1
|
Brooks PM, Lewis P, Million-Perez S, Yandulskaya AS, Khalil M, Janes M, Porco J, Walker E, Meyers JR. Pharmacological reprogramming of zebrafish lateral line supporting cells to a migratory progenitor state. Dev Biol 2024; 512:70-88. [PMID: 38729405 DOI: 10.1016/j.ydbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.
Collapse
Affiliation(s)
- Paige M Brooks
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Parker Lewis
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Sara Million-Perez
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Anastasia S Yandulskaya
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Mahmoud Khalil
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Meredith Janes
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Joseph Porco
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Eleanor Walker
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Jason R Meyers
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
2
|
Olson HM, Maxfield A, Calistri NL, Heiser LM, Qian W, Knaut H, Nechiporuk AV. RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration. Development 2024; 151:dev201898. [PMID: 38165177 PMCID: PMC10820872 DOI: 10.1242/dev.201898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of ∼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
Collapse
Affiliation(s)
- Hannah M. Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amanda Maxfield
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| | - Nicholas L. Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Biomedical Engineering Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laura M. Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Weiyi Qian
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alex V. Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
3
|
Sato K. A cell membrane model that reproduces cortical flow-driven cell migration and collective movement. Front Cell Dev Biol 2023; 11:1126819. [PMID: 37427380 PMCID: PMC10328438 DOI: 10.3389/fcell.2023.1126819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Many fundamental biological processes are dependent on cellular migration. Although the mechanical mechanisms of single-cell migration are relatively well understood, those underlying migration of multiple cells adhered to each other in a cluster, referred to as cluster migration, are poorly understood. A key reason for this knowledge gap is that many forces-including contraction forces from actomyosin networks, hydrostatic pressure from the cytosol, frictional forces from the substrate, and forces from adjacent cells-contribute to cell cluster movement, making it challenging to model, and ultimately elucidate, the final result of these forces. This paper describes a two-dimensional cell membrane model that represents cells on a substrate with polygons and expresses various mechanical forces on the cell surface, keeping these forces balanced at all times by neglecting cell inertia. The model is discrete but equivalent to a continuous model if appropriate replacement rules for cell surface segments are chosen. When cells are given a polarity, expressed by a direction-dependent surface tension reflecting the location dependence of contraction and adhesion on a cell boundary, the cell surface begins to flow from front to rear as a result of force balance. This flow produces unidirectional cell movement, not only for a single cell but also for multiple cells in a cluster, with migration speeds that coincide with analytical results from a continuous model. Further, if the direction of cell polarity is tilted with respect to the cluster center, surface flow induces cell cluster rotation. The reason why this model moves while keeping force balance on cell surface (i.e., under no net forces from outside) is because of the implicit inflow and outflow of cell surface components through the inside of the cell. An analytical formula connecting cell migration speed and turnover rate of cell surface components is presented.
Collapse
|
4
|
Tang D, Lu Y, Zuo N, Yan R, Wu C, Wu L, Liu S, He Y. The H3K27 demethylase controls the lateral line embryogenesis of zebrafish. Cell Biol Toxicol 2023; 39:1137-1152. [PMID: 34716527 PMCID: PMC10406677 DOI: 10.1007/s10565-021-09669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kdm6b, a specific histone 3 lysine 27 (H3K27) demethylase, has been reported to be implicated in a variety of developmental processes including cell differentiation and cell fate determination and multiple organogenesis. Here, we regulated the transcript level of kdm6bb to study the potential role in controlling the hearing organ development of zebrafish. METHODS A morpholino antisense oligonucleotide (MO) strategy was used to induce Kdm6b deficiency; immunohistochemical staining and in situ hybridization analysis were conducted to figure out the morphologic alterations and embryonic mechanisms. RESULTS Kdm6bb is expressed in the primordium and neuromasts at the early stage of zebrafish embryogenesis, suggesting a potential function of Kdm6b in the development of mechanosensory organs. Knockdown of kdm6bb severely influences the cell migration and proliferation in posterior lateral line primordium, abates the number of neuromasts along the trunk, and mRNA-mediated rescue test can partially renew the neuromasts. Loss of kdm6bb might be related to aberrant expressions of chemokine genes encompassing cxcl12a and cxcr4b/cxcr7b in the migrating primordium. Moreover, inhibition of kdm6bb reduces the expression of genes in Fgf signaling pathway, while it increases the axin2 and lef1 expression level of Wnt/β-catenin signaling during the migrating stage. CONCLUSIONS Collectively, our results revealed that Kdm6b plays an essential role in guiding the migration of primordium and in regulating the deposition of zebrafish neuromasts by mediating the gene expression of chemokines and Wnt and Fgf signaling pathway. Since histone methylation and demethylation are reversible, targeting Kdm6b may present as a novel therapeutic regimen for hearing disorders.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yitong Lu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China.
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Olson HM, Maxfield A, Calistri NL, Heiser LM, Nechiporuk AV. RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537573. [PMID: 37131612 PMCID: PMC10153259 DOI: 10.1101/2023.04.19.537573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During development, multicellular rosettes serve as important cellular intermediates in the formation of diverse organ systems. Multicellular rosettes are transient epithelial structures that are defined by the apical constriction of cells towards the rosette center. Due to the important role these structures play during development, understanding the molecular mechanisms by which rosettes are formed and maintained is of high interest. Utilizing the zebrafish posterior lateral line primordium (pLLP) as a model system, we identify the RhoA GEF Mcf2lb as a regulator of rosette integrity. The pLLP is a group of ~150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Given the known role of RhoA in rosette formation, we asked whether Mcf2lb plays a role in regulating apical constriction of cells within rosettes. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This in turn resulted in a unique posterior Lateral Line phenotype: an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are normally polarized. In contrast, signaling components that mediate apical constriction downstream of RhoA, Rock-2a and non-muscle Myosin II were diminished apically. Altogether our results suggest a model whereby Mcf2lb activates RhoA, which in turn activates downstream signaling machinery to induce and maintain apical constriction in cells incorporated into rosettes.
Collapse
Affiliation(s)
- Hannah M. Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, Oregon, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda Maxfield
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, Oregon, USA
| | - Nicholas L. Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Biomedical Engineering Graduate Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura M. Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Alex V. Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
6
|
Comelles J, Fernández-Majada V, Acevedo V, Rebollo-Calderon B, Martínez E. Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance. Mater Today Bio 2023; 19:100593. [PMID: 36923364 PMCID: PMC10009736 DOI: 10.1016/j.mtbio.2023.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.
