1
|
Revenu C, Lebreton C, Cannata Serio M, Rosello M, Duclaux-Loras R, Duroure K, Nicolle O, Eggeler F, Prospéri MT, Stoufflet J, Vougny J, Lépine P, Michaux G, Cerf-Bensussan N, Coudrier E, Perez F, Parlato M, Del Bene F. Myosin 1b regulates intestinal epithelial morphogenesis via interaction with UNC45A. Cell Rep 2024; 43:114941. [PMID: 39636728 DOI: 10.1016/j.celrep.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Vesicle trafficking and the establishment of apicobasal polarity are essential processes in epithelial morphogenesis. UNC45A deficiency has been reported in a multi-organ syndrome presenting with severe diarrhea associated with enterocyte polarity defects. Myosin 1b, an actin motor able to bind membranes, regulates membrane shaping and vesicle trafficking. Here, we show that MYO1B is part of the UNC45A interactome. In the absence of UNC45A, myosin 1b is degraded and forms aggregates when proteasome activity is inhibited. In 3D Caco-2 cells, lumen formation is impaired in the absence of myosin 1b, associated with spindle orientation defects, Golgi apparatus fragmentation, and trafficking impairment. In zebrafish larvae, loss of myo1b results in intestinal bulb epithelium folding defects associated with terminal web disorganization and vesicle accumulation, reminiscent of villous atrophy. In conclusion, we show that myosin 1b plays an unexpected role in the development of the intestinal epithelium downstream of UNC45A, establishing its contribution in the gut defects reported in UNC45A patients.
Collapse
Affiliation(s)
- Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Corinne Lebreton
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Magda Cannata Serio
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marion Rosello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Rémi Duclaux-Loras
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Fanny Eggeler
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Marie-Thérèse Prospéri
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Julie Stoufflet
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Priscilla Lépine
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
| |
Collapse
|
2
|
Rehnke RD. The "Culture" of Organs: A Holistic Theory on the Origins of the Cancer Tissue Environment. Life (Basel) 2024; 14:1622. [PMID: 39768330 PMCID: PMC11678065 DOI: 10.3390/life14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
For over a century, the somatic gene mutation theory of cancer has been a scientific orthodoxy. The recent failures of causal explanations using this theory and the lack of significant progress in addressing the cancer problem medically have led to a new competition of ideas about just what cancer is. This essay presents an alternative view of cancer as a developmental process gone wrong. More specifically, cancer is a breakdown in the autopoietic process of organ maintenance and the multicellular coordination of tissues. Breast cancer is viewed through a systems science perspective as an example of the importance of framing one's theoretical assumptions before making empirical judgments. Finally, a new understanding of the histoarchitecture of the interstitium is presented as a first principle of cancer: a process of cells coming from cells, invading the space between cells.
Collapse
Affiliation(s)
- Robert D Rehnke
- Private Practice of Plastic Surgery, Saint Petersburg, FL 33710, USA
| |
Collapse
|
3
|
Kim J, Sakar MS, Bouklas N. Modeling the mechanosensitive collective migration of cells on the surface and the interior of morphing soft tissues. Biomech Model Mechanobiol 2024; 23:1815-1835. [PMID: 38972940 DOI: 10.1007/s10237-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975-986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
4
|
O’Dowling AT, Rodriguez BJ, Gallagher TK, Thorpe SD. Machine learning and artificial intelligence: Enabling the clinical translation of atomic force microscopy-based biomarkers for cancer diagnosis. Comput Struct Biotechnol J 2024; 24:661-671. [PMID: 39525667 PMCID: PMC11543504 DOI: 10.1016/j.csbj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The influence of biomechanics on cell function has become increasingly defined over recent years. Biomechanical changes are known to affect oncogenesis; however, these effects are not yet fully understood. Atomic force microscopy (AFM) is the gold standard method for measuring tissue mechanics on the micro- or nano-scale. Due to its complexity, however, AFM has yet to become integrated in routine clinical diagnosis. Artificial intelligence (AI) and machine learning (ML) have the potential to make AFM more accessible, principally through automation of analysis. In this review, AFM and its use for the assessment of cell and tissue mechanics in cancer is described. Research relating to the application of artificial intelligence and machine learning in the analysis of AFM topography and force spectroscopy of cancer tissue and cells are reviewed. The application of machine learning and artificial intelligence to AFM has the potential to enable the widespread use of nanoscale morphologic and biomechanical features as diagnostic and prognostic biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Aidan T. O’Dowling
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Hepatobiliary and Transplant Surgery, St Vincent’s University Hospital, Dublin, Ireland
| | - Brian J. Rodriguez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD School of Physics, University College Dublin, Dublin, Ireland
| | - Tom K. Gallagher
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Department of Hepatobiliary and Transplant Surgery, St Vincent’s University Hospital, Dublin, Ireland
| | - Stephen D. Thorpe
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Yang F, Zhu R, Zheng A, An R, Lu W, Liang Y. Effective protection of biological tissues from severe blunt force injury by engineered nanoscale liquid flow. Sci Rep 2024; 14:28947. [PMID: 39578545 PMCID: PMC11584685 DOI: 10.1038/s41598-024-80490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
Blunt force trauma (BFT), the injury of the body by forceful impacts such as falls, motor vehicle crashes and collisions, causes damage to bio-organs that can lead to life-threatening situations. To address the unmet need of bioprotection materials for BFT, we developed a novel, liquid nanofoam (LN)-based system. The LN system employs a unique mechanism of energy absorption, i.e. the external force-aided, nanoscale liquid flow. Under mechanical loading, the LN system effectively protected human cells from force-induced deformation and cell death. In addition to effective mitigation of the upregulation of stress and inflammatory genes, LN prevented blunt-force-induced damage of multiple vital organs including liver, kidney, heart, and lungs. To our knowledge, this is the first material of its kind that is biocompatible and capable of effectively protecting biotissues from BFT on molecular, cellular and tissue levels.
Collapse
Affiliation(s)
- Fuming Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Runqi Zhu
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Anqi Zheng
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Runsheng An
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Weiyi Lu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Yun Liang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
杜 志, 廖 婕, 王 冰, 于 素, 李 晓. [Advantages and prospects of cell derived decellularized extracellular matrix as tissue engineering scaffolds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1291-1298. [PMID: 39542617 PMCID: PMC11563747 DOI: 10.7507/1002-1892.202404114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Objective To review the application of cell derived decellularized extracellular matrix (CDM) in tissue engineering. Methods The literature related to the application of CDM in tissue engineering was extensively reviewed and analyzed. Results CDM is a mixture of cells and their secretory products obtained by culturing cells in vitro for a period of time, and then the mixture is treated by decellularization. Compared with tissue derived decellularized extracellular matrix (TDM), CDM can screen and utilize pathogen-free autologous cells, effectively avoiding the possible shortcomings of TDM, such as immune response and limited sources. In addition, by selecting the cell source, controlling the culture conditions, and selecting the template scaffold, the composition, structure, and mechanical properties of the scaffold can be controlled to obtain the desired scaffold. CDM retains the components and microstructure of extracellular matrix and has excellent biological functions, so it has become the focus of tissue engineering scaffolds. Conclusion CDM is superior in the field of tissue engineering because of its outstanding adjustability, safety, and high bioactivity. With the continuous progress of technology, CDM stents suitable for clinical use are expected to continue to emerge.
