1
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
2
|
Do BH, Hiep NT, Lao TD, Nguyen NH. Loss-of-Function Mutation of ACTIN-RELATED PROTEIN 6 (ARP6) Impairs Root Growth in Response to Salinity Stress. Mol Biotechnol 2023; 65:1414-1420. [PMID: 36627550 DOI: 10.1007/s12033-023-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
H2A.Z-containing nucleosomes have been found to function in various developmental programs in Arabidopsis (e.g., floral transition, warm ambient temperature, and drought stress responses). The SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) complex is known to control the deposition of H2A.Z, and it has been unraveled that ACTIN-RELATED PROTEIN 6 (ARP6) is one component of this SWR1 complex. Previous studies showed that the arp6 mutant exhibited some distinguished phenotypes such as early flowering, leaf serration, elongated hypocotyl, and reduced seed germination rate in response to osmotic stress. In this study, we aimed to investigate the changes of arp6 mutant when the plants were grown in salt stress condition. The phenotypic observation showed that the arp6 mutant was more sensitive to salt stress than the wild type. Upon salt stress condition, this mutant exhibited attenuated root phenotypes such as shorter primary root length and fewer lateral root numbers. The transcript levels of stress-responsive genes, ABA INSENSITIVE 1 (ABI1) and ABI2, were found to be impaired in the arp6 mutant in comparison with wild-type plants in response to salt stress. In addition, a meta-analysis of published data indicated a number of genes involved in auxin response were induced in arp6 mutant grown in non-stress condition. These imply that the loss of H2A.Z balance (in arp6 mutant) may lead to change stress and auxin responses resulting in alternative root morphogenesis upon both normal and salinity stress conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam.
| |
Collapse
|
3
|
Abelenda JA, Trabanco N, Del Olmo I, Pozas J, Martín-Trillo MDM, Gómez-Garrido J, Esteve-Codina A, Pernas M, Jarillo JA, Piñeiro M. High ambient temperature impacts on flowering time in Brassica napus through both H2A.Z-dependent and independent mechanisms. PLANT, CELL & ENVIRONMENT 2023; 46:1427-1441. [PMID: 36575647 DOI: 10.1111/pce.14526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Knowledge concerning the integration of genetic pathways mediating the responses to environmental cues controlling flowering initiation in crops is scarce. Here, we reveal the diversity in oilseed rape (OSR) flowering response to high ambient temperature. Using a set of different spring OSR varieties, we found a consistent flowering delay at elevated temperatures. Remarkably, one of the varieties assayed exhibited the opposite behaviour. Several FT-like paralogs are plausible candidates to be part of the florigen in OSR. We revealed that BnaFTA2 plays a major role in temperature-dependent flowering initiation. Analysis of the H2A.Z histone variant occupancy at this locus in different Brassica napus varieties produced contrasting results, suggesting the involvement of additional molecular mechanisms in BnaFTA2 repression at high ambient temperature. Moreover, BnARP6 RNAi plants showed little accumulation of H2A.Z at high temperature while maintaining temperature sensitivity and delayed flowering. Furthermore, we found that H3K4me3 present in BnaFTA2 under inductive flowering conditions is reduced at high temperature, suggesting a role for this hallmark of transcriptionally active chromatin in the OSR flowering response to warming. Our work emphasises the plasticity of flowering responses in B. napus and offers venues to optimise this process in crop species grown under suboptimal environmental conditions.
Collapse
Affiliation(s)
- José A Abelenda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Noemí Trabanco
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Jenifer Pozas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - María Del Mar Martín-Trillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
- Dpto. de CC. Ambientales-Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| |
Collapse
|
4
|
Radjacommare R, Lin SY, Usharani R, Lin WD, Jauh GY, Schmidt W, Fu H. The Arabidopsis Deubiquitylase OTU5 Suppresses Flowering by Histone Modification-Mediated Activation of the Major Flowering Repressors FLC, MAF4, and MAF5. Int J Mol Sci 2023; 24:ijms24076176. [PMID: 37047144 PMCID: PMC10093928 DOI: 10.3390/ijms24076176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.
Collapse
|
5
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
6
|
Luo M, Liu X, Su H, Li M, Li M, Wei J. Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1355. [PMID: 35631780 PMCID: PMC9144295 DOI: 10.3390/plants11101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory mechanism of flowering genes during the photoperiod has been revealed, the networks during vernalization have not been mapped. Here, transcriptomics profiles of A. sinensis with uncompleted (T1), completed (T2) and avoided vernalization (T3) were performed using RNA-seq, and genes expression was validated with qRT-PCR. A total of 61,241 isoforms were annotated on KEGG, KOG, Nr and Swiss-Prot databases; 4212 and 5301 differentially expressed genes (DEGs) were observed; and 151 and 155 genes involved in flowering were dug out at T2 vs. T1 and T3 vs. T1, respectively. According to functional annotation, 104 co-expressed genes were classified into six categories: FLC expression (22; e.g., VILs, FCA and FLK), sucrose metabolism (12; e.g., TPSs, SUS3 and SPSs), hormone response (18; e.g., GID1B, RAP2s and IAAs), circadian clock (2; i.e., ELF3 and COR27), downstream floral integrators and meristem identity (15; e.g., SOC1, AGL65 and SPLs) and cold response (35; e.g., PYLs, ERFs and CORs). The expression levels of candidate genes were almost consistent with FPKM values and changes in sugar and hormone contents. Based on their functions, four pathways that regulate flowering during vernalization were mapped, including the vernalization pathway, the autonomic pathway, the age pathway and the GA (hormone) pathway. This transcriptomic analysis provides new insights into the gene-regulatory networks of flowering in A. sinensis.
Collapse
Affiliation(s)
- Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Meiling Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
7
|
Hou Y, Yan Y, Cao X. Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. ABIOTECH 2022; 3:12-24. [PMID: 36304197 PMCID: PMC9590556 DOI: 10.1007/s42994-022-00070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Temperature is a key factor in determining plant growth and development, geographical distribution, and seasonal behavior. Plants accurately sense subtle changes in ambient temperature and alter their growth and development accordingly to improve their chances of survival and successful propagation. Thermomorphogenesis encompasses a variety of morphological changes that help plants acclimate to warm environmental temperatures. Revealing the molecular mechanism of thermomorphogenesis is important for breeding thermo-tolerant crops and ensuring food security under global climate change. Plant adaptation to elevated ambient temperature is regulated by multiple signaling pathways and epigenetic mechanisms such as histone modifications, histone variants, and non-coding RNAs. In this review, we summarize recent advances in the mechanism of epigenetic regulation during thermomorphogenesis with a focus on the model plant Arabidopsis thaliana and briefly discuss future prospects for this field.