Collapse
Affiliation(s)
- Jordi Comelles
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| | - Vanesa Fernández-Majada
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), Feixa Llarga, 08907, L'Hospitalet de Llobregat, Spain
| | - Verónica Acevedo
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Beatriz Rebollo-Calderon
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Thiagarajan R, Bhat A, Salbreux G, Inamdar MM, Riveline D. Pulsations and flows in tissues as two collective dynamics with simple cellular rules. iScience 2022; 25:105053. [PMID: 36204277 PMCID: PMC9531052 DOI: 10.1016/j.isci.2022.105053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/23/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Collective motions of epithelial cells are essential for morphogenesis. Tissues elongate, contract, flow, and oscillate, thus sculpting embryos. These tissue level dynamics are known, but the physical mechanisms at the cellular level are unclear. Here, we demonstrate that a single epithelial monolayer of MDCK cells can exhibit two types of local tissue kinematics, pulsations and long range coherent flows, characterized by using quantitative live imaging. We report that these motions can be controlled with internal and external cues such as specific inhibitors and substrate friction modulation. We demonstrate the associated mechanisms with a unified vertex model. When cell velocity alignment and random diffusion of cell polarization are comparable, a pulsatile flow emerges whereas tissue undergoes long-range flows when velocity alignment dominates which is consistent with cytoskeletal dynamics measurements. We propose that environmental friction, acto-myosin distributions, and cell polarization kinetics are important in regulating dynamics of tissue morphogenesis. Two collective cell motions, pulsations and flows, coexist in MDCK monolayers Each collective movement is identified using divergence and velocity correlations Motion is controlled by the regulation of substrate friction and cytoskeleton A vertex model recapitulates the motion by tuning velocity and polarity alignment
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Alka Bhat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | | | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Corresponding author
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Corresponding author
| |
Collapse
|
8
|
Lin MJ, Lee CM, Hsu WL, Chen BC, Lee SJ. Macrophages Break Interneuromast Cell Quiescence by Intervening in the Inhibition of Schwann Cells in the Zebrafish Lateral Line. Front Cell Dev Biol 2022; 10:907863. [PMID: 35846366 PMCID: PMC9285731 DOI: 10.3389/fcell.2022.907863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In the zebrafish lateral line system, interneuromast cells (INCs) between neuromasts are kept quiescent by underlying Schwann cells (SWCs). Upon severe injuries that cause the complete loss of an entire neuromast, INCs can occasionally differentiate into neuromasts but how they escape from the inhibition by SWCs is still unclear. Using a genetic/chemical method to ablate a neuromast precisely, we found that a small portion of larvae can regenerate a new neuromast. However, the residual regeneration capacity was hindered by inhibiting macrophages. Using in toto imaging, we further discovered heterogeneities in macrophage behavior and distribution along the lateral line. We witnessed the crawling of macrophages between the injured lateral line and SWCs during regeneration and between the second primordium and the first mature lateral line during development. It implies that macrophages may physically alleviate the nerve inhibition to break the dormancy of INCs during regeneration and development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.
| | - Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, R.O.C.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, R.O.C.
- *Correspondence: Shyh-Jye Lee,
| |
Collapse
|
9
|
Tang D, Zheng S, Zheng Z, Liu C, Zhang J, Yan R, Wu C, Zuo N, Wu L, Xu H, Liu S, He Y. Dnmt1 is required for the development of auditory organs via cell cycle arrest and Fgf signalling. Cell Prolif 2022; 55:e13225. [PMID: 35352419 PMCID: PMC9136517 DOI: 10.1111/cpr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To explore the role of DNA methyltransferase 1 (DNMT1) in the development of auditory system using zebrafish as experimental model. Methods Morpholino oligonucleotide was used to induce Dnmt1 deficiency. RNA sequencing, in situ hybridization (ISH), whole genomic bisulfide sequencing (WGBS) and immunostaining were used to investigate the morphologic alterations and mechanisms. Results We found that downregulation of Dnmt1 induced decreased number of neuromasts and repressed cell proliferation of primordium in the developing posterior lateral line system of zebrafish. The ISH data uncovered that Fgf signalling pathway was inhibited and the expression of chemokine members cxcr4b, cxcr7b and cxcl12a were interfered, while lef1 expression was increased after inhibiting Dnmt1. Additionally, Dnmt1 downregulation led to malformed otoliths and deformed semicircular canals, and hair cell differentiation in utricle and saccule was inhibited severely. The in situ staining of otic placode markers pax2/5 and fgf 3/8/10 was decreased when Dnmt1 downregulated. The WGBS analysis demonstrated that the global methylation status was markedly downregulated, and cell cycle genes were among those most differently expressed between Dnmt1 morphants and the controls. Further ISH analysis confirmed the findings by RNA‐seq and WGBS assay that cdkn1a and tp53 were both upregulated after knockdown of Dnmt1. Conclusion Our results revealed that Dnmt1 is essential for the development of zebrafish auditory organ through regulating cell cycle genes together with Wnt and Fgf signalling pathways.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Shimei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhiwei Zheng
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Chang Liu
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Jiner Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
11
|
Seleit A, Ansai S, Yamahira K, Masengi KWA, Naruse K, Centanin L. Diversity of lateral line patterns and neuromast numbers in the genus Oryzias. J Exp Biol 2021; 224:273715. [PMID: 34897518 DOI: 10.1242/jeb.242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
A remarkable diversity of lateral line patterns exists in adult teleost fishes, the basis of which is largely unknown. By analysing the lateral line patterns and organ numbers in 29 Oryzias species and strains we report a rapid diversification of the lateral line system within this genus. We show a strong dependence of lateral line elaboration (number of neuromasts per cluster, number of parallel lateral lines) on adult species body size irrespective of phylogenetic relationships. In addition, we report that the degree of elaboration of the anterior lateral line, posterior lateral line and caudal neuromast clusters is tightly linked within species, arguing for a globally coordinated mechanism controlling lateral line organ numbers and patterns. We provide evidence for a polygenic control over neuromast numbers and positioning in the genus Oryzias. Our data also indicate that the diversity in lateral lines can arise as a result of differences in patterning both during embryonic development and post-embryonically, where simpler embryonic patterns generate less complex adult patterns and organ numbers, arguing for a linkage between the two processes.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, 69120Heidelberg, Germany
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, 95115 Manado, Indonesia
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Sampedro MF, Miño GL, Galetto CD, Sigot V. Spatio-temporal analysis of collective migration in vivoby particle image velocimetry. Phys Biol 2021; 18. [PMID: 34633306 DOI: 10.1088/1478-3975/ac2e71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
Collective cell migration drives the formation of complex organ systems as well as certain tumour invasions and wound healing processes. A characteristic feature of many migrating collectives is tissue-scale polarity, whereby 'leader' cells at the tissue edge guide 'followers' cells that become assembled into polarized epithelial tissues. In this study, we employed particle image velocimetry (PIV) as a tool to quantitate local dynamics underlying the migration of the posterior lateral line primordium (pLLP) in zebrafish at a short time scale. Epithelial cadherin-EGFP was the fluorescent tracer in time-lapse images for PIV analysis. At the tissue level, global speed and directionality of the primordium were extracted from spatially averaged velocity fields. Interestingly, fluctuating velocity patterns evolve at the mesoscale level, which distinguishes the pseudo-mesenchymal leading front from the epithelialized trailing edge, and superimpose to the global deceleration of the whole primordium during the separation of a protoneuromast. Local velocity fields obtained by PIV proved sensitive to estimate the migration speed and directionality of the pLLP in zebrafish, predicting protoneuromast separation at short time scales. Finally, the PIV approach may be suitable for analysing the dynamics of otherin vivomodels of collective migration.