Collapse
Affiliation(s)
- 志坡 杜
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 婕 廖
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 冰冰 王
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 素香 于
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 晓明 李
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| |
Collapse
|
7
|
Shrestha S, Acharya P, Kang SY, Vanga MG, Lekkala VKR, Liu J, Yang Y, Joshi P, Lee MY. Regenerative human liver organoids (HLOs) in a pillar/perfusion plate for hepatotoxicity assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586638. [PMID: 38586058 PMCID: PMC10996672 DOI: 10.1101/2024.03.25.586638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Human liver organoids (HLOs) differentiated from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs) can recapitulate the structure and function of human fetal liver tissues, thus being considered as a promising tissue model for liver diseases and predictive compound screening. However, the adoption of HLOs in drug discovery faces several technical challenges, which include the lengthy differentiation process with multiple culture media leading to batch-to-batch variation, short-term maintenance of hepatic functions post-maturation, low assay throughput due to Matrigel dissociation and HLO transfer to a microtiter well plate, and insufficient maturity levels compared to primary hepatocytes. To address these issues, expandable HLOs (Exp-HLOs) derived from human iPSCs were generated by optimizing differentiation protocols, which were rapidly printed on a 144-pillar plate with sidewalls and slits (144PillarPlate) and dynamically cultured for up to 20 days into differentiated HLOs (Diff-HLOs) in a 144-perfusion plate with perfusion wells and reservoirs (144PerfusionPlate) for in situ organoid culture and analysis. The dynamically cultured Diff-HLOs exhibited greater maturity and reproducibility than those cultured statically, especially after a 10-day differentiation period. In addition, Diff-HLOs in the pillar/perfusion plate were tested with acetaminophen and troglitazone for 3 days to assess drug-induced liver injury (DILI) and then incubated in an expansion medium for 10 days to evaluate liver recovery from DILI. The assessment of liver regeneration post-injury is critical to understanding the mechanism of recovery and determining the threshold drug concentration beyond which there will be a sharp decrease in the liver's regenerative capacity. We envision that bioprinted Diff-HLOs in the pillar/perfusion plate could be used for high-throughput screening (HTS) of hepatotoxic compounds due to the short-term differentiation of passage-able Exp-HLOs, stable hepatic function post-maturation, high reproducibility, and high throughput with capability of in situ organoid culture, testing, staining, imaging, and analysis.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | | | | | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| |
Collapse
|
8
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
9
|
Rodriguez Navas M, Darling EM. Selection of Force Sensors for In Situ Measurement of Neotissue Microenvironments. Tissue Eng Part A 2024. [PMID: 39453885 DOI: 10.1089/ten.tea.2024.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Mechanical forces are a critical stimulus in both native and engineered tissues. Direct measurement of these microenvironmental forces has been challenging, particularly for cell-dense models. To address this, we previously developed hydrogel-based force sensors that are approximately the size of a cell and can be imaged over time to computationally assess the forces exerted by surrounding cells and matrix. The goal of this project was to identify how the physical characteristics of force sensors impact measurements. Sensors were varied in size, elastic modulus, and surface coating before being included in stem cell suspensions that then spontaneously self-assembled into spheroidal neotissues. Using this model of early mesenchymal condensation, we hypothesized that larger, softer sensors would provide greater sensitivity and precision, whereas protein coatings would influence the directionality of applied forces (tensile vs. compressive). These experiments were conducted using a high-content imaging system that allowed analysis of over a thousand sensors to evaluate the various conditions. Results indicated that measurement fidelity was highest for force sensors that had a diameter >20 µm and modulus ∼0.2 kPa. Extremely soft sensors deformed too much, whereas stiffer sensors deformed too little. Collagen and N-cadherin coatings, which replicated cell-matrix or cell-cell binding, respectively, allowed for tensile forces to be exerted on the sensors, with greater forces being observed for N-cadherin sensors in these highly cellular neotissue constructs. Uncoated sensors were universally compressed due to the lack of cell-sensor adhesion. Disruption of the actin cytoskeleton lessened microenvironmental forces, whereas disruption of microtubules had no measurable effect. Potential future applications of the technology include studies of in situ forces in developing tissues as well as a real-time sensor for monitoring the growth of engineered constructs.
Collapse
Affiliation(s)
- Marta Rodriguez Navas
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island, USA
| | - Eric M Darling
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- School of Engineering, Brown University, Providence, Rhode Island, USA
- Department of Orthopaedics, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
11
|
Boot RC, van der Net A, Gogou C, Mehta P, Meijer DH, Koenderink GH, Boukany PE. Cell spheroid viscoelasticity is deformation-dependent. Sci Rep 2024; 14:20013. [PMID: 39198595 PMCID: PMC11358509 DOI: 10.1038/s41598-024-70759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Tissue surface tension influences cell sorting and tissue fusion. Earlier mechanical studies suggest that multicellular spheroids actively reinforce their surface tension with applied force. Here we study this open question through high-throughput microfluidic micropipette aspiration measurements on cell spheroids to identify the role of force duration and spheroid deformability. In particular, we aspirate spheroid protrusions of mice fibroblast NIH3T3 and human embryonic HEK293T homogeneous cell spheroids into micron-sized capillaries for different pressures and monitor their viscoelastic creep behavior. We find that larger spheroid deformations lead to faster cellular retraction once the pressure is released, regardless of the applied force. Additionally, less deformable NIH3T3 cell spheroids with an increased expression level of alpha-smooth muscle actin, a cytoskeletal protein upregulating cellular contractility, also demonstrate slower cellular retraction after pressure release for smaller spheroid deformations. Moreover, HEK293T cell spheroids only display cellular retraction at larger pressures with larger spheroid deformations, despite an additional increase in viscosity at these larger pressures. These new insights demonstrate that spheroid viscoelasticity is deformation-dependent and challenge whether surface tension truly reinforces at larger aspiration pressures.
Collapse
Affiliation(s)
- Ruben C Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, 2629, HZ, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629, HZ, The Netherlands
| | - Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629, HZ, The Netherlands
| | - Pranav Mehta
- Department of Chemical Engineering, Delft University of Technology, Delft, 2629, HZ, The Netherlands
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, 2333, ZA, The Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629, HZ, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629, HZ, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, 2629, HZ, The Netherlands.
| |
Collapse
|
12
|
Mao C, Liu X, Guo SW. Reduced endometrial glycolysis concomitant with increased lesional fibrosis in patients with adenomyosis who complained of heavy menstrual bleeding. Reprod Biomed Online 2024:104406. [PMID: 39523182 DOI: 10.1016/j.rbmo.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 11/16/2024]
Abstract
RESEARCH QUESTION What role, if any, does the extent of lesional fibrosis play in impaired glycolysis leading to adenomyosis-associated heavy menstrual bleeding (ADM-HMB)? DESIGN Forty-eight patients with ADM-HMB were recruited, among them 25 reported moderate to heavy bleeding (MHB), and the remaining 23, excessive bleeding (EXB). The full-thickness uterine tissue columns were processed for Masson trichrome staining and immunohistochemistry analyses. The expression levels of HIF-1α, GLUT1, HK2, PFKFB3 and PKM2 proteins that are critically involved in glycolysis in endometrial epithelial cells cultured on substrates of different stiffness, and the levels of glycolysis were quantitated. A mouse experiment with induced adenomyosis and simulated menstrual bleeding was conducted to assess the effect of adenomyosis on immunoexpression of proteins involved in glycolysis and inflammation as well as on endometrial repair and bleeding. RESULTS The endometrial staining of HIF-1α, GLUT1, HK2, PFKFB3 and PKM2 was significantly lower in the EXB group as compared with MHB patients, concomitant with higher extent of fibrosis. The expression of HIF-1α, GLUT1, HK2, PFKFB3 and PKM2 was significantly reduced when endometrial epithelial cells were cultured in stiff substrate, concomitant with reduced glycolysis. Mice with induced adenomyosis had reduced immunoexpression of Hif-1α, as well as those proteins each of which plays a vital, rate-limiting role in different steps of the glycolysis pathway, such as Glut1, Hk2, Pfkfb3 and Pkm2, and elevated fibrosis in endometrium, concomitant with disrupted endometrial repair and more bleeding. CONCLUSIONS Lesional fibrosis results in reduced endometrial glycolysis in eutopic endometrium and subsequent imbalance in pro-inflammatory and anti-inflammatory response, leading to ADM-HMB.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Department of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.; Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|
13
|
