1
|
Li T, Zhu S, Li Y, Yao J, Wang C, Fang S, Pan J, Chen W, Zhang Y. Characteristic of GEX1 genes reveals the essential roles for reproduction in cotton. Int J Biol Macromol 2023; 253:127645. [PMID: 37879575 DOI: 10.1016/j.ijbiomac.2023.127645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
GEX1 (gamete expressed 1) proteins are critical membrane proteins conserved among flowering plants that are involved in the nuclear fusion and embryonic development. Herein, we identified the 32 GEX1 proteins from representative land plants. In cotton, GEX1 genes expressed in various tissues across all stages of the life cycle, especially in pollen. Subcellular localization indicated the position of GhGEX1 protein was localized in the endoplasmic reticulum. Experimental research has demonstrated that GhGEX1 has the potential to improve the partial abortion phenotype in Arabidopsis. CRISPR/Cas9-mediated knockout of GhGEX1 exhibited the seed abortion. Paraffin section of the ovule revealed that the polar nuclear fusion of ghgex1 plants remains at a standstill when the wild type has developed into a normal embryo. Comparative transcriptome analysis showed that the DEGs of reproductive-related processes and membrane-related processes were repressed in the pollen of knockout lines. The predicted protein interactions showed that GhGEX1 probably functioned through interactions with proteins related to reproduction and membrane. From all these investigations, it was possible to conclude that the GEX1 proteins are evolutionarily conserved in flowering plants and elucidated the pivotal roles during fertilization and early embryonic development in cotton.
Collapse
Affiliation(s)
- Tengyu Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouhong Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Yan Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Jinbo Yao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Chenlei Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Shengtao Fang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Jingwen Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Wei Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China.
| | - Yongshan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China.
| |
Collapse
|
2
|
Jiang YT, Zheng JX, Li RH, Wang YC, Shi J, Ferjani A, Lin WH. Tonoplast proton pumps regulate nuclear spacing of female gametophytes via mediating polar auxin transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1006735. [PMID: 36176689 PMCID: PMC9513470 DOI: 10.3389/fpls.2022.1006735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The vacuole is an important organelle with multiple functions in plants, and the tonoplast that wraps the vacuole also plays essential roles in intracellular trafficking and ion homeostasis. Previous studies found that tonoplast proton pumps regulate embryo development and morphogenesis through their effects on vacuole biogenesis and distribution, as well as polar auxin transport and concomitant auxin gradient. However, the precise roles of the tonoplast proton pumps in gametophyte development remain unclear. Here we demonstrated that the lack of two types of tonoplast proton pumps or the absence of V-ATPase alone leads to abnormal development and nuclear localization of female gametophyte (FG), and slowed endosperm nuclei division after fertilization of the central cell. We further revealed that V-ATPase regulates auxin levels in ovules through coordinating the content and localization of PIN-FORMED 1 (PIN1) protein, hence influencing nuclear spacing between centra cell and egg cell, and subsequent endosperm development. Collectively, our findings revealed a crucial role of V-ATPase in auxin-mediated FG development in Arabidopsis and expanded our understanding of the functions of tonoplast proton pumps in seed plants reproductive development.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Zheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Rong-Han Li
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Wen-Hui Lin
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Functional analysis of a conserved domain in SWITCH1 reveals a role in commitment to female meiocyte differentiation in Arabidopsis. Biochem Biophys Res Commun 2021; 551:121-126. [PMID: 33725573 DOI: 10.1016/j.bbrc.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
We have investigated the mechanism of action of SWITCH1/DYAD (SWI1), an important regulator of plant meiosis in Arabidopsis that is required for meiotic chromosome organization including maintenance of sister chromatid cohesion. The central portion of SWI1 contains a domain of unknown function that shows strong conservation between SWI1 and its orthologs in maize and rice and is also found in paralogs including MALE MEIOCYTE DEATH 1 (MMD1). In order to examine the role of this domain we performed domain swap experiments into SWI1 in a swi1 mutant background. Domain swap analysis revealed functional conservation of the central domain between SWI1 and its orthologs but not with the domain from MMD1 suggesting that the domain plays an important role in SWI1 function that has been conserved in orthologs and diverged in paralogs in plant evolution. Analysis of expression of the non-complementing MMD1 domain swap SWI1(DSMMD1)::GFP transgenic lines revealed an altered pattern of expression that suggests a role for SWI1 in commitment to female meiocyte differentiation and meiosis. The results suggest that SWI1 may also play a developmental role as an identity determinant in the female germ cell lineage in addition to its known role in meiotic chromosome organization.