Collapse
Affiliation(s)
- María F Sampedro
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET-UNER), CP 3100 Oro Verde, Argentina.,Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| | - Gastón L Miño
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET-UNER), CP 3100 Oro Verde, Argentina.,Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina.,Grupo de Investigación en Microfluídica (GIM), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| | - Carolina D Galetto
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| | - Valeria Sigot
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET-UNER), CP 3100 Oro Verde, Argentina.,Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| |
Collapse
|
13
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
14
|
Seleit A, Gross K, Onistschenko J, Hoang OP, Theelke J, Centanin L. Local tissue interactions govern pLL patterning in medaka. Dev Biol 2021; 481:1-13. [PMID: 34517003 DOI: 10.1016/j.ydbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Vertebrate organs are arranged in a stereotypic, species-specific position along the animal body plan. Substantial morphological variation exists between related species, especially so in the vastly diversified teleost clade. It is still unclear how tissues, organs and systems can accommodate such diverse scaffolds. Here, we use the distinctive arrangement of neuromasts in the posterior lateral line (pLL) system of medaka fish to address the tissue-interactions defining a pattern. We show that patterning in this peripheral nervous system is established by autonomous organ precursors independent of neuronal wiring. In addition, we target the keratin 15 gene to generate stuck-in-the-midline (siml) mutants, which display epithelial lesions and a disrupted pLL patterning. By using siml/wt chimeras, we determine that the aberrant siml pLL pattern depends on the mutant epithelium, since a wild type epithelium can rescue the siml phenotype. Inducing epithelial lesions by 2-photon laser ablation during pLL morphogenesis phenocopies siml genetic mutants and reveals that epithelial integrity defines the final position of the embryonic pLL neuromasts. Our results using the medaka pLL disentangle intrinsic from extrinsic properties during the establishment of a sensory system. We speculate that intrinsic programs guarantee proper organ morphogenesis, while instructive interactions from surrounding tissues facilitates the accommodation of sensory organs to the diverse body plans found among teleosts.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Karen Gross
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Jasmin Onistschenko
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Oi Pui Hoang
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Jonas Theelke
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. To Better Generate Organoids, What Can We Learn From Teratomas? Front Cell Dev Biol 2021; 9:700482. [PMID: 34336851 PMCID: PMC8324104 DOI: 10.3389/fcell.2021.700482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jinlin Du
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
16
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Stock J, Pauli A. Self-organized cell migration across scales - from single cell movement to tissue formation. Development 2021; 148:148/7/dev191767. [PMID: 33824176 DOI: 10.1242/dev.191767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.
Collapse
Affiliation(s)
- Jessica Stock
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
18
|
Grimbert S, Mastronardi K, Richard V, Christensen R, Law C, Zardoui K, Fay D, Piekny A. Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo. Dev Biol 2021; 471:49-64. [PMID: 33309948 PMCID: PMC8597047 DOI: 10.1016/j.ydbio.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Complex structures derived from multiple tissue types are challenging to study in vivo, and our knowledge of how cells from different tissues are coordinated is limited. Model organisms have proven invaluable for improving our understanding of how chemical and mechanical cues between cells from two different tissues can govern specific morphogenetic events. Here we used Caenorhabditis elegans as a model system to show how cells from three different tissues are coordinated to give rise to the anterior lumen. While some aspects of pharyngeal morphogenesis have been well-described, it is less clear how cells from the pharynx, epidermis and neuroblasts coordinate to define the location of the anterior lumen and supporting structures. Using various microscopy and software approaches, we define the movements and patterns of these cells during anterior morphogenesis. Projections from the anterior-most pharyngeal cells (arcade cells) provide the first visible markers for the location of the future lumen, and facilitate patterning of the surrounding neuroblasts. These neuroblast patterns control the rate of migration of the anterior epidermal cells, whereas the epidermal cells ultimately reinforce and control the position of the future lumen, as they must join with the pharyngeal cells for their epithelialization. Our studies are the first to characterize anterior morphogenesis in C. elegans in detail and should lay the framework for identifying how these different patterns are controlled at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Karina Mastronardi
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Victoria Richard
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, NIH/NIBIB, 13 South Drive, Bethesda, MD, 20892, USA
| | - Christopher Law
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Khashayar Zardoui
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - David Fay
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
19
|
Dries R, Lange A, Heiny S, Berghaus KI, Bastmeyer M, Bentrop J. Cell Proliferation and Collective Cell Migration During Zebrafish Lateral Line System Development Are Regulated by Ncam/Fgf-Receptor Interactions. Front Cell Dev Biol 2021; 8:591011. [PMID: 33520983 PMCID: PMC7841142 DOI: 10.3389/fcell.2020.591011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior lateral line system (pLLS) of aquatic animals comprises small clustered mechanosensory organs along the side of the animal. They develop from proneuromasts, which are deposited from a migratory primordium on its way to the tip of the tail. We here show, that the Neural Cell Adhesion Molecule Ncam1b is an integral part of the pathways initiating and regulating the development of the pLLS in zebrafish. We find that morpholino-knockdowns of ncam1b (i) reduce cell proliferation within the primordium, (ii) reduce the expression of Fgf target gene erm, (iii) severely affect proneuromast formation, and (iv) affect primordium migration. Ncam1b directly interacts with Fgf receptor Fgfr1a, and a knockdown of fgfr1a causes similar phenotypic changes as observed in ncam1b-morphants. We conclude that Ncam1b is involved in activating proliferation by triggering the expression of erm. In addition, we demonstrate that Ncam1b is required for the expression of chemokine receptor Cxcr7b, which is crucial for directed primordial migration. Finally, we show that the knockdown of ncam1b destabilizes proneuromasts, suggesting a further function of Ncam1b in strengthening the cohesion of proneuromast cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joachim Bentrop
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
20
|
A hybrid integro-differential model for the early development of the zebrafish posterior lateral line. J Theor Biol 2021; 514:110578. [PMID: 33417902 DOI: 10.1016/j.jtbi.2020.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
The aim of this work is to provide a mathematical model to describe the early stages of the embryonic development of zebrafish posterior lateral line (PLL). In particular, we focus on evolution of PLL proto-organ (said primordium), from its formation to the beginning of the cyclical behavior that amounts in the assembly of immature proto-neuromasts towards its caudal edge accompanied by the deposition of mature proto-neuromasts at its rostral region. Our approach has an hybrid integro-differential nature, since it integrates a microscopic/discrete particle-based description for cell dynamics and a continuous description for the evolution of the spatial distribution of chemical substances (i.e., the stromal-derived factor SDF1a and the fibroblast growth factor FGF10). Boolean variables instead implement the expression of molecular receptors (i.e., Cxcr4/Cxcr7 and fgfr1). Cell phenotypic transitions and proliferation are included as well. The resulting numerical simulations show that the model is able to qualitatively and quantitatively capture the evolution of the wild-type (i.e., normal) embryos as well as the effect of known experimental manipulations. In particular, it is shown that cell proliferation, intercellular adhesion, FGF10-driven dynamics, and a polarized expression of SDF1a receptors are all fundamental for the correct development of the zebrafish posterior lateral line.