Zhurenkov KE, Lobov AA, Bildyug NB, Alexander-Sinclair EI, Darvish DM, Lomert EV, Kriger DV, Zainullina BR, Chabina AS, Khorolskaya JI, Perepletchikova DA, Blinova MI, Mikhailova NA. Focal Adhesion Maturation Responsible for Behavioral Changes in Human Corneal Stromal Fibroblasts on Fibrillar Substrates. Int J Mol Sci 2024; 25:8601. [PMID: 39201288 PMCID: PMC11354758 DOI: 10.3390/ijms25168601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs. Our findings indicate that substrates like FCF can enhance the early development of focal adhesions (FAs), leading to the activation and propagation of mechanotransduction signals. This is primarily achieved through FAK autophosphorylation and YAP1 nuclear translocation pathways. Remarkably, inhibiting FAK autophosphorylation negated the observed changes. Proteome analysis further confirmed the central role of FAs in mechanotransduction propagation in CSFs cultured on FCF. This analysis also highlighted complex signaling pathways, including chromatin epigenetic modifications, in response to fibrillar substrates. Overall, our research highlights the potential pathways through which CSFs undergo behavioral changes when exposed to fibrillar substrates, identifying FAs as essential mechanotransducers.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg 199032, Russia
| | - Arseniy A Lobov
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalya B Bildyug
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | - Diana M Darvish
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ekaterina V Lomert
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Daria V Kriger
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Bozhana R Zainullina
- Centre for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg 199032, Russia
| | - Alina S Chabina
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Julia I Khorolskaya
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | - Miralda I Blinova
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalia A Mikhailova
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
14
|
Wang XH, Wang M, Pan JB, Zhu JM, Cheng H, Dong HZ, Bi WJ, Yang SW, Chen YY, Xu F, Duan XJ. Fluorescent probe for imaging intercellular tension: molecular force approach. RSC Adv 2024; 14:22877-22881. [PMID: 39035717 PMCID: PMC11258865 DOI: 10.1039/d4ra02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force in vitro. Specifically, the designed Au-DNA intercellular tension probe includes a molecular spring flanked by a fluorophore-quencher pair, which is anchored between cells. As intercellular forces open the hairpin, the fluorophore is de-quenched, allowing for visualization of cellular force. The effectiveness of this approach was demonstrated by imaging the cellular force in living cells using the designed Au-DNA intercellular tension probe.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Ming Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Jin-Miao Zhu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hu Cheng
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hua-Ze Dong
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Wen-Jie Bi
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Shi-Wei Yang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Yuan-Yuan Chen
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Fan Xu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Xiao-Jing Duan
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| |
Collapse
|
15
|
Daga P, Thurakkal B, Rawal S, Das T. Matrix stiffening promotes perinuclear clustering of mitochondria. Mol Biol Cell 2024; 35:ar91. [PMID: 38758658 PMCID: PMC11244172 DOI: 10.1091/mbc.e23-04-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanical cues from the tissue microenvironment, such as the stiffness of the extracellular matrix, modulate cellular forms and functions. As numerous studies have shown, this modulation depends on the stiffness-dependent remodeling of cytoskeletal elements. In contrast, very little is known about how the intracellular organelles such as mitochondria respond to matrix stiffness and whether their form, function, and localization change accordingly. Here, we performed an extensive quantitative characterization of mitochondrial morphology, subcellular localization, dynamics, and membrane tension on soft and stiff matrices. This characterization revealed that while matrix stiffness affected all these aspects, matrix stiffening most distinctively led to an increased perinuclear clustering of mitochondria. Subsequently, we could identify the matrix stiffness-sensitive perinuclear localization of filamin as the key factor dictating this perinuclear clustering. The perinuclear and peripheral mitochondrial populations differed in their motility on soft matrix but surprisingly they did not show any difference on stiff matrix. Finally, perinuclear mitochondrial clustering appeared to be crucial for the nuclear localization of RUNX2 and hence for priming human mesenchymal stem cells towards osteogenesis on a stiff matrix. Taken together, we elucidate a dependence of mitochondrial localization on matrix stiffness, which possibly enables a cell to adapt to its microenvironment.
Collapse
Affiliation(s)
- Piyush Daga
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Basil Thurakkal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| |
Collapse
|
16
|
Chouhan G, Lewis NS, Ghanekar V, Koti Ainavarapu SR, Inamdar MM, Sonawane M. Cell-size-dependent regulation of Ezrin dictates epithelial resilience to stretch by countering myosin-II-mediated contractility. Cell Rep 2024; 43:114271. [PMID: 38823013 DOI: 10.1016/j.celrep.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024] Open
Abstract
The epithelial adaptations to mechanical stress are facilitated by molecular and tissue-scale changes that include the strengthening of junctions, cytoskeletal reorganization, and cell-proliferation-mediated changes in tissue rheology. However, the role of cell size in controlling these properties remains underexplored. Our experiments in the zebrafish embryonic epidermis, guided by theoretical estimations, reveal a link between epithelial mechanics and cell size, demonstrating that an increase in cell size compromises the tissue fracture strength and compliance. We show that an increase in E-cadherin levels in the proliferation-deficient epidermis restores epidermal compliance but not the fracture strength, which is largely regulated by Ezrin-an apical membrane-cytoskeleton crosslinker. We show that Ezrin fortifies the epithelium in a cell-size-dependent manner by countering non-muscle myosin-II-mediated contractility. This work uncovers the importance of cell size maintenance in regulating the mechanical properties of the epithelium and fostering protection against future mechanical stresses.
Collapse
Affiliation(s)
- Geetika Chouhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Natasha Steffi Lewis
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Vallari Ghanekar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India.
| |
Collapse
|
17
|
Tang Y, Chen S, Bowick MJ, Bi D. Cell Division and Motility Enable Hexatic Order in Biological Tissues. PHYSICAL REVIEW LETTERS 2024; 132:218402. [PMID: 38856284 PMCID: PMC11267118 DOI: 10.1103/physrevlett.132.218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
Biological tissues transform between solid- and liquidlike states in many fundamental physiological events. Recent experimental observations further suggest that in two-dimensional epithelial tissues these solid-liquid transformations can happen via intermediate states akin to the intermediate hexatic phases observed in equilibrium two-dimensional melting. The hexatic phase is characterized by quasi-long-range (power-law) orientational order but no translational order, thus endowing some structure to an otherwise structureless fluid. While it has been shown that hexatic order in tissue models can be induced by motility and thermal fluctuations, the role of cell division and apoptosis (birth and death) has remained poorly understood, despite its fundamental biological role. Here we study the effect of cell division and apoptosis on global hexatic order within the framework of the self-propelled Voronoi model of tissue. Although cell division naively destroys order and active motility facilitates deformations, we show that their combined action drives a liquid-hexatic-liquid transformation as the motility increases. The hexatic phase is accessed by the delicate balance of dislocation defect generation from cell division and the active binding of disclination-antidisclination pairs from motility. We formulate a mean-field model to elucidate this competition between cell division and motility and the consequent development of hexatic order.
Collapse
Affiliation(s)
- Yiwen Tang
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Siyuan Chen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Mark J Bowick
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Kavli Institute of Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Stancampiano MR, Meroni SLC, Bucolo C, Russo G. 46,XX Differences of Sex Development outside congenital adrenal hyperplasia: pathogenesis, clinical aspects, puberty, sex hormone replacement therapy and fertility outcomes. Front Endocrinol (Lausanne) 2024; 15:1402579. [PMID: 38841305 PMCID: PMC11150773 DOI: 10.3389/fendo.2024.1402579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, and/or anatomical sex. DSD in individuals with a 46,XX karyotype can occur due to fetal or postnatal exposure to elevated amount of androgens or maldevelopment of internal genitalia. Clinical phenotype could be quite variable and for this reason these conditions could be diagnosed at birth, in newborns with atypical genitalia, but also even later in life, due to progressive virilization during adolescence, or pubertal delay. Understand the physiological development and the molecular bases of gonadal and adrenal structures is crucial to determine the diagnosis and best management and treatment for these patients. The most common cause of DSD in 46,XX newborns is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, determining primary adrenal insufficiency and androgen excess. In this review we will focus on the other rare causes of 46,XX DSD, outside CAH, summarizing the most relevant data on genetic, clinical aspects, puberty and fertility outcomes of these rare diseases.
Collapse
|
19
|
Li W, Guo J, Hobson EC, Xue X, Li Q, Fu J, Deng CX, Guo Z. Metabolic-Glycoengineering-Enabled Molecularly Specific Acoustic Tweezing Cytometry for Targeted Mechanical Stimulation of Cell Surface Sialoglycans. Angew Chem Int Ed Engl 2024; 63:e202401921. [PMID: 38498603 PMCID: PMC11073901 DOI: 10.1002/anie.202401921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.