Collapse
Affiliation(s)
- Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yan Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
8
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
OsARP6 Is Involved in Internode Elongation by Regulating Cell-Cycle-Related Genes. Biomolecules 2021; 11:biom11081100. [PMID: 34439766 PMCID: PMC8393719 DOI: 10.3390/biom11081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The SWR1 complex (SWR1-C) is important for the deposition of histone variant H2A.Z into chromatin to regulate gene expression. Characterization of SWR1-C subunits in Arabidopsis thaliana has revealed their role in variety of developmental processes. Oryza sativa actin related protein 6 (OsARP6) is a subunit of rice SWR1-C. Its role in rice plant development is unknown. Here, we examined the subcellular localization, expression patterns, and loss of function phenotypes for this protein and found that OsARP6 is a nuclear localized protein, and is broadly expressed. OsARP6 interacted with OsPIE1, a central ATPase subunit of rice SWR1-C. The osarp6 knockout mutants displayed pleiotropic phenotypic alterations in vegetative and reproductive traits, including semi-dwarf phenotype, lower tillers number, short leaf length, changes in spikelet morphology, and seed abortion. Microscopic thin sectioning of the top internode revealed that the dwarf phenotype of osarp6 was due to reduced number of cells rather than reduced cell length. The altered transcript level of genes involved in cell division suggested that OsARP6 affects cell cycle regulation. In addition, H2A.Z levels were reduced at the promoters and transcription start sites (TSS) of the regulated genes in osarp6 plants. Together, these results suggest that OsARP6 is involved in rice plant development, and H2A.Z deposition.
Collapse
|
10
|
Akhatar J, Goyal A, Kaur N, Atri C, Mittal M, Singh MP, Kaur R, Rialch I, Banga SS. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss. Sci Rep 2021; 11:4278. [PMID: 33608616 PMCID: PMC7896068 DOI: 10.1038/s41598-021-83689-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Timely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Mohini Prabha Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Indu Rialch
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
11
|
A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 2020; 215:699-712. [PMID: 32434795 DOI: 10.1534/genetics.120.303199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
Targeted degradation of proteins is mediated by E3 ubiquitin ligases and is important for the execution of many biological processes. Redundancy has prevented the genetic characterization of many E3 ubiquitin ligases in plants. Here, we performed a reverse genetic screen in Arabidopsis using a library of dominant-negative U-box-type E3 ubiquitin ligases to identify their roles in flowering time and reproductive development. We identified five U-box decoy transgenic populations that have defects in flowering time or the floral development program. We used additional genetic and biochemical studies to validate PLANT U-BOX 14 (PUB14), MOS4-ASSOCIATED COMPLEX 3A (MAC3A), and MAC3B as bona fide regulators of flowering time. This work demonstrates the widespread importance of E3 ubiquitin ligases in floral reproductive development. Furthermore, it reinforces the necessity of dominant-negative strategies for uncovering previously unidentified regulators of developmental transitions in an organism with widespread genetic redundancy, and provides a basis on which to model other similar studies.
Collapse
|
12
|
Thouly C, Le Masson M, Lai X, Carles CC, Vachon G. Unwinding BRAHMA Functions in Plants. Genes (Basel) 2020; 11:genes11010090. [PMID: 31941094 PMCID: PMC7017052 DOI: 10.3390/genes11010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-dependent Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex (CRC) regulates the transcription of many genes by destabilizing interactions between DNA and histones. In plants, BRAHMA (BRM), one of the two catalytic ATPase subunits of the complex, is the closest homolog of the yeast and animal SWI2/SNF2 ATPases. We summarize here the advances describing the roles of BRM in plant development as well as its recently reported chromatin-independent role in pri-miRNA processing in vitro and in vivo. We also enlighten the roles of plant-specific partners that physically interact with BRM. Three main types of partners can be distinguished: (i) DNA-binding proteins such as transcription factors which mostly cooperate with BRM in developmental processes, (ii) enzymes such as kinases or proteasome-related proteins that use BRM as substrate and are often involved in response to abiotic stress, and (iii) an RNA-binding protein which is involved with BRM in chromatin-independent pri-miRNA processing. This overview contributes to the understanding of the central position occupied by BRM within regulatory networks controlling fundamental biological processes in plants.
Collapse
|
13
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
14
|
Espinosa-Cores L, Bouza-Morcillo L, Barrero-Gil J, Jiménez-Suárez V, Lázaro A, Piqueras R, Jarillo JA, Piñeiro M. Insights Into the Function of the NuA4 Complex in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:125. [PMID: 32153620 PMCID: PMC7047200 DOI: 10.3389/fpls.2020.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 05/14/2023]
Abstract
Chromatin remodeling plays a key role in the establishment and maintenance of gene expression patterns essential for plant development and responses to environmental factors. Post-translational modification of histones, including acetylation, is one of the most relevant chromatin remodeling mechanisms that operate in eukaryotic cells. Histone acetylation is an evolutionarily conserved chromatin signature commonly associated with transcriptional activation. Histone acetylation levels are tightly regulated through the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In plants, different families of HATs are present, including the MYST family, which comprises homologs of the catalytic subunit of the Nucleosome Acetyltransferase of H4 (NuA4) complex in yeast. This complex mediates acetylation of histones H4, H2A, and H2A.Z, and is involved in transcriptional regulation, heterochromatin silencing, cell cycle progression, and DNA repair in yeast. In Arabidopsis and, other plant species, homologs for most of the yeast NuA4 subunits are present and although the existence of this complex has not been demonstrated yet, compelling evidence supports the notion that this type of HAT complex functions from mosses to angiosperms. Recent proteomic studies show that several Arabidopsis homologs of NuA4 components, including the assembly platform proteins and the catalytic subunit, are associated in vivo with additional members of this complex suggesting that a NuA4-like HAT complex is present in plants. Furthermore, the functional characterization of some Arabidopsis NuA4 subunits has uncovered the involvement of these proteins in the regulation of different plant biological processes. Interestingly, for most of the mutant plants deficient in subunits of this complex characterized so far, conspicuous defects in flowering time are observed, suggesting a role for NuA4 in the control of this plant developmental program. Moreover, the participation of Arabidopsis NuA4 homologs in other developmental processes, such as gametophyte development, as well as in cell proliferation and stress and hormone responses, has also been reported. In this review, we summarize the current state of knowledge on plant putative NuA4 subunits and discuss the latest progress concerning the function of this chromatin modifying complex.