Collapse
|
21
|
Kong D, Großhans J. Planar Cell Polarity and E-Cadherin in Tissue-Scale Shape Changes in Drosophila Embryos. Front Cell Dev Biol 2020; 8:619958. [PMID: 33425927 PMCID: PMC7785826 DOI: 10.3389/fcell.2020.619958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Planar cell polarity and anisotropic cell behavior play critical roles in large-scale epithelial morphogenesis, homeostasis, wound repair, and regeneration. Cell-Cell communication and mechano-transduction in the second to minute scale mediated by E-cadherin complexes play a central role in the coordination and self-organization of cellular activities, such as junction dynamics, cell shape changes, and cell rearrangement. Here we review the current understanding in the interplay of cell polarity and cell dynamics during body axis elongation and dorsal closure in Drosophila embryos with a focus on E-cadherin dynamics in linking cell and tissue polarization and tissue-scale shape changes.
Collapse
Affiliation(s)
- Deqing Kong
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
22
|
Dalle Nogare DE, Natesh N, Vishwasrao HD, Shroff H, Chitnis AB. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. eLife 2020; 9:58251. [PMID: 33237853 PMCID: PMC7688310 DOI: 10.7554/elife.58251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian E Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Naveen Natesh
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States.,Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
23
|
He J, Zheng Z, Luo X, Hong Y, Su W, Cai C. Histone Demethylase PHF8 Is Required for the Development of the Zebrafish Inner Ear and Posterior Lateral Line. Front Cell Dev Biol 2020; 8:566504. [PMID: 33330448 PMCID: PMC7719749 DOI: 10.3389/fcell.2020.566504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Histone demethylase PHF8 is crucial for multiple developmental processes, and hence, the awareness of its function in developing auditory organs needs to be increased. Using in situ hybridization (ISH) labeling, the mRNA expression of PHF8 in the zebrafish lateral line system and otic vesicle was monitored. The knockdown of PHF8 by morpholino significantly disrupted the development of the posterior lateral line system, which impacted cell migration and decreased the number of lateral line neuromasts. The knockdown of PHF8 also resulted in severe malformation of the semicircular canal and otoliths in terms of size, quantity, and position during the inner ear development. The loss of function of PHF8 also induced a defective differentiation in sensory hair cells in both lateral line neuromasts and the inner ear. ISH analysis of embryos that lacked PHF8 showed alterations in the expression of many target genes of several signaling pathways concerning cell migration and deposition, including the Wnt and FGF pathways. In summary, the current findings established PHF8 as a novel epigenetic element in developing auditory organs, rendering it a potential candidate for hearing loss therapy.
Collapse
Affiliation(s)
- Jing He
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Zhiwei Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xianyang Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Yongjun Hong
- Department of Otorhinolaryngology, Zhongshan Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, China
| | - Wenling Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Chengfu Cai
- Department of Otorhinolaryngology, Zhongshan Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, China.,Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| |
Collapse
|
24
|
Olson HM, Nechiporuk AV. Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish. Dev Biol 2020; 469:125-134. [PMID: 33096063 DOI: 10.1016/j.ydbio.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/09/2023]
Abstract
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 cells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.
Collapse
Affiliation(s)
- Hannah M Olson
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Alex V Nechiporuk
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
25
|
Colombi A, Scianna M, Preziosi L. Collective migration and patterning during early development of zebrafish posterior lateral line. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190385. [PMID: 32713304 DOI: 10.1098/rstb.2019.0385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The morphogenesis of zebrafish posterior lateral line (PLL) is a good predictive model largely used in biology to study cell coordinated reorganization and collective migration regulating pathologies and human embryonic processes. PLL development involves the formation of a placode formed by epithelial cells with mesenchymal characteristics which migrates within the animal myoseptum while cyclically assembling and depositing rosette-like clusters (progenitors of neuromast structures). The overall process mainly relies on the activity of specific diffusive chemicals, which trigger collective directional migration and patterning. Cell proliferation and cascade of phenotypic transitions play a fundamental role as well. The investigation on the mechanisms regulating such a complex morphogenesis has become a research topic, in the last decades, also for the mathematical community. In this respect, we present a multiscale hybrid model integrating a discrete approach for the cellular level and a continuous description for the molecular scale. The resulting numerical simulations are then able to reproduce both the evolution of wild-type (i.e. normal) embryos and the pathological behaviour resulting form experimental manipulations involving laser ablation. A qualitative analysis of the dependence of these model outcomes from cell-cell mutual interactions, cell chemical sensitivity and internalization rates is included. The aim is first to validate the model, as well as the estimated parameter values, and then to predict what happens in situations not tested yet experimentally. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Annachiara Colombi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
26
|
Hartmann J, Wong M, Gallo E, Gilmour D. An image-based data-driven analysis of cellular architecture in a developing tissue. eLife 2020; 9:e55913. [PMID: 32501214 PMCID: PMC7274788 DOI: 10.7554/elife.55913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
Quantitative microscopy is becoming increasingly crucial in efforts to disentangle the complexity of organogenesis, yet adoption of the potent new toolbox provided by modern data science has been slow, primarily because it is often not directly applicable to developmental imaging data. We tackle this issue with a newly developed algorithm that uses point cloud-based morphometry to unpack the rich information encoded in 3D image data into a straightforward numerical representation. This enabled us to employ data science tools, including machine learning, to analyze and integrate cell morphology, intracellular organization, gene expression and annotated contextual knowledge. We apply these techniques to construct and explore a quantitative atlas of cellular architecture for the zebrafish posterior lateral line primordium, an experimentally tractable model of complex self-organized organogenesis. In doing so, we are able to retrieve both previously established and novel biologically relevant patterns, demonstrating the potential of our data-driven approach.
Collapse
Affiliation(s)
- Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Mie Wong
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
| | - Elisa Gallo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | - Darren Gilmour
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
27
|
Jara-Wilde J, Castro I, Lemus CG, Palma K, Valdés F, Castañeda V, Hitschfeld N, Concha ML, Härtel S. Optimising adjacent membrane segmentation and parameterisation in multicellular aggregates by piecewise active contours. J Microsc 2020; 278:59-75. [PMID: 32141623 DOI: 10.1111/jmi.12887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/30/2019] [Accepted: 03/04/2020] [Indexed: 11/28/2022]
Abstract
In fluorescence microscopy imaging, the segmentation of adjacent cell membranes within cell aggregates, multicellular samples, tissue, organs, or whole organisms remains a challenging task. The lipid bilayer is a very thin membrane when compared to the wavelength of photons in the visual spectra. Fluorescent molecules or proteins used for labelling membranes provide a limited signal intensity, and light scattering in combination with sample dynamics during in vivo imaging lead to poor or ambivalent signal patterns that hinder precise localisation of the membrane sheets. In the proximity of cells, membranes approach and distance each other. Here, the presence of membrane protrusions such as blebs; filopodia and lamellipodia; microvilli; or membrane vesicle trafficking, lead to a plurality of signal patterns, and the accurate localisation of two adjacent membranes becomes difficult. Several computational methods for membrane segmentation have been introduced. However, few of them specifically consider the accurate detection of adjacent membranes. In this article we present ALPACA (ALgorithm for Piecewise Adjacent Contour Adjustment), a novel method based on 2D piecewise parametric active contours that allows: (i) a definition of proximity for adjacent contours, (ii) a precise detection of adjacent, nonadjacent, and overlapping contour sections, (iii) the definition of a polyline for an optimised shared contour within adjacent sections and (iv) a solution for connecting adjacent and nonadjacent sections under the constraint of preserving the inherent cell morphology. We show that ALPACA leads to a precise quantification of adjacent and nonadjacent membrane zones in regular hexagons and live image sequences of cells of the parapineal organ during zebrafish embryo development. The algorithm detects and corrects adjacent, nonadjacent, and overlapping contour sections within a selected adjacency distance d, calculates shared contour sections for neighbouring cells with minimum alterations of the contour characteristics, and presents piecewise active contour solutions, preserving the contour shape and the overall cell morphology. ALPACA quantifies adjacent contours and can improve the meshing of 3D surfaces, the determination of forces, or tracking of contours in combination with previously published algorithms. We discuss pitfalls, strengths, and limits of our approach, and present a guideline to take the best decision for varying experimental conditions for in vivo microscopy.