Collapse
Affiliation(s)
- Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Eric C. Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianping Fu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
21
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
22
|
Zhang N, Wu W, Zhuang Y, Wang W, Pan W, Wang J. Experience in the treatment of long-gap esophageal atresia by intraluminal esophageal stretching elongation. Front Pediatr 2024; 12:1367935. [PMID: 38523834 PMCID: PMC10957633 DOI: 10.3389/fped.2024.1367935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Objective To summarize the experience with intraluminal esophageal stretching elongation (ILESE) in the successful treatment of long-gap esophageal atresia (LGEA) at a single center. Methods Clinical data of 68 neonates who underwent LGEA between February 2015 and January 2022 were retrospectively analyzed. Four patients died of multiple associated severe malformations and did not undergo ILESE. Esophageal anastomosis was successfully performed in 60 cases (93.75%) and failed in 4 cases (6.25%) treated with ILESE. The ILESE techniques, esophageal reconstruction, results, postoperative complications, and follow-up treatment were analyzed. Results The beginning time of performing ILESE preoperation was 53.4 ± 39.4 days after birth, and the age of esophageal reconstruction was 122.2 ± 70.3 days after birth in 60 cases. The gap length of proximal and distal esophageal segments which were evaluated the first time at admission was 4.8 ± 1.3 vertebral bodies, whereas the gap before anastomosis was -0.46 ± 0.90 vertebral bodies. Among the patients with esophageal primary-anastomosis, 55 received thoracoscopic surgery, and 5 underwent thoracotomy in the early stage. Of the 60 children with ILESE, 58 underwent end-to-end esophagostomy, of which 17 cases were combined with circular esophagotomy (livaditis), and 2 cases of esophageal lengthening were combined with the reversal of the ligulate loop of the proximal esophagus (flap). Overall, 59 cases were cured (98.3%), and 1 patient died of respiratory failure postoperatively. All patients were followed up for 7-96 months. Postoperative anastomotic leakage occurred in 16 patients (27.6%), all of whom were successfully treated conservatively. Anastomotic stenosis occurred in 49 cases (83.1%), all of which were successfully managed by non-surgical treatment, including 12.7 ± 9.3 times of esophageal balloon dilatation and 2 cases of stent dilatation. Gastroesophageal reflux occurred in 44 patients (74.6%), including associated or acquired esophageal hiatal hernia in 22 patients, and Nissen fundoplication was performed in 17 patients. Conclusions ILESE is an effective method for prolonging the proximal and distal esophagus of the LGEA to reconstruct esophageal continuity using its esophageal tissue, with an efficacy rate of 93.75%. Postoperative anastomotic stricture and gastroesophageal reflux are common and require long-term, standardized follow-up and treatment.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pediatric Surgery, The Affiliated Xuzhou Children’s Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujia Zhuang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weipeng Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Pan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Ebrahimighaei R, Tarassova N, Bond SC, McNeill MC, Hathway T, Vohra H, Newby AC, Bond M. Extracellular matrix stiffness controls cardiac fibroblast proliferation via the nuclear factor-Y (NF-Y) transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119640. [PMID: 37996060 DOI: 10.1016/j.bbamcr.2023.119640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The proliferative expansion of cardiac fibroblasts (CF) contributes towards cardiac fibrosis, which results in myocardial stiffening, cardiac dysfunction, and heart failure. CF sense and respond to increased stiffness of their local extracellular matrix, modulating their phenotype towards increased collagen synthesis and higher proliferation, leading potentially to a vicious circle of positive feedback. Here we describe a novel mechanism that mediates increased CF proliferation in response to a pathologically stiff Exteracellular matrix (ECM). The mechanism we describe is independent of the well-characterised mechano-sensitive transcript factors, YAP-TEAD and MKL1-SRF, which our data indicate are only responsible for part of the genes induced by stiffened ECM. Instead, our data identify Nuclear Factor-Y (NF-Y) as a novel mechanosensitive transcription factor, which mediates enhanced CF proliferation in response to a stiff ECM. We show that levels of NF-YA protein, the major regulatory subunit of NF-Y, and NF-Y transcriptional activity, are increased by a stiff ECM. Indeed, NF-Y activity drives the expression of multiple cell-cycle genes. Furthermore, NF-YA protein levels are dependent on FAK signalling suggesting a mechanistic link to ECM composition. Consistent with its role as a mechano-sensor, inhibition of NF-Y using siRNA or dominant negative mutant blocks CF proliferation on plastic in vitro, which models a stiff ECM, whereas ectopic expression of NF-YA increases the proliferation of cells interacting under conditions that model a physiologically soft ECM. In summary, our data demonstrate that NF-Y is a biomechanically sensitive transcription factor that promotes CF proliferation in a model of pathologically stiffened ECM.
Collapse
Affiliation(s)
- Reza Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom
| | - Nathalie Tarassova
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Samuel C Bond
- Clifton High School, Clifton, Bristol, BS8 3JD, United Kingdom.
| | - Madeleine C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Tom Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Hunaid Vohra
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Andrew C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Mark Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| |
Collapse
|
24
|
Guo Y, Zhang S, Wang D, Heng BC, Deng X. Role of cell rearrangement and related signaling pathways in the dynamic process of tip cell selection. Cell Commun Signal 2024; 22:24. [PMID: 38195565 PMCID: PMC10777628 DOI: 10.1186/s12964-023-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024] Open
Abstract
Angiogenesis is a complex, highly-coordinated and multi-step process of new blood vessel formation from pre-existing blood vessels. When initiated, the sprouting process is spearheaded by the specialized endothelial cells (ECs) known as tip cells, which guide the organization of accompanying stalk cells and determine the function and morphology of the finally-formed blood vessels. Recent studies indicate that the orchestration and coordination of angiogenesis involve dynamic tip cell selection, which is the competitive selection of cells to lead the angiogenic sprouts. Therefore, this review attempt to summarize the underlying mechanisms involved in tip cell specification in a dynamic manner to enable readers to gain a systemic and overall understanding of tip cell formation, involving cooperative interaction of cell rearrangement with Notch and YAP/TAZ signaling. Various mechanical and chemical signaling cues are integrated to ensure the right number of cells at the right place during angiogenesis, thereby precisely orchestrating morphogenic functions that ensure correct patterning of blood vessels. Video Abstract.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
25
|
Chakraborty S, Peak KE, Gleghorn JP, Carroll TJ, Varner VD. Quantifying Spatial Patterns of Tissue Stiffness Within the Embryonic Mouse Kidney. Methods Mol Biol 2024; 2805:171-186. [PMID: 39008182 DOI: 10.1007/978-1-0716-3854-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biophysical factors, including changes in mechanical stiffness, have been shown to influence the morphogenesis of developing organs. There is a lack of experimental techniques, however, that can probe the mechanical properties of embryonic tissues-especially those which are not mechanically or optically accessible, such as the visceral organs of the developing mouse embryo. Here, using the embryonic kidney as a model system, we describe a method to use microindentation to quantify tissue-level regional differences in the mechanical properties of an embryonic organ. This technique is generalizable and can be used to quantify patterns of tissue stiffness within other developing organ systems. Going forward, these data will enable new experimental studies of the role of biophysical cues during organogenesis.
Collapse
Affiliation(s)
- Somdutta Chakraborty
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Thomas J Carroll
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, Division of Nephrology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Okui N, Ikegami T, Erel CT. Neodymium Laser Treatment for Overactive Bladder and Vulvodynia in Mayer-Rokitansky-Küster-Hauser Syndrome Patient: A Case Report. Cureus 2024; 16:e53068. [PMID: 38283779 PMCID: PMC10821798 DOI: 10.7759/cureus.53068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 01/30/2024] Open
Abstract
The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a condition that affects a small proportion of female individuals at birth, resulting in the absence or underdevelopment of reproductive organs. However, this case report introduces overactive bladder (OAB) and vulvodynia, conditions that have not been previously reported in MRKH patients. The 36-year-old patient began developing breast tissue around the age of 12 but never experienced menstruation. Simultaneously, she started experiencing discomfort in the genital region and frequent urination. These symptoms gradually worsened, making it difficult for her to continue her education, and initially, she was misdiagnosed with a developmental disorder. Typically, the general understanding of MRKH syndrome has focused on reproductive anomalies, but this case underscores its diversity. Diagnostic assessments, including ultrasound, MRI, and various tests, revealed that the patient's severe genital discomfort and urinary symptoms were improved through a specialized Neodymium YAG laser therapy named "PIANO mode," resulting in significant symptom relief and improved quality of life. This report emphasizes the importance of comprehensive and individualized approaches to managing MRKH syndrome. It aims to raise awareness that MRKH syndrome, while often associated with reproductive abnormalities, can also involve related symptoms like OAB and vulvodynia, which can significantly impact daily life.