Collapse
|
4
|
Li HJ, Yang WC. Central Cell in Flowering Plants: Specification, Signaling, and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:590307. [PMID: 33193544 PMCID: PMC7609669 DOI: 10.3389/fpls.2020.590307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
During the reproduction of animals and lower plants, one sperm cell usually outcompetes the rivals to fertilize a single egg cell. But in flowering plants, two sperm cells fertilize the two adjacent dimorphic female gametes, the egg and central cell, respectively, to initiate the embryo and endosperm within a seed. The endosperm nourishes the embryo development and is also the major source of nutrition in cereals for humankind. Central cell as one of the key innovations of flowering plants is the biggest cell in the multicellular haploid female gametophyte (embryo sac). The embryo sac differentiates from the meiotic products through successive events of nuclear divisions, cellularization, and cell specification. Nowadays, accumulating lines of evidence are raveling multiple roles of the central cell rather than only the endosperm precursor. In this review, we summarize the current understanding on its cell fate specification, intercellular communication, and evolution. We also highlight some key unsolved questions for the further studies in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Pereira PA, Boavida LC, Santos MR, Becker JD. AtNOT1 is required for gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1289-1303. [PMID: 32369648 DOI: 10.1111/tpj.14801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, pollen development is under a dynamic and well-orchestrated transcriptional control, characterized by an early phase with high transcript diversity and a late post-mitotic phase skewed to a cell-type-specific transcriptome. Such transcriptional changes require a balance between synthesis and degradation of mRNA transcripts, the latter being initiated by deadenylation. The CCR4-NOT complex is the main evolutionary conserved deadenylase complex in eukaryotes, and its function is essential during germline specification in animals. We hypothesized that the CCR4-NOT complex might play a central role in mRNA turnover during microgametogenesis in Arabidopsis. Disruption of NOT1 gene, which encodes the scaffold protein of the CCR4-NOT complex, showed abnormal seed set. Genetic analysis failed to recover homozygous progeny, and reciprocal crosses confirmed reduced transmission through the male and female gametophytes. Concordantly, not1 embryo sacs showed delayed development and defects in embryogenesis. not1 pollen grains exhibited abnormal male germ unit configurations and failed to germinate. Transcriptome analysis of pollen from not1/+ mutants revealed that lack of NOT1 leads to an extensive transcriptional deregulation during microgametogenesis. Therefore, our work establishes NOT1 as an important player during gametophyte development in Arabidopsis.
Collapse
Affiliation(s)
- Patrícia A Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Leonor C Boavida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Mário R Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
6
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Abstract
Reverse genetics approaches for characterizing phenotypes of mutants in a gene of interest (GOI) require thorough genotyping and phenotypic analysis. However, special challenges are encountered when a GOI is expressed in reproductive tissues: a variety of assays are required to characterize the phenotype and a mutant may show sporophytic and/or gametophytic defects in male and/or female reproductive tissues, which are structurally and functionally intertwined. Here, we present a streamlined workflow to characterize mutants with reproductive defects, primarily using Arabidopsis as a model, which can also be adapted to characterize mutants in other flowering plants. Procedures described here can be used to distinguish different kinds of reproductive defects and pinpoint the defective reproductive step(s) in a mutant. Although our procedures emphasize the characterization of mutants with male reproductive defects, they can nevertheless be used to identify female reproductive defects, as those defects could manifest alongside, and sometimes require, male reproductive tissues.