Collapse
Affiliation(s)
- J Jara-Wilde
- Departamento de Ciencias de la Computación, FCFM, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - I Castro
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile
| | - C G Lemus
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile
| | - K Palma
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile
| | - F Valdés
- Biomedical Neuroscience Institute, Santiago, Chile.,Escuela de Tecnología Médica, FMed, Universidad de Chile, Santiago, Chile
| | - V Castañeda
- Departamento de Tecnología Médica, FMed, Universidad de Chile, Santiago, Chile
| | - N Hitschfeld
- Departamento de Ciencias de la Computación, FCFM, Universidad de Chile, Santiago, Chile
| | - M L Concha
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - S Härtel
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile.,Centro de Informática Médica y Telemedicina, FMed, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Leng S, Pignatti E, Khetani RS, Shah MS, Xu S, Miao J, Taketo MM, Beuschlein F, Barrett PQ, Carlone DL, Breault DT. β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat Commun 2020; 11:1680. [PMID: 32245949 PMCID: PMC7125176 DOI: 10.1038/s41467-020-15332-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of β-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas β-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in β-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function.
Collapse
Affiliation(s)
- Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Radhika S Khetani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simiao Xu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo, Kyoto, 606-8506, Japan
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, UniversitätsSpital Zürich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Q Barrett
- Departments of Pharmacology, University of Virginia, Charlottesville, VA, 22947, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
29
|
Jiang CF, Hsu SH, Sun YM, Tsai MH. Quantitative Bioimage Analysis of Passaging Effect on the Migratory Behavior of Human Mesenchymal Stem Cells During Spheroid Formation. Cytometry A 2020; 97:394-406. [PMID: 32112613 DOI: 10.1002/cyto.a.23985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
The quality of stem cells obtained through serial subcultivation is the pivotal factor determining the therapeutic effectiveness of regenerative medicine. However, an effective quality monitoring system for cell culture is yet to be established. Detailed parameter studies of the migratory behavior of stem cells at different passages may provide insight into the deterioration of stemness. Thus, this study aimed to evaluate the feasibility of quantitative bioimage analysis for monitoring stem cell quality during in vitro culture and to explore the passaging effects on stem cell migration. An image-based analytical tool using cell tracking, cytometric analyses, and gating with time-lapse microscopy was developed to characterize the migratory behavior of human mesenchymal stem cells (hMSCs) isolated from human adipose tissue (hADAS) and placenta (hPDMC) cultured on chitosan membranes. Quantitative analysis was performed for the single cells and assembled spheroids selected from 15 videos of Passages 3, 5, and 11 for hADAS and those from 12 videos of Passages 7, 11, and 16 for hPDMC. These passages were selected to represent the young, matured, and degenerated stem cells, respectively. Migratory behavior varied with cell passages. The mobility of single hMSCs decreased at degenerated passages. In addition, enhancement of mobility, due to transformation from single cells to spheroids, occurred at each passage. The young hMSCs seemed more likely to move as single cells rather than as aggregates. Once matured, they tended to aggregate with strong 3D spheroid formability and increased mobility. However, the spheroid formability and mobility decreased at late passage. The increase in aggregation rate with passaging may be a compensatory mechanism to enhance the declining mobility of hMSCs through cell coordination. Our findings regarding the passaging effects on stem-cell migratory behavior agree with biochemical reports, suggesting that the developed imaging method is capable of monitoring the cell-culture quality effectively. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ching-Fen Jiang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Man Sun
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Hong Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol 2019; 100:186-198. [PMID: 31901312 DOI: 10.1016/j.semcdb.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/25/2023]
Abstract
Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA.
| |
Collapse
|
31
|
Mishra AK, Campanale JP, Mondo JA, Montell DJ. Cell interactions in collective cell migration. Development 2019; 146:146/23/dev172056. [PMID: 31806626 DOI: 10.1242/dev.172056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collective cell migration is the coordinated movement of a physically connected group of cells and is a prominent driver of development and metastasis. Interactions between cells within migrating collectives, and between migrating cells and other cells in the environment, play key roles in stimulating motility, steering and sometimes promoting cell survival. Similarly, diverse heterotypic interactions and collective behaviors likely contribute to tumor metastasis. Here, we describe a sampling of cells that migrate collectively in vivo, including well-established and newer examples. We focus on the under-appreciated property that many - perhaps most - collectively migrating cells move as cooperating groups of distinct cell types.
Collapse
Affiliation(s)
- Abhinava K Mishra
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
32
|
Wei L, Al Oustah A, Blader P, Roussigné M. Notch signaling restricts FGF pathway activation in parapineal cells to promote their collective migration. eLife 2019; 8:46275. [PMID: 31498774 PMCID: PMC6733574 DOI: 10.7554/elife.46275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Coordinated migration of cell collectives is important during embryonic development and relies on cells integrating multiple mechanical and chemical cues. Recently, we described that focal activation of the FGF pathway promotes the migration of the parapineal in the zebrafish epithalamus. How FGF activity is restricted to leading cells in this system is, however, unclear. Here, we address the role of Notch signaling in modulating FGF activity within the parapineal. While Notch loss-of-function results in an increased number of parapineal cells activating the FGF pathway, global activation of Notch signaling decreases it; both contexts result in defects in parapineal migration and specification. Decreasing or increasing FGF signaling in a Notch loss-of-function context respectively rescues or aggravates parapineal migration defects without affecting parapineal cells specification. We propose that Notch signaling controls the migration of the parapineal through its capacity to restrict FGF pathway activation to a few leading cells.