Collapse
Affiliation(s)
- Nobuo Okui
- Urology, Yokosuka Urogynecology and Urology Clinic, Yokosuka, JPN
| | - Tadashi Ikegami
- Diagnostic Imaging, Kanagawa Dental University, Yokosuka, JPN
| | - C Tamer Erel
- Obstetrics and Gynecology, Istanbul University, Cerrahpasa School of Medicine, Istanbul, TUR
| |
Collapse
|
27
|
Cachoux VML, Balakireva M, Gracia M, Bosveld F, López-Gay JM, Maugarny A, Gaugué I, di Pietro F, Rigaud SU, Noiret L, Guirao B, Bellaïche Y. Epithelial apoptotic pattern emerges from global and local regulation by cell apical area. Curr Biol 2023; 33:4807-4826.e6. [PMID: 37827152 PMCID: PMC10681125 DOI: 10.1016/j.cub.2023.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Geometry is a fundamental attribute of biological systems, and it underlies cell and tissue dynamics. Cell geometry controls cell-cycle progression and mitosis and thus modulates tissue development and homeostasis. In sharp contrast and despite the extensive characterization of the genetic mechanisms of caspase activation, we know little about whether and how cell geometry controls apoptosis commitment in developing tissues. Here, we combined multiscale time-lapse microscopy of developing Drosophila epithelium, quantitative characterization of cell behaviors, and genetic and mechanical perturbations to determine how apoptosis is controlled during epithelial tissue development. We found that early in cell lives and well before extrusion, apoptosis commitment is linked to two distinct geometric features: a small apical area compared with other cells within the tissue and a small relative apical area with respect to the immediate neighboring cells. We showed that these global and local geometric characteristics are sufficient to recapitulate the tissue-scale apoptotic pattern. Furthermore, we established that the coupling between these two geometric features and apoptotic cells is dependent on the Hippo/YAP and Notch pathways. Overall, by exploring the links between cell geometry and apoptosis commitment, our work provides important insights into the spatial regulation of cell death in tissues and improves our understanding of the mechanisms that control cell number and tissue size.
Collapse
Affiliation(s)
- Victoire M L Cachoux
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Maria Balakireva
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mélanie Gracia
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús M López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Aude Maugarny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane U Rigaud
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Lorette Noiret
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Boris Guirao
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
28
|
Seifert AW, Duncan EM, Zayas RM. Enduring questions in regenerative biology and the search for answers. Commun Biol 2023; 6:1139. [PMID: 37945686 PMCID: PMC10636051 DOI: 10.1038/s42003-023-05505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
29
|
Xu Z, Liu S, Xue X, Li W, Fu J, Deng CX. Rapid responses of human pluripotent stem cells to cyclic mechanical strains applied to integrin by acoustic tweezing cytometry. Sci Rep 2023; 13:18030. [PMID: 37865697 PMCID: PMC10590420 DOI: 10.1038/s41598-023-45397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
Acoustic tweezing cytometry (ATC) is an ultrasound-based biophysical technique that has shown the capability to promote differentiation of human pluripotent stem cells (hPSCs). This study systematically examined how hPSCs respond to cyclic mechanical strains applied by ATC via displacement of integrin-bound microbubbles (averaged diameter of 4.3 µm) using ultrasound pulses (acoustic pressure 0.034 MPa, center frequency 1.24 MHz and pulse repetition frequency 1 Hz). Our data show downregulation of pluripotency marker Octamer-binding transcription factor 4 (OCT4) by at least 10% and increased nuclear localization of Yes-associated protein (YAP) by almost 100% in hPSCs immediately after ATC application for as short as 1 min and 5 min respectively. Analysis of the movements of integrin-anchored microbubbles under ATC stimulations reveals different stages of viscoelastic characteristic behavior and increasing deformation of the integrin-cytoskeleton (CSK) linkage. The peak displacement of integrin-bound microbubbles increased from 1.45 ± 0.16 to 4.74 ± 0.67 μm as the duty cycle of ultrasound pulses increased from 5% to 50% or the duration of each ultrasound pulse increased from 0.05 to 0.5 s. Real-time tracking of integrin-bound microbubbles during ATC application detects high correlation of microbubble displacements with OCT4 downregulation in hPSCs. Together, our data showing fast downregulation of OCT4 in hPSCs in respond to ATC stimulations highlight the unique mechanosensitivity of hPSCs to integrin-targeted cyclic force/strain dependent on the pulse duration or duty cycle of ultrasound pulses, providing insights into the mechanism of ATC-induced accelerated differentiation of hPSCs.
Collapse
Affiliation(s)
- Zhaoyi Xu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shiying Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Cheri X Deng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
31
|
Niloy RA, Holcomb MC, Thomas JH, Blawzdziewicz J. The mechanics of cephalic furrow formation in the Drosophila embryo. Biophys J 2023; 122:3843-3859. [PMID: 37571824 PMCID: PMC10560681 DOI: 10.1016/j.bpj.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Cephalic furrow formation (CFF) is a major morphogenetic movement during gastrulation in Drosophila melanogaster embryos that gives rise to a deep, transitory epithelial invagination. Recent studies have identified the individual cell shape changes that drive the initiation and progression phases of CFF; however, the underlying mechanics are not yet well understood. During the progression phase, the furrow deepens as columnar cells from both the anterior and posterior directions fold inwards rotating by 90°. To analyze the mechanics of this process, we have developed an advanced two-dimensional lateral vertex model that includes multinode representation of cellular membranes and allows us to capture the membrane curvature associated with pressure variation. Our investigations reveal some key potential mechanical features of CFF, as follows. When cells begin to roll over the cephalic furrow cleft, they become wedge shaped as their apical cortices and overlying membranes expand, lateral cortices and overlying membranes release tension, internal pressures drop, and basal cortices and membranes contract. Then, cells reverse this process by shortening apical cortices and membranes, increasing lateral tension, and causing internal pressures to rise. Since the basal membranes expand, the cells recover their rotated columnar shape once in the furrow. Interestingly, our findings indicate that the basal membranes may be passively reactive throughout the progression phase. We also find that the smooth rolling of cells over the cephalic furrow cleft necessitates that internalized cells provide a solid base through high levels of membrane tension and internal pressure, which allows the transmission of tensile force that pulls new cells into the furrow. These results lead us to suggest that CFF helps to establish a baseline tension across the apical surface of the embryo to facilitate cellular coordination of other morphogenetic movements via mechanical stress feedback mechanisms.
Collapse
Affiliation(s)
- Redowan A Niloy
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
| | - Michael C Holcomb
- Department of Physics and Geosciences, Angelo State University, San Angelo, Texas
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas; Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
32
|
Malhotra D, Fattahi E, Germann N, Flisikowska T, Schnieke A, Becker T. Skin substitutes based on gellan gum with mechanical and penetration compatibility to native human skin. J Biomed Mater Res A 2023; 111:1588-1599. [PMID: 37191205 DOI: 10.1002/jbm.a.37557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The study reports on a simple system to fabricate skin substitutes consisting of a naturally occurring bacterial polysaccharide gellan gum. Gelation was driven by the addition of a culture medium whose cations induced gellan gum crosslinking at physiological temperature, resulting in hydrogels. Human dermal fibroblasts were incorporated in these hydrogels and their mechanical, morphological, and penetration characteristics were studied. The mechanical properties were determined by means of oscillatory shear rheology, and a short linear viscoelastic regime was noted up to less than 1% of strain amplitude. The storage modulus increased with an increasing polymer concentration. The moduli were in the range noted for native human skin. After 2 weeks of fibroblast cultivation, the storage moduli showed signs of deterioration, so that a culture time of 2 weeks was proposed for further studies. Microscopic and fluorescent staining observations were documented. These depicted a crosslinked network structure in the hydrogels with a homogeneous distribution of cells and an assured cell viability of 2 weeks. H&E staining was also performed, which showed some traces of ECM formation in a few sections. Finally, caffeine penetration experiments were carried out with Franz diffusion cells. The hydrogels with a higher concentration of polymer containing cells showed an improved barrier function against caffeine compared to previously studied multicomponent hydrogels as well as commercially available 3D skin models. Therefore, these hydrogels displayed both mechanical and penetration compatibility with the ex vivo native human skin.
Collapse
Affiliation(s)
- Deepika Malhotra
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| | - Ehsan Fattahi
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| | - Natalie Germann
- Faculty 4 - Energy-, Process- and Bioengineering, Chair of Process Systems Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tatiana Flisikowska
- TUM School of Life Sciences Weihenstephan, Chair of Livestock Biotechnology, Technical University of Munich (TUM), Freising, Germany
| | - Angelika Schnieke
- TUM School of Life Sciences Weihenstephan, Chair of Livestock Biotechnology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
33
|
Rani S, Pervaiz N, Parsad D, Kumar R. Differential expression of extracellular matrix proteins in the lesional skin of vitiligo patients. Arch Dermatol Res 2023; 315:2393-2402. [PMID: 37209167 DOI: 10.1007/s00403-023-02628-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Skin pigmentation is regulated by intricate interaction of the dermis and epidermis. The extracellular components present in the dermis play a very important role in the maintenance of skin homeostasis. Therefore, our objective was to check the expression of various ECM components secreted by the dermal fibroblasts in the lesional skin and non-lesional skin of vitiligo patients. For this study, skin punch biopsies (4 mm) were collected from lesional skin (n = 12), non-lesional skin (n = 6) of non-segmental vitiligo patient's (NSV) and healthy control skin (n = 10). Masson's trichrome staining was performed to check the collagen fibre. The expression of collagen type 1, IV, elastin, fibronectin, E-cadherin and integrin β1 was checked by real-time PCR and immunohistochemistry. In this study, we demonstrated an increased expression of collagen type 1 in the lesional skin of vitiligo patients. The expression of collagen type IV, fibronectin, elastin and adhesion components such as E-cadherin and integrin β1 was observed to be significantly decreased in the lesional skin of NSV patients as compared to healthy control, whereas insignificant difference was observed between non-lesional and control skin. Increased expression of collagen type 1 in the lesional skin of vitiligo patients might be inhibiting the migration of melanocytes, whereas the decreased expression of elastin, collagen type IV, fibronectin, E-cadherins and integrins in the lesional skin may inhibit adhesion, migration, growth and differentiation of cells.
