1
|
Angell Swearer A, Perkowski S, Wills A. Shh signaling directs dorsal ventral patterning in the regenerating X. tropicalis spinal cord. Dev Biol 2025; 520:191-199. [PMID: 39855590 DOI: 10.1016/j.ydbio.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Collapse
Affiliation(s)
- Avery Angell Swearer
- Department of Biochemistry, University of Washington School of Medicine, USA; Program in Molecular and Cellular Biology, University of Washington, USA
| | - Samuel Perkowski
- Department of Biochemistry, University of Washington School of Medicine, USA
| | - Andrea Wills
- Department of Biochemistry, University of Washington School of Medicine, USA.
| |
Collapse
|
2
|
Hartley T, Abdelmagid H, Abdulsalam Z, Mansion A, Howe E, Ramirez D, White K, Tadjuidje E. Embryotoxicity of statins and other prescribed drugs with reported off-target effects on cholesterol biosynthesis. Reprod Toxicol 2024; 132:108820. [PMID: 39667684 DOI: 10.1016/j.reprotox.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Cholesterol plays pivotal cellular functions ranging from maintaining membrane fluidity to regulating cell-cell signaling. High cholesterol causes cardiovascular diseases, low cholesterol is linked to neuropsychiatric disorders, and inborn errors of cholesterol synthesis cause multisystem malformation syndromes. Statins lower cholesterol levels by inhibiting the first, rate-limiting reaction of the cholesterol biosynthesis pathway catalyzed by hydroxymethyl-glutaryl-Coenzyme A reductase (HMGCR). However, they have also been shown to interfere with cellular pathways that are unrelated to cholesterol synthesis. One of the last enzymes of cholesterol biosynthesis, 7-dehydrocholesterol reductase (DHCR7), is often mutated in the Smith-Lemli-Opitz syndrome (SLOS), a multisystem malformation syndrome. Strikingly, recent studies have shown that some prescribed psychotropic pharmaceuticals inhibit its activity. In this study, we used Xenopus laevis as a model organism to test the effects of 8 FDA-approved statins and selected prescribed psychotropic drugs on the developing vertebrate embryo. Drugs were tested at concentrations ranging from 0.1 µM to 50 µM. Embryos were exposed to the drugs from the blastula stage through the swimming tadpole stage with daily medium change. Our data show that statins are heterogenous with respect to their ability to cause embryonic lethality, with simvastatin, pitavastatin, lovastatin, cerivastatin, and fluvastatin being the most toxic ones. Observed phenotypes included delayed development, shortened body axis and pericardiac edema. On the other hand, psychotropic drugs were less embryonic lethal than statins but caused similar phenotypes as well as microcephaly and holoprosencephaly. Our findings suggest that the proximal and distal inhibition of cholesterol biosynthesis have different but overlapping effects on embryonic development.
Collapse
Affiliation(s)
- Taryn Hartley
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States; Center For NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Hagir Abdelmagid
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States; Center For NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Zeenat Abdulsalam
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Emily Howe
- Department of Chemistry, Gettysburg College, Gettysburg, PA, United States
| | - Daniel Ramirez
- Department of Biology, Savannah State University, United States
| | - Kaylei White
- A & M College, Southern University, Baton Rouge, LA, United States
| | - Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States; Center For NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States.
| |
Collapse
|
3
|
Korade Z, Anderson AC, Sharma K, Tallman KA, Kim HYH, Porter NA, Gripp KW, Mirnics K. Inhibition of post-lanosterol biosynthesis by fentanyl: potential implications for Fetal Fentanyl Syndrome (FFS). Mol Psychiatry 2024; 29:3942-3949. [PMID: 38844533 DOI: 10.1038/s41380-024-02622-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 12/05/2024]
Abstract
A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7+/+ and DHCR7+/- genotype. Our results revealed that in vitro exposure to fentanyl disrupted sterol biosynthesis across all four in vitro models. The sterol biosynthesis disruption by fentanyl was complex, and encompassed the majority of post-lanosterol intermediates, including elevated 7-DHC and decreased desmosterol (DES) levels across all investigated models. The overall findings suggested that maternal fentanyl use in the context of an opioid use disorder leads to FFS in the developing fetus through a strong disruption of the whole post-lanosterol pathway that is more complex than a simple DHCR7 inhibition. In follow-up experiments we found that heterozygous DHCR7+/- HDFs were significantly more susceptible to the sterol biosynthesis inhibitory effects of fentanyl than wild-type DHCR7+/+ fibroblasts. These data suggest that DHCR7+/- heterozygosity of mother and/or developing child (and potentially other sterol biosynthesis genes), when combined with maternal fentanyl use disorder, might be a significant contributory factor to the emergence of FFS in the exposed offspring. In a broader context, we believe that evaluation of new and existing medications for their effects on sterol biosynthesis should be an essential consideration during drug safety determinations, especially in pregnancy.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kanika Sharma
- Mass Spectrometry Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, 19803, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Mohammedsaeed W. Exploring the interplay between DHCR7, vitamin D deficiency, and type 2 diabetes mellitus (T2DM): a systematic review. Mol Biol Rep 2024; 51:1123. [PMID: 39503960 DOI: 10.1007/s11033-024-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing global health concern. The pathogenesis of T2DM is multifactorial and intricate, involving a complex interplay of genetic predisposition, environmental factors, and molecular interactions. Vitamin D (circulating 25-hydroxyvitamin D concentration) regulates factors crucial for T2DM, including insulin secretion, sensitivity, and inflammation. Thus, vitamin D deficiency has been linked to poor health outcomes in T2DM patients. The cholesterol-synthesizing enzyme 7-dehydrocholesterol reductase (DHCR7) represents a critical regulatory switch between cholesterol and vitamin D3 synthesis. Recent findings suggest that the enzyme DHCR7 may indicate T2DM glycolipid metabolic disorder and is associated with deficient circulating vitamin D (circulating 25-hydroxyvitamin D concentration) status. In this PRISMA-guided systematic review, articles were sourced from two databases, namely, PubMed and Cochrane Library, to evaluate the impact of vitamin D deficiency in patients with T2DM and to explore the emerging role of DHCR7 in T2DM pathogenesis. Our findings strongly indicate a positive correlation between deficient vitamin D status and poor health outcomes in T2DM patients. Finally, this systematic review presents a novel perspective on T2DM development, focusing on the interplay between T2DM-associated hyperglycemia, expression of DHCR7, and abrogation of vitamin D synthesis.