Collapse
|
15
|
Aslam M, Fakher B, Jakada BH, Cao S, Qin Y. SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells 2019; 8:cells8121621. [PMID: 31842357 PMCID: PMC6952815 DOI: 10.3390/cells8121621] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The nucleosome is the structural and fundamental unit of eukaryotic chromatin. The chromatin remodeling complexes change nucleosome composition, packaging and positioning to regulate DNA accessibility for cellular machinery. SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) belongs to the INO80 chromatin remodeling family and mainly catalyzes the exchange of H2A-H2B with the H2A.Z-H2B dimer. The replacement of H2A.Z into nucleosomes affects nucleosome stability and chromatin structure. Incorporation of H2A.Z into the chromatin and its physiochemical properties play a key role in transcriptional regulation during developmental and environmental responses. In Arabidopsis, various studies have uncovered several pivotal roles of SWR1-C. Recently, notable progress has been achieved in understanding the role of SWR1-C in plant developmental and physiological processes such as DNA damage repair, stress tolerance, and flowering time. The present article introduces the SWR1-C and comprehensively reviews recent discoveries made in understanding the function of the SWR1 complex in plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| | - Beenish Fakher
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| |
Collapse
|
16
|
Hou N, Cao Y, Li F, Yuan W, Bian H, Wang J, Zhu M, Han N. Epigenetic regulation of miR396 expression by SWR1-C and the effect of miR396 on leaf growth and developmental phase transition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5217-5229. [PMID: 31198943 PMCID: PMC6793462 DOI: 10.1093/jxb/erz285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/31/2019] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the regulatory function of miR396 in the phase transition in Arabidopsis thaliana. Using AtMIR396a/b knockout mutants generated through clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-directed genome editing, we showed that miR396 negatively regulates the leaf size and vegetative phase transition, and the first leaf with abaxial trichomes appeared earlier in the mir396ab double mutant than in the wild type (WT) and was significantly delayed in miR396 overexpression lines. Moreover, mir396ab exhibited early flowering, whereas 35S:MIR396a/b and cib4-1 delayed flowering, and the flowering time was negatively correlated with FT gene expression. Furthermore, in arp6 and pie1 mutants, which are deficient in the ATP-dependent chromatin remodeling complex (SWR1-C), miR396 expression was significantly repressed. Compared with the WT, reduced H2A.Z deposit and stronger relative nucleosome occupancy in the promoter region of MIR396a was found in the arp6 mutant, indicating that SWR1-C contributes to the transcriptional activation of MIR396a via nucleosome dynamics. In addition, miR396 displayed specific spatio-temporal expression patterns in the leaf, which was altered in arp6 and pie1, and therefore affected the transcript levels of CIB4 and FT in these mutants. We propose that miR396 is not only a marker of cell differentiation, but also an age signal for leaf development and phase change. Meanwhile, SWR1-C-mediated epigenetic regulation contributes to the age-dependent enhancement of miR396 expression and differential miR396 accumulation among leaves.
Collapse
Affiliation(s)
- Ning Hou
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanli Cao
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengyun Li
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiyi Yuan
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongwu Bian
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junhui Wang
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muyuan Zhu
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Han
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Correspondence:
| |
Collapse
|
17
|
Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci 2019; 20:ijms20184591. [PMID: 31533258 PMCID: PMC6770637 DOI: 10.3390/ijms20184591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.
Collapse
|
18
|
Sijacic P, Holder DH, Bajic M, Deal RB. Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome. PLoS Genet 2019; 15:e1008326. [PMID: 31381567 PMCID: PMC6695207 DOI: 10.1371/journal.pgen.1008326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 07/22/2019] [Indexed: 12/01/2022] Open
Abstract
The SWR1 chromatin remodeling complex, which deposits the histone variant H2A.Z into nucleosomes, has been well characterized in yeast and animals, but its composition in plants has remained uncertain. We used the conserved SWR1 subunit ACTIN RELATED PROTEIN 6 (ARP6) as bait in tandem affinity purification experiments to isolate associated proteins from Arabidopsis thaliana. We identified all 11 subunits found in yeast SWR1 and the homologous mammalian SRCAP complexes, demonstrating that this complex is conserved in plants. We also identified several additional proteins not previously associated with SWR1, including Methyl-CpG-BINDING DOMAIN 9 (MBD9) and three members of the Alfin1-like protein family, all of which have been shown to bind modified histone tails. Since mbd9 mutant plants were phenotypically similar to arp6 mutants, we explored a potential role for MBD9 in H2A.Z deposition. We found that MBD9 is required for proper H2A.Z incorporation at thousands of discrete sites, which represent a subset of the genomic regions normally enriched with H2A.Z. We also discovered that MBD9 preferentially interacts with acetylated histone H4 peptides, as well as those carrying mono- or dimethylated H3 lysine 4, or dimethylated H3 arginine 2 or 8. Considering that MBD9-dependent H2A.Z sites show a distinct histone modification profile, we propose that MBD9 recognizes particular nucleosome modifications via its PHD- and Bromo-domains and thereby guides SWR1 to these sites for H2A.Z deposition. Our data establish the SWR1 complex as being conserved across eukaryotes and suggest that MBD9 may be involved in targeting the complex to specific genomic sites through nucleosomal interactions. The finding that MBD9 does not appear to be a core subunit of the Arabidopsis SWR1 complex, along with the synergistic phenotype of arp6;mbd9 double mutants, suggests that MBD9 also has important roles beyond H2A.Z deposition. The histone H2A variant, H2A.Z, is found in all known eukaryotes and plays important roles in transcriptional regulation. H2A.Z is selectively incorporated into nucleosomes within many genes by the activity of a conserved ATP-dependent chromatin remodeling complex in yeast, insects, and mammals. Whether this complex exists in the same form in plants, and how the complex is targeted to specific genomic locations have remained open questions. In this study we demonstrate that plants do indeed utilize a complex analogous to those of fungi and animals to deposit H2A.Z, and we also identify several new proteins that interact with this complex. We found that one such interactor, Methyl-CpG-BINDING DOMAIN 9 (MBD9), is required for H2A.Z incorporation at thousands of genomic sites that share a distinct histone modification profile. The histone binding properties of MBD9 suggest that it may guide H2A.Z deposition to specific sites by interacting with modified nucleosomes and with the H2A.Z deposition complex. We hypothesize that this represents a general paradigm for the targeting of H2A.Z to specific sites.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Dylan H. Holder
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Marko Bajic
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition. Nat Commun 2019; 10:3352. [PMID: 31350403 PMCID: PMC6659704 DOI: 10.1038/s41467-019-11291-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 11/08/2022] Open
Abstract
Deposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here, we aim to identify interacting partners of a conserved Arabidopsis SWR1 subunit ACTIN-RELATED PROTEIN 6 (ARP6). We isolate nine predicted components and identify additional interactors implicated in histone acetylation and chromatin biology. One of the interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacts with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 is required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 is preferentially bound to nucleosome-depleted regions at the 5’ ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes. The SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation, but its composition remains largely uncharacterized in plants. Here, the authors report that methyl-CpG-binding domain 9 (MBD9) is a SWR1-C interacting protein required for histone H2A.Z deposition in Arabidopsis.
