1
|
Bär J, Fanutza T, Reimann CC, Seipold L, Grohe M, Bolter JR, Delfs F, Bucher M, Gee CE, Schweizer M, Saftig P, Mikhaylova M. Non-canonical function of ADAM10 in presynaptic plasticity. Cell Mol Life Sci 2024; 81:342. [PMID: 39123091 PMCID: PMC11335265 DOI: 10.1007/s00018-024-05327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024]
Abstract
A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Julia Bär
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tomas Fanutza
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christopher C Reimann
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Lisa Seipold
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany
| | - Maja Grohe
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany
| | - Janike Rabea Bolter
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
| | - Flemming Delfs
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michael Bucher
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christine E Gee
- Department of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, ZMNH, 20251, Hamburg, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany.
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany.
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
2
|
Gurung S, Restrepo NK, Anand SK, Sittaramane V, Sumanas S. Requirement of a novel gene, drish, in the zebrafish retinal ganglion cell and primary motor axon development. Dev Dyn 2024; 253:750-770. [PMID: 38340011 DOI: 10.1002/dvdy.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND During neurogenesis, growing axons must navigate through the complex extracellular environment and make correct synaptic connections for the proper functioning of neural circuits. The mechanisms underlying the formation of functional neural networks are still only partially understood. RESULTS Here we analyzed the role of a novel gene si:ch73-364h19.1/drish in the neural and vascular development of zebrafish embryos. We show that drish mRNA is expressed broadly and dynamically in multiple cell types including neural, glial, retinal progenitor and vascular endothelial cells throughout the early stages of embryonic development. To study Drish function during embryogenesis, we generated drish genetic mutant using CRISPR/Cas9 genome editing. drish loss-of-function mutant larvae displayed defects in early retinal ganglion cell, optic nerve and the retinal inner nuclear layer formation, as well as ectopic motor axon branching. In addition, drish mutant adults exhibited deficient retinal outer nuclear layer and showed defective light response and locomotory behavior. However, vascular patterning and blood circulation were not significantly affected. CONCLUSIONS Together, these data demonstrate important roles of zebrafish drish in the retinal ganglion cell, optic nerve and interneuron development and in spinal motor axon branching.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
| | - Surendra Kumar Anand
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Abstract
Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.
Collapse
Affiliation(s)
- Jeffrey D Zhu
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Sharma Pooja Tarachand
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Qudrat Abdulwahab
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
4
|
Al-Moujahed A, Velez G, Vu JT, Lima de Carvalho JR, Levi SR, Bassuk AG, Sepah YJ, Tsang SH, Mahajan VB. Proteomic analysis of autoimmune retinopathy implicates NrCAM as a potential biomarker. OPHTHALMOLOGY SCIENCE 2022; 2:100131. [PMID: 35529077 PMCID: PMC9075676 DOI: 10.1016/j.xops.2022.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
Purpose To identify vitreous molecular biomarkers associated with autoimmune retinopathy (AIR). Design Case-control study. Participants We analyzed six eyes from four patients diagnosed with AIR and eight comparative controls diagnosed with idiopathic macular holes and epiretinal membranes. Methods Vitreous biopsies were collected from the participants and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) or multiplex ELISA. Outcome Measures Protein expression changes were evaluated by 1-way ANOVA (significant p-value <0.05), hierarchical clustering, and pathway analysis to identify candidate protein biomarkers. Results There were 16 significantly upregulated and 17 significantly downregulated proteins in the vitreous of three AIR patients compared to controls. The most significantly upregulated proteins included lysozyme C (LYSC), zinc-alpha-2-glycoprotein (ZA2G), complement factor D (CFAD), transforming growth factor-beta induced protein (BGH3), beta-crystallin B2, and alpha-crystallin A chain. The most significantly downregulated proteins included disco-interacting protein 2 homolog (DIP2C), retbindin (RTBDN), and amyloid beta precursor like protein 2 (APLP2). Pathway analysis revealed that vascular endothelial growth factor (VEGF) signaling was a top represented pathway in the vitreous of AIR patients compared to controls. In comparison to a different cohort of three AIR patients analyzed by multiplex ELISA, a commonly differentially expressed protein was neuronal cell adhesion molecule (NrCAM) with p-values of 0.027 in the LC-MS/MS dataset and 0.035 in the ELISA dataset. Conclusion Protein biomarkers such as NrCAM in the vitreous may eventually help diagnose AIR.