Collapse
Affiliation(s)
- Lu Wei
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Amir Al Oustah
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Patrick Blader
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Myriam Roussigné
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| |
Collapse
|
33
|
Norden C, Lecaudey V. Collective cell migration: general themes and new paradigms. Curr Opin Genet Dev 2019; 57:54-60. [PMID: 31430686 DOI: 10.1016/j.gde.2019.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Collective cell migration plays essential roles in embryogenesis and also contributes to disease states. Recent years have seen immense progress in understanding mechanisms and overarching concepts of collective cell migration. Self-organization of moving groups emerges as an important common feature. This includes self-generating gradients, internal chemotaxis or mechanotaxis and contact-dependent polarization within migrating cell groups. Here, we will discuss these concepts and their applications to classical models of collective cell migration. Further, we discuss new models and paradigms of collective cell migration and elaborate on open questions and future challenges. Answering these questions will help to expand our appreciation of this exciting theme in developmental cell biology and contribute to the understanding of disease states.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Virginie Lecaudey
- Department of Developmental Biology of Vertebrates, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Tang D, He Y, Li W, Li H. Wnt/β-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast. Exp Mol Med 2019; 51:1-16. [PMID: 31123246 PMCID: PMC6533250 DOI: 10.1038/s12276-019-0247-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
Wnt and FGF are highly conserved signaling pathways found in various organs and have been identified as important regulators of auditory organ development. In this study, we used the zebrafish lateral line system to study the cooperative roles of the Wnt and FGF pathways in regulating progenitor cell proliferation and regenerative cell proliferation. We found that activation of Wnt signaling induced cell proliferation and increased the number of hair cells in both developing and regenerating neuromasts. We further demonstrated that FGF signaling was critically involved in Wnt-regulated proliferation, and inhibition of FGF abolished the Wnt stimulation-mediated effects on cell proliferation, while activating FGF signaling with basic fibroblast growth factor (bFGF) led to a partial rescue of the proliferative failure and hair cell defects in the absence of Wnt activity. Whole-mount in situ hybridization analysis showed that the expression of several FGF pathway genes, including pea3 and fgfr1, was increased in neuromasts after treatment with the Wnt pathway inducer BIO. Interestingly, when SU5402 was used to inhibit FGF signaling, neuromast cells expressed much lower levels of the FGF receptor gene, fgfr1, but produced increased levels of Wnt target genes, including ctnnb1, ctnnb2, and tcf7l2, while bFGF treatment produced no alterations in the expression of those genes, suggesting that fgfr1 might restrict Wnt signaling in neuromasts during proliferation. In summary, our analysis demonstrates that both the Wnt and FGF pathways are tightly integrated to modulate the proliferation of progenitor cells during early neuromast development and regenerative cell proliferation after neomycin-induced injury in the zebrafish neuromast. Studying sensory organs on the skin of zebrafish is revealing details of molecular signaling pathways that may be relevant to our own sensory systems, especially the hair cells of the ear. These cells have fine hair-like structures that move in response to sound waves and help generate electrical signals to the brain that result in perception of sound. Huawei Li and colleagues at Fudan University, Shanghai, China, studied the roles of two well-known cellular signaling pathways in regulating the proliferation of similar sensory hair cells in zebrafish, a commonly used model organism. These pathways involve cell surface proteins that interact with small extracellular molecules to stimulate molecular changes within cells. Learning how the pathways control hair cell generation and multiplication may assist modification of similar systems in humans to study and treat hearing loss.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
| | - Yingzi He
- ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
| | - Wenyan Li
- ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
| | - Huawei Li
- ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China. .,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, China. .,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Spatarelu CP, Zhang H, Trung Nguyen D, Han X, Liu R, Guo Q, Notbohm J, Fan J, Liu L, Chen Z. Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomater Sci Eng 2019; 5:3766-3787. [PMID: 32953985 PMCID: PMC7500334 DOI: 10.1021/acsbiomaterials.8b01428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers". This review article aims to cover the recent development of experimental and computational methods for studying the biomechanics of collective cell migration during cancer progression and invasion. We also summarized the tested hypotheses regarding the mechanism underlying collective cell migration enabled by these methods. Together, the paper enables a broad overview on the methods and tools currently available to unravel the biophysical mechanisms pertinent to cell collective migration as well as providing perspectives on future development toward eventually deciphering the key mechanisms behind the most lethal feature of cancer.
Collapse
Affiliation(s)
| | - Hao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, Washington 98119,
United States
| | - Xinyue Han
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350014,
China
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706,
United States
| | - Jing Fan
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, United
States
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
36
|
Hartwell RD, England SJ, Monk NAM, van Hateren NJ, Baxendale S, Marzo M, Lewis KE, Whitfield TT. Anteroposterior patterning of the zebrafish ear through Fgf- and Hh-dependent regulation of hmx3a expression. PLoS Genet 2019; 15:e1008051. [PMID: 31022185 PMCID: PMC6504108 DOI: 10.1371/journal.pgen.1008051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/07/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
In the zebrafish, Fgf and Hh signalling assign anterior and posterior identity, respectively, to the poles of the developing ear. Mis-expression of fgf3 or inhibition of Hh signalling results in double-anterior ears, including ectopic expression of hmx3a. To understand how this double-anterior pattern is established, we characterised transcriptional responses in Fgf gain-of-signalling or Hh loss-of-signalling backgrounds. Mis-expression of fgf3 resulted in rapid expansion of anterior otic markers, refining over time to give the duplicated pattern. Response to Hh inhibition was very different: initial anteroposterior asymmetry was retained, with de novo duplicate expression domains appearing later. We show that Hmx3a is required for normal anterior otic patterning, and that otic patterning defects in hmx3a-/- mutants are a close phenocopy to those seen in fgf3-/- mutants. However, neither loss nor gain of hmx3a function was sufficient to generate full ear duplications. Using our data to infer a transcriptional regulatory network required for acquisition of otic anterior identity, we can recapitulate both the wild-type and the double-anterior pattern in a mathematical model. Understanding how signalling molecules impart information to developing organ systems, and how this is interpreted through networks of gene activity, is a key goal of developmental genetic analysis. In the developing zebrafish inner ear, differences in gene expression arise between the anterior and posterior poles of the ear placode, ensuring that sensory structures in the ear develop in their correct positions. If signalling pathways are disrupted, a mirror-image ear can result, developing with two anterior poles. We have used genetic, pharmacological and mathematical modelling approaches to decipher the pathway of gene action required to specify anterior structures in the zebrafish ear. Patterns of gene expression are dynamic and plastic, with two different routes leading to the formation of duplicate anterior structures. Expression of the hmx3a gene is an early response to the anterior signalling molecule Fgf3, but is not sufficient to drive the formation of ectopic anterior structures at the posterior of the ear. The hmx3a gene codes for a protein that regulates other genes, and in humans, mutation of HMX genes results in diseases affecting inner ear function. Our work provides a framework for understanding the dynamics of early patterning events in the developing inner ear.
