. CONCLUSIONS We developed a high-throughput, 2-tier ultrasound phenotyping strategy for efficient recovery of even rare CHD phenotypes, including the first mouse models of hypoplastic left heart syndrome. Our findings support a genetic pathogenesis for a wide spectrum of CHDs and suggest that the disruption of left-right patterning may play an important role in CHD.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Echocardiography, Doppler
- Echocardiography, Doppler, Color
- Ethylnitrosourea/toxicity
- Female
- Fetal Heart/abnormalities
- Fetal Heart/diagnostic imaging
- Genetic Predisposition to Disease
- Genetic Testing
- Heart Defects, Congenital/diagnostic imaging
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heredity
- High-Throughput Screening Assays
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Acoustic
- Mutation
- Pedigree
- Phenotype
- Ultrasonography, Prenatal/methods
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Damerla RR, Chatterjee B, Li Y, Francis RJB, Fatakia SN, Lo CW. Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis. Mamm Genome 2013; 25:120-8. [PMID: 24306492 DOI: 10.1007/s00335-013-9494-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/08/2013] [Indexed: 01/08/2023]
Abstract
Mutation mapping in mice can be readily accomplished by genome wide segregation analysis of polymorphic DNA markers. In this study, we showed the efficacy of Ion Torrent next generation sequencing for conducting genome-wide scans to map and identify a mutation causing congenital heart disease in a mouse mutant, Bishu, recovered from a mouse mutagenesis screen. The Bishu mutant line generated in a C57BL/6J (B6) background was intercrossed with another inbred strain, C57BL/10J (B10), and the resulting B6/B10 hybrid offspring were intercrossed to generate mutants used for the mapping analysis. For each mutant sample, a panel of 123 B6/B10 polymorphic SNPs distributed throughout the mouse genome was PCR amplified, bar coded, and then pooled to generate a single library used for Ion Torrent sequencing. Sequencing carried out using the 314 chip yielded >600,000 usable reads. These were aligned and mapped using a custom bioinformatics pipeline. Each SNP was sequenced to a depth >500×, allowing accurate automated calling of the B6/B10 genotypes. This analysis mapped the mutation in Bishu to an interval on the proximal region of mouse chromosome 4. This was confirmed by parallel capillary sequencing of the 123 polymorphic SNPs. Further analysis of genes in the map interval identified a splicing mutation in Dnaic1(c.204+1G>A), an intermediate chain dynein, as the disease causing mutation in Bishu. Overall, our experience shows Ion Torrent amplicon sequencing is high throughput and cost effective for conducting genome-wide mapping analysis and is easily scalable for other high volume genotyping analyses.
Collapse
Affiliation(s)
- Rama Rao Damerla
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Rangos Research Center Rm 8120, 530 45 St., Pittsburgh, PA, 15201, USA,
| | | | | | | | | | | |
Collapse
|
27
|
Cui C, Chatterjee B, Lozito TP, Zhang Z, Francis RJ, Yagi H, Swanhart LM, Sanker S, Francis D, Yu Q, San Agustin JT, Puligilla C, Chatterjee T, Tansey T, Liu X, Kelley MW, Spiliotis ET, Kwiatkowski AV, Tuan R, Pazour GJ, Hukriede NA, Lo CW. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 2013; 11:e1001720. [PMID: 24302887 PMCID: PMC3841097 DOI: 10.1371/journal.pbio.1001720] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023] Open
Abstract
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bishwanath Chatterjee
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas P. Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zhen Zhang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Richard J. Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lisa M. Swanhart
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Subramaniam Sanker
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Deanne Francis
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qing Yu
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jovenal T. San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Chandrakala Puligilla
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tania Chatterjee
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terry Tansey
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew W. Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rocky Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
28
|
Izumi K, Lippa AM, Wilkens A, Feret HA, McDonald-McGinn DM, Zackai EH. Congenital heart defects in oculodentodigital dysplasia: Report of two cases. Am J Med Genet A 2013; 161A:3150-4. [PMID: 24115525 DOI: 10.1002/ajmg.a.36159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/10/2013] [Indexed: 11/12/2022]
Abstract
Oculodentodigital dysplasia is caused by mutations in the GJA1 gene. Oculodentodigital dysplasia presents with a spectrum of clinical features including craniofacial, ocular, dental, and limb anomalies. Although recent findings implicate the major role of GJA1 during cardiac organogenesis, congenital heart defects are infrequently reported in oculodentodigital dysplasia. Here we report on two patients with GJA1 mutations presenting with cardiac malformations and type III syndactyly. Patient 1 presented with pulmonary atresia, an intact septum, right ventricular hypoplasia and tricuspid stenosis. The infant had a small nose, thin columella and bilateral 4-5 syndactyly of the fingers. A de novo c.226C>T (p.Arg76Cys) mutation was identified. Patient 2 presented at 6 months with a ventricular septal defect. The child had hypoplastic alae nasi with a thin columella and bilateral 4-5 syndactyly of the digits. A de novo missense mutation, c.145C>G (p.Gln49Glu) was found. Our two patients underscore the importance of cardiac evaluations as part of the initial workup for patients with findings of oculodentodigital dysplasia. Conversely, those patients with type III syndactyly and congenital heart defect should be screened for GJA1 mutations.