Collapse
Affiliation(s)
- Seema Rani
- Department of Zoology, Hindu Girls College, Sonepat, 131001, India
| | - Naveed Pervaiz
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Davinder Parsad
- Department of Dermatology Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ravinder Kumar
- Department of Zoology, Hindu Girls College, Sonepat, 131001, India.
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
34
|
Jin Q, Pandey D, Thompson CB, Lewis S, Sung HW, Nguyen TD, Kuo S, Wilson KL, Gracias DH, Romer LH. Acute downregulation of emerin alters actomyosin cytoskeleton connectivity and function. Biophys J 2023; 122:3690-3703. [PMID: 37254483 PMCID: PMC10541481 DOI: 10.1016/j.bpj.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Fetal lung fibroblasts contribute dynamic infrastructure for the developing lung. These cells undergo dynamic mechanical transitions, including cyclic stretch and spreading, which are integral to lung growth in utero. We investigated the role of the nuclear envelope protein emerin in cellular responses to these dynamic mechanical transitions. In contrast to control cells, which briskly realigned their nuclei, actin cytoskeleton, and extracellular matrices in response to cyclic stretch, fibroblasts that were acutely downregulated for emerin showed incomplete reorientation of both nuclei and actin cytoskeleton. Emerin-downregulated fibroblasts were also aberrantly circular in contrast to the spindle-shaped controls and exhibited an altered pattern of filamentous actin organization that was disconnected from the nucleus. Emerin knockdown was also associated with reduced myosin light chain phosphorylation during cell spreading. Interestingly, emerin-downregulated fibroblasts also demonstrated reduced fibronectin fibrillogenesis and production. These findings indicate that nuclear-cytoskeletal coupling serves a role in the dynamic regulation of cytoskeletal structure and function and may also impact the transmission of traction force to the extracellular matrix microenvironment.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Deepesh Pandey
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Carol B Thompson
- Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hyun Woo Sung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland; Microscope Facility, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David H Gracias
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland; Center for MicroPhysiological Systems, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
35
|
Ballard M, Marek A, Pierron F. The image-based ultrasonic cell shaking test. PLoS One 2023; 18:e0285906. [PMID: 37713387 PMCID: PMC10503762 DOI: 10.1371/journal.pone.0285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Mechanical signals play a vital role in cell biology and is a vast area of research. Thus, there is motivation to understand cell deformation and mechanobiological responses. However, the ability to controllably deform cells in the ultrasonic regime and test their response is a noted challenge throughout the literature. Quantifying and eliciting an appropriate stimulus has proven to be difficult, resulting in methods that are either too aggressive or oversimplified. Furthermore, the ability to gain a real-time insight into cell deformation and link this with the biological response is yet to be achieved. One application of this understanding is in ultrasonic surgical cutting, which is a promising alternative to traditional methods, but with little understanding of its effect on cells. Here we present the image based ultrasonic cell shaking test, a novel method that enables controllable loading of cells and quantification of their response to ultrasonic vibrations. Practically, this involves seeding cells on a substrate that resonates at ultrasonic frequencies and transfers the deformation to the cells. This is then incorporated into microscopic imaging techniques to obtain high-speed images of ultrasonic cell deformation that can be analysed using digital image correlation techniques. Cells can then be extracted after excitation to undergo analysis to understand the biological response to the deformation. This method could aid in understanding the effects of ultrasonic stimulation on cells and how activated mechanobiological pathways result in physical and biochemical responses.
Collapse
Affiliation(s)
- Miranda Ballard
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Aleksander Marek
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Fabrice Pierron
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Li Z, Li Q, Zhou C, Lu K, Liu Y, Xuan L, Wang X. Organoid-on-a-chip: Current challenges, trends, and future scope toward medicine. BIOMICROFLUIDICS 2023; 17:051505. [PMID: 37900053 PMCID: PMC10613095 DOI: 10.1063/5.0171350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
In vitro organoid models, typically defined as 3D multicellular aggregates, have been extensively used as a promising tool in drug screening, disease progression research, and precision medicine. Combined with advanced microfluidics technique, organoid-on-a-chip can flexibly replicate in vivo organs within the biomimetic physiological microenvironment by accurately regulating different parameters, such as fluid conditions and concentration gradients of biochemical factors. Since engineered organ reconstruction has opened a new paradigm in biomedicine, innovative approaches are increasingly required in micro-nano fabrication, tissue construction, and development of pharmaceutical products. In this Perspective review, the advantages and characteristics of organoid-on-a-chip are first introduced. Challenges in current organoid culture, extracellular matrix building, and device manufacturing techniques are subsequently demonstrated, followed by potential alternative approaches, respectively. The future directions and emerging application scenarios of organoid-on-a-chip are finally prospected to further satisfy the clinical demands.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
37
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
38
|
Lien JC, Wang YL. Cyclic stretching combined with cell-cell adhesion is sufficient for inducing cell intercalation. Biophys J 2023; 122:3146-3158. [PMID: 37408306 PMCID: PMC10432222 DOI: 10.1016/j.bpj.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Although the important role of cell intercalation within a collective has long been recognized particularly for morphogenesis, the underlying mechanism remains poorly understood. Here we investigate the possibility that cellular responses to cyclic stretching play a major role in this process. By applying synchronized imaging and cyclic stretching to epithelial cells cultured on micropatterned polyacrylamide (PAA) substrates, we discovered that uniaxial cyclic stretching induces cell intercalation along with cell shape change and cell-cell interfacial remodeling. The process involved intermediate steps as previously reported for cell intercalation during embryonic morphogenesis, including the appearance of cell vertices, anisotropic vertex resolution, and directional expansion of cell-cell interface. Using mathematical modeling, we further found that cell shape change in conjunction with dynamic cell-cell adhesions was sufficient to account for the observations. Further investigation with small-molecule inhibitors indicated that disruption of myosin II activities suppressed cyclic stretching-induced intercalation while inhibiting the appearance of oriented vertices. Inhibition of Wnt signaling did not suppress stretch-induced cell shape change but disrupted cell intercalation and vertex resolution. Our results suggest that cyclic stretching, by inducing cell shape change and reorientation in the presence of dynamic cell-cell adhesions, can induce at least some aspects of cell intercalation and that this process is dependent in distinct ways on myosin II activities and Wnt signaling.
Collapse
Affiliation(s)
- Jui-Chien Lien
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
39
|
Man K, Liu J, Liang C, Corona C, Story MD, Meckes B, Yang Y. Biomimetic Human Lung Alveolar Interstitium Chip with Extended Longevity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:36888-36898. [PMID: 37463843 DOI: 10.1021/acsami.3c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Determining the mechanistic causes of lung diseases, developing new treatments thereof, and assessing toxicity whether from chemical exposures or engineered nanomaterials would benefit significantly from a preclinical human lung alveolar interstitium model of physiological relevance. The existing preclinical models have limitations because they fail to replicate the key anatomical and physiological characteristics of human alveoli. Thus, a human lung alveolar interstitium chip was developed to imitate key alveolar microenvironmental factors including an electrospun nanofibrous membrane as the analogue of the basement membrane for co-culture of epithelial cells with fibroblasts embedded in 3D collagenous gels, physiologically relevant interstitial matrix stiffness, interstitial fluid flow, and 3D breathing-like mechanical stretch. The biomimetic chip substantially improved the epithelial barrier function compared to transwell models. Moreover, the chip having a gel made of a collagen I-fibrin blend as the interstitial matrix sustained the interstitium integrity and further enhanced the epithelial barrier, resulting in a longevity that extended beyond eight weeks. The assessment of multiwalled carbon nanotube toxicity on the chip was in line with the animal study.