Collapse
Key Words
- autoimmune retinopathy
- nrcam
- proteomics
- retina
- vitreous
- air, autoimmune retinopathy
- elisa, enzyme-linked immunosorbent assay
- erm, epiretinal membrane
- il, interleukin
- imh, idiopathic macular hole
- lc-ms/ms, liquid chromatography-tandem mass spectrometry
- nrcam, neuronal cell adhesion molecule
- rgc, retinal ganglion cell
- rnfl, retinal nerve fiber layer
- tgf-ß, transforming growth factor beta
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Jennifer T. Vu
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | | | - Sarah R. Levi
- Department of Ophthalmology, Columbia University, New York, New York
| | | | - Yasir J. Sepah
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, New York
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
5
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
6
|
Cheriyamundath S, Ben-Ze’ev A. Wnt/β-Catenin Target Genes in Colon Cancer Metastasis: The Special Case of L1CAM. Cancers (Basel) 2020; 12:cancers12113444. [PMID: 33228199 PMCID: PMC7699470 DOI: 10.3390/cancers12113444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Wnt/β-catenin cell–cell signaling pathway is one of the most basic and highly conserved pathways for intercellular communications regulating key steps during development, differentiation, and cancer. In colorectal cancer (CRC), in particular, aberrant activation of the Wnt/β-catenin pathway is believed to be responsible for perpetuating the disease from the very early stages of cancer development. A large number of downstream target genes of β-catenin-T-cell factor (TCF), including oncogenes, were detected as regulators of CRC development. In this review, we will summarize studies mainly on one such target gene, the L1CAM (L1) cell adhesion receptor, that is selectively induced in invasive and metastatic CRC cells and in regenerating cells of the intestine following injury. We will describe studies on the genes activated when the levels of L1 are increased in CRC cells and their effectiveness in propagating CRC development. These downstream targets of L1-signaling can serve in diagnosis and may provide additional targets for CRC therapy. Abstract Cell adhesion to neighboring cells is a fundamental biological process in multicellular organisms that is required for tissue morphogenesis. A tight coordination between cell–cell adhesion, signaling, and gene expression is a characteristic feature of normal tissues. Changes, and often disruption of this coordination, are common during invasive and metastatic cancer development. The Wnt/β-catenin signaling pathway is an excellent model for studying the role of adhesion-mediated signaling in colorectal cancer (CRC) invasion and metastasis, because β-catenin has a dual role in the cell; it is a major adhesion linker of cadherin transmembrane receptors to the cytoskeleton and, in addition, it is also a key transducer of Wnt signaling to the nucleus, where it acts as a co-transcriptional activator of Wnt target genes. Hyperactivation of Wnt/β-catenin signaling is a common feature in the majority of CRC patients. We found that the neural cell adhesion receptor L1CAM (L1) is a target gene of β-catenin signaling and is induced in carcinoma cells of CRC patients, where it plays an important role in CRC metastasis. In this review, we will discuss studies on β-catenin target genes activated during CRC development (in particular, L1), the signaling pathways affected by L1, and the role of downstream target genes activated by L1 overexpression, especially those that are also part of the intestinal stem cell gene signature. As intestinal stem cells are highly regulated by Wnt signaling and are believed to also play major roles in CRC progression, unravelling the mechanisms underlying the regulation of these genes will shed light on both normal intestinal homeostasis and the development of invasive and metastatic CRC.
Collapse
|
7
|
Chen ZH, Luo XC, Yu CR, Huang L. Matrix metalloprotease-mediated cleavage of neural glial-related cell adhesion molecules activates quiescent olfactory stem cells via EGFR. Mol Cell Neurosci 2020; 108:103552. [PMID: 32918999 DOI: 10.1016/j.mcn.2020.103552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Quiescent stem cells have been found in multiple adult organs, and activation of these stem cells is critical to the restoration of damaged tissues in response to injury or stress. Existing evidence suggests that extrinsic cues from the extracellular matrix or supporting cells of various stem cell niches may interact with intrinsic components to initiate stem cell differentiation, but the molecular and cellular mechanisms regulating their activation are not fully understood. In the present study, we find that olfactory horizontal basal cells (HBCs) are stimulated by neural glial-related cell adhesion molecules (NrCAMs). NrCAM activation requires matrix metalloproteases (MMPs) and epidermal growth factor receptors (EGFRs). Inhibiting MMP activity or EGFR activation not only blocks HBC proliferation in the cultured olfactory organoids, but also severely suppresses HBC proliferation in the olfactory epithelium following methimazole-induced injury, resulting in a delay of olfactory mucosa reconstitution and functional recovery of the injured mice. Both NrCAMs and EGFR are expressed by the HBCs and their expression increases upon injury. Our data indicate that MMP-mediated cleavage of NrCAMs serves as an autocrine or paracrine signal that activates EGFRs on HBCs to trigger HBC proliferation and differentiation to reconstruct the entire olfactory epithelium following injury.
Collapse
Affiliation(s)
- Zhen-Huang Chen
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Cui Luo
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Liquan Huang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310027, China; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Brummer T, Müller SA, Pan-Montojo F, Yoshida F, Fellgiebel A, Tomita T, Endres K, Lichtenthaler SF. NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer's disease. EMBO Mol Med 2020; 11:emmm.201809695. [PMID: 30833305 PMCID: PMC6460357 DOI: 10.15252/emmm.201809695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid‐beta. Yet, ADAM10 has additional substrates, which may cause mechanism‐based side effects upon therapeutic ADAM10 activation. However, they may also serve—in addition to APP—as biomarkers to monitor ADAM10 activity in patients and to develop APP‐selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM. ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM‐dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate‐selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM. Taken together, this study demonstrates an NrCAM‐dependent function for ADAM10 in neurite outgrowth and reveals that a substrate‐selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Francisco Pan-Montojo
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
9
|