Collapse
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
29
|
Norris FC, Wong MD, Greene NDE, Scambler PJ, Weaver T, Weninger WJ, Mohun TJ, Henkelman RM, Lythgoe MF. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet 2013; 29:700-11. [PMID: 24035368 DOI: 10.1016/j.tig.2013.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.
Collapse
Affiliation(s)
- Francesca C Norris
- University College London (UCL) Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim AJ, Francis R, Liu X, Devine WA, Ramirez R, Anderton SJ, Wong LY, Faruque F, Gabriel GC, Chung W, Leatherbury L, Tobita K, Lo CW. Microcomputed tomography provides high accuracy congenital heart disease diagnosis in neonatal and fetal mice. Circ Cardiovasc Imaging 2013; 6:551-9. [PMID: 23759365 DOI: 10.1161/circimaging.113.000279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mice are well suited for modeling human congenital heart disease (CHD), given their 4-chamber cardiac anatomy. However, mice with CHD invariably die prenatally/neonatally, causing CHD phenotypes to be missed. Therefore, we investigated the efficacy of noninvasive microcomputed tomography (micro-CT) to screen for CHD in stillborn/fetal mice. These studies were performed using chemically mutagenized mice expected to be enriched for birth defects, including CHD. METHODS AND RESULTS Stillborn/fetal mice obtained from the breeding of N-ethyl-N-nitrosourea mutagenized mice were formalin-fixed and stained with iodine, then micro-CT scanned. Those diagnosed with CHD and some CHD-negative pups were necropsied. A subset of these were further analyzed by histopathology to confirm the CHD/no-CHD diagnosis. Micro-CT scanning of 2105 fetal/newborn mice revealed an abundance of ventricular septal defects (n=307). Overall, we observed an accuracy of 89.8% for ventricular septal defect diagnosis. Outflow tract anomalies identified by micro-CT included double outlet right ventricle (n=36), transposition of the great arteries (n=14), and persistent truncus arteriosus (n=3). These were diagnosed with a 97.4% accuracy. Aortic arch anomalies also were readily detected with an overall 99.6% accuracy. This included right aortic arch (n=28) and coarctation/interrupted aortic arch (n=12). Also detected by micro-CT were atrioventricular septal defects (n=22), tricuspid hypoplasia/atresia (n=13), and coronary artery fistulas (n=16). They yielded accuracies of 98.9%, 100%, and 97.8%, respectively. CONCLUSIONS Contrast enhanced micro-CT imaging in neonatal/fetal mice can reliably detect a wide spectrum of CHD. We conclude that micro-CT imaging can be used for routine rapid assessments of structural heart defects in fetal/newborn mice.
Collapse
Affiliation(s)
- Andrew J Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Salameh A, Blanke K, Daehnert I. Role of connexins in human congenital heart disease: the chicken and egg problem. Front Pharmacol 2013; 4:70. [PMID: 23760510 PMCID: PMC3669755 DOI: 10.3389/fphar.2013.00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/15/2013] [Indexed: 01/15/2023] Open
Abstract
Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone’s anomaly often do not involve only the heart, but also the great vessels and although occurring less frequently, these severe cardiac malformations will become symptomatic within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade, there is increasing evidence that cardiac gap junction proteins, the connexins (Cx), might have an impact on cardiac anomalies. In the heart, mainly three of them (Cx40, Cx43, and Cx45) are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions have often been supposed to transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses the potentional role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, Heart Centre, University of Leipzig Leipzig, Germany
| | | | | |
Collapse
|
32
|
Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease. PLoS One 2013; 8:e55429. [PMID: 23469164 PMCID: PMC3585849 DOI: 10.1371/journal.pone.0055429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.