Collapse
Affiliation(s)
- Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Cindy Liang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Christopher Corona
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Brian Meckes
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
40
|
Domaniza M, Hluchy M, Cizkova D, Humenik F, Slovinska L, Hudakova N, Hornakova L, Vozar J, Trbolova A. Two Amnion-Derived Mesenchymal Stem-Cells Injections to Osteoarthritic Elbows in Dogs-Pilot Study. Animals (Basel) 2023; 13:2195. [PMID: 37443993 DOI: 10.3390/ani13132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate the potential of cell-based regenerative therapy for elbow joints affected by osteoarthritis. Interest was focused on two intra-articular applications of amnion-derived mesenchymal stem cells (A-MSCs) to a group of different breeds of dogs with elbow osteoarthritis (13 joints). Two injections were performed 14 days apart. We evaluated synovial fluid biomarkers, such as IFN-γ, IL-6, IL-15, IL-10, MCP-1, TNF-α, and GM-CSF, by multiplex fluorescent micro-bead immunoassay in the treated group of elbows (n = 13) (day 0, day 14, and day 28) and in the control group of elbows (n = 9). Kinematic gait analysis determined the joint range of motion (ROM) before and after each A-MSCs application. Kinematic gait analysis was performed on day 0, day 14, and day 28. Kinematic gait analysis pointed out improvement in the average range of motion of elbow joints from day 0 (38.45 ± 5.74°), day 14 (41.7 ± 6.04°), and day 28 (44.78 ± 4.69°) with statistical significance (p < 0.05) in nine elbows. Correlation analyses proved statistical significance (p < 0.05) in associations between ROM (day 0, day 14, and day 28) and IFN-γ, IL-6, IL-15, MCP-1, TNF-α, and GM-CSF concentrations (day 0, day 14, and day 28). IFN-γ, IL-6, IL-15, MCP-1, GM-CSF, and TNF- α showed negative correlation with ROM at day 0, day 14, and day 28, while IL-10 demonstrated positive correlation with ROM. As a consequence of A-MSC application to the elbow joint, we detected a statistically significant (p < 0.05) decrease in concentration levels between day 0 and day 28 for IFN-γ, IL-6, and TNF-α and statistically significant increase for IL-10. Statistical significance (p < 0.05) was detected in TNF-α, IFN-γ, and GM-CSF concentrations between day 14 and the control group as well as at day 28 and the control group. IL-6 concentrations showed statistical significance (p < 0.05) between day 14 and the control group.
Collapse
Affiliation(s)
- Michal Domaniza
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Marian Hluchy
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L.Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lubica Hornakova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Alexandra Trbolova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
41
|
Caulk AW, Chatterjee M, Barr SJ, Contini EM. Mechanobiological considerations in colorectal stapling: Implications for technology development. Surg Open Sci 2023; 13:54-65. [PMID: 37159635 PMCID: PMC10163679 DOI: 10.1016/j.sopen.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/11/2023] Open
Abstract
Technological advancements in minimally invasive surgery have led to significant improvements in patient outcomes. One such technology is surgical stapling, which has evolved into a key component of many operating rooms by facilitating ease and efficacy in resection and repair of diseased or otherwise compromised tissue. Despite such advancements, adverse post-operative outcomes such as anastomotic leak remain a persistent problem in surgical stapling and its correlates (i.e., hand-sewing), most notably in low colorectal or coloanal procedures. Many factors may drive anastomotic leaks, including tissue perfusion, microbiome composition, and patient factors such as pre-existing disease. Surgical intervention induces complex acute and chronic changes to the mechanical environment of the tissue; however, roles of mechanical forces in post-operative healing remain poorly characterized. It is well known that cells sense and respond to their local mechanical environment and that dysfunction of this "mechanosensing" phenomenon contributes to a myriad of diseases. Mechanosensing has been investigated in wound healing contexts such as dermal incisional and excisional wounds and development of pressure ulcers; however, reports investigating roles of mechanical forces in adverse post-operative gastrointestinal wound healing are lacking. To understand this relationship well, it is critical to understand: 1) the intraoperative material responses of tissue to surgical intervention, and 2) the post-operative mechanobiological response of the tissue to surgically imposed forces. In this review, we summarize the state of the field in each of these contexts while highlighting areas of opportunity for discovery and innovation which can positively impact patient outcomes in minimally invasive surgery.
Collapse
|
42
|
Van Essen DC. Biomechanical models and mechanisms of cellular morphogenesis and cerebral cortical expansion and folding. Semin Cell Dev Biol 2023; 140:90-104. [PMID: 35840524 PMCID: PMC9942585 DOI: 10.1016/j.semcdb.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Morphogenesis of the nervous system involves a highly complex spatio-temporal pattern of physical forces (mainly tension and pressure) acting on cells and tissues that are pliable but have an intricately organized cytoskeletal infrastructure. This review begins by covering basic principles of biomechanics and the core cytoskeletal toolkit used to regulate the shapes of cells and tissues during embryogenesis and neural development. It illustrates how the principle of 'tensegrity' provides a useful conceptual framework for understanding how cells dynamically respond to forces that are generated internally or applied externally. The latter part of the review builds on this foundation in considering the development of mammalian cerebral cortex. The main focus is on cortical expansion and folding - processes that take place over an extended period of prenatal and postnatal development. Cortical expansion and folding are likely to involve many complementary mechanisms, some related to regulating cell proliferation and migration and others related to specific types and patterns of mechanical tension and pressure. Three distinct multi-mechanism models are evaluated in relation to a set of 18 key experimental observations and findings. The Composite Tension Plus (CT+) model is introduced as an updated version of a previous multi-component Differential Expansion Sandwich Plus (DES+) model (Van Essen, 2020); the new CT+ model includes 10 distinct mechanisms and has the greatest explanatory power among published models to date. Much needs to be done in order to validate specific mechanistic components and to assess their relative importance in different species, and important directions for future research are suggested.
Collapse
|
43
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Chuntharpursat-Bon E, Povstyan OV, Ludlow MJ, Carrier DJ, Debant M, Shi J, Gaunt HJ, Bauer CC, Curd A, Simon Futers T, Baxter PD, Peckham M, Muench SP, Adamson A, Humphreys N, Tumova S, Bon RS, Cubbon R, Lichtenstein L, Beech DJ. PIEZO1 and PECAM1 interact at cell-cell junctions and partner in endothelial force sensing. Commun Biol 2023; 6:358. [PMID: 37005489 PMCID: PMC10067937 DOI: 10.1038/s42003-023-04706-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.
Collapse
Affiliation(s)
| | | | | | - David J Carrier
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jian Shi
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - T Simon Futers
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Baxter
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antony Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Neil Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Cubbon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - David J Beech
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
45
|
Boot RC, Roscani A, van Buren L, Maity S, Koenderink GH, Boukany PE. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip. LAB ON A CHIP 2023; 23:1768-1778. [PMID: 36809459 PMCID: PMC10045894 DOI: 10.1039/d2lc01060g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 05/31/2023]
Abstract
Cell spheroids are in vitro multicellular model systems that mimic the crowded micro-environment of biological tissues. Their mechanical characterization can provide valuable insights in how single-cell mechanics and cell-cell interactions control tissue mechanics and self-organization. However, most measurement techniques are limited to probing one spheroid at a time, require specialized equipment and are difficult to handle. Here, we developed a microfluidic chip that follows the concept of glass capillary micropipette aspiration in order to quantify the viscoelastic behavior of spheroids in an easy-to-handle, more high-throughput manner. Spheroids are loaded in parallel pockets via a gentle flow, after which spheroid tongues are aspirated into adjacent aspiration channels using hydrostatic pressure. After each experiment, the spheroids are easily removed from the chip by reversing the pressure and new spheroids can be injected. The presence of multiple pockets with a uniform aspiration pressure, combined with the ease to conduct successive experiments, allows for a high throughput of tens of spheroids per day. We demonstrate that the chip provides accurate deformation data when working at different aspiration pressures. Lastly, we measure the viscoelastic properties of spheroids made of different cell lines and show how these are consistent with previous studies using established experimental techniques. In summary, our chip provides a high-throughput way to measure the viscoelastic deformation behavior of cell spheroids, in order to mechanophenotype different tissue types and examine the link between cell-intrinsic properties and overall tissue behavior.