Collapse
Affiliation(s)
- Walaa Mohammedsaeed
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Science, Taibah University, 344, Postal Code 3000, Al-Madinah, Saudi Arabia.
| |
Collapse
|
5
|
Swearer AA, Perkowski S, Wills A. Shh signaling directs dorsal ventral patterning in the regenerating X. tropicalis spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619160. [PMID: 39463962 PMCID: PMC11507847 DOI: 10.1101/2024.10.18.619160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Collapse
Affiliation(s)
- Avery Angell Swearer
- Department of Biochemistry, University of Washington School of Medicine
- Program in Molecular and Cellular Biology, University of Washington
| | - Samuel Perkowski
- Department of Biochemistry, University of Washington School of Medicine
| | - Andrea Wills
- Department of Biochemistry, University of Washington School of Medicine
| |
Collapse
|
6
|
Sun L, Lu J, Yao D, Li X, Cao Y, Gao J, Liu J, Zheng T, Wang H, Zhan X. Effect of DHCR7 for the co-occurrence of hypercholesterolemia and vitamin D deficiency in type 2 diabetes: Perspective of health prevention. Prev Med 2023; 173:107576. [PMID: 37329988 DOI: 10.1016/j.ypmed.2023.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease caused by multiple factors, which are often accompanied by the disorder of glucose and lipid metabolism and the lack of vitamin D.Over the years, researchers have conducted numerous studies into the pathogenesis and prevention strategies of diabetes. In this study, diabetic SD rats were randomly divided into type 2 diabetes group, vitamin D intervention group, 7-dehydrocholesterole reductase (DHCR7) inhibitor intervention group, simvastatin intervention group, and naive control group. Before and 12 weeks after intervention, liver tissue was extracted to isolate hepatocytes. Compared with naive control group, in the type 2 diabetic group without interference, the expression of DHCR7 increased, the level of 25(OH)D3 decreased, the level of cholesterol increased. In the primary cultured naive and type 2 diabetic hepatocytes, the expression of genes related to lipid metabolism and vitamin D metabolism were differently regulated in each of the 5 treatment groups. Overall, DHCR7 is an indicator for type 2 diabetic glycolipid metabolism disorder and vitamin D deficiency. Targeting DHCR7 will help with T2DM therapy.The management model of comprehensive health intervention can timely discover the disease problems of diabetes patients and high-risk groups and reduce the incidence of diabetes.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jixuan Lu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xinyu Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Cao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Gao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangwen Liu
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Tiansheng Zheng
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, China
| | - Xiaorong Zhan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
8
|
Cassim A, Hettiarachchi D, Dissanayake VHW. Genetic determinants of syndactyly: perspectives on pathogenesis and diagnosis. Orphanet J Rare Dis 2022; 17:198. [PMID: 35549993 PMCID: PMC9097448 DOI: 10.1186/s13023-022-02339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The formation of the digits is a tightly regulated process. During embryogenesis, disturbance of genetic pathways in limb development could result in syndactyly; a common congenital malformation consisting of webbing in adjacent digits. Currently, there is a paucity of knowledge regarding the exact developmental mechanism leading to this condition. The best studied canonical interactions of Wingless‐type–Bone Morphogenic Protein–Fibroblast Growth Factor (WNT–BMP–FGF8), plays a role in the interdigital cell death (ICD) which is thought to be repressed in human syndactyly. Animal studies have displayed other pathways such as the Notch signaling, metalloprotease and non-canonical WNT-Planar cell polarity (PCP), to also contribute to failure of ICD, although less prominence has been given. The current diagnosis is based on a clinical evaluation followed by radiography when indicated, and surgical release of digits at 6 months of age is recommended. This review discusses the interactions repressing ICD in syndactyly, and characterizes genes associated with non-syndromic and selected syndromes involving syndactyly, according to the best studied canonical WNT-BMP-FGF interactions in humans. Additionally, the controversies regarding the current syndactyly classification and the effect of non-coding elements are evaluated, which to our knowledge has not been previously highlighted. The aim of the review is to better understand the developmental process leading to this condition.
Collapse
Affiliation(s)
- Afraah Cassim
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka.
| | - Dineshani Hettiarachchi
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| | - Vajira H W Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| |
Collapse
|
9
|
Sharma A, Kumar GA, Chattopadhyay A. Late endosomal/lysosomal accumulation of a neurotransmitter receptor in a cellular model of Smith-Lemli-Opitz syndrome. Traffic 2021; 22:332-344. [PMID: 34418249 DOI: 10.1111/tra.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. It is characterized by accumulation of 7-dehydrocholesterol (the immediate biosynthetic precursor of cholesterol in the Kandutsch-Russell pathway) and an altered cholesterol to total sterol ratio. Because SLOS is associated with neurological malfunction, exploring the function and trafficking of neuronal receptors and their interaction with membrane lipids under these conditions assume significance. In this work, we generated a cellular model of SLOS in HEK-293 cells stably expressing the human serotonin1A receptor (an important neurotransmitter G-protein coupled receptor) using AY 9944, an inhibitor for the enzyme 3β-hydroxy-steroid-∆7 -reductase (7-DHCR). Using a quantitative flow cytometry based assay, we show that the plasma membrane population of serotonin1A receptors was considerably reduced under these conditions without any change in total cellular expression of the receptor. Interestingly, the receptors were trafficked to sterol-enriched LysoTracker positive compartments, which accumulated under these conditions. To the best of our knowledge, our results constitute one of the first reports demonstrating intracellular accumulation and misregulated traffic of a neurotransmitter GPCR in SLOS-like conditions. We believe these results assume relevance in our overall understanding of the molecular basis underlying the functional relevance of neurotransmitter receptors in SLOS.
Collapse
Affiliation(s)
- Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
10
|
Findakly S, Daggubati V, Garcia G, LaStella SA, Choudhury A, Tran C, Li A, Tong P, Garcia JQ, Puri N, Reiter JF, Xu L, Raleigh DR. Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway. J Cell Biol 2021; 220:211576. [PMID: 33284321 PMCID: PMC7721912 DOI: 10.1083/jcb.202002026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Vertebrate Hedgehog signals are transduced through the primary cilium, a specialized lipid microdomain that is required for Smoothened activation. Cilia-associated sterol and oxysterol lipids bind to Smoothened to activate the Hedgehog pathway, but how ciliary lipids are regulated is incompletely understood. Here we identified DHCR7, an enzyme that produces cholesterol, activates the Hedgehog pathway, and localizes near the ciliary base. We found that Hedgehog stimulation negatively regulates DHCR7 activity and removes DHCR7 from the ciliary microenvironment, suggesting that DHCR7 primes cilia for Hedgehog pathway activation. In contrast, we found that Hedgehog stimulation positively regulates the oxysterol synthase CYP7A1, which accumulates near the ciliary base and produces oxysterols that promote Hedgehog signaling in response to pathway activation. Our results reveal that enzymes involved in lipid biosynthesis in the ciliary microenvironment promote Hedgehog signaling, shedding light on how ciliary lipids are established and regulated to transduce Hedgehog signals.
Collapse
Affiliation(s)
- Sarah Findakly
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Vikas Daggubati
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Sydney A LaStella
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Cecilia Tran
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Pakteema Tong
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Jason Q Garcia
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
11
|
Hamilton AM, Balashova OA, Borodinsky LN. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae. eLife 2021; 10:61804. [PMID: 33955353 PMCID: PMC8137141 DOI: 10.7554/elife.61804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Inducing regeneration in injured spinal cord represents one of modern medicine’s greatest challenges. Research from a variety of model organisms indicates that Hedgehog (Hh) signaling may be a useful target to drive regeneration. However, the mechanisms of Hh signaling-mediated tissue regeneration remain unclear. Here, we examined Hh signaling during post-amputation tail regeneration in Xenopus laevis larvae. We found that while Smoothened (Smo) activity is essential for proper spinal cord and skeletal muscle regeneration, transcriptional activity of the canonical Hh effector Gli is repressed immediately following amputation, and inhibition of Gli1/2 expression or transcriptional activity has minimal effects on regeneration. In contrast, we demonstrate that protein kinase A is necessary for regeneration of both muscle and spinal cord, in concert with and independent of Smo, respectively, and that its downstream effector CREB is activated in spinal cord following amputation in a Smo-dependent manner. Our findings indicate that non-canonical mechanisms of Hh signaling are necessary for spinal cord and muscle regeneration.