Collapse
|
33
|
Ding Y, Liu W, Deng Y, Jomok B, Yang J, Huang W, Clark KJ, Zhong TP, Lin X, Ekker SC, Xu X. Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circ Res 2013; 112:606-17. [PMID: 23283723 PMCID: PMC3603352 DOI: 10.1161/circresaha.112.300603] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Mutagenesis screening is a powerful genetic tool for probing biological mechanisms underlying vertebrate development and human diseases. However, the increased colony management efforts in vertebrates impose a significant challenge for identifying genes affecting a particular organ, such as the heart, especially those exhibiting adult phenotypes on depletion. OBJECTIVE We aim to develop a facile approach that streamlines colony management efforts via enriching cardiac mutants, which enables us to screen for adult phenotypes. METHODS AND RESULTS The transparency of the zebrafish embryos enabled us to score 67 stable transgenic lines generated from an insertional mutagenesis screen using a transposon-based protein trapping vector. Fifteen lines with cardiac monomeric red fluorescent protein reporter expression were identified. We defined the molecular nature for 10 lines and bred them to homozygosity, which led to the identification of 1 embryonic lethal, 1 larval lethal, and 1 adult recessive mutant exhibiting cardiac hypertrophy at 1 year of age. Further characterization of these mutants uncovered an essential function of methionine adenosyltransferase II, α a (mat2aa) in cardiogenesis, an essential function of mitochondrial ribosomal protein S18B (mrps18b) in cardiac mitochondrial homeostasis, as well as a function of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b) in adult cardiac hypertrophy. CONCLUSIONS We demonstrate that transposon-based gene trapping is an efficient approach for identifying both embryonic and adult recessive mutants with cardiac expression. The generation of a zebrafish insertional cardiac mutant collection shall facilitate the annotation of a vertebrate cardiac genome, as well as enable heart-based adult screens.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Genetics and Development Biology, College of Life Sciences, Hunan Normal University, P.R. China
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Beninio Jomok
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Tao P. Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
34
|
Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 2013; 23:687-97. [PMID: 23299975 PMCID: PMC3613585 DOI: 10.1101/gr.146936.112] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Forward genetic screens in model organisms are vital for identifying novel genes essential for developmental or disease processes. One drawback of these screens is the labor-intensive and sometimes inconclusive process of mapping the causative mutation. To leverage high-throughput techniques to improve this mapping process, we have developed a Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) that works without parental strain information or requiring a preexisting SNP map of the organism, and adapts to differential recombination frequencies across the genome. MMAPPR accommodates the considerable amount of noise in RNA-seq data sets, calculates allelic frequency by Euclidean distance followed by Loess regression analysis, identifies the region where the mutation lies, and generates a list of putative coding region mutations in the linked genomic segment. MMAPPR can exploit RNA-seq data sets from isolated tissues or whole organisms that are used for gene expression and transcriptome analysis in novel mutants. We tested MMAPPR on two known mutant lines in zebrafish, nkx2.5 and tbx1, and used it to map two novel ENU-induced cardiovascular mutants, with mutations found in the ctr9 and cds2 genes. MMAPPR can be directly applied to other model organisms, such as Drosophila and Caenorhabditis elegans, that are amenable to both forward genetic screens and pooled RNA-seq experiments. Thus, MMAPPR is a rapid, cost-efficient, and highly automated pipeline, available to perform mutant mapping in any organism with a well-assembled genome.