Collapse
|
20
|
Zan Y, Carlborg Ö. A Polygenic Genetic Architecture of Flowering Time in the Worldwide Arabidopsis thaliana Population. Mol Biol Evol 2019; 36:141-154. [PMID: 30388255 DOI: 10.1093/molbev/msy203] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here, we report an empirical study of the polygenic basis underlying the evolution of complex traits. Flowering time variation measured at 10 and 16°C in the 1,001-genomes Arabidopsis thaliana collection of natural accessions were used as a model. The polygenic architecture of flowering time was defined as the 48 loci that were significantly associated with flowering time-at 10 and/or 16°C and/or their difference-in this population. Contributions from alleles at flowering time associated loci to global and local adaptation were explored by evaluating their distribution across genetically and geographically defined subpopulations across the native range of the species. The dynamics in the genetic architecture of flowering time in response to temperature was evaluated by estimating how the effects of these loci on flowering changed with growth temperature. Overall, the genetic basis of flowering time was stable-about 2/3 of the flowering time loci had similar effects at 10°C and 16°C-but many loci were involved in gene by temperature interactions. Globally present alleles, mostly of moderate effect, contributed to the differences in flowering times between the subpopulations via subtle changes in allele frequencies. More extreme local adaptations were, on several occasions, due to regional alleles with relatively large effects, and their linkage disequilibrium-patterns suggest coevolution of functionally connected alleles within local populations. Overall, these findings provide a significant contribution to our understanding about the possible modes of global and local evolution of a complex adaptive trait in A. thaliana.
Collapse
Affiliation(s)
- Yanjun Zan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Örjan Carlborg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Crevillén P, Gómez-Zambrano Á, López JA, Vázquez J, Piñeiro M, Jarillo JA. Arabidopsis YAF9 histone readers modulate flowering time through NuA4-complex-dependent H4 and H2A.Z histone acetylation at FLC chromatin. THE NEW PHYTOLOGIST 2019; 222:1893-1908. [PMID: 30742710 DOI: 10.1111/nph.15737] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/02/2019] [Indexed: 05/27/2023]
Abstract
Posttranslational histone modifications and the dynamics of histone variant H2A.Z are key mechanisms underlying the floral transition. In yeast, SWR1-C and NuA4-C mediate the deposition of H2A.Z and the acetylation of histone H4, H2A and H2A.Z, respectively. Yaf9 is a subunit shared by both chromatin-remodeling complexes. The significance of the two Arabidopsis YAF9 homologues, YAF9A and YAF9B, is unknown. To get an insight into the role of Arabidopsis YAF9 proteins in plant developmental responses, we followed physiological, genetic, genomic, epigenetic, proteomics and cell biology approaches. Our data revealed that YAF9A and YAF9B are histone H3 readers with unequally redundant functions. Double mutant yaf9a yaf9b plants display pleiotropic developmental phenotypic alterations as well as misregulation of a wide variety of genes. We demonstrated that YAF9 proteins regulate flowering time by both FLC-dependent and independent mechanisms that work in parallel with SWR1-C. Interestingly, we show that YAF9A binds FLC chromatin and that YAF9 proteins regulate FLC expression by modulating the acetylation levels of H2A.Z and H4 but not H2A.Z deposition. Our work highlights the key role exerted by YAF9 homologues in the posttranslational modification of canonical histones and variants that regulate gene expression in plants to control development.
Collapse
Affiliation(s)
- Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Ángeles Gómez-Zambrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
22
|
Ortuño-Miquel S, Rodríguez-Cazorla E, Zavala-Gonzalez EA, Martínez-Laborda A, Vera A. Arabidopsis HUA ENHANCER 4 delays flowering by upregulating the MADS-box repressor genes FLC and MAF4. Sci Rep 2019; 9:1478. [PMID: 30728422 PMCID: PMC6365585 DOI: 10.1038/s41598-018-38327-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
The adaptive success of flowering plants is largely due to their ability to align floral production with optimal conditions. In Arabidopsis thaliana, MADS-box repressors of the FLC/MAF-clade prevent flowering under non-inductive conditions, although the role of some members is not yet clearly defined. Using a genetic strategy, we identified the KH-domain gene HEN4, previously shown to be involved in MADS-box floral homeotic gene regulation, as a modulator of flowering time. Loss-of-function hen4 mutants are early-flowering, and their response to low growth-temperature (16 °C) and day-length is altered. Interestingly, hen4 plants showed dramatic reduction of FLC and MAF4 transcripts, whereas other flowering repressors of the same clade (FLM, MAF2, MAF3, MAF5) remained unaltered. We also determined that hen4, partly due to loss of FLC, accelerates the vegetative phase-change. This report provides insight into flowering time control and highlights the potential of versatile regulators such as HEN4 to coordinate the juvenile-to-adult transition and floral timing.
Collapse
Affiliation(s)
- Samanta Ortuño-Miquel
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain
| | | | | | | | - Antonio Vera
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain.
| |
Collapse
|
23
|
Gómez-Zambrano Á, Crevillén P, Franco-Zorrilla JM, López JA, Moreno-Romero J, Roszak P, Santos-González J, Jurado S, Vázquez J, Köhler C, Solano R, Piñeiro M, Jarillo JA. Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes. MOLECULAR PLANT 2018; 11:815-832. [PMID: 29604400 DOI: 10.1016/j.molp.2018.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 05/07/2023]
Abstract
Deposition of the H2A.Z histone variant by the SWR1 complex (SWR1-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWR1-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWR1-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryo-lethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and reproductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses transcription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLC locus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWR1-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.