Collapse
Affiliation(s)
- Andrew M Hamilton
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| | - Olga A Balashova
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| |
Collapse
|
12
|
Gu Y, Liu X, Liao L, Gao Y, Shi Y, Ni J, He G. Relationship between lipid metabolism and Hedgehog signaling pathway. J Steroid Biochem Mol Biol 2021; 209:105825. [PMID: 33529733 DOI: 10.1016/j.jsbmb.2021.105825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
The Hedgehog (Hh) signaling pathway is highly conserved signaling pathway in cells. Steroids was found to play a vital role in Hh signaling pathway and aberrant Hh signaling was found to lead a series of disease correlate with abnormal lipid metabolism. This paper aimed to elucidate the relationship between lipid metabolism and Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Xiaochen Liu
- University of Toledo Medical Center 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Lele Liao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Yongquan Gao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Yu Shi
- West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China.
| |
Collapse
|
13
|
Abdel-Khalik J, Hearn T, Dickson AL, Crick PJ, Yutuc E, Austin-Muttitt K, Bigger BW, Morris AA, Shackleton CH, Clayton PT, Iida T, Sircar R, Rohatgi R, Marschall HU, Sjövall J, Björkhem I, Mullins JGL, Griffiths WJ, Wang Y. Bile acid biosynthesis in Smith-Lemli-Opitz syndrome bypassing cholesterol: Potential importance of pathway intermediates. J Steroid Biochem Mol Biol 2021; 206:105794. [PMID: 33246156 PMCID: PMC7816163 DOI: 10.1016/j.jsbmb.2020.105794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7β-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3β-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7β-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7β-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.
Collapse
Affiliation(s)
- Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Thomas Hearn
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Karl Austin-Muttitt
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew A Morris
- Willink Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals, Manchester, M13 9WL, UK
| | - Cedric H Shackleton
- University of California San Francisco (UCSF) Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Takashi Iida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo, 156-8550, Japan
| | - Ria Sircar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Gothenburg, 41345, Sweden
| | - Jan Sjövall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 14186, Stockholm, Sweden
| | - Jonathan G L Mullins
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
14
|
Klein JA, Li Z, Rampam S, Cardini J, Ayoub A, Shaw P, Rachubinski AL, Espinosa JM, Zeldich E, Haydar TF. Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21. Front Cell Neurosci 2021; 15:794675. [PMID: 35058753 PMCID: PMC8763807 DOI: 10.3389/fncel.2021.794675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intellectual disability found in people with Down syndrome is associated with numerous changes in early brain development, including the proliferation and differentiation of neural progenitor cells (NPCs) and the formation and maintenance of myelin in the brain. To study how early neural precursors are affected by trisomy 21, we differentiated two isogenic lines of induced pluripotent stem cells derived from people with Down syndrome into brain-like and spinal cord-like NPCs and promoted a transition towards oligodendroglial fate by activating the Sonic hedgehog (SHH) pathway. In the spinal cord-like trisomic cells, we found no difference in expression of OLIG2 or NKX2.2, two transcription factors essential for commitment to the oligodendrocyte lineage. However, in the brain-like trisomic NPCs, OLIG2 is significantly upregulated and is associated with reduced expression of NKX2.2. We found that this gene dysregulation and block in NPC transition can be normalized by increasing the concentration of a SHH pathway agonist (SAG) during differentiation. These results underscore the importance of regional and cell type differences in gene expression in Down syndrome and demonstrate that modulation of SHH signaling in trisomic cells can rescue an early perturbed step in neural lineage specification.
Collapse
Affiliation(s)
- Jenny A. Klein
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| | - Zhen Li
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jack Cardini
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Amara Ayoub
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Patricia Shaw
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmocology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| | - Tarik F. Haydar
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| |
Collapse
|
15
|
Hietamäki J, Gregory LC, Ayoub S, Iivonen AP, Vaaralahti K, Liu X, Brandstack N, Buckton AJ, Laine T, Känsäkoski J, Hero M, Miettinen PJ, Varjosalo M, Wakeling E, Dattani MT, Raivio T. Loss-of-Function Variants in TBC1D32 Underlie Syndromic Hypopituitarism. J Clin Endocrinol Metab 2020; 105:dgaa078. [PMID: 32060556 PMCID: PMC7138537 DOI: 10.1210/clinem/dgaa078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 01/28/2023]
Abstract
CONTEXT Congenital pituitary hormone deficiencies with syndromic phenotypes and/or familial occurrence suggest genetic hypopituitarism; however, in many such patients the underlying molecular basis of the disease remains unknown. OBJECTIVE To describe patients with syndromic hypopituitarism due to biallelic loss-of-function variants in TBC1D32, a gene implicated in Sonic Hedgehog (Shh) signaling. SETTING Referral center. PATIENTS A Finnish family of 2 siblings with panhypopituitarism, absent anterior pituitary, and mild craniofacial dysmorphism, and a Pakistani family with a proband with growth hormone deficiency, anterior pituitary hypoplasia, and developmental delay. INTERVENTIONS The patients were investigated by whole genome sequencing. Expression profiling of TBC1D32 in human fetal brain was performed through in situ hybridization. Stable and dynamic protein-protein interaction partners of TBC1D32 were investigated in HEK cells followed by mass spectrometry analyses. MAIN OUTCOME MEASURES Genetic and phenotypic features of patients with biallelic loss-of-function mutations in TBC1D32. RESULTS The Finnish patients harboured compound heterozygous loss-of-function variants (c.1165_1166dup p.(Gln390Phefs*32) and c.2151del p.(Lys717Asnfs*29)) in TBC1D32; the Pakistani proband carried a known pathogenic homozygous TBC1D32 splice-site variant c.1372 + 1G > A p.(Arg411_Gly458del), as did a fetus with a cleft lip and partial intestinal malrotation from a terminated pregnancy within the same pedigree. TBC1D32 was expressed in the developing hypothalamus, Rathke's pouch, and areas of the hindbrain. TBC1D32 interacted with proteins implicated in cilium assembly, Shh signaling, and brain development. CONCLUSIONS Biallelic TBC1D32 variants underlie syndromic hypopituitarism, and the underlying mechanism may be via disrupted Shh signaling.
Collapse
Affiliation(s)
- Johanna Hietamäki
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sandy Ayoub
- North West Thames Regional Genetic Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Anna-Pauliina Iivonen
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Brandstack
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Andrew J Buckton
- London North Genomic Laboratory Hub, Great Ormond Street Hospital NHS Trust, London, UK
| | - Tiina Laine
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Johanna Känsäkoski
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Hero
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Päivi J Miettinen
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - Emma Wakeling
- North West Thames Regional Genetic Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Molecular Basis of Rare Diseases Section, Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Taneli Raivio
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Ballout RA, Bianconi S, Livinski A, Fu Y, Remaley AT, Porter FD. Statins for Smith-Lemli-Opitz syndrome. Cochrane Database Syst Rev 2020; 2020:CD013521. [PMID: 32132878 PMCID: PMC7055734 DOI: 10.1002/14651858.cd013521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: 1. To evaluate the efficacy of statin therapy in reducing the frequency or severity of the neurobehavioral abnormalities seen in people with SLOS (e.g. aggression, anxiety, irritability, self-mutilation, autistic behaviors, sleep disturbances, etc.) (Wassif 2017). 2. To evaluate the potential effects of statin therapy on survival.