Collapse
Affiliation(s)
- Jonathon T Hill
- Department of Neurobiology and Anatomy, University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
35
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
36
|
Ramírez-Solis R, Ryder E, Houghton R, White JK, Bottomley J. Large-scale mouse knockouts and phenotypes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:547-63. [PMID: 22899600 DOI: 10.1002/wsbm.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Standardized phenotypic analysis of mutant forms of every gene in the mouse genome will provide fundamental insights into mammalian gene function and advance human and animal health. The availability of the human and mouse genome sequences, the development of embryonic stem cell mutagenesis technology, the standardization of phenotypic analysis pipelines, and the paradigm-shifting industrialization of these processes have made this a realistic and achievable goal. The size of this enterprise will require global coordination to ensure economies of scale in both the generation and primary phenotypic analysis of the mutant strains, and to minimize unnecessary duplication of effort. To provide more depth to the functional annotation of the genome, effective mechanisms will also need to be developed to disseminate the information and resources produced to the wider community. Better models of disease, potential new drug targets with novel mechanisms of action, and completely unsuspected genotype-phenotype relationships covering broad aspects of biology will become apparent. To reach these goals, solutions to challenges in mouse production and distribution, as well as development of novel, ever more powerful phenotypic analysis modalities will be necessary. It is a challenging and exciting time to work in mouse genetics.
Collapse
|
37
|
Gregg CL, Butcher JT. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation 2012; 84:149-62. [PMID: 22695188 DOI: 10.1016/j.diff.2012.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.
Collapse
Affiliation(s)
- Chelsea L Gregg
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
38
|
Abstract
Because of the highly conserved nature of the ciliary axoneme, researchers studying the structure and function of cilia have used many different model systems. Each system has advantages and disadvantages, but all provide important information relevant to the understanding and treatment of the ciliopathies. For example, Chlamydomonas is easy to grow and amenable to rapid genetic manipulation and therefore is excellent for motility studies and studies of the structural components of the axoneme. However, this organism cannot be used to study developmental defects or physiological abnormalities that occur in higher organisms (e.g., mucociliary clearance). Human cilia have the advantage of being obtained directly from the tissue of interest but are obtainable only in limited quantities and are difficult to manipulate. Mouse models of ciliopathies are more difficult to study than Chlamydomonas but can be useful to elucidate more aspects of the human diseases. In this review, the overlap between the structure of primary and motile cilia is discussed, and recent advancements in our understanding of cilia structure and function using these three different model systems are presented. Potential therapeutic approaches, based on fundamental knowledge gained from work in these model systems, are also presented.
Collapse
|
39
|
Purssell E, Weston AD, Thomson JJ, Swanson TA, Brown NA, Ozolinš TR. Noninvasive high-resolution ultrasound reveals structural and functional deficits in dimethadione-exposed fetal rat hearts in utero. ACTA ACUST UNITED AC 2011; 95:35-46. [DOI: 10.1002/bdrb.20339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 11/05/2022]
|
40
|
Abstract
Aortic aneurysm is common, accounting for 1-2% of all deaths in industrialized countries. Early theories of the causes of human aneurysm mostly focused on inherited or acquired defects in components of the extracellular matrix in the aorta. Although several mutations in the genes encoding extracellular matrix proteins have been recognized, more recent discoveries have shown important perturbations in cytokine signalling cascades and intracellular components of the smooth muscle contractile apparatus. The modelling of single-gene heritable aneurysm disorders in mice has shown unexpected involvement of the transforming growth factor-β cytokine pathway in aortic aneurysm, highlighting the potential for new therapeutic strategies.
Collapse
|
41
|
Bjork BC, Fujiwara Y, Davis SW, Qiu H, Saunders TL, Sandy P, Orkin S, Camper SA, Beier DR. A transient transgenic RNAi strategy for rapid characterization of gene function during embryonic development. PLoS One 2010; 5:e14375. [PMID: 21179568 PMCID: PMC3002952 DOI: 10.1371/journal.pone.0014375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/24/2010] [Indexed: 01/14/2023] Open
Abstract
RNA interference (RNAi) is a powerful strategy for studying the phenotypic consequences of reduced gene expression levels in model systems. To develop a method for the rapid characterization of the developmental consequences of gene dysregulation, we tested the use of RNAi for “transient transgenic” knockdown of mRNA in mouse embryos. These methods included lentiviral infection as well as transposition using the Sleeping Beauty (SB) and PiggyBac (PB) transposable element systems. This approach can be useful for phenotypic validation of putative mutant loci, as we demonstrate by confirming that knockdown of Prdm16 phenocopies the ENU-induced cleft palate (CP) mutant, csp1. This strategy is attractive as an alternative to gene targeting in embryonic stem cells, as it is simple and yields phenotypic information in a matter of weeks. Of the three methodologies tested, the PB transposon system produced high numbers of transgenic embryos with the expected phenotype, demonstrating its utility as a screening method.