Padmanabhan P, Goodhill GJ. Axon growth regulation by a bistable molecular switch. Proc Biol Sci 2019; 285:rspb.2017.2618. [PMID: 29669897 DOI: 10.1098/rspb.2017.2618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia .,School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Karthikkeyan G, Subbannayya Y, Najar MA, Mohanty V, Pinto SM, Arunachalam C, Prasad TSK, Murthy KR. Human Optic Nerve: An Enhanced Proteomic Expression Profile. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:642-652. [PMID: 30346883 DOI: 10.1089/omi.2018.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ophthalmology and visual health are new frontiers for postgenomic research and technologies such as proteomics. In this context, the optic nerve and retina extend as the outgrowth of the brain, wherein the latter receives the optical input and the former relays the information for processing. While efforts to understand the optic nerve proteome have been made earlier, there exists a lacuna in its biochemical composition and molecular functions. We report, in this study, a high-resolution mass spectrometry-based approach using an Orbitrap Fusion Tribrid mass spectrometer to elucidate the human optic nerve proteomic profile. Raw spectra were searched against NCBI Human RefSeq 75 database using SEQUEST HT and MASCOT algorithms. We identified nearly 35,000 peptides in human optic nerve samples, corresponding to 5682 proteins, of which 3222 proteins are being reported for the first time. Label-free quantification using spectral abundance pointed out to neuronal structural proteins such as myelin basic protein, glial fibrillary acidic protein, and proteolipid protein 1 as the most abundant proteins. We also identified several neurotransmitter receptors and postsynaptic density synaptosomal scaffold proteins. Pathway analysis revealed that a majority of the proteins are structural proteins and have catalytic and binding activity. This study is one of the largest proteomic profiles of the human optic nerve and offers the research community an initial baseline optic nerve proteome for further studies. This will also help understand the protein dynamics of the human optic nerve under normal conditions.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Yashwanth Subbannayya
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Mohd Altaf Najar
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Varshasnata Mohanty
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Sneha M Pinto
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Cynthia Arunachalam
- 2 Department of Ophthalmology, Yenepoya Medical College, Yenepoya (Deemed to be University) , Mangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India .,3 Institute of Bioinformatics , International Tech Park, Bangalore, Karnataka, India
| | - Krishna R Murthy
- 3 Institute of Bioinformatics , International Tech Park, Bangalore, Karnataka, India .,4 Vittala International Institute of Ophthalmology , Bangalore, Karnataka, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| |
Collapse
|
11
|
Varadarajan SG, Huberman AD. Assembly and repair of eye-to-brain connections. Curr Opin Neurobiol 2018; 53:198-209. [PMID: 30339988 DOI: 10.1016/j.conb.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Vision is the sense humans rely on most to navigate the world and survive. A tremendous amount of research has focused on understanding the neural circuits for vision and the developmental mechanisms that establish them. The eye-to-brain, or 'retinofugal' pathway remains a particularly important model in these contexts because it is essential for sight, its overt anatomical features relate to distinct functional attributes and those features develop in a tractable sequence. Much progress has been made in understanding the growth of retinal axons out of the eye, their selection of targets in the brain, the development of laminar and cell type-specific connectivity within those targets, and also dendritic connectivity within the retina itself. Moreover, because the retinofugal pathway is prone to degeneration in many common blinding diseases, understanding the cellular and molecular mechanisms that establish connectivity early in life stands to provide valuable insights into approaches that re-wire this pathway after damage or loss. Here we review recent progress in understanding the development of retinofugal pathways and how this information is important for improving visual circuit regeneration.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States; Department of Ophthalmology, Stanford University School of Medicine, Stanford, United States; BioX, Stanford University School of Medicine, Stanford, United States; Neurosciences Institute, Stanford University School of Medicine, Stanford, United States.
| |
Collapse
|
12
|
Harley RJ, Murdy JP, Wang Z, Kelly MC, Ropp TJF, Park SH, Maness PF, Manis PB, Coate TM. Neuronal cell adhesion molecule (NrCAM) is expressed by sensory cells in the cochlea and is necessary for proper cochlear innervation and sensory domain patterning during development. Dev Dyn 2018; 247:934-950. [PMID: 29536590 PMCID: PMC6105381 DOI: 10.1002/dvdy.24629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. Neuronal cell adhesion molecule (NrCAM) is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells. Neonatal Nrcam-null cochleae show errors in type II SGN fasciculation, reduced efferent innervation, and defects in the stereotyped packing of hair and supporting cells. Nrcam loss also leads to dramatic changes in the profiles of presynaptic afferent and efferent synaptic markers at the time of hearing onset. Despite these numerous developmental defects, Nrcam-null adults do not show defects in auditory acuity, and by postnatal day 21, the developmental deficits in ribbon synapse distribution and sensory domain structure appear to have been corrected. CONCLUSIONS NrCAM is expressed by several neural and sensory epithelial subtypes within the developing cochlea, and the loss of Nrcam confers numerous, but nonpermanent, developmental defects in innervation and sensory domain patterning. Developmental Dynamics 247:934-950, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randall J. Harley
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Joseph P. Murdy
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Zhirong Wang
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Michael C. Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Tessa-Jonne F. Ropp
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, B251 Marsico Hall, CB#7070, 125 Mason Farm Rd., Chapel Hill, NC 27599, USA
| | - SeHoon H. Park
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, 120 Mason Farm Rd., suite 3020, CB#7260, Chapel Hill, NC 27599, USA
| | - Paul B. Manis
- Department of Otolaryngology/Head and Neck Surgery and Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, B027 Marsico Hall, CB#7070. 125 Mason Farm Rd., Chapel Hill, NC 27599
| | - Thomas M. Coate
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| |
Collapse
|
13
|
Xenopus laevis neuronal cell adhesion molecule (nrcam): plasticity of a CAM in the developing nervous system. Dev Genes Evol 2016; 227:61-67. [PMID: 27942869 DOI: 10.1007/s00427-016-0569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NRCAM) is a neuronal cell adhesion molecule of the L1 immunoglobulin superfamily, which plays diverse roles during nervous system development including axon growth and guidance, synapse formation, and formation of the myelinated nerve. Perturbations in NRCAM function cause a wide variety of disorders, which can affect wiring and targeting of neurons, or cause psychiatric disorders as well as cancers through abnormal modulation of signaling events. In the present study, we characterize the Xenopus laevis homolog of nrcam. Expression of Xenopus nrcam is most abundant along the dorsal midline throughout the developing brain and in the outer nuclear layer of the retina.