Collapse
Affiliation(s)
- Ángeles Gómez-Zambrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José M Franco-Zorrilla
- Plant Molecular Genetics Department and Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Pawel Roszak
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Silvia Jurado
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Roberto Solano
- Plant Molecular Genetics Department and Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
24
|
Xu M, Leichty AR, Hu T, Poethig RS. H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3. Development 2018; 145:dev152868. [PMID: 29361556 PMCID: PMC5825843 DOI: 10.1242/dev.152868] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Vegetative phase change in Arabidopsis thaliana is mediated by a decrease in the level of MIR156A and MIR156C, resulting in an increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Changes in chromatin structure are required for the downregulation of MIR156A and MIR156C, but whether chromatin structure contributes to their initial elevated expression is unknown. We found that mutations in components of the SWR1 complex (ARP6, SEF) and in genes encoding H2A.Z (HTA9 and HTA11) reduce the expression of MIR156A and MIR156C, and accelerate vegetative phase change, indicating that H2A.Z promotes juvenile vegetative identity. However, arp6 and sef did not accelerate the temporal decline in miR156, and the downregulation of MIR156A and MIR156C was not accompanied by significant change in the level of H2A.Z at these loci. We conclude that H2A.Z contributes to the high expression of MIR156A/MIR156C early in shoot development, but does not regulate the timing of vegetative phase change. Our results also suggest that H2A.Z promotes the expression of MIR156A/MIR156C by facilitating the deposition of H3K4me3, rather than by decreasing nucleosome occupancy.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, Zhao H, Qin Y. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. FRONTIERS IN PLANT SCIENCE 2018; 9:1232. [PMID: 30186301 PMCID: PMC6113404 DOI: 10.3389/fpls.2018.01232] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 05/04/2023]
Abstract
In eukaryotes, genetic material is packaged into a dynamic but stable nucleoprotein structure called chromatin. Post-translational modification of chromatin domains affects the expression of underlying genes and subsequently the identity of cells by conveying epigenetic information from mother to daughter cells. SWI/SNF chromatin remodelers are ATP-dependent complexes that modulate core histone protein polypeptides, incorporate variant histone species and modify nucleotides in DNA strands within the nucleosome. The present review discusses the SWI/SNF chromatin remodeler family, its classification and recent advancements. We also address the involvement of SWI/SNF remodelers in regulating vital plant growth and development processes such as meristem establishment and maintenance, cell differentiation, organ initiation, flower morphogenesis and flowering time regulation. Moreover, the role of chromatin remodelers in key phytohormone signaling pathways is also reviewed. The information provided in this review may prompt further debate and investigations aimed at understanding plant-specific epigenetic regulation mediated by chromatin remodeling under continuously varying plant growth conditions and global climate change.
Collapse
Affiliation(s)
- Simon P. Ojolo
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijiang Cao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - S. V. G. N. Priyadarshani
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weimin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maokai Yan
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuan Qin, ;
| |
Collapse
|
26
|
Ramirez-Prado JS, Piquerez SJM, Bendahmane A, Hirt H, Raynaud C, Benhamed M. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:355. [PMID: 29616066 PMCID: PMC5868138 DOI: 10.3389/fpls.2018.00355] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 05/02/2023]
Abstract
Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.
Collapse
Affiliation(s)
- Juan S. Ramirez-Prado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Sophie J. M. Piquerez
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Abdelhafid Bendahmane
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Cécile Raynaud
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
- *Correspondence: Moussa Benhamed,
| |
Collapse
|
27
|
Xu Y, Zhang L, Wu G. Epigenetic Regulation of Juvenile-to-Adult Transition in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1048. [PMID: 30079076 PMCID: PMC6063087 DOI: 10.3389/fpls.2018.01048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 05/02/2023]
Abstract
Epigenetic regulation is referred to as changes in gene function that do not involve changes in the DNA sequence, it is usually accomplished by DNA methylation, histone modifications (repressive marks such as H3K9me, H3K27me, H2Aub, or active marks such as H3K4me, H3K36me, H3Ac), and chromatin remodeling (nucleosome composition, occupancy, and location). In plants, the shoot apex produces different lateral organs during development to give rise to distinguishable phases of a juvenile, an adult and a reproductive phase after embryogenesis. The juvenile-to-adult transition is a key developmental event in plant life cycle, and it is regulated by a decrease in the expression of a conserved microRNA-miR156/157, and a corresponding increase in the expression of its target genes encoding a set of plant specific SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) proteins. Recent work has revealed that the miR156/157-SPL pathway is the master regulator of juvenile-to-adult transition in plants, and genes in this pathway are subjected to epigenetic regulation, such as DNA methylation, histone modifications, and chromatin remodeling. In this review, we summarized the recent progress in understanding the epigenetic regulation of the miR156/157-SPL pathway during juvenile-to-adult transition and bring forward some perspectives of future research in this field.
Collapse
Affiliation(s)
- Yunmin Xu
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lu Zhang
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Gang Wu
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
28
|
Jarillo JA, Komar DN, Piñeiro M. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions. Methods Mol Biol 2018; 1794:323-334. [PMID: 29855969 DOI: 10.1007/978-1-4939-7871-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two-hybrid systems allow for the identification of proteins that physically interact in the context of biological processes. In the cases where these proteins interact with DNA it is essential to define their binding properties with specific regions of the genome to shed light on the intricate gene regulatory networks that modulate the biological response of interest. The chromatin immunoprecipitation (ChIP) protocol described here provides a powerful means to identify the DNA-binding sites of transcription factors, proteins involved in chromatin remodeling processes, or histone marks that modulate gene expression in eukaryotes and specifically in plants like the model species Arabidopsis thaliana. This procedure involves the in vivo fixation of protein-DNA complexes, the physical fragmentation of chromatin with ultrasounds, the specific immunoprecipitation of protein-DNA complexes, and the use of quantitative PCR techniques for the relative quantification of the DNA sequences associated with the proteins of study. This valuable methodology has contributed significantly to a better understanding of the gene expression regulatory mechanisms underlying the control of a variety of biological processes in Arabidopsis.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain.
| | - Dorota N Komar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain.