Collapse
Affiliation(s)
- Bryan C. Bjork
- Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuko Fujiwara
- Division of Hematology and Oncology, Children's Hospital, Harvard Medical School/Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Shannon W. Davis
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haiyan Qiu
- Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas L. Saunders
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter Sandy
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart Orkin
- Division of Hematology and Oncology, Children's Hospital, Harvard Medical School/Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Sally A. Camper
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R. Beier
- Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Tobita K, Liu X, Lo CW. Imaging modalities to assess structural birth defects in mutant mouse models. ACTA ACUST UNITED AC 2010; 90:176-84. [PMID: 20860057 DOI: 10.1002/bdrc.20187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assessment of structural birth defects (SBDs) in animal models usually entails conducting detailed necropsy for anatomical defects followed by histological analysis for tissue defects. Recent advances in new imaging technologies have provided the means for rapid phenotyping of SBDs, such as using ultra-high frequency ultrasound biomicroscopy, optical coherence tomography, micro-CT, and micro-MRI. These imaging modalities allow the detailed assessment of organ/tissue structure, and with ultrasound biomicroscopy, structure and function of the cardiovascular system also can be assessed noninvasively, allowing the longitudinal tracking of the fetus in utero. In this review, we briefly discuss the application of these state-of-the-art imaging technologies for phenotyping of SBDs in rodent embryos and fetuses, showing how these imaging modalities may be used for the detection of a wide variety of SBDs.
Collapse
Affiliation(s)
- Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania 15224, USA.
| | | | | |
Collapse
|
43
|
Cui C, Chatterjee B, Francis D, Yu Q, SanAgustin JT, Francis R, Tansey T, Henry C, Wang B, Lemley B, Pazour GJ, Lo CW. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2010; 4:43-56. [PMID: 21045211 PMCID: PMC3008963 DOI: 10.1242/dmm.006262] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Meckel-Gruber syndrome (MKS) is a recessive disorder resulting in multiple birth defects that are associated with mutations affecting ciliogenesis. We recovered a mouse mutant with a mutation in the Mks1 gene (Mks1del64-323) that caused a 260-amino-acid deletion spanning nine amino acids in the B9 domain, a protein motif with unknown function conserved in two other basal body proteins. We showed that, in wild-type cells, Mks1 was localized to the mother centriole from which the cilium was generated. However, in mutant Mks1del64-323 cells, Mks1 was not localized to the centriole, even though it maintained a punctate distribution. Resembling MKS patients, Mks1 mutants had craniofacial defects, polydactyly, congenital heart defects, polycystic kidneys and randomized left-right patterning. These defects reflected disturbance of functions subserved by motile and non-motile cilia. In the kidney, glomerular and tubule cysts were observed along with short cilia, and cilia were reduced in number to a near-complete loss. Underlying the left-right patterning defects were fewer and shorter nodal cilia, and analysis with fluorescent beads showed no directional flow at the embryonic node. In the cochlea, the stereocilia were mal-patterned, with the kinocilia being abnormally positioned. Together, these defects suggested disruption of planar cell polarity, which is known to regulate node, kidney and cochlea development. In addition, we also showed that Shh signaling was disrupted. Thus, in the neural tube, the floor plate was not specified posteriorly even as expression of the Shh mediator Gli2 increased. By contrast, the Shh signaling domain was expanded in the anterior neural tube and anterior limb bud, consistent with reduced Gli3-repressor (Gli3R) function. The latter probably accounted for the preaxial digit duplication exhibited by the Mks1del64-323 mutants. Overall, these findings indicate that centriole localization of Mks1 is required for ciliogenesis of motile and non-motile cilia, but not for centriole assembly. On the basis of these results, we hypothesize a role for the B9 domain in mother centriole targeting, a possibility that warrants further future investigations.