Collapse
|
14
|
Neural cell adhesion molecule NrCAM is expressed in the mammalian inner ear and modulates spiral ganglion neurite outgrowth in an in vitro alternate choice assay. J Mol Neurosci 2014; 55:836-44. [PMID: 25407819 DOI: 10.1007/s12031-014-0436-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NrCAM) is a neuronal cell adhesion molecule involved in neuron-neuron and neuron-glial adhesion as well as directional signaling during axonal cone growth. NrCAM has been shown to be involved in several cellular processes in the central and peripheral nervous systems, including neurite outgrowth, axonal pathfinding and myelination, fasciculation of nerve fibers, and cell migration. This includes sensory systems such as the eye and olfactory system. However, there are no reports on the expression/function of NrCAM in the auditory system. The aim of the present study was to elucidate the occurrence of NrCAM in the mammalian cochlea and its role in innervation of the auditory end organ. Our work indicates that NrCAM is highly expressed in the developing mammalian cochlea (position consistent with innervation). Moreover, we found that NrCAM, presented in stripe micropatterns, provide directional cues to neonatal rat inner ear spiral ganglion neurites in vitro. Our results are consistent with a role for NrCAM in the pathfinding of spiral ganglion dendrites toward their hair cell targets in the sensory epithelium.
Collapse
|
15
|
Dai J, Buhusi M, Demyanenko GP, Brennaman LH, Hruska M, Dalva MB, Maness PF. Neuron glia-related cell adhesion molecule (NrCAM) promotes topographic retinocollicular mapping. PLoS One 2013; 8:e73000. [PMID: 24023801 PMCID: PMC3759449 DOI: 10.1371/journal.pone.0073000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
NrCAM (Neuron-glial related cell adhesion molecule), a member of the L1 family of cell adhesion molecules, reversibly binds ankyrin and regulates axon growth, but it has not been studied for a role in retinotopic mapping. During development of retino-collicular topography, NrCAM was expressed uniformly in retinal ganglion cells (RGCs) along both mediolateral and anteroposterior retinal axes, and was localized on RGC axons within the optic tract and superior colliculus (SC). Anterograde tracing of RGC axons in NrCAM null mutant mice at P10, when the map resembles its mature form, revealed laterally displaced ectopic termination zones (eTZs) of axons from the temporal retina, indicating defective mediolateral topography, which is governed by ephrinB/EphBs. Axon tracing at P2 revealed that interstitial branch orientation of ventral-temporal RGC axons in NrCAM null mice was compromised in the medial direction, likely accounting for displacement of eTZs. A similar retinocollicular targeting defect in EphB mutant mice suggested that NrCAM and EphB interact to regulate mediolateral retino-collicular targeting. We found that EphB2 tyrosine kinase but not an EphB2 kinase dead mutant, phosphorylated NrCAM at a conserved tyrosine residue in the FIGQY ankyrin binding motif, perturbing ankyrin recruitment in NrCAM transfected HEK293 cells. Furthermore, the phosphorylation of NrCAM at FIGQY in SC was decreased in EphB1/3 and EphB1/2/3 null mice compared to WT, while phospho-FIGQY of NrCAM in SC was increased in EphB2 constitutively active (F620D/F620D) mice. These results demonstrate that NrCAM contributes to mediolateral retinocollicular axon targeting by regulating RGC branch orientation through a likely mechanism in which ephrinB/EphB phosphorylates NrCAM to modulate linkage to the actin cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Dai
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Mona Buhusi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Galina P. Demyanenko
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Leann H. Brennaman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Martin Hruska
- Thomas Jefferson University, Department of Neuroscience, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Matthew B. Dalva
- Thomas Jefferson University, Department of Neuroscience, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Thelen K, Jaehrling S, Spatz JP, Pollerberg GE. Depending on its nano-spacing, ALCAM promotes cell attachment and axon growth. PLoS One 2012; 7:e40493. [PMID: 23251325 PMCID: PMC3518477 DOI: 10.1371/journal.pone.0040493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
ALCAM is a member of the cell adhesion molecule (CAM) family which plays an important role during nervous system formation. We here show that the two neuron populations of developing dorsal root ganglia (DRG) display ALCAM transiently on centrally and peripherally projecting axons during the two phases of axon outgrowth. To analyze the impact of ALCAM on cell adhesion and axon growth, DRG single cells were cultured on ALCAM-coated coverslips or on nanopatterns where ALCAM is presented in physiological amino-carboxyl terminal orientation at highly defined distances (29, 54, 70, 86, and 137 nm) and where the interspaces are passivated to prevent unspecific protein deposition. Some axonal features (branching, lateral deviation) showed density dependence whereas others (number of axons per neuron, various axon growth parameters) turned out to be an all-or-nothing reaction. Time-lapse analyses revealed that ALCAM density has an impact on axon velocity and advance efficiency. The behavior of the sensory axon tip, the growth cone, partially depended on ALCAM density in a dose-response fashion (shape, dynamics, detachment) while other features did not (size, complexity). Whereas axon growth was equally promoted whether ALCAM was presented at high (29 nm) or low densities (86 nm), the attachment of non-neuronal cells depended on high ALCAM densities. The attachment of non-neuronal cells to the rather unspecific standard proteins presented by conventional implants designed to enhance axonal regeneration is a severe problem. Our findings point to ALCAM, presented as 86 nm pattern, for a promising candidate for the improvement of such implants since this pattern drives axon growth to its full extent while at the same time non-neuronal cell attachment is clearly reduced.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Steffen Jaehrling
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Joachim P. Spatz
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - G. Elisabeth Pollerberg
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
18
|