Collapse
Affiliation(s)
- Ruben C Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Alessio Roscani
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Samadarshi Maity
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
46
|
Xie N, Xiao C, Shu Q, Cheng B, Wang Z, Xue R, Wen Z, Wang J, Shi H, Fan D, Liu N, Xu F. Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomater 2023; 159:1-20. [PMID: 36717048 DOI: 10.1016/j.actbio.2023.01.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
Mechanical cues in the cell microenvironment such as those from extracellular matrix properties, stretching, compression and shear stress, play a critical role in maintaining homeostasis. Upon sensing mechanical stimuli, cells can translate these external forces into intracellular biochemical signals to regulate their cellular behaviors, but the specific mechanisms of mechanotransduction at the molecular level remain elusive. As a subfamily of the Ras superfamily, Rho GTPases have been recognized as key intracellular mechanotransduction mediators that can regulate multiple cell activities such as proliferation, migration and differentiation as well as biological processes such as cytoskeletal dynamics, metabolism, and organ development. However, the upstream mechanosensors for Rho proteins and downstream effectors that respond to Rho signal activation have not been well illustrated. Moreover, Rho-mediated mechanical signals in previous studies are highly context-dependent. In this review, we systematically summarize the types of mechanical cues in the cell microenvironment and provide recent advances on the roles of the Rho-based mechanotransduction in various cell activities, physiological processes and diseases. Comprehensive insights into the mechanical roles of Rho GTPase partners would open a new paradigm of mechanomedicine for a variety of diseases. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical role of Rho GTPases as signal mediators to respond to physical cues in microenvironment. This article will add a distinct contribution to this set of knowledge by intensively addressing the relationship between Rho signaling and mechanobiology/mechanotransduction/mechanomedcine. This topic has not been discussed by the journal, nor has it yet been developed by the field. The comprehensive picture that will develop, from molecular mechanisms and engineering methods to disease treatment strategies, represents an important and distinct contribution to the field. We hope that this review would help researchers in various fields, especially clinicians, oncologists and bioengineers, who study Rho signal pathway and mechanobiology/mechanotransduction, understand the critical role of Rho GTPase in mechanotransduction.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runxin Xue
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhang Wen
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi 710049, China.
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
47
|
Lee W, Boghdady CM, Lelarge V, Leask RL, McCaffrey L, Moraes C. Ultrasoft edge-labelled hydrogel sensors reveal internal tissue stress patterns in invasive engineered tumors. Biomaterials 2023; 296:122073. [PMID: 36905756 DOI: 10.1016/j.biomaterials.2023.122073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Measuring internal mechanical stresses within 3D tissues can provide important insights into drivers of morphogenesis and disease progression. Cell-sized hydrogel microspheres have recently emerged as a powerful technique to probe tissue mechanobiology, as they can be sufficiently soft as to deform within remodelling tissues, and optically imaged to measure internal stresses. However, measuring stresses at resolutions of ∼10 Pa requires ultrasoft, low-polymer content hydrogel formulations that are challenging to label with sufficiently fluorescent materials to support repeated measurements, particularly in optically dense tissues over 100 μm thick, as required in cancer tumor models. Here, we leverage thermodynamic partitioning of hydrogel components to create "edge-labelled" ultrasoft hydrogel microdroplets, in a single polymerization step. Bright and stable fluorescent nanoparticles preferentially polymerize at the hydrogel droplet interface, and can be used to repeatedly track sensor surfaces over long-term experiments, even when embedded deep in light-scattering tissues. We utilize these edge-labelled microspherical stress gauges (eMSGs) in inducible breast cancer tumor models of invasion, and demonstrate distinctive internal stress patterns that arise from cell-matrix interactions at different stages of breast cancer progression. Our studies demonstrate a long-term macroscale compaction of the tumor during matrix encapsulation, but only a short-term increase in local stress as non-invasive tumors rapidly make small internal reorganizations that reduce the mechanical stress to baseline levels. In contrast, once invasion programs are initiated, internal stress throughout the tumor is negligible. These findings suggest that internal tumor stresses may initially prime the cells to invade, but are lost once invasion occurs. Together, this work demonstrates that mapping internal mechanical stress in tumors may have utility in advancing cancer prognostic strategies, and that eMSGs can have broad utility in understanding dynamic mechanical processes of disease and development.
Collapse
Affiliation(s)
- Wontae Lee
- Department of Chemical Engineering, McGill University, Montréal H3A 0C5 QC, Canada
| | | | - Virginie Lelarge
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal H3A 1A3 QC, Canada
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montréal H3A 0C5 QC, Canada; McGill University Health Centre, Montréal H4A 3J1 QC, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal H3A 1A3 QC, Canada; Division of Experimental Medicine, McGill University, Montréal H4A 3J1 QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal H4A 3T2, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montréal H3A 0C5 QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal H3A 1A3 QC, Canada; Division of Experimental Medicine, McGill University, Montréal H4A 3J1 QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal H3A 2B4 QC, Canada.
| |
Collapse
|
48
|
Zhou P, Ding L, Yan Y, Wang Y, Su B. Recent advances in label-free imaging of cell-matrix adhesions. Chem Commun (Camb) 2023; 59:2341-2351. [PMID: 36744880 DOI: 10.1039/d2cc06499e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesions play an essential role in mediating and regulating many biological processes. The adhesion receptors, typically transmembrane integrins, provide dynamic correlations between intracellular environments and extracellular matrixes (ECMs) by bi-directional signaling. In-depth investigations of cell-matrix adhesion and integrin-mediated cell adhesive force are of great significance in biology and medicine. The emergence of advanced imaging techniques and principles has facilitated the understanding of the molecular composition and structure dynamics of cell-matrix adhesions, especially the label-free imaging methods that can be used to study living cell dynamics without immunofluorescence staining. This highlight article aims to give an overview of recent developments in imaging cell-matrix adhesions in a label-free manner. Electrochemiluminescence microscopy (ECLM) and surface plasmon resonance microscopy (SPRM) are briefly introduced and their applications in imaging analysis of cell-matrix adhesions are summarized. Then we highlight the advances in mapping cell-matrix adhesion force based on molecular tension probes and fluorescence microscopy (collectively termed as MTFM). The biomaterials including polyethylene glycol (PEG), peptides and DNA for constructing tension probes in MTFM are summarized. Finally, the outlook and perspectives on the further developments of cell-matrix adhesion imaging are presented.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Cohen R, Taiber S, Loza O, Kasirer S, Woland S, Sprinzak D. Precise alternating cellular pattern in the inner ear by coordinated hopping intercalations and delaminations. SCIENCE ADVANCES 2023; 9:eadd2157. [PMID: 36812313 DOI: 10.1126/sciadv.add2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The mammalian hearing organ, the organ of Corti, is one of the most organized tissues in mammals. It contains a precisely positioned array of alternating sensory hair cells (HCs) and nonsensory supporting cells. How such precise alternating patterns emerge during embryonic development is not well understood. Here, we combine live imaging of mouse inner ear explants with hybrid mechano-regulatory models to identify the processes that underlie the formation of a single row of inner hair cells (IHCs). First, we identify a previously unobserved morphological transition, termed "hopping intercalation," that allows cells differentiating toward IHC fate to "hop" under the apical plane into their final position. Second, we show that out-of-row cells with low levels of the HC marker Atoh1 delaminate. Last, we show that differential adhesion between cell types contributes to straightening of the IHC row. Our results support a mechanism for precise patterning based on coordination between signaling and mechanical forces that is likely relevant for many developmental processes.
Collapse
Affiliation(s)
- Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Loza
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Kasirer
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Woland
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
50
|
Pizzolitto C, Scognamiglio F, Sacco P, Lipari S, Romano M, Donati I, Marsich E. Immediate stress dissipation in dual cross-link hydrogels controls osteogenic commitment of mesenchymal stem cells. Carbohydr Polym 2023; 302:120369. [PMID: 36604049 DOI: 10.1016/j.carbpol.2022.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
In vitro studies of mesenchymal stem cells (MSCs) differentiation have been predominantly performed with non-physiologically elastic materials. Here we report the effect of different viscoplastic ECM mimics on the osteogenic engagement of MSCs in 2D. We have developed soft hydrogels, composed of a lactose-modified chitosan, using a combination of permanent and temporary cross-links. The presence of temporary cross-links has a minor effect on the shear modulus of the hydrogels, but causes an immediate relaxation (dissipation) of the applied stress. This material property leads to early osteogenic commitment of MSCs, as evidenced by gene expression of runt-related transcription factor 2 (RUNX2), type 1 collagen (COL1A1), osteocalcin (OCN), alkaline phosphatase enzyme activity (ALP) and calcium deposit formation. In contrast, cells cultured on purely elastic hydrogels with only permanent cross-link begin to differentiate only after a longer period of time, indicating a dissipation-mediated mechano-sensing in the osteogenic commitment of MSCs.
Collapse
Affiliation(s)
- Chiara Pizzolitto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Francesca Scognamiglio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Pasquale Sacco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy; Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy.
| | - Sara Lipari
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| |
Collapse
|