| |
Collapse
|
29
|
Díaz-Manzano FE, Cabrera J, Ripoll JJ, del Olmo I, Andrés MF, Silva AC, Barcala M, Sánchez M, Ruíz-Ferrer V, de Almeida-Engler J, Yanofsky MF, Piñeiro M, Jarillo JA, Fenoll C, Escobar C. A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T (miRNA172/TOE1/FT) in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:813-827. [PMID: 29105090 PMCID: PMC5922426 DOI: 10.1111/nph.14839] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Root knot nematodes (RKNs) penetrate into the root vascular cylinder, triggering morphogenetic changes to induce galls, de novo formed 'pseudo-organs' containing several giant cells (GCs). Distinctive gene repression events observed in early gall/GCs development are thought to be mediated by post-transcriptional silencing via microRNAs (miRNAs), a process that is far from being fully characterized. Arabidopsis thaliana backgrounds with altered activities based on target 35S::MIMICRY172 (MIM172), 35S::TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1)-miR172-resistant (35S::TOE1R ) and mutant (flowering locus T-10 (ft-10)) lines were used for functional analysis of nematode infective and reproductive parameters. The GUS-reporter lines, MIR172A-E::GUS, treated with auxin (IAA) and an auxin-inhibitor (a-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA)), together with the MIR172C AuxRE::GUS line with two mutated auxin responsive elements (AuxREs), were assayed for nematode-dependent gene expression. Arabidopsis thaliana backgrounds with altered expression of miRNA172, TOE1 or FT showed lower susceptibility to the RKNs and smaller galls and GCs. MIR172C-D::GUS showed restricted promoter activity in galls/GCs that was regulated by auxins through auxin-responsive factors. IAA induced their activity in galls while PEO-IAA treatment and mutations in AuxRe motifs abolished it. The results showed that the regulatory module miRNA172/TOE1/FT plays an important role in correct GCs and gall development, where miRNA172 is modulated by auxins.
Collapse
Affiliation(s)
- Fernando E. Díaz-Manzano
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Javier Cabrera
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116 USA
| | - Iván del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Mari Fe Andrés
- Instituto de Ciencias Agrarias (ICA, CSIC), Protección Vegetal, Calle de Serrano 115, 28006 Madrid, Spain
| | - Ana Cláudia Silva
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Marta Barcala
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - María Sánchez
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Virginia Ruíz-Ferrer
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Janice de Almeida-Engler
- Institut National de la Recherche Agronomique (INRA) - University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Martin F. Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116 USA
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Jose Antonio Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Fenoll
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Carolina Escobar
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
30
|
Dai X, Bai Y, Zhao L, Dou X, Liu Y, Wang L, Li Y, Li W, Hui Y, Huang X, Wang Z, Qin Y. H2A.Z Represses Gene Expression by Modulating Promoter Nucleosome Structure and Enhancer Histone Modifications in Arabidopsis. MOLECULAR PLANT 2017; 10:1274-1292. [PMID: 28951178 DOI: 10.1016/j.molp.2017.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 05/19/2023]
Abstract
Deposition of the histone variant H2A.Z at gene bodies regulates transcription by modifying chromatin accessibility in plants. However, the role of H2A.Z enrichment at the promoter and enhancer regions is unclear, and how H2A.Z interacts with other mechanisms of chromatin modification to regulate gene expression remains obscure. Here, we mapped genome-wide H2A.Z, H3K4me3, H3K27me3, Pol II, and nucleosome occupancy in Arabidopsis inflorescence. We showed that H2A.Z preferentially associated with H3K4me3 at promoters, while it was found with H3K27me3 at enhancers, and that H2A.Z deposition negatively correlated with gene expression. In addition, we demonstrated that H2A.Z represses gene expression by establishing low gene accessibility at +1 nucleosome and maintaining high gene accessibility at -1 nucleosome. We further showed that the high measures of gene responsiveness correlate with the H2A.Z-associated closed +1 nucleosome structure. Moreover, we found that H2A.Z represses enhancer activity by promoting H3K27me3 and preventing H3K4me3 histone modifications. This study provides a framework for future studies of H2A.Z functions and opens up new aspects for decoding the interplay between chromatin modification and histone variants in transcriptional control.
Collapse
Affiliation(s)
- Xiaozhuan Dai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youhuang Bai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihua Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianying Dou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weimin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanan Hui
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Huang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Ocean Science, Minjiang University, Fuzhou 350108, China.
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
31
|
Narro-Diego L, López-González L, Jarillo JA, Piñeiro M. The PHD-containing protein EARLY BOLTING IN SHORT DAYS regulates seed dormancy in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:2393-2405. [PMID: 28770581 DOI: 10.1111/pce.13046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 05/20/2023]
Abstract
The Arabidopsis protein EARLY BOLTING IN SHORT DAYS (EBS), a plant-specific transcriptional regulator, is involved in the control of flowering time by repressing the floral integrator FT. The EBS protein binds the H3K4me3 histone mark and interacts with histone deacetylases to modulate gene expression. Here, we show that EBS also participates in the regulation of seed dormancy. ebs mutations cause a reduction in seed dormancy, and the concurrent loss of function of the EBS homologue SHORT LIFE (SHL) enhances this dormancy alteration. Transcriptomic analyses in ebs mutant seeds uncovered the misregulation of several regulators of seed dormancy including the MADS box gene AGAMOUS-LIKE67 (AGL67). AGL67 interacts genetically with EBS in seed dormancy regulation, indicating that both loci act in the same pathway. Interestingly, EBS functions independently of the master regulator gene of dormancy DELAY OF GERMINATION 1 (DOG1) and other genes encoding chromatin remodelling factors involved in the control of seed dormancy. Altogether, these data show that EBS is a central repressor of germination during seed dormancy and that SHL acts redundantly with EBS in the control of this developmental process. Our observations suggest that a tightly regulated crosstalk among histone modifications is necessary for a proper control of seed dormancy.
Collapse
Affiliation(s)
- Laura Narro-Diego
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Leticia López-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
32
|
Cui Z, Tong A, Huo Y, Yan Z, Yang W, Yang X, Wang XX. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biol 2017; 15:80. [PMID: 28893254 PMCID: PMC5594616 DOI: 10.1186/s12915-017-0422-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Similar to other eukaryotes, splicing is emerging as an important process affecting development and stress tolerance in plants. Ski-interacting protein (SKIP), a splicing factor, is essential for circadian clock function and abiotic stress tolerance; however, the mechanisms whereby it regulates flowering time are unknown. Results In this study, we found that SKIP is required for the splicing of serratedleaves and early flowering (SEF) pre-messenger RNA (mRNA), which encodes a component of the ATP-dependent SWR1 chromatin remodeling complex (SWR1-C). Defects in the splicing of SEF pre-mRNA reduced H2A.Z enrichment at FLC, MAF4, and MAF5, suppressed the expression of these genes, and produced an early flowering phenotype in skip-1 plants. Conclusions Our findings indicate that SKIP regulates SWR1-C function via alternative splicing to control the floral transition in Arabidopsis thaliana. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0422-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aizi Tong
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yiqiong Huo
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiqiang Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weiqi Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xianli Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Xue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
33
|
Cai H, Zhao L, Wang L, Zhang M, Su Z, Cheng Y, Zhao H, Qin Y. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. THE NEW PHYTOLOGIST 2017; 214:1579-1596. [PMID: 28295392 DOI: 10.1111/nph.14521] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 05/02/2023]
Abstract
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.