Thelen K, Maier B, Faber M, Albrecht C, Fischer P, Pollerberg GE. Translation of the cell adhesion molecule ALCAM in axonal growth cones – regulation and functional importance. J Cell Sci 2012; 125:1003-14. [DOI: 10.1242/jcs.096149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ALCAM is a cell adhesion molecule that is present on extending axons and has been shown to be crucial for elongation and navigation of retinal ganglion cell (RGC) axons. In the present study, we show that ALCAM mRNA is present in axonal growth cones of RGCs in vivo and in vitro, and that translation of ALCAM occurs in RGC growth cones separated from their soma. This growth cone translation is regulated by the 3′-untranslated region (3′-UTR) of ALCAM and depends on the activity of the kinases ERK and TOR (target of rapamycin). We also investigated the impact of the growth cone translation of ALCAM on axonal functions. Growth cone translation of ALCAM is crucial for the enhanced elongation of axons extending in contact with ALCAM protein. The local translation of ALCAM in the growth cone is able to rapidly counterbalance experimentally induced ALCAM internalization, thereby contributing to the maintenance of constant ALCAM levels in the plasma membrane. Assays where RGC axons have the choice to grow on laminin or both ALCAM and laminin – as is the case in the developing retina – reveal that the axonal preference for ALCAM-containing lanes depends on translation of ALCAM in growth cones. Taken together, these results show for the first time that translation of a cell adhesion molecule in growth cones, as well as the impact of this local translation on the behavior of axon and growth cone.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Bettina Maier
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Marc Faber
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Christian Albrecht
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Paulina Fischer
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - G. Elisabeth Pollerberg
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| |
Collapse
|
19
|
Sakurai T. The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci 2011; 49:351-63. [PMID: 22182708 DOI: 10.1016/j.mcn.2011.12.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022] Open
Abstract
NrCAM is a neuronal cell adhesion molecule of the L1 family of immunoglobulin super family. It plays a wide variety of roles in neural development, including cell proliferation and differentiation, axon growth and guidance, synapse formation, and the formation of the myelinated nerve structure. NrCAM functions in cell adhesion and modulates signaling pathways in neural development through multiple molecular interactions with guidance and other factors. Alterations in NrCAM structure/expression are associated with psychiatric disorders such as autism and drug addiction and with tumor progression. The mechanisms of NrCAM participation in development and how these might be perturbed in disorders are reviewed.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
20
|
Jin K, Xiang M. Ebf1 deficiency causes increase of Müller cells in the retina and abnormal topographic projection at the optic chiasm. Biochem Biophys Res Commun 2011; 414:539-44. [PMID: 21971554 DOI: 10.1016/j.bbrc.2011.09.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
Abstract
The Ebf transcription factors play important roles in the developmental processes of many tissues. We have shown previously that four members of the Ebf family are expressed during mouse retinal development and are both necessary and sufficient to specify multiple retinal cell fates. Here we describe the changes in cell differentiation and retinal ganglion cell (RGC) projection in Ebf1 knockout mice. Analysis of marker expression in Ebf1 null mutant retinas reveals that loss of Ebf1 function causes a significant increase of Müller cells. Moreover, there is an obvious decrease of ipsilateral and retinoretinal projections of RGC axons at the optic chiasm, whereas the contralateral projection significantly increases in the mutant mice. These data together suggests that Ebf1 is required for suppressing the Müller cell fate during retinogenesis and important for the correct topographic projection of RGC axons at the optic chiasm.
Collapse
Affiliation(s)
- Kangxin Jin
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
21
|
Chan JY, Ong CW, Salto-Tellez M. Overexpression of neurone glial-related cell adhesion molecule is an independent predictor of poor prognosis in advanced colorectal cancer. Cancer Sci 2011; 102:1855-61. [PMID: 21718388 DOI: 10.1111/j.1349-7006.2011.02021.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A downstream target of the Wnt pathway, neurone glial-related cell adhesion molecule (Nr-CAM) has recently been implicated in human cancer development. However, its role in colorectal cancer (CRC) pathobiology and clinical relevance remains unknown. In this study, we examined the clinical significance of Nr-CAM protein expression in a retrospective series of 428 CRCs using immunohistochemistry and tissue microarrays. Cox proportional hazards regression was used to calculate hazard ratios (HR) of mortality according to various clinicopathological features and molecular markers. All CRC samples were immunoreactive for Nr-CAM protein expression, compared to 10 ⁄ 245 (4%) matched normal tissue (P < 0.0001). Of 428 CRC samples, 97 (23%) showed Nr-CAM overexpression, which was significantly associated with nodal (P = 0.012) and distant (P = 0.039) metastasis, but not with extent of local invasion or tumor size. Additionally, Nr-CAM overexpression was associated with vascular invasion (P = 0.0029), p53 expression (P = 0.036), and peritoneal metastasis at diagnosis (P = 0.013). In a multivariate model adjusted for other clinicopathological predictors of survival, Nr-CAM overexpression correlated with a significant increase in disease-specific (HR 1.66; 95% confidence interval 1.11-2.47; P = 0.014) and overall mortality (HR 1.57; 95% confidence interval 1.07-2.30; P = 0.023) in advanced but not early stage disease. Notably, 5-fluorouracil-based chemotherapy conferred significant survival benefit to patients with tumors negative for Nr-CAM overexpression but not to those with Nr-CAM overexpressed tumors. In conclusion, Nr-CAM protein expression is upregulated in CRC tissues. Nr-CAM overexpression is an independent marker of poor prognosis among advanced CRC patients, and is a possible predictive marker for non-beneficence to 5-fluorouracil- based chemotherapy.