Collapse
Affiliation(s)
- Cheng Cui
- University of Pittsburgh, Department of Developmental Biology, 8111 Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kamp A, Peterson MA, Svenson KL, Bjork BC, Hentges KE, Rajapaksha TW, Moran J, Justice MJ, Seidman JG, Seidman CE, Moskowitz IP, Beier DR. Genome-wide identification of mouse congenital heart disease loci. Hum Mol Genet 2010; 19:3105-13. [PMID: 20511334 DOI: 10.1093/hmg/ddq211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Empirical evidence supporting a genetic basis for the etiology of congenital heart disease (CHD) is limited and few disease-causing mutations have been identified. To identify novel CHD genes, we performed a forward genetic screen to identify mutant mouse lines with heritable CHD. Lines with recessive N-ethyl-N-nitrsourea-induced CHD-causing mutations were identified using a three-generation backcross. A hierarchical screening protocol was used to test the hypothesis that the fetal-to-neonatal circulatory transition unmasks the specific structural heart defects observed in CHD. Mice with heart defects were efficiently ascertained by selecting for pups exhibiting perinatal lethality and characterizing their cardiac pathology. A marked increase of perinatal lethality was observed in the mutagen-treated cohort compared with an untreated backcross population. Cardiac pathology on perinatal lethals revealed cardiovascular defects in 79 pups from 47 of 321 mutagenized lines. All identified structural abnormalities were analogous to previously described forms of human CHD. Furthermore, the phenotypic recurrence and variance patterns across all lines were similar to human CHD prevalence and recurrence patterns. We mapped the locus responsible for heritable atrioventricular septal defects in six lines (avc1-6). Our screen demonstrated that 'sporadic' CHD may have major genetic component and established a practical, efficient approach for identifying CHD candidate genes.
Collapse
Affiliation(s)
- Anna Kamp
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim IY, Shin JH, Seong JK. Mouse phenogenomics, toolbox for functional annotation of human genome. BMB Rep 2010; 43:79-90. [PMID: 20193125 DOI: 10.5483/bmbrep.2010.43.2.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mouse models are crucial for the functional annotation of human genome. Gene modification techniques including gene targeting and gene trap in mouse have provided powerful tools in the form of genetically engineered mice (GEM) for understanding the molecular pathogenesis of human diseases. Several international consortium and programs are under way to deliver mutations in every gene in mouse genome. The information from studying these GEM can be shared through international collaboration. However, there are many limitations in utility because not all human genes are knocked out in mouse and they are not yet phenotypically characterized by standardized ways which is required for sharing and evaluating data from GEM. The recent improvement in mouse genetics has now moved the bottleneck in mouse functional genomics from the production of GEM to the systematic mouse phenotype analysis of GEM. Enhanced, reproducible and comprehensive mouse phenotype analysis has thus emerged as a prerequisite for effectively engaging the phenotyping bottleneck. In this review, current information on systematic mouse phenotype analysis and an issue-oriented perspective will be provided.
Collapse
Affiliation(s)
- Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
46
|
Kleopa KA, Orthmann-Murphy J, Sargiannidou I. Gap Junction Disorders of Myelinating Cells. Rev Neurosci 2010; 21:397-419. [DOI: 10.1515/revneuro.2010.21.5.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Corrigan N, Brazil DP, Auliffe FM. High-frequency ultrasound assessment of the murine heart from embryo through to juvenile. Reprod Sci 2009; 17:147-57. [PMID: 19843878 DOI: 10.1177/1933719109348923] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM The aim of this study is to assess the murine heart of normal embryos, neonates, and juveniles using high-frequency ultrasound. METHODS Diastolic function was measured with E/A ratio (E wave velocity/A wave velocity) and isovolumetric relaxation time (IRT), systolic function with isovolumetric contraction time (ICT), percentage fractional shortening (FS %), percentage ejection fraction (EF %). Global cardiac performance was quantified using myocardial performance index (MPI). RESULTS Isovolumetric relaxation time remained stable from E10.5 to 3 weeks. Systolic function (ICT) improved with gestation and remained stable from E18.5 onward. Myocardial performance index showed improvement in embryonic life (0.82- 0.63) and then stabilized from 1 to 3 week (0.60-0.58). Percentage ejection fraction remained high during gestation (77%-69%) and then decreased from the neonate to juvenile (68%-51%). CONCLUSION The ultrasound biomicroscope allows for noninvasive in-depth assessment of cardiac function of embryos and pups. Detailed physiological and functional cardiac function readouts can be obtained, which is invaluable for comparison to mouse models of disease.