Collapse
Affiliation(s)
- Ryan D. Hartwell
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Samantha J. England
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Nicholas A. M. Monk
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas J. van Hateren
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Mar Marzo
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Katharine E. Lewis
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Tanya T. Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Nerurkar NL, Lee C, Mahadevan L, Tabin CJ. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature 2019; 565:480-484. [PMID: 30651642 PMCID: PMC6397660 DOI: 10.1038/s41586-018-0865-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/06/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Nandan L Nerurkar
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA.,Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Khalil AA, de Rooij J. Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res 2019; 376:86-91. [PMID: 30633881 DOI: 10.1016/j.yexcr.2019.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Collective invasion drives the spread of multicellular cancer groups, into the normal tissue surrounding several epithelial tumors. Collective invasion recapitulates various aspects of the multicellular organization and collective migration that take place during normal development and repair. Collective migration starts with the specification of leader cells in which a polarized, migratory phenotype is established. Leader cells initiate and organize the migration of follower cells, to allow the group of cells to move as a cohesive and polarized unit. Leader-follower specification is essential for coordinated and directional collective movement. Forces exerted by cohesive cells represent key signals that dictate multicellular coordination and directionality. Physical forces originate from the contraction of the actomyosin cytoskeleton, which is linked between cells via cadherin-based cell-cell junctions. The cadherin complex senses and transduces fluctuations in forces into biochemical signals that regulate processes like cell proliferation, motility and polarity. With cadherin junctions being maintained in most collective movements the cadherin complex is ideally positioned to integrate mechanical information into the organization of collective cell migration. Here we discuss the potential roles of cadherin mechanotransduction in the diverse aspects of leader versus follower cell specification during collective migration and neoplastic invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Johan de Rooij
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
39
|
Olson HM, Nechiporuk AV. Nothing to Be Sniffed At: Anosmin1 Tunes Fgf Diffusivity. Dev Cell 2018; 46:674-676. [PMID: 30253166 DOI: 10.1016/j.devcel.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extracellular matrix plays both positive and negative roles in growth factor diffusion, a process critical for organ formation. In this issue of Developmental Cell, Wang et al. (2018) identify the extracellular matrix protein Anosmin1 as a key regulator of Fgf diffusion during sensory organ formation in zebrafish.
Collapse
Affiliation(s)
- Hannah M Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97219, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97219, USA.
| |
Collapse
|
40
|
Left/right asymmetric collective migration of parapineal cells is mediated by focal FGF signaling activity in leading cells. Proc Natl Acad Sci U S A 2018; 115:E9812-E9821. [PMID: 30282743 PMCID: PMC6196547 DOI: 10.1073/pnas.1812016115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to collectively interpret surrounding environmental signals underpins their capacity to coordinate their migration in various contexts, including embryonic development and cancer metastasis. One tractable model for studying collective migration is the parapineal, a left-sided group of neurons that arises from bilaterally positioned precursors that undergo a collective migration to the left side of the brain. In zebrafish, the migration of these cells requires Fgf8 and, in this study, we resolve how FGF signaling correlates with-and impacts the migratory dynamics of-the parapineal cell collective. The temporal and spatial dynamics of an FGF reporter transgene reveal that FGF signaling is activated in only few parapineal cells usually located at the leading edge of the parapineal during its migration. Overexpressing a constitutively active Fgf receptor compromises parapineal migration in wild-type embryos, while it partially restores both parapineal migration and mosaic expression of the FGF reporter transgene in fgf8 -/- mutant embryos. Focal activation of FGF signaling in few parapineal cells is sufficient to promote the migration of the whole parapineal collective. Finally, we show that asymmetric Nodal signaling contributes to the restriction and leftwards bias of FGF pathway activation. Our data indicate that the first overt morphological asymmetry in the zebrafish brain is promoted by FGF pathway activation in cells that lead the collective migration of the parapineal to the left. This study shows that cell-state differences in FGF signaling in front versus rear cells is required to promote migration in a model of FGF-dependent collective migration.
Collapse
|
41
|
Smock RG, Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. Open Biol 2018; 8:rsob.180026. [PMID: 30282658 PMCID: PMC6223220 DOI: 10.1098/rsob.180026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) play a widespread role in embryonic development, as deletion of enzymes that contribute to GAG synthesis lead to deficiencies in cell migration and tissue modelling. Despite the biochemical and structural characterization of individual protein/GAG interactions, there is no concept available that links the molecular mechanisms of GAG/protein engagements to tissue development. Here, we focus on the role of GAG polymers in mediating interactions between cell surface receptors and their ligands. We categorize several switches that lead to ligand activation, inhibition, selection and addition, based on recent structural studies of select receptor/ligand complexes. Based on these principles, we propose that individual GAG polymers may affect several receptor pathways in parallel, orchestrating a cellular response to an environmental cue. We believe that it is worthwhile to study the role of GAGs as molecular switches, as this may lead to novel drug candidates to target processes such as angiogenesis, neuroregeneration and tumour metastasis.
Collapse
Affiliation(s)
- Robert G Smock
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
42
|
Razzell W, Bustillo ME, Zallen JA. The force-sensitive protein Ajuba regulates cell adhesion during epithelial morphogenesis. J Cell Biol 2018; 217:3715-3730. [PMID: 30006462 PMCID: PMC6168262 DOI: 10.1083/jcb.201801171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
The reorganization of cells in response to mechanical forces converts simple epithelial sheets into complex tissues of various shapes and dimensions. Epithelial integrity is maintained throughout tissue remodeling, but the mechanisms that regulate dynamic changes in cell adhesion under tension are not well understood. In Drosophila melanogaster, planar polarized actomyosin forces direct spatially organized cell rearrangements that elongate the body axis. We show that the LIM-domain protein Ajuba is recruited to adherens junctions in a tension-dependent fashion during axis elongation. Ajuba localizes to sites of myosin accumulation at adherens junctions within seconds, and the force-sensitive localization of Ajuba requires its N-terminal domain and two of its three LIM domains. We demonstrate that Ajuba stabilizes adherens junctions in regions of high tension during axis elongation, and that Ajuba activity is required to maintain cell adhesion during cell rearrangement and epithelial closure. These results demonstrate that Ajuba plays an essential role in regulating cell adhesion in response to mechanical forces generated by epithelial morphogenesis.
Collapse
Affiliation(s)
- William Razzell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Maria E Bustillo
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
43
|
Olson HM, Nechiporuk AV. Using Zebrafish to Study Collective Cell Migration in Development and Disease. Front Cell Dev Biol 2018; 6:83. [PMID: 30175096 PMCID: PMC6107837 DOI: 10.3389/fcell.2018.00083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
Cellular migration is necessary for proper embryonic development as well as maintenance of adult health. Cells can migrate individually or in groups in a process known as collective cell migration. Collectively migrating cohorts maintain cell-cell contacts, group polarization, and exhibit coordinated behavior. This mode of migration is important during numerous developmental processes including tracheal branching, blood vessel sprouting, neural crest cell migration and others. In the adult, collective cell migration is important for proper wound healing and is often misappropriated during cancer cell invasion. A variety of genetic model systems are used to examine and define the cellular and molecular mechanisms behind collective cell migration including border cell migration and tracheal branching in Drosophila melanogaster, neural crest cell migration in chick and Xenopus embryos, and posterior lateral line primordium (pLLP) migration in zebrafish. The pLLP is a group of about 100 cells that begins migrating around 22 hours post-fertilization along the lateral aspect of the trunk of the developing embryo. During migration, clusters of cells are deposited from the trailing end of the pLLP; these ultimately differentiate into mechanosensory organs of the lateral line system. As zebrafish embryos are transparent during early development and the pLLP migrates close to the surface of the skin, this system can be easily visualized and manipulated in vivo. These advantages together with the amenity to advance genetic methods make the zebrafish pLLP one of the premier model systems for studying collective cell migration. This review will describe the cellular behaviors and signaling mechanisms of the pLLP and compare the pLLP to collective cell migration in other popular model systems. In addition, we will examine how this type of migration is hijacked by collectively invading cancer cells.