Collapse
Affiliation(s)
- Jason Y Chan
- Department of Pathology, National University Health System and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
22
|
Comparative screening of glial cell types reveals extracellular matrix that inhibits retinal axon growth in a chondroitinase ABC-resistant fashion. Glia 2009; 57:1420-38. [DOI: 10.1002/glia.20860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Robo2 is required for Slit-mediated intraretinal axon guidance. Dev Biol 2009; 335:418-26. [PMID: 19782674 PMCID: PMC2814049 DOI: 10.1016/j.ydbio.2009.09.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.
Collapse
|
24
|
The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD. ACTA ACUST UNITED AC 2009; 4:271-83. [DOI: 10.1017/s1740925x09990020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tenascin-C (Tnc) is an astrocytic multifunctional extracellular matrix (ECM) glycoprotein that potentially promotes or inhibits neurite outgrowth. To investigate its possible functions for retinal development, explants from embryonic day 18 (E18) rat retinas were cultivated on culture substrates composed of poly-d-lysine (PDL), or PDL additionally coated with Tnc or laminin (LN)-1, which significantly increased fiber length. When combined with LN, Tnc induced axon fasciculation that reduced the apparent number of outgrowing fibers. In order to circumscribe the stimulatory region, Tnc-derived fibronectin type III (TNfn) domains fused to the human Ig-Fc-fragment TNfnD6-Fc, TNfnBD-Fc, TNFnA1A2-Fc and TNfnA1D-Fc were studied. The fusion proteins TNfnBD-Fc and to a lesser degree TNfnA1D-Fc were stimulatory when compared with the Ig-Fc-fragment protein without insert. In contrast, the combination TNfnA1A2-Fc reduced fiber outgrowth beneath the values obtained for the Ig-Fc domain, indicating potential inhibitory properties. The monoclonal J1/tn2 antibody (clone 578) that is specific for domain TNfnD blocked the stimulatory properties of the TNfn-Fc fusions. When postnatal day 7 retinal ganglion cells were used rather that explants, Tnc and Tnc-derived proteins proved permissive for neurite outgrowth. The present study highlights a strong retinal axon growth-promoting activity of the Tnc domain TNfnD, which is modulated by neighboring domains.
Collapse
|
25
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
26
|
Fuentes F, Arregui CO. Microtubule and cell contact dependency of ER-bound PTP1B localization in growth cones. Mol Biol Cell 2009; 20:1878-89. [PMID: 19158394 DOI: 10.1091/mbc.e08-07-0675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity.
Collapse
Affiliation(s)
- Federico Fuentes
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | | |
Collapse
|
27
|
Thelen K, Georg T, Bertuch S, Zelina P, Pollerberg GE. Ubiquitination and endocytosis of cell adhesion molecule DM-GRASP regulate its cell surface presence and affect its role for axon navigation. J Biol Chem 2008; 283:32792-801. [PMID: 18790729 DOI: 10.1074/jbc.m805896200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DM-GRASP, cell adhesion molecule of the immunoglobulin superfamily, has been shown to promote growth and navigation of axons. We here demonstrate that clustering of DM-GRASP in the plasma membrane induces its rapid internalization via dynamin- and clathrin-dependent endocytosis, which is controlled by phosphatidylinositol 3-kinase and mitogen-activated protein kinase ERK. The clustering of DM-GRASP activates ERK; the intensity and duration of ERK activation by DM-GRASP do not depend on rapid clathrin-mediated internalization of DM-GRASP. Moreover, the preference of retinal ganglion cell axons for DM-GRASP-coated micro-lanes requires clathrin-mediated endocytosis for the appropriate axonal turning reactions at substrate borders. Because the intracellular domain of DM-GRASP does not contain motifs for direct interactions with the endocytosis machinery, we performed a yeast two-hybrid screen to identify intracellular proteins mediating the uptake of DM-GRASP and isolated ubiquitin. Immunoprecipitation of DM-GRASP coexpressed with ubiquitin revealed that one or two ubiquitin(s) are attached to the intracellular domain of cell surface-resident DM-GRASP. Furthermore, elevated ubiquitination levels result in a decrease of cell surface-resident DM-GRASP as well as in the amount of total DM-GRASP. The endocytosis rate is not affected, but the delivery to multivesicular bodies is increased, indicating that DM-GRASP ubiquitination enhances its sorting into the degradation pathway. Together, our data show that ubiquitination and endocytosis of DM-GRASP in concert regulate its cell surface concentration, which is crucial for its function in axon navigation.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Structural requirement of TAG-1 for retinal ganglion cell axons and myelin in the mouse optic nerve. J Neurosci 2008; 28:7624-36. [PMID: 18650339 DOI: 10.1523/jneurosci.1103-08.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
White matter axons organize into fascicles that grow over long distances and traverse very diverse environments. The molecular mechanisms preserving this structure of white matter axonal tracts are not well known. Here, we used the optic nerve as a model and investigated the role of TAG-1, a cell adhesion molecule expressed by retinal axons. TAG-1 was first expressed in the embryonic retinal ganglion cells (RGCs) and later in the postnatal myelin-forming cells in the optic nerve. We describe the consequences of genetic loss of Tag-1 on the developing and adult retinogeniculate tract. Tag-1-null embryos display anomalies in the caliber of RGC axons, associated with an abnormal organization of the astroglial network in the optic nerve. The contralateral projections in the lateral geniculate nucleus are expanded postnatally. In the adult, Tag-1-null mice show a loss of RGC axons, with persistent abnormalities of axonal caliber and additional cytoskeleton and myelination defects. Therefore, TAG-1 is an essential regulator of the structure of RGC axons and their surrounding glial cells in the optic nerve.