Collapse
Affiliation(s)
- Rami A Ballout
- National Heart, Lung and Blood Institute, NIHLipoprotein Metabolism Section, Translational Vascular Medicine Branch10 Center Drive, Bldg 10, Rm 5D11BethesdaMDUSA20892
| | - Simona Bianconi
- NIHNational Institute of Child Health and Development10 Center Drive, Building 10, CRC‐ 2‐5132BethesdaUSAMD 20892
| | - Alicia Livinski
- National Institutes of Health Library, Office of Research ServicesDivision of Library ServicesBldg 10, Room 1L19B, MSC 1150BethesdaMarylandUSAMD 20892‐1150
| | - Yi‐Ping Fu
- National Heart, Lung, and Blood Institute, NIHOffice of Biostatistics Research6701 Rockledge Drive, RKL2 Rm9195BethesdaUSAMD 20892
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, NIHLipoprotein Metabolism Laboratory, Translational Vascular Medicine BranchBethesdaUSAMD 20892
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of HealthDivision of Translational Research10 Center DriveBethesdaMarylandUSA20892
| | | |
Collapse
|
17
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
18
|
Segatto M, Tonini C, Pfrieger FW, Trezza V, Pallottini V. Loss of Mevalonate/Cholesterol Homeostasis in the Brain: A Focus on Autism Spectrum Disorder and Rett Syndrome. Int J Mol Sci 2019; 20:ijms20133317. [PMID: 31284522 PMCID: PMC6651320 DOI: 10.3390/ijms20133317] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
The mevalonate (MVA)/cholesterol pathway is crucial for central nervous system (CNS) development and function and consequently, any dysfunction of this fundamental metabolic pathway is likely to provoke pathologic changes in the brain. Mutations in genes directly involved in MVA/cholesterol metabolism cause a range of diseases, many of which present neurologic and psychiatric symptoms. This raises the question whether other diseases presenting similar symptoms are related albeit indirectly to the MVA/cholesterol pathway. Here, we summarized the current literature suggesting links between MVA/cholesterol dysregulation and specific diseases, namely autism spectrum disorder and Rett syndrome.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Claudia Tonini
- Department of Science, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences (INCI) CNRS UPR 3212, Université de Strasbourg, 5, rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | - Viviana Trezza
- Department of Science, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy.
| |
Collapse
|
19
|
Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 2018; 115:E3769-E3778. [PMID: 29615514 DOI: 10.1073/pnas.1722434115] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras-driven mouse model of PDA (Ela-KrasG12Vp53-/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.
Collapse
|
20
|
Abstract
Signaling pathways direct organogenesis, often through concentration-dependent effects on cells. The hedgehog pathway enables cells to sense and respond to hedgehog ligands, of which the best studied is sonic hedgehog. Hedgehog signaling is essential for development, proliferation, and stem cell maintenance, and it is a driver of certain cancers. Lipid metabolism has a profound influence on both hedgehog signal transduction and the properties of the ligands themselves, leading to changes in the strength of hedgehog signaling and cellular functions. Here we review the evolving understanding of the relationship between lipids and hedgehog signaling.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences (NDCN), Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Department of Neurology, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes, MK6 5LD, UK.
| |
Collapse
|
21
|
Makarova AM, Pasta S, Watson G, Shackleton C, Epstein EH. Attenuation of UVR-induced vitamin D 3 synthesis in a mouse model deleted for keratinocyte lathosterol 5-desaturase. J Steroid Biochem Mol Biol 2017; 171:187-194. [PMID: 28330720 DOI: 10.1016/j.jsbmb.2017.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
The lower risk of some internal cancers at lower latitudes has been linked to greater sun exposure and consequent higher levels of ultraviolet radiation (UVR)-produced vitamin D3 (D3). To separate the experimental effects of sunlight and of all forms of D3, a mouse in which UVR does not produce D3 would be useful. To this end we have generated mice carrying a modified allele of sterol C5-desaturase (Sc5d), the gene encoding the enzyme that converts lathosterol to 7-dehydrocholesterol (7-DHC), such that Sc5d expression can be inactivated using the Cre/lox site-specific recombination system. By crossing to mice with tissue-specific expression of Cre or CreER2 (Cre/estrogen receptor), we generated two lines of transgenic mice. One line has constitutive keratinocyte-specific inactivation of Sc5d (Sc5dk14KO). The other line (Sc5dk14KOi) has tamoxifen-inducible keratinocyte-specific inactivation of Sc5d. Mice deleted for keratinocyte Sc5d lose the ability to increase circulating D3 following UVR exposure of the skin. Thus, unlike in control mice, acute UVR exposure did not affect circulating D3 level in inducible Sc5dk14KOi mice. Keratinocyte-specific inactivation of Sc5d was proven by sterol measurement in hair - in control animals lathosterol and cholesta-7,24-dien-3β-ol, the target molecules of SC5D in the sterol biosynthetic pathways, together constituted a mean of 10% of total sterols; in the conditional knockout mice these sterols constituted a mean of 56% of total sterols. The constitutive knockout mice had an even greater increase, with lathosterol and cholesta-7,24-dien-3β-ol accounting for 80% of total sterols. In conclusion, the dominant presence of the 7-DHC precursors in hair of conditional animals and the lack of increased circulating D3 following exposure to UVR reflect attenuated production of the D3 photochemical precursor 7-DHC and, consequently, of D3 itself. These animals provide a useful new tool for investigating the role of D3 in UVR-induced physiological effects and, more broadly, for investigations of the cholesterol synthetic pathway in the skin and other targeted tissues.
Collapse
Affiliation(s)
- Anastasia M Makarova
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA
| | - Saloni Pasta
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA
| | - Gordon Watson
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA
| | - Cedric Shackleton
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA; Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ervin H Epstein
- UCSF Benioff Children's Hospital Oakland Research Institute (CHORI), Oakland, CA, USA.
| |
Collapse
|
22
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Jin Z, Schwend T, Fu J, Bao Z, Liang J, Zhao H, Mei W, Yang J. Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling. Development 2016; 143:3944-3955. [PMID: 27633991 DOI: 10.1242/dev.138917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
Hedgehog (Hh) signaling is fundamentally important for development and adult tissue homeostasis. It is well established that in vertebrates Sufu directly binds and inhibits Gli proteins, the downstream mediators of Hh signaling. However, it is unclear how the inhibitory function of Sufu towards Gli is regulated. Here we report that the Rusc family of proteins, the biological functions of which are poorly understood, form a heterotrimeric complex with Sufu and Gli. Upon Hh signaling, Rusc is displaced from this complex, followed by dissociation of Gli from Sufu. In mammalian fibroblast cells, knockdown of Rusc2 potentiates Hh signaling by accelerating signaling-induced dissociation of the Sufu-Gli protein complexes. In Xenopus embryos, knockdown of Rusc1 or overexpression of a dominant-negative Rusc enhances Hh signaling during eye development, leading to severe eye defects. Our study thus uncovers a novel regulatory mechanism controlling the response of cells to Hh signaling in vertebrates.