Collapse
|
8
|
Abstract
The plant haploid generation is specified late in higher plant development, and post-meiotic haploid plant cells divide mitotically to produce a haploid gametophyte, in which a subset of cells differentiates into the gametes. The immediate mother of the angiosperm seed is the female gametophyte, also called the embryo sac. In most flowering plants the embryo sac is comprised of two kinds of gametes (egg and central cell) and two kinds of subsidiary cells (antipodals and synergids) all of which descend from a single haploid spore produced by meiosis. The embryo sac develops within a specialized organ of the flower called the ovule, which supports and controls many steps in the development of both the embryo sac and the seed. Double fertilization of the central cell and egg cell by the two sperm cells of a pollen grain produce the endosperm and embryo of the seed, respectively. The endosperm and embryo develop under the influence of their precursor gametes and the surrounding tissues of the ovule and the gametophyte. The final size and pattern of the angiosperm seed then is the result of complex interactions across multiple tissues of three different generations (maternal sporophyte, maternal gametophyte, and the fertilization products) and three different ploidies (haploid gametophyte, diploid parental sporophyte and embryo, and triploid endosperm).
Collapse
|
9
|
Cheng Y, Yang P, Zhao L, Priyadarshani SVGN, Zhou Q, Li Z, Li W, Xiong J, Lin Z, Li L, Huang X, Liu J, Aslam M, Zhao H, Li G, Ma J, Li L, Qin Y. Studies on genome size estimation, chromosome number, gametophyte development and plant morphology of salt-tolerant halophyte Suaeda salsa. BMC PLANT BIOLOGY 2019; 19:473. [PMID: 31694537 PMCID: PMC6833229 DOI: 10.1186/s12870-019-2080-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Soil salinization and alkalization are among the major agricultural threats that affect crop productivity worldwide, which are increasing day by day with an alarming rate. In recent years, several halophytes have been investigated for their utilization in soil remediation and to decipher the mechanism of salt-tolerance in these high salt tolerant genetic repositories. Suaeda salsa is an annual halophytic herb in the family Amaranthaceae, displaying high salt and alkali-resistance and having nutritive value. However, the fundamental biological characteristics of this valuable plant remain to be elucidated until today. RESULTS In this study, we observed the morphology and development of Suaeda salsa, including seed morphology, seed germination, plant morphology, and flower development. Using microscopy, we observed the male and female gametophyte developments of Suaeda salsa. Also, chromosome behaviour during the meiosis of male gametophyte was studied. Eventually, the genome size of Suaeda salsa was estimated through flow cytometry using Arabidopsis as reference. CONCLUSIONS Our findings suggest that the male and female gametophyte developments of Suaeda salsa are similar to those of the model plant Arabidopsis, and the diploid Suaeda salsa contains nine pairs of chromosomes. The findings also indicate that the haploid genome of Suaeda salsa is approximately 437.5 MB. The observations and results discussed in this study will provide an insight into future research on Suaeda salsa.
Collapse
Affiliation(s)
- Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - S V G N Priyadarshani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiao Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zeyun Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weimin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junjie Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyu Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jindian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Heming Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinbiao Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 83000, China
| | - Lei Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Xu G, Huang J, Lei SK, Sun XG, Li X. Comparative gene expression profile analysis of ovules provides insights into Jatropha curcas L. ovule development. Sci Rep 2019; 9:15973. [PMID: 31685957 PMCID: PMC6828956 DOI: 10.1038/s41598-019-52421-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Jatropha curcas, an economically important biofuel feedstock with oil-rich seeds, has attracted considerable attention among researchers in recent years. Nevertheless, valuable information on the yield component of this plant, particularly regarding ovule development, remains scarce. In this study, transcriptome profiles of anther and ovule development were established to investigate the ovule development mechanism of J. curcas. In total, 64,325 unigenes with annotation were obtained, and 1723 differentially expressed genes (DEGs) were identified between different stages. The DEG analysis showed the participation of five transcription factor families (bHLH, WRKY, MYB, NAC and ERF), five hormone signaling pathways (auxin, gibberellic acid (GA), cytokinin, brassinosteroids (BR) and jasmonic acid (JA)), five MADS-box genes (AGAMOUS-2, AGAMOUS-1, AGL1, AGL11, and AGL14), SUP and SLK3 in ovule development. The role of GA and JA in ovule development was evident with increases in flower buds during ovule development: GA was increased approximately twofold, and JA was increased approximately sevenfold. In addition, the expression pattern analysis using qRT-PCR revealed that CRABS CLAW and AGAMOUS-2 were also involved in ovule development. The upregulation of BR signaling genes during ovule development might have been regulated by other phytohormone signaling pathways through crosstalk. This study provides a valuable framework for investigating the regulatory networks of ovule development in J. curcas.