Collapse
|
29
|
Kaempf S, Walter P, Salz AK, Thumann G. Novel organotypic culture model of adult mammalian neurosensory retina in co-culture with retinal pigment epithelium. J Neurosci Methods 2008; 173:47-58. [DOI: 10.1016/j.jneumeth.2008.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 12/19/2022]
|
30
|
Pittman AJ, Law MY, Chien CB. Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points. Development 2008; 135:2865-71. [PMID: 18653554 DOI: 10.1242/dev.025049] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Navigating axons respond to environmental guidance signals, but can also follow axons that have gone before--pioneer axons. Pioneers have been studied extensively in simple systems, but the role of axon-axon interactions remains largely unexplored in large vertebrate axon tracts, where cohorts of identical axons could potentially use isotypic interactions to guide each other through multiple choice points. Furthermore, the relative importance of axon-axon interactions compared with axon-autonomous receptor function has not been assessed. Here, we test the role of axon-axon interactions in retinotectal development, by devising a technique to selectively remove or replace early-born retinal ganglion cells (RGCs). We find that early RGCs are both necessary and sufficient for later axons to exit the eye. Furthermore, introducing misrouted axons by transplantation reveals that guidance from eye to tectum relies heavily on interactions between axons, including both pioneer-follower and community effects. We conclude that axon-axon interactions and ligand-receptor signaling have co-equal roles, cooperating to ensure the fidelity of axon guidance in developing vertebrate tracts.
Collapse
Affiliation(s)
- Andrew J Pittman
- Program in Neuroscience, University of Utah Medical Center, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
31
|
Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J Neurosci 2007; 27:12590-600. [PMID: 18003838 DOI: 10.1523/jneurosci.2250-07.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Axonal steering reactions depend on the transformation of environmental information into internal, directed structures, which is achieved by differential modulation of the growth cone cytoskeleton; key elements are the microtubules, which are regulated in their dynamics by microtubule-associated proteins (MAPs). We investigated a potential role of the MAP adenomatous polyposis coli (APC) for growing axons, employing embryonic visual system as a model system. APC is concentrated in the distalmost (i.e., growing) region of retinal ganglion cell axons in vivo and in vitro. Within the growth cone, APC is enriched in the central domain; it only partially colocalizes with microtubules. When axons are induced to turn toward a cell or away from a substrate border, APC is present in the protruding and absent from the collapsing growth cone regions, thus indicating the future growth direction of the axon. To assess the functional role of the differential distribution of APC in navigating growth cones, the protein was inactivated via micro-scale chromophore-assisted laser inactivation in one half of the growth cone. If the N-terminal APC region (crucial for its oligomerization) is locally inactivated, the treated growth cone side collapses and the axon turns away. In contrast, if the 20 aa repeats in the middle region of APC (which can negatively regulate its microtubule association) are inactivated, protrusions are formed and the growth cone turns toward. Our data thus demonstrate a crucial role of APC for axon steering attributable to its multifunctional domain structure and differential distribution in the growth cone.
Collapse
|
32
|
Górka B, Skubis-Zegadło J, Mikula M, Bardadin K, Paliczka E, Czarnocka B. NrCAM, a neuronal system cell-adhesion molecule, is induced in papillary thyroid carcinomas. Br J Cancer 2007; 97:531-8. [PMID: 17667921 PMCID: PMC2360353 DOI: 10.1038/sj.bjc.6603915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NrCAM (neuron-glia-related cell-adhesion molecule) is primarily, although not solely, expressed in the nervous system. In the present study, NrCAM expression was analysed in a series (46) of papillary thyroid carcinomas (PTCs) and paired normal tissues (NT). Quantitative reverse transcriptase (QRT)-PCR revealed that NrCAM expression was upregulated in all PTCs compared to normal thyroid, whatever the stage or size of the primary tumour. NrCAM transcript levels were 1.3- to 30.7-fold higher in PTCs than in NT. Immunohistochemistry (IHC) confirmed that the expression of NrCAM was considerably higher in tumours (score 2+/3+) than in adjacent normal paratumoural thyroid tissue. The NrCAM protein was detected in all but three (93.3%) PTC samples, and it was mainly cytoplasmic; in some cases there was additional membranous localisation – basolateral and partly apical. In the normal thyroid and tissues surrounding tumours, focal NrCAM immunolabelling was seen only in follicles containing tall cells, where staining was restricted to the apical pole of thyrocytes. Western blot analysis corroborated the QRT–PCR and IHC results, showing higher NrCAM protein levels in PTCs than in paired NT. The level of overexpression of the NrCAM mRNA in tumourous tissue appeared to be independent of the primary tumour stage (pT) or the size of the PTC. These data provide the first evidence that NrCAM is overexpressed in human PTCs at the mRNA and protein levels, whatever the tumour stage. Thus, the induction and upregulation of NrCAM expression could be implicated in the pathogenesis and behaviour of papillary thyroid cancers.