Collapse
Affiliation(s)
- Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S Lincoln Avenue, Urbana, IL 61802, USA
| | - Tyler Schwend
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S Lincoln Avenue, Urbana, IL 61802, USA
| | - Jia Fu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S Lincoln Avenue, Urbana, IL 61802, USA
| | - Zehua Bao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Jing Liang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S Lincoln Avenue, Urbana, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
24
|
7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome. Sci Rep 2016; 6:28534. [PMID: 27334845 PMCID: PMC4917867 DOI: 10.1038/srep28534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with decreased Ret signaling were found in newborn Dhcr7−/− mice, or in Dhcr7−/− mice lacking one copy of Ret. Although kidneys from Dhcr7−/− mice showed a mild branching defect in vitro, GDNF was able to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret signaling in the pathogenesis of SLOS.
Collapse
|
25
|
Dhcr7 Regulates Palatal Shelf Fusion through Regulation of Shh and Bmp2 Expression. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7532714. [PMID: 27066502 PMCID: PMC4811056 DOI: 10.1155/2016/7532714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/07/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of the 7-dehydrocholesterol reductase (Dhcr7) gene and identify signaling pathways involved in regulation of embryonic palatogenesis. The expression of Dhcr7 and its protein product were examined during murine normal embryonic palatogenesis via a reverse transcription polymerase chain reaction (RT-PCR) and Western blot (WB). RNA interference (RNAi) technology was used to inhibit Dhcr7 expression in a palatal shelf culture in vitro. The effects of Dhcr7 on palatogenesis and palatal fusion were examined by scanning electron microscopy (SEM). The expression changes of Dhcr7, Sonic Hedgehog (Shh), and bone morphogenetic protein-2 (Bmp2) were measured by RT-PCR and WB after Dhcr7 gene silencing and the addition of exogenous cholesterol. The results showed that the palatal shelf failed to complete normal development and fusion when Dhcr7 expression was inhibited. The inhibitory effect study of RNAi on the development of the palatal shelf supported that cholesterol supplementation did not alter the silencing of Dhcr7. Shh and Bmp2 expressions were reduced after Dhcr7 gene silencing, and administration of exogenous cholesterol did not affect Dhcr7 expression; however Shh and Bmp2 expressions increased. We conclude that Dhcr7 plays a role in growth of the palatal shelf and can regulate palatogenesis through alterations in the levels of Shh and Bmp2.
Collapse
|
26
|
Korade Z, Kim HYH, Tallman KA, Liu W, Koczok K, Balogh I, Xu L, Mirnics K, Porter NA. The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts. J Med Chem 2016; 59:1102-15. [PMID: 26789657 DOI: 10.1021/acs.jmedchem.5b01696] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-established cell culture models were combined with new analytical methods to assess the effects of small molecules on the cholesterol biosynthesis pathway. The analytical protocol, which is based on sterol derivation with the dienolphile PTAD, was found to be reliable for the analysis of 7-DHC and desmosterol. The PTAD method was applied to the screening of a small library of pharmacologically active substances, and the effect of compounds on the cholesterol pathway was determined. Of some 727 compounds, over 30 compounds decreased 7-DHC in Dhcr7-deficient Neuro2a cells. The examination of chemical structures of active molecules in the screen grouped the compounds into distinct categories. In addition to statins, our screen found that SERMs, antifungals, and several antipsychotic medications reduced levels of 7-DHC. The activities of selected compounds were verified in human fibroblasts derived from Smith-Lemli-Opitz syndrome (SLOS) patients and linked to specific transformations in the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Zeljka Korade
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen , Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen , Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | | | - Karoly Mirnics
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Ned A Porter
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
27
|
Blassberg R, Macrae JI, Briscoe J, Jacob J. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome. Hum Mol Genet 2015; 25:693-705. [PMID: 26685159 PMCID: PMC4743690 DOI: 10.1093/hmg/ddv507] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - James I Macrae
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Level 6, West Wing, Oxford OX3 9DU, UK, Department of Neurology, Milton Keynes Hospital, Standing Way, Milton Keynes, Buckinghamshire MK6 5LD, UK and Department of Neurology, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Abstract
Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues.
Collapse
Affiliation(s)
- Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan 48109; , ,
| | | | | | | |
Collapse
|
29
|
Ginns EI, Galdzicka M, Elston RC, Song YE, Paul SM, Egeland JA. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder. Mol Psychiatry 2015; 20:1212-8. [PMID: 25311364 DOI: 10.1038/mp.2014.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/30/2023]
Abstract
Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.
Collapse
Affiliation(s)
- E I Ginns
- Departments of Clinical Labs, Neurology, Pediatrics, Pathology and Psychiatry, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA, USA
| | - M Galdzicka
- Departments of Clinical Labs and Pathology, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA, USA
| | - R C Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Y E Song
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - S M Paul
- Departments of Neuroscience, Psychiatry and Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - J A Egeland
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Cortes M, Liu SY, Kwan W, Alexa K, Goessling W, North TE. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation. Stem Cell Reports 2015; 5:471-9. [PMID: 26365513 PMCID: PMC4624955 DOI: 10.1016/j.stemcr.2015.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/08/2015] [Accepted: 08/08/2015] [Indexed: 01/25/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.
Collapse
Affiliation(s)
- Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Y Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Wanda Kwan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Alexa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Tunovic S, Barañano KW, Barkovich JA, Strober JB, Jamal L, Slavotinek AM. Novel KIF7 missense substitutions in two patients presenting with multiple malformations and features of acrocallosal syndrome. Am J Med Genet A 2015; 167A:2767-76. [PMID: 26174511 DOI: 10.1002/ajmg.a.37249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/28/2015] [Indexed: 12/22/2022]
Abstract
We present two children who both had two missense mutations in the Kinesin Family Member 7 (KIF7) gene. A seven year old female with severe developmental delays, failure to thrive and growth retardation, infantile spasms, a cardiac vascular ring and right-sided aortic arch, imperforate anus, hydronephrosis with a right renal cyst, syndactyly and abnormal white matter was a compound heterozygote for c.3365C > G, predicting p.(Ser1122Trp) that was maternally inherited and c.2482G > A, predicting p.(Val828Met) that was paternally inherited. An eight year old female with severe developmental delays, epilepsy, left postaxial polydactyly of the hand and abnormalities of brain development including hydrocephalus, pachygyria and absence of the body and splenium of the corpus callous was a compound heterozygote for c.461G > A, predicting p.(Arg154Gln) and c.2959 G > A, predicting p.(Glu987Lys) that was maternally inherited and her father was unavailable for testing. The presentations in these children include features of acrocallosal syndrome, such as hypoplasia of the corpus callosum, enlarged ventricles, facial dysmorphism with a prominent forehead and broad halluces in the first child, but included atypical findings for individuals previously reported to have truncating mutations in KIF7, including imperforate anus, infantile spasms and severe growth retardation. We conclude that these phenotypes may result from the KIF7 sequence variants and abnormal hedgehog signaling, but that the full spectrum of KIF7-associated features remains to be determined.