Collapse
Affiliation(s)
- Hannah M Olson
- Department Cell, Developmental & Cancer Biology, The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.,Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, United States
| | - Alex V Nechiporuk
- Department Cell, Developmental & Cancer Biology, The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
44
|
Wang J, Yin Y, Lau S, Sankaran J, Rothenberg E, Wohland T, Meier-Schellersheim M, Knaut H. Anosmin1 Shuttles Fgf to Facilitate Its Diffusion, Increase Its Local Concentration, and Induce Sensory Organs. Dev Cell 2018; 46:751-766.e12. [PMID: 30122631 DOI: 10.1016/j.devcel.2018.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/26/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023]
Abstract
Growth factors induce and pattern sensory organs, but how their distribution is regulated by the extracellular matrix (ECM) is largely unclear. To address this question, we analyzed the diffusion behavior of Fgf10 molecules during sensory organ formation in the zebrafish posterior lateral line primordium. In this tissue, secreted Fgf10 induces organ formation at a distance from its source. We find that most Fgf10 molecules are highly diffusive and move rapidly through the ECM. We identify Anosmin1, which when mutated in humans causes Kallmann Syndrome, as an ECM protein that binds to Fgf10 and facilitates its diffusivity by increasing the pool of fast-moving Fgf10 molecules. In the absence of Anosmin1, Fgf10 levels are reduced and organ formation is impaired. Global overexpression of Anosmin1 slows the fast-moving Fgf10 molecules and results in Fgf10 dispersal. These results suggest that Anosmin1 liberates ECM-bound Fgf10 and shuttles it to increase its signaling range.
Collapse
Affiliation(s)
- John Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Stephanie Lau
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jagadish Sankaran
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
45
|
Wang Y, Han Y, Xu P, Ding S, Li G, Jin H, Meng Y, Meng A, Jia S. prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish. J Genet Genomics 2018; 45:443-453. [DOI: 10.1016/j.jgg.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
46
|
Neelathi UM, Dalle Nogare D, Chitnis AB. Cxcl12a induces snail1b expression to initiate collective migration and sequential Fgf-dependent neuromast formation in the zebrafish posterior lateral line primordium. Development 2018; 145:dev162453. [PMID: 29945870 PMCID: PMC6078336 DOI: 10.1242/dev.162453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The zebrafish posterior lateral line primordium migrates along a path defined by the chemokine Cxcl12a, periodically depositing neuromasts, to pioneer formation of the zebrafish posterior lateral line system. snail1b, known for its role in promoting cell migration, is expressed in leading cells of the primordium in response to Cxcl12a, whereas its expression in trailing cells is inhibited by Fgf signaling. snail1b knockdown delays initiation of primordium migration. This delay is associated with aberrant expansion of epithelial cell adhesion molecule (epcam) and reduction of cadherin 2 expression in the leading part of the primordium. Co-injection of snail1b morpholino with snail1b mRNA prevents the initial delay in migration and restores normal expression of epcam and cadherin 2 The delay in initiating primordium migration in snail1b morphants is accompanied by a delay in sequential formation of trailing Fgf signaling centers and associated protoneuromasts. This delay is not specifically associated with knockdown of snail1b but also with other manipulations that delay migration of the primordium. These observations reveal an unexpected link between the initiation of collective migration and sequential formation of protoneuromasts in the primordium.
Collapse
Affiliation(s)
- Uma M Neelathi
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Carrillo JA, Colombi A, Scianna M. Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles. J Theor Biol 2018; 445:75-91. [DOI: 10.1016/j.jtbi.2018.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
|
48
|
Wang X, Hou H, Song K, Zhang Z, Zhang S, Cao Y, Chen L, Sang Q, Lin F, Xu H. Lpar2b Controls Lateral Line Tissue Size by Regulating Yap1 Activity in Zebrafish. Front Mol Neurosci 2018; 11:34. [PMID: 29479307 PMCID: PMC5812253 DOI: 10.3389/fnmol.2018.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
LPA signaling plays important roles during cell migration and proliferation in normal and pathological conditions. However, its role during sensory organ development remains unknown. Here we show a LPA receptor Lpar2b is expressed in the posterior lateral line primordium (pLLP) and mechanosensory organs called neuromasts (NMs) in zebrafish embryos. Lpar2b loss-of-function significantly reduces the number of NMs and hair cells in the posterior lateral line (pLL). Further analysis reveals that Lpar2b regulates the patterning and tissue size of the pLLP. Interestingly, we show that knocking down a Hippo effector Yap1 phenocopies the result of Lpar2b depletion, and Lpar2b regulates the phosphorylation and activity of Yap1 in the pLLP. Importantly, a phosphorylation-resistant Yap1 rescues pLLP size and NM number in Lpar2b-depleted embryos. Our results indicate Lpar2b controls primordium size and NM number by regulating Yap1 activity in the lateral line system.
Collapse
Affiliation(s)
- Xueqian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haitao Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Kaida Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Cao
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Liming Chen
- Biochemistry and Biological Product Institute, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qing Sang
- MOE Key Laboratory of Contemporary Anthropology and School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
49
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
50
|
Dalle Nogare D, Chitnis AB. A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium. Mech Dev 2017; 148:69-78. [PMID: 28460893 PMCID: PMC10993927 DOI: 10.1016/j.mod.2017.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
A description of zebrafish posterior Lateral Line (pLL) primordium development at single cell resolution together with the dynamics of Wnt, FGF, Notch and chemokine signaling in this system has allowed us to develop a framework to understand the self-organization of cell fate, morphogenesis and migration during its early development. The pLL primordium migrates under the skin, from near the ear to the tip of the tail, periodically depositing neuromasts. Nascent neuromasts, or protoneuromasts, form sequentially within the migrating primordium, mature, and are deposited from its trailing end. Initially broad Wnt signaling inhibits protoneuromast formation. However, protoneuromasts form sequentially in response to FGF signaling, starting from the trailing end, in the wake of a progressively shrinking Wnt system. While proliferation adds to the number of cells, the migrating primordium progressively shrinks as its trailing cells stop moving and are deposited. As it shrinks, the length of the migrating primordium correlates with the length of the leading Wnt system. Based on these observations we show how measuring the rate at which the Wnt system shrinks, the proliferation rate, the initial size of the primordium, its speed, and a few additional parameters allows us to predict the pattern of neuromast formation and deposition by the migrating primordium in both wild-type and mutant contexts. While the mechanism that links the length of the leading Wnt system to that of the primordium remains unclear, we discuss how it might be determined by access to factors produced in the leading Wnt active zone that are required for collective migration of trailing cells. We conclude by reviewing how FGFs, produced in response to Wnt signaling in leading cells, help determine collective migration of trailing cells, while a polarized response to a self-generated chemokine gradient serves as an efficient mechanism to steer primordium migration along its relatively long journey.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|