Collapse
Affiliation(s)
- B Górka
- Department of Clinical Biochemistry and Molecular Biology, Medical Centre for Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - J Skubis-Zegadło
- Department of Clinical Biochemistry and Molecular Biology, Medical Centre for Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - M Mikula
- Department of Gastroenterology and Hepatology, Medical Centre for Postgraduate Education and Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - K Bardadin
- Department of Pathology, Medical Centre for Postgraduate Education, Ceglowska 80, 01-809 Warsaw, Poland
| | - E Paliczka
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland
| | - B Czarnocka
- Department of Clinical Biochemistry and Molecular Biology, Medical Centre for Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- E-mail:
| |
Collapse
|
33
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
34
|
Boiko T, Vakulenko M, Ewers H, Yap CC, Norden C, Winckler B. Ankyrin-dependent and -independent mechanisms orchestrate axonal compartmentalization of L1 family members neurofascin and L1/neuron-glia cell adhesion molecule. J Neurosci 2007; 27:590-603. [PMID: 17234591 PMCID: PMC6672792 DOI: 10.1523/jneurosci.4302-06.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Axonal initial segments (IS) and nodes of Ranvier are functionally important membrane subdomains in which the clustering of electrogenic channels enables action potential initiation and propagation. In addition, the initial segment contributes to neuronal polarity by serving as a diffusion barrier. To study the mechanisms of axonal compartmentalization, we focused on two L1 family of cell adhesion molecules (L1-CAMs) [L1/neuron-glia cell adhesion molecule (L1/NgCAM) and neurofascin (NF)] and two neuronal ankyrins (ankB and ankG). NF and ankG accumulate specifically at the initial segment, whereas L1/NgCAM and ankB are expressed along the entire lengths of axons. We find that L1/NgCAM and NF show distinct modes of steady-state accumulation during axon outgrowth in cultured hippocampal neurons. Despite their different steady-state localizations, both L1/NgCAM and NF show slow diffusion and low detergent extractability specifically in the initial segment but fast diffusion and high detergent extractability in the distal axon. We propose that L1-CAMs do not strongly bind ankB in the distal axon because of spatial regulation of ankyrin affinity by phosphorylation. NF, conversely, is initially enriched in an ankyrin-independent manner in the axon generally and accumulates progressively in the initial segment attributable to preferential binding to ankG. Our results suggest that NF and L1/NgCAM accumulate in the axon by an ankyrin-independent pathway, but retention at the IS requires ankyrin binding.
Collapse
Affiliation(s)
- Tatiana Boiko
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Max Vakulenko
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Helge Ewers
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Chan Choo Yap
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Caren Norden
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
35
|
Bao ZZ. Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation. Brain Res 2007; 1192:165-77. [PMID: 17320832 PMCID: PMC2267003 DOI: 10.1016/j.brainres.2007.01.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 01/19/2023]
Abstract
The initial step of retinal ganglion cell (RGC) axon pathfinding involves directed growth of RGC axons toward the center of the retina, the optic disc, a process termed "intraretinal guidance". Due to the accessibility of the system, and with various embryological, molecular and genetic approaches, significant progress has been made in recent years toward understanding the mechanisms involved in the precise guidance of the RGC axons. As axons are extending from RGCs located throughout the retina, a multitude of factors expressed along with the differentiation wave are important for the guidance of the RGC axons. To ensure that the RGC axons are oriented correctly, restricted to the optic fiber layer (OFL) of the retina, and exit the eye properly, different sets of positive and negative factors cooperate in the process. Fasciculation mediated by a number of cell adhesion molecules (CAMs) and modulation of axonal response to guidance factors provide additional mechanisms to ensure proper guidance of the RGC axons. The intraretinal axon guidance thus serves as an excellent model system for studying how different signals are regulated, modulated and integrated for guiding a large number of axons in three-dimensional space.
Collapse
Affiliation(s)
- Zheng-Zheng Bao
- Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
36
|
Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J Neurosci 2006; 26:8082-91. [PMID: 16885222 PMCID: PMC6673773 DOI: 10.1523/jneurosci.1342-06.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An early step in the formation of the optic pathway is the directed extension of retinal ganglion cell (RGC) axons into the optic fiber layer (OFL) of the retina in which they project toward the optic disc. Using analysis of knock-out mice and in vitro assays, we found that, in the mammalian retina, Slit1 and Slit2, known chemorepellents for RGC axons, regulate distinct aspects of intraretinal pathfinding in different regions of the retina. In ventral and, to a much lesser extent, dorsal retina, Slits help restrict RGC axons to the OFL. Additionally, within dorsal retina exclusively, Slit2 also regulates the initial polarity of outgrowth from recently differentiated RGCs located in the retinal periphery. This regional specificity occurs despite the fact that Slits are expressed throughout the retina, and both dorsal and ventral RGCs are responsive to Slits. The gross morphology and layering of the retina of the slit-deficient retinas is normal, demonstrating that these distinct guidance defects are not the result of changes in the organization of the tissue. Although displaced or disorganized, the aberrant axons within both dorsal and ventral retina exit the eye. We also have found that the lens, which because of its peripheral location within the developing eye is ideally located to influence the initial direction of RGC axon outgrowth, secretes Slit2, suggesting this is the source of Slit regulating OFL development. These data demonstrate clearly that multiple mechanisms exist in the retina for axon guidance of which Slits are an important component.
Collapse
|
37
|
Williams SE, Grumet M, Colman DR, Henkemeyer M, Mason CA, Sakurai T. A role for Nr-CAM in the patterning of binocular visual pathways. Neuron 2006; 50:535-47. [PMID: 16701205 DOI: 10.1016/j.neuron.2006.03.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/23/2006] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.
Collapse
Affiliation(s)
- Scott E Williams
- Center for Neurobiology and Behavior and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Binocular vision relies upon the existence of contralateral and ispilateral projections from retinal ganglion cells. Contacts between visual axons and optic chiasm cells are critical for the sorting of crossed and uncrossed projections during development. In this issue of Neuron, a study by Williams et al. shows that the cell adhesion molecule Nr-CAM facilitates/promotes the decussation of contralateral axons across the chiasm.
Collapse
|