Collapse
Affiliation(s)
- Sanjin Tunovic
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, California
| | - Kristin W Barañano
- Department of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James A Barkovich
- Department of Radiology and Biomolecular Imaging, University of California, San Francisco, California
| | - Jonathan B Strober
- Department of Pediatric Neurology, University of California, San Francisco, California
| | - Leila Jamal
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anne M Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
32
|
Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 2014; 15:1036-52. [PMID: 25223281 DOI: 10.15252/embr.201439225] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.
Collapse
Affiliation(s)
- Mauricio G Martín
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Carlos G Dotti
- Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, Madrid, Spain
| |
Collapse
|
33
|
Lalani SR, Belmont JW. Genetic basis of congenital cardiovascular malformations. Eur J Med Genet 2014; 57:402-13. [PMID: 24793338 DOI: 10.1016/j.ejmg.2014.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/16/2014] [Indexed: 01/14/2023]
Abstract
Cardiovascular malformations are a singularly important class of birth defects and due to dramatic improvements in medical and surgical care, there are now large numbers of adult survivors. The etiologies are complex, but there is strong evidence that genetic factors play a crucial role. Over the last 15 years there has been enormous progress in the discovery of causative genes for syndromic heart malformations and in rare families with Mendelian forms. The rapid characterization of genomic disorders as major contributors to congenital heart defects is also notable. The genes identified encode many transcription factors, chromatin regulators, growth factors and signal transduction proteins- all unified by their required roles in normal cardiac development. Genome-wide sequencing of the coding regions promises to elucidate genetic causation in several disorders affecting cardiac development. Such comprehensive studies evaluating both common and rare variants would be essential in characterizing gene-gene interactions, as well as in understanding the gene-environment interactions that increase susceptibility to congenital heart defects.
Collapse
Affiliation(s)
- Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Brennan D, Giles S. Sonic hedgehog expression is disrupted following in ovo ethanol exposure during early chick eye development. Reprod Toxicol 2013; 41:49-56. [PMID: 23751449 DOI: 10.1016/j.reprotox.2013.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
The eye is particularly sensitive to ethanol's teratogenic effects. Our previous work, using a chick embryo model system, has shown that ethanol acts rapidly to perturb vital processes of early eye development producing defects of the lens and retina. Ethanol-induced disruption of the midline ventral telencephalon, a key site for expression of ocular morphogens such as sonic hedgehog (Shh), was further established. Consequently, in this study we have examined the effects of ethanol on the Shh pathway during the period of optic vesicle/optic cup formation. Chick embryos were injected in ovo with 125μL of a 20% ethanol solution directly into the yolk-sac at HH-stage 7, resulting in peak ethanol uptake of 0.294g/dL. Subsequent molecular analysis at 12, 24 and 48h post-treatment revealed that ethanol had no affect on Shh transcription, while, a significant reduction in the expression of the active signalling Shh protein was found. Surprisingly, none of the downstream Shh pathway members (Ptc, Gli1 and Gli3) were significantly altered by ethanol exposure. Overall, our results indicate that ethanol's disruption of Shh may be mediated through some alternative mechanism independent of the classical signalling pathway. However, the precise role of Shh in relation to ethanol teratogenicity continues to be debated. Thus, in conclusion, our findings are discussed in relation to the varied and often conflicting reports of ethanol-induced Shh perturbation found in the literature.
Collapse
Affiliation(s)
- Deirdre Brennan
- School of Medicine and Medical Science, University College Dublin, Belfield, Ireland.
| | | |
Collapse
|
35
|
Langlois VS, Martyniuk CJ. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis. Mech Dev 2013; 130:304-22. [PMID: 23295496 DOI: 10.1016/j.mod.2012.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.
Collapse
Affiliation(s)
- Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4.
| | | |
Collapse
|
36
|
Abstract
Genetic defects in enzymes responsible for cholesterol biosynthesis have emerged as important causes of congenital dysmorphology and retardation syndromes. Cholesterol is an important constituent of the cell membrane of most eukaryotic cells, in myelin formation in the brain, spinal cord, and peripheral nervous system, and acts as the precursor for steroid hormones and bile acids. Finally, cholesterol has important interactions with proteins, which control embryonic development. To date, eight distinct inherited disorders have been linked to different defects in cholesterol biosynthesis. Two result from an enzyme defect in the pre-squalene segment of the pathway: the classical form of mevalonic aciduria and the hyperimmunoglobulinemia D syndrome, also known as Dutch-type periodic fever. Six defects in the post-squalene segment of the pathway include: Smith-Lemli-Opitz syndrome, two X-linked dominant inherited and male-lethal disorders, Conradi-Hünermann-Happle syndrome and congenital hemidysplasia with ichthyosiform erythroderma and limb defects (CHILD), and at least three extremely rare autosomal recessive disorders, Greenberg skeletal dysplasia, lathosterolosis, and desmosterolosis. All these inborn errors known to date have been linked to deficiency of specific enzymes on the basis of elevated levels of specific sterol intermediates in tissues of affected patients followed by demonstrating disease-causing mutations in the encoding genes. These cholesterol deficiency multiple malformation-retardation syndromes have clinical overlap. Besides psychomotor retardation, developmental delay, structural brain malformations, multiple congenital anomalies, microcephaly, and cataract, impaired cholesterol biosynthesis is associated with autism and other behavioral disorders.
Collapse
Affiliation(s)
- Petr Jira
- Department of Pediatrics, University Medical Centre Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Nowaczyk MJM, Irons MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:250-62. [PMID: 23059950 DOI: 10.1002/ajmg.c.31343] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a congenital multiple anomaly/intellectual disability syndrome caused by a deficiency of cholesterol synthesis resulting from a deficiency of 7-dehydrocholesterol (7DHC) reductase encoded by DHCR7. SLOS is inherited in an autosomal recessive pattern. It is characterized by prenatal and postnatal growth retardation, microcephaly, a variable degree of intellectual disability that encompasses normal intelligence to severe intellectual deficiency, and multiple major and minor malformations. External malformations include distinctive facial features, cleft palate, postaxial polydactyly, 2-3 syndactyly of the toes, and underdeveloped external genitalia in males, while internal anomalies may affect every organ system. The clinical spectrum is wide, and rare individuals have been described with normal development and only minor malformations. The clinical diagnosis of SLOS is confirmed by demonstrating an abnormally elevated concentration of the cholesterol precursor, 7DHC, in serum or other tissues, or by the presence of two DHCR7 mutations. The enzymatic deficiency results in decreased cholesterol and increased 7DHC levels, both during embryonic development and after birth. The malformations found in SLOS may result from decreased cholesterol, increased 7DHC or a combination of these two factors. This review discusses the physical and behavioral phenotype of SLOS, the diagnostic approaches, the natural history from the prenatal period to adulthood, and current understanding of the pathophysiology of SLOS.