Collapse
Affiliation(s)
- Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Zhenxia Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Heming Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| |
Collapse
|
34
|
Berriri S, Gangappa SN, Kumar SV. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis. MOLECULAR PLANT 2016; 9:1051-65. [PMID: 27131447 PMCID: PMC4938710 DOI: 10.1016/j.molp.2016.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/10/2016] [Indexed: 05/17/2023]
Abstract
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.
Collapse
Affiliation(s)
- Souha Berriri
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - S Vinod Kumar
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
35
|
Pandey DK, Chaudhary B. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression. BMC PLANT BIOLOGY 2016; 16:112. [PMID: 27177585 PMCID: PMC4866011 DOI: 10.1186/s12870-016-0798-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/02/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. RESULTS Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. CONCLUSIONS Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.
Collapse
Affiliation(s)
- Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, UP, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, UP, India.
| |
Collapse
|
36
|
Galvão VC, Collani S, Horrer D, Schmid M. Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:949-62. [PMID: 26466761 DOI: 10.1111/tpj.13051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 05/21/2023]
Abstract
Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.
Collapse
Affiliation(s)
- Vinicius Costa Galvão
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH 1015, Lausanne, Switzerland
| | - Silvio Collani
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Daniel Horrer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
37
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
38
|
Jarillo JA, Piñeiro M. H2A.Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:96-109. [PMID: 25943140 DOI: 10.1111/tpj.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Eukaryotic organisms have canonical histones and a number of histone variants that perform specialized functions and confer particular structural properties to the nucleosomes that contain them. The histone H2A family comprises several variants, with H2A.Z being the most evolutionarily conserved. This variant is essential in eukaryotes and has emerged as a key player in chromatin function, performing an essential role in gene transcription and genome stability. During recent years, biochemical, genetic and genomic studies have begun to uncover the role of several ATP-dependent chromatin-remodeling complexes in H2A.Z deposition and removal. These ATPase complexes are widely conserved from yeast to mammals. In Arabidopsis there are homologs for most of the subunits of these complexes, and their functions are just beginning to be unveiled. In this review, we discuss the major contributions made in relation to the biology of the H2A.Z in plants, and more specifically concerning the function of this histone variant in the transition from vegetative to reproductive development. Recent advances in the understanding of the molecular mechanisms underlying the H2A.Z-mediated modulation of the floral transition, and thermosensory flowering responses in particular, are discussed. The emerging picture shows that plants contain chromatin-remodeling complexes related to those involved in modulating the dynamics of H2A.Z in other eukaryotes, but their precise biochemical nature remains elusive.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| |
Collapse
|
39
|
Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun 2015; 6:7206. [PMID: 26018794 PMCID: PMC4458898 DOI: 10.1038/ncomms8206] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Plants and animals perceive diverse microbe-associated molecular patterns (MAMPs) via pattern recognition receptors and activate innate immune signalling. The actin cytoskeleton has been suggested as a target for innate immune signalling and a key transducer of cellular responses. However, the molecular mechanisms underlying actin remodelling and the precise functions of these rearrangements during innate immunity remain largely unknown. Here we demonstrate rapid actin remodelling in response to several distinct MAMP signalling pathways in plant epidermal cells. The regulation of actin dynamics is a convergence point for basal defence machinery, such as cell wall fortification and transcriptional reprogramming. Our quantitative analyses of actin dynamics and genetic studies reveal that MAMP-stimulated actin remodelling is due to the inhibition of capping protein (CP) by the signalling lipid, phosphatidic acid. In addition, CP promotes resistance against bacterial and fungal phytopathogens. These findings demonstrate that CP is a central target for the plant innate immune response.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
| | - Jessica L. Henty-Ridilla
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
| | - Benjamin H. Staiger
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824-6254, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
- The Bindley Bioscience Center, Discovery Park, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
40
|
Histone variants: the artists of eukaryotic chromatin. SCIENCE CHINA-LIFE SCIENCES 2015; 58:232-9. [DOI: 10.1007/s11427-015-4817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
41
|
Capovilla G, Schmid M, Posé D. Control of flowering by ambient temperature. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:59-69. [PMID: 25326628 DOI: 10.1093/jxb/eru416] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The timing of flowering is a crucial decision in the life cycle of plants since favourable conditions are needed to maximize reproductive success and, hence, the survival of the species. It is therefore not surprising that plants constantly monitor endogenous and environmental signals, such as day length (photoperiod) and temperature, to adjust the timing of the floral transition. Temperature in particular has been shown to have a tremendous effect on the timing of flowering: the effect of prolonged periods of cold, called the vernalization response, has been extensively studied and the underlying epigenetic mechanisms are reasonably well understood in Arabidopsis thaliana. In contrast, the effect of moderate changes in ambient growth temperature on the progression of flowering, the thermosensory pathway, is only starting to be understood on the molecular level. Several genes and molecular mechanisms underlying the thermosensory pathway have already been identified and characterized in detail. At a time when global temperature is rising due to climate change, this knowledge will be pivotal to ensure crop production in the future.
Collapse
Affiliation(s)
- Giovanna Capovilla
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
42
|
Nützmann HW, Osbourn A. Regulation of metabolic gene clusters in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:503-10. [PMID: 25417931 PMCID: PMC4301183 DOI: 10.1111/nph.13189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/23/2014] [Indexed: 05/04/2023]
Abstract
Recent discoveries have revealed that the genes for the biosynthesis of a variety of plant specialized metabolites are organized in operon-like clusters within plant genomes. Here we identify a regulatory process that is required for normal expression of metabolic gene clusters in Arabidopsis thaliana. Comparative gene expression analysis of a representative clustered gene was performed in a set of chromatin mutant lines. Subsequently, metabolite levels were analysed by GC-MS and the local chromatin structure was investigated by chromatin immunoprecipitation and nucleosome positioning. We show that the transcript levels of genes within two metabolic clusters are coordinately reduced in an arp6 and h2a.z background. We demonstrate that H2A.Z enrichment in the clusters is positively correlated with active cluster expression. We further show that nucleosome stability within the cluster regions is higher in the arp6 background compared with the wild-type. These results implicate ARP6 and H2A.Z in the regulation of metabolic clusters in Arabidopsis thaliana through localized chromatin modifications that enable the coordinate expression of groups of contiguous genes. These findings shed light on the complex process of cluster regulation, an area that could in the future open up new opportunities for the discovery and manipulation of specialized metabolic pathways in plants.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| |
Collapse
|
43
|
Banday ZZ, Nandi AK. Interconnection between flowering time control and activation of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:174. [PMID: 25852723 PMCID: PMC4365546 DOI: 10.3389/fpls.2015.00174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/04/2015] [Indexed: 05/06/2023]
Abstract
The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.