Collapse
Affiliation(s)
- Niamh Corrigan
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
48
|
Fernandez L, Marchuk DA, Moran JL, Beier DR, Rockman HA. An N-ethyl-N-nitrosourea mutagenesis recessive screen identifies two candidate regions for murine cardiomyopathy that map to chromosomes 1 and 15. Mamm Genome 2009; 20:296-304. [PMID: 19387734 PMCID: PMC2743897 DOI: 10.1007/s00335-009-9184-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis screens have been successful for identifying genes that affect important biological processes and diseases. However, for heart-related phenotypes, these screens have been employed exclusively for developmental phenotypes, and to date no adult cardiomyopathy-causing genes have been discovered through a mutagenesis screen. To identify novel disease-causing and disease-modifying genes for cardiomyopathy, we performed an ENU recessive mutagenesis screen in adult mice. Using noninvasive echocardiography to screen for abnormalities in cardiac function, we identified a heritable cardiomyopathic phenotype in two families. To identify the chromosomal regions where the mutations are localized, we used a single nucleotide polymorphism (SNP) panel for genetic mapping of mouse mutations. This panel provided whole-genome linkage information and identified the mutagenized candidate regions at the proximal end of chromosome 1 (family EN1), and at the distal end of chromosome 15 (family EN25). We have identified 94 affected mice in family EN1 and have narrowed the candidate interval to 1 Mb. We have identified 20 affected mice in family EN25 and have narrowed the candidate interval to 12 Mb. The identification of the genes responsible for the observed phenotype in these families will be strong candidates for disease-causing or disease-modifying genes in patients with heart failure.
Collapse
Affiliation(s)
- Liliana Fernandez
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Research Drive, Durham, NC 27710, USA
| | - Douglas A. Marchuk
- Department Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L. Moran
- Genetic Analysis Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David R. Beier
- Division of Genetics, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Research Drive, Durham, NC 27710, USA
- Department Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
49
|
Abstract
If you study a human disease, it is likely that you have tried to generate a mouse model. Sometimes, these models are excellent; others are disappointing. Or, so we think. How often does our mouse mutant not model the human disease because of limitations in how we may look at it? In any living organism, many factors work together to produce the phenotype. Here, new phenotyping paradigms for assessing mouse biology and physiology are described and proposed. Advances in mouse phenotype assessments have paralleled human clinical diagnostics. The future brings a multitude of mouse strains that might be exposed to a variety of conditions. To assess health will require the ability to perform a broad-based phenotype assessment of every animal until we can understand how the perturbation of one system affects others.
Collapse
Affiliation(s)
- Monica J Justice
- Baylor College of Medicine, One Baylor Plaza R804, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Francis RJB, Chatterjee B, Loges NT, Zentgraf H, Omran H, Lo CW. Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway. Am J Physiol Lung Cell Mol Physiol 2009; 296:L1067-75. [PMID: 19346437 DOI: 10.1152/ajplung.00001.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mucociliary clearance in the adult trachea is well characterized, but there are limited data in newborns. Cilia-generated flow was quantified across longitudinal sections of mouse trachea from birth through postnatal day (PND) 28 by tracking fluorescent microsphere speed and directionality. The percentage of ciliated tracheal epithelial cells, as determined by immunohistochemistry, was shown to increase linearly between PND 0 and PND 21 (R(2) = 0.94). While directionality measurements detected patches of flow starting at PND 3, uniform flow across the epithelia was not observed until PND 7 at a approximately 35% ciliated cell density. Flow became established at a maximal rate at PND 9 and beyond. A linear correlation was observed between the percentage of ciliated cells versus flow speed (R(2) = 0.495) and directionality (R(2) = 0.975) between PND 0 and PND 9. Cilia beat frequency (CBF) was higher at PND 0 than at all subsequent time points, but cilia beat waveform was not noticeably different. Tracheal epithelia from a mouse model of primary ciliary dyskinesia (PCD) harboring a Mdnah5 mutation showed that ciliated cell density was unaffected, but no cilia-generated flow was detected. Cilia in mutant airways were either immotile or with slow dyssynchronous beat and abnormal ciliary waveform. Overall, our studies showed that the initiation of cilia-generated flow is directly correlated with an increase in epithelial ciliation, with the measurement of directionality being more sensitive than speed for detecting flow. The higher CBF observed in newborn epithelia suggests unique physiology in the newborn trachea, indicating possible clinical relevance to the pathophysiology of respiratory distress seen in newborn PCD patients.
Collapse
Affiliation(s)
- Richard J B Francis
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|