Collapse
Affiliation(s)
- Małgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine and Department of Pediatrics, McMaster University McMaster University Medical Centre, Room 3N16, 1200 Main Street West, Hamilton ON, Canada L8S 4J9.
| | | |
Collapse
|
38
|
Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, Shiomi K, Sasakura Y, Takahashi S, Asashima M, Kataoka H, Niwa R. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem 2011; 286:25756-62. [PMID: 21632547 DOI: 10.1074/jbc.m111.244384] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormones play essential roles in a wide variety of biological processes in multicellular organisms. The principal steroid hormones in nematodes and arthropods are dafachronic acids and ecdysteroids, respectively, both of which are synthesized from cholesterol as an indispensable precursor. The first critical catalytic step in the biosynthesis of these ecdysozoan steroids is the conversion of cholesterol to 7-dehydrocholesterol. However, the enzymes responsible for cholesterol 7,8-dehydrogenation remain unclear at the molecular level. Here we report that the Rieske oxygenase DAF-36/Neverland (Nvd) is a cholesterol 7,8-dehydrogenase. The daf-36/nvd genes are evolutionarily conserved, not only in nematodes and insects but also in deuterostome species that do not produce dafachronic acids or ecdysteroids, including the sea urchin Hemicentrotus pulcherrimus, the sea squirt Ciona intestinalis, the fish Danio rerio, and the frog Xenopus laevis. An in vitro enzymatic assay system reveals that all DAF-36/Nvd proteins cloned so far have the ability to convert cholesterol to 7-dehydrocholesterol. Moreover, the lethality of loss of nvd function in the fruit fly Drosophila melanogaster is rescued by the expression of daf-36/nvd genes from the nematode Caenorhabditis elegans, the insect Bombyx mori, or the vertebrates D. rerio and X. laevis. These data suggest that daf-36/nvd genes are functionally orthologous across the bilaterian phylogeny. We propose that the daf-36/nvd family of proteins is a novel conserved player in cholesterol metabolism across the animal phyla.
Collapse
Affiliation(s)
- Takuji Yoshiyama-Yanagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Horvat S, Mcwhir J, Rozman D. Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metab Rev 2011; 43:69-90. [DOI: 10.3109/03602532.2010.540580] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2010; 52:6-34. [PMID: 20929975 DOI: 10.1194/jlr.r009548] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Forbes D Porter
- Program in Developmental Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | |
Collapse
|
41
|
Lauth M, Rohnalter V, Bergström A, Kooshesh M, Svenningsson P, Toftgård R. Antipsychotic drugs regulate hedgehog signaling by modulation of 7-dehydrocholesterol reductase levels. Mol Pharmacol 2010; 78:486-96. [PMID: 20558592 DOI: 10.1124/mol.110.066431] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently we identified GANT61, a small-molecule antagonist of Gli transcription factors, which are the final effectors of the mammalian Hedgehog (HH) signaling pathway. Here we describe a diamine substructure of GANT61 that carries the biological activity and show that this part of the molecule is structurally related to trans-1,4-bis(2-chlorobenzaminomethyl)cyclohexane dihydrochloride (AY9944), an inhibitor of the enzymatic activity and transcriptional inducer of 7-dehydrocholesterol-reductase (Dhcr7, EC 1.3.1.21). Treatment of cells with the GANT61 diamine, AY9944, or overexpression of DHCR7 results in the attenuation of Smoothened-dependent and -independent HH signaling. Whereas GANT61 function is independent of Dhcr7, AY9944 does require up-regulation of endogenous Dhcr7. In line with these findings, Dhcr7-modulating antipsychotic (clozapine, chlorpromazine, haloperidol) and antidepressant (imipramine) drugs regulate HH signaling in vitro and in vivo. Modulation of HH signaling may represent a hitherto undiscovered biological (side) effect of therapeutics used to treat schizophrenia and depression.
Collapse
Affiliation(s)
- Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Jiang XS, Backlund PS, Wassif CA, Yergey AL, Porter FD. Quantitative proteomics analysis of inborn errors of cholesterol synthesis: identification of altered metabolic pathways in DHCR7 and SC5D deficiency. Mol Cell Proteomics 2010; 9:1461-75. [PMID: 20305089 DOI: 10.1074/mcp.m900548-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol. Impaired SC5D activity leads to a similar deficiency of cholesterol but an accumulation of lathosterol. Although the genetic and biochemical causes underlying both syndromes are known, the pathophysiological processes leading to the developmental defects remain unclear. To study the pathophysiological mechanisms underlying SLOS and lathosterolosis neurological symptoms, we performed quantitative proteomics analysis of SLOS and lathosterolosis mouse brain tissue and identified multiple biological pathways affected in Dhcr7(Delta3-5/Delta3-5) and Sc5d(-/-) E18.5 embryos. These include alterations in mevalonate metabolism, apoptosis, glycolysis, oxidative stress, protein biosynthesis, intracellular trafficking, and cytoskeleton. Comparison of proteome alterations in both Dhcr7(Delta3-5/Delta3-5) and Sc5d(-/-) brain tissues helps elucidate whether perturbed protein expression was due to decreased cholesterol or a toxic effect of sterol precursors. Validation of the proteomics results confirmed increased expression of isoprenoid and cholesterol synthetic enzymes. This alteration of isoprenoid synthesis may underlie the altered posttranslational modification of Rab7, a small GTPase that is functionally dependent on prenylation with geranylgeranyl, that we identified and validated in this study. These data suggested that although cholesterol synthesis is impaired in both Dhcr7(Delta3-5/Delta3-5) and Sc5d(-/-) embryonic brain tissues the synthesis of nonsterol isoprenoids may be increased and thus contribute to SLOS and lathosterolosis pathology. This proteomics study has provided insight into the pathophysiological mechanisms of SLOS and lathosterolosis, and understanding these pathophysiological changes will help guide clinical therapy for SLOS and lathosterolosis.
Collapse
Affiliation(s)
- Xiao-Sheng Jiang
- NICHD, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
43
|
Schreiner CM, Bell SM, Scott WJ. Microarray analysis of murine limb bud ectoderm and mesoderm after exposure to cadmium or acetazolamide. ACTA ACUST UNITED AC 2009; 85:588-98. [PMID: 19274763 DOI: 10.1002/bdra.20577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A variety of drugs, environmental chemicals, and physical agents induce a common limb malformation in the offspring of pregnant mice exposed on day 9 of gestation. This malformation, postaxial, right-sided forelimb ectrodactyly, is thought to arise via an alteration of hedgehog signaling. METHODS We have studied two of these teratogens, acetazolamide and cadmium, using the technique of microarray analysis of limb bud ectoderm and mesoderm to search for changes in gene expression that could indicate a common pathway to postaxial limb reduction. RESULTS Results indicated a generalized up-regulation of gene expression after exposure to acetazolamide but a generalized down-regulation due to cadmium exposure. An intriguing observation was a cadmium-induced reduction of Mt1 and Mt2 expression in the limb bud mesoderm indicating a lowering of embryonic zinc. CONCLUSIONS We propose that these two teratogens and others (valproic acid and ethanol) lower sonic hedgehog signaling by perturbation of zinc function in the sonic hedgehog protein.