Collapse
Affiliation(s)
| | - Ashis K. Nandi
- *Correspondence: Ashis K. Nandi, School of Life Sciences, Jawaharlal Nehru University, Room 415, New Delhi-110067, Delhi, India
| |
Collapse
|
44
|
Zhu D, Rosa S, Dean C. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 2014; 427:659-69. [PMID: 25180639 DOI: 10.1016/j.jmb.2014.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Changes in nuclear organization are considered an important complement to trans-acting factors, histone modifications and non-coding RNAs in robust and stable epigenetic silencing. However, how these multiple layers interconnect mechanistically to reinforce each other's activity is still unclear. A system providing long timescales facilitating analysis of these interconnections is vernalization. This involves the Polycomb-mediated epigenetic silencing of flowering locus C (FLC) that occurs as Arabidopsis plants are exposed to prolonged cold. Analysis of changes in nuclear organization during vernalization has revealed that disruption of a gene loop and physical clustering of FLC loci are part of the vernalization mechanism. These events occur at different times and thus contribute to distinct aspects of the silencing mechanism. The physical clustering of FLC loci is tightly correlated with the accumulation of specific Polycomb complexes/H3K27me3 at a localized intragenic site during the cold. Since the quantitative nature of vernalization is a reflection of a bistable cell autonomous switch in an increasing number of cells, this correlation suggests a tight connection between the switching mechanism and changes in nuclear organization. This integrated picture is likely to be informative for many epigenetic mechanisms.
Collapse
Affiliation(s)
- Danling Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
45
|
Kumari R, Sharma V, Sharma V, Kumar S. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance. J Genet 2014; 92:369-94. [PMID: 24371160 DOI: 10.1007/s12041-013-0271-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed.
Collapse
Affiliation(s)
- Renu Kumari
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
46
|
Jégu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2014; 26:538-51. [PMID: 24510722 PMCID: PMC3967024 DOI: 10.1105/tpc.113.114454] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Heribert Hirt
- Institut des Sciences du Végétal, UPR CNRS, F-91190 Gif-sur-Yvette, France
| | - Séverine Domenichini
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Federico Ariel
- Unité de Recherche en Génomique Végétale Plant Genomics, INRA/CNRS/University of Evry, F-91057 Evry, France
| | - Martin Crespi
- Unité de Recherche en Génomique Végétale Plant Genomics, INRA/CNRS/University of Evry, F-91057 Evry, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
- Address correspondence to
| |
Collapse
|
47
|
Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis. Nat Commun 2014; 4:2186. [PMID: 23864009 PMCID: PMC3753012 DOI: 10.1038/ncomms3186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/25/2013] [Indexed: 11/29/2022] Open
Abstract
Studies of natural genetic variation for the vernalization requirement in Arabidopsis have revealed two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), that are determinants of the vernalization-requiring, winter-annual habit. In this study, we show that FLC EXPRESSOR LIKE 4 (FLL4) is essential for up-regulation of FLC in winter-annual Arabidopsis accessions and establishment of a vernalization requirement. FLL4 is part of the FLC EXPRESSOR (FLX) gene family and both are non-redundantly involved in flowering-time control. Epistasis analysis among FRI, FLL4, FLX and autonomous-pathway genes reveals that FRI fve exhibits an extreme delay of flowering compared to fri fve, but mutants in other autonomous-pathway genes do not, indicating that FVE acts most antagonistically to FRI. FLL4 may represent a new member of a FRI-containing complex that activates FLC.
Collapse
|
48
|
Steinbach Y, Hennig L. Arabidopsis MSI1 functions in photoperiodic flowering time control. FRONTIERS IN PLANT SCIENCE 2014; 5:77. [PMID: 24639681 PMCID: PMC3945484 DOI: 10.3389/fpls.2014.00077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/17/2014] [Indexed: 05/05/2023]
Abstract
Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowering activators, such as CONSTANS (CO), and repressors, such as FLOWERING LOCUS C (FLC). Chromatin modifications are essential for regulated gene expression, which often involves the well conserved MULTICOPY SUPRESSOR OF IRA 1 (MSI1)-like protein family. MSI1-like proteins are ubiquitous partners of various complexes, such as POLYCOMB REPRESSIVE COMPLEX2 or CHROMATIN ASSEMBLY FACTOR 1. In Arabidopsis, one of the functions of MSI1 is to control the switch to flowering. Arabidopsis MSI1 is needed for the correct expression of the floral integrator gene SUPPRESSOR OF CO 1 (SOC1). Here, we show that the histone-binding protein MSI1 acts in the photoperiod pathway to regulate normal expression of CO in long day (LD) photoperiods. Reduced expression of CO in msi1-mutants leads to failure of FT and SOC1 activation and to delayed flowering. MSI1 is needed for normal sensitivity of Arabidopsis to photoperiod, because msi1-mutants responded less than wild type to an intermittent LD treatment of plants grown in short days. Finally, genetic analysis demonstrated that MSI1 acts upstream of the CO-FT pathway to enable an efficient photoperiodic response and to induce flowering.
Collapse
Affiliation(s)
- Yvonne Steinbach
- Department of Biology, Institute of Agricultural Sciences, ETH ZürichZürich, Switzerland
- *Correspondence: Yvonne Steinbach, Department of Biology, Institute of Agricultural Sciences, ETH Zürich, Universitätstr.2, CH-8092 Zürich, Switzerland e-mail:
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| |
Collapse
|
49
|
Insights into chromatin structure and dynamics in plants. BIOLOGY 2013; 2:1378-410. [PMID: 24833230 PMCID: PMC4009787 DOI: 10.3390/biology2041378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.
Collapse
|
50
|
Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ, Ziolkowski PA, Copenhaver GP, Franklin FCH, McVean G, Henderson IR. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 2013; 45:1327-36. [PMID: 24056716 PMCID: PMC3812125 DOI: 10.1038/ng.2766] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/26/2013] [Indexed: 12/13/2022]
Abstract
PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot-enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Krystyna A. Kelly
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Oliver Venn
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan, Poland
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, USA
| | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|