Collapse
Affiliation(s)
- Claire M Schreiner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
44
|
Wilson CW, Chen MH, Chuang PT. Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS One 2009; 4:e5182. [PMID: 19365551 PMCID: PMC2664476 DOI: 10.1371/journal.pone.0005182] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 03/15/2009] [Indexed: 12/01/2022] Open
Abstract
Activation of Hedgehog (Hh) signaling requires the transmembrane protein Smoothened (Smo), a member of the G-protein coupled receptor superfamily. In mammals, Smo translocates to the primary cilium upon binding of Hh ligands to their receptor, Patched (Ptch1), but it is unclear if ciliary trafficking of Smo is sufficient for pathway activation. Here, we demonstrate that cyclopamine and jervine, two structurally related inhibitors of Smo, force ciliary translocation of Smo. Treatment with SANT-1, an unrelated Smo antagonist, abrogates cyclopamine- and jervine-mediated Smo translocation. Further, activation of protein kinase A, either directly or through activation of Gαs, causes Smo to translocate to a proximal region of the primary cilium. We propose that Smo adopts multiple inactive and active conformations, which influence its localization and trafficking on the primary cilium.
Collapse
Affiliation(s)
- Christopher W. Wilson
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Miao-Hsueh Chen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The Hedgehog (Hh) pathway is one of the fundamental signal transduction pathways in animal development and is also involved in stem-cell maintenance and carcinogenesis. The hedgehog (hh) gene was first discovered in Drosophila, and members of the family have since been found in most metazoa. Hh proteins are composed of two domains, an amino-terminal domain HhN, which has the biological signal activity, and a carboxy-terminal autocatalytic domain HhC, which cleaves Hh into two parts in an intramolecular reaction and adds a cholesterol moiety to HhN. HhC has sequence similarity to the self-splicing inteins, and the shared region is termed Hint. New classes of proteins containing the Hint domain have been discovered recently in bacteria and eukaryotes, and the Hog class, of which Hh proteins comprise one family, is widespread throughout eukaryotes. The non-Hh Hog proteins have carboxy-terminal domains (the Hog domain) highly similar to HhC, although they lack the HhN domain, and instead have other amino-terminal domains. Hog proteins are found in many protists, but the Hh family emerged only in early metazoan evolution. HhN is modified by cholesterol at its carboxyl terminus and by palmitate at its amino terminus in both flies and mammals. The modified HhN is released from the cell and travels through the extracellular space. On binding its receptor Patched, it relieves the inhibition that Patched exerts on Smoothened, a G-protein-coupled receptor. The resulting signaling cascade converges on the transcription factor Cubitus interruptus (Ci), or its mammalian counterparts, the Gli proteins, which activate or repress target genes.
Collapse
Affiliation(s)
- Thomas R Bürglin
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Life Sciences, Södertörn University, Hälsovägen 7, SE-141 57 Huddinge, Sweden.
| |
Collapse
|
46
|
|
47
|
Jenkins KT, Merkens LS, Tubb MR, Myatt L, Davidson WS, Steiner RD, Woollett LA. Enhanced placental cholesterol efflux by fetal HDL in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2008; 94:240-7. [PMID: 18346920 PMCID: PMC3037116 DOI: 10.1016/j.ymgme.2008.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
Abstract
Previous studies from this laboratory have shown that maternal-derived cholesterol can be effluxed from trophoblasts to fetal HDL and plasma. We had the opportunity to study for the first time the ability of HDL and plasma from a fetus with the Smith-Lemli-Opitz syndrome (SLOS) to efflux cholesterol from trophoblasts. It was unclear whether cholesterol could be effluxed to fetuses with SLOS since lipoprotein levels are often very low. To answer this question, cord blood was collected from the placentas of an SLOS fetus and unaffected fetuses just after delivery. Plasma cholesterol concentrations were very low in the affected fetus; cholesterol, 7-dehydrocholesterol, and 8-dehydocholesterol concentrations were 14.1, 4.5, and 5.2 mg/dl, respectively. The HDL from the fetal SLOS effluxed approximately 50% more cholesterol from a trophoblast cell line, were smaller in size, and had a lower cholesterol to phospholipid ratio as compared to HDL from unaffected fetuses or adults. Plasma from the SLOS fetus effluxed cholesterol to a similar percentage as unaffected fetal plasma or adult plasma, possibly due to fewer HDL particles as demonstrated in previous SLOS patients. These novel data demonstrate that the cholesterol-deficient SLOS fetus is able to obtain cholesterol from trophoblasts at a time when cholesterol is playing a critical role in development, and has implications for design of treatments for cholesterol deficiency syndromes as well as understanding of prenatal cholesterol transport in humans.
Collapse
Affiliation(s)
- Katie T. Jenkins
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Louise S. Merkens
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R. Tubb
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Leslie Myatt
- Departments of Obstetrics and Gynecology, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - W. Sean Davidson
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Robert D. Steiner
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Departments of Molecular and Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital and Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura A. Woollett
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
- Corresponding author. Fax: +1 513 558 1312. (L.A. Woollett)
| |
Collapse
|
48
|
Moulton HM, Moulton JD. Antisense Morpholino Oligomers and Their Peptide Conjugates. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hong M. Moulton
- AVI BioPharma Inc. 4575 SW Research Way Corvallis OR 97333 USA
| | | |
Collapse
|
49
|
Rakheja D, Boriack RL. Precholesterol sterols accumulate in lipid rafts of patients with Smith-Lemli-Opitz syndrome and X-linked dominant chondrodysplasia punctata. Pediatr Dev Pathol 2008; 11:128-32. [PMID: 17378665 DOI: 10.2350/06-10-0179.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Accepted: 02/19/2007] [Indexed: 12/28/2022]
Abstract
Systemic fetal dysmorphogenesis in disorders of postsqualene cholesterol biosynthesis is thought to be caused by disruption of Hedgehog signaling. Because precholesterol sterols such as 7-dehydrocholesterol and lathosterol can replace cholesterol in the activation of Hedgehog proteins, it is currently believed that cholesterol deficiency-related Hedgehog signaling block occurs further downstream, probably at the level of Smoothened. Experimentally, such a block in Hedgehog signaling occurs at sterol levels of <40 mug/mg protein. Recently, we studied autopsy material from 2 infants with fatal cholesterol biosynthetic disorders (Smith-Lemli-Opitz syndrome and X-linked dominant chondrodysplasia punctata) in which the hepatic cholesterol levels were far greater. In this study, we demonstrate abnormal accumulation of sterol precursors of cholesterol in membrane lipid rafts (detergent resistance membranes) prepared from liver tissues of these 2 infants: 8-dehydrocholesterol and 7-dehydrocholesterol in lipid rafts of the infant with Smith-Lemli-Opitz syndrome and cholest-8(9)-ene-3beta-ol in lipid rafts of the infant with X-linked dominant chondrodysplasia punctata. We suggest that such alterations in the lipid raft sterol environment may affect the biology of cells and the development of fetuses with cholesterol biosynthetic disorders.
Collapse
Affiliation(s)
- Dinesh Rakheja
- Department of Pathology, Children's Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
50
|
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a malformation syndrome due to a deficiency of 7-dehydrocholesterol reductase (DHCR7). DHCR7 primarily catalyzes the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. In SLOS, this results in decreased cholesterol and increased 7DHC levels, both during embryonic development and after birth. The malformations found in SLOS may result from decreased cholesterol, increased 7DHC or a combination of these two factors. This review discusses the clinical aspects and diagnosis of SLOS, therapeutic interventions and the current understanding of pathophysiological processes involved in SLOS.
Collapse
|