Collapse
Affiliation(s)
- Gang Xu
- Institute for Forest Resources and Environment of Guizhou / College of Forestry, Guizhou University, Guiyang, 550025, P.R. China. .,Institute of Entomology, Guizhou University, Guiyang, Guizhou, P.R. China.
| | - Jian Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, Guizhou, P.R. China
| | - Shi-Kang Lei
- School of Life Science, Guizhou University, Guiyang, Guizhou, P.R. China
| | - Xue-Guang Sun
- Institute for Forest Resources and Environment of Guizhou / College of Forestry, Guizhou University, Guiyang, 550025, P.R. China
| | - Xue Li
- School of Life Science, Guizhou University, Guiyang, Guizhou, P.R. China
| |
Collapse
|
11
|
Papadopulos AST, Igea J, Dunning LT, Osborne OG, Quan X, Pellicer J, Turnbull C, Hutton I, Baker WJ, Butlin RK, Savolainen V. Ecological speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species divergence in Howea. Evolution 2019; 73:1986-1995. [PMID: 31298414 DOI: 10.1111/evo.13796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Although it is now widely accepted that speciation can occur in the face of continuous gene flow, with little or no spatial separation, the mechanisms and genomic architectures that permit such divergence are still debated. Here, we examined speciation in the face of gene flow in the Howea palms of Lord Howe Island, Australia. We built a genetic map using a novel method applicable to long-lived tree species, combining it with double digest restriction site-associated DNA sequencing of multiple individuals. Based upon various metrics, we detected 46 highly differentiated regions throughout the genome, four of which contained genes with functions that are particularly relevant to the speciation scenario for Howea, specifically salt and drought tolerance.
Collapse
Affiliation(s)
- Alexander S T Papadopulos
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Javier Igea
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Luke T Dunning
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Owen G Osborne
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom
| | - Xueping Quan
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, TW9 3AB, United Kingdom
| | - Colin Turnbull
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, 2898, Australia
| | - William J Baker
- Royal Botanic Gardens, Kew, Richmond, TW9 3AB, United Kingdom
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Marine Sciences, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Royal Botanic Gardens, Kew, Richmond, TW9 3AB, United Kingdom
| |
Collapse
|
12
|
Liu W, Huang S, Liu Z, Lou T, Tan C, Wang Y, Feng H. A missense mutation of STERILE APETALA leads to female sterility in Chinese cabbage (Brassica campestris ssp. pekinensis). PLANT REPRODUCTION 2019; 32:217-228. [PMID: 30806770 DOI: 10.1007/s00497-019-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Flower development is essential for the sexual reproduction and crop yield of plants. Thus, a better understanding of plant sterility from the perspective of morphological and molecular genetics is imperative. In our previous study, a recessive female-sterile Chinese cabbage mutant fsm was obtained from a doubled haploid line 'FT' via an isolated microspore culture combined with EMS mutagenesis. Pistil aniline blue staining and stigma scanning observation showed that the growth of the stigma papillar cells and pollen tubes of the mutant fsm were normal. Therefore, the female sterility was due to abnormal development of the ovules. To map the mutant fsm, 3108 F2 individuals were selected for linkage analysis. Two closely linked markers, Indel-I2 and Indel-I7, were localized on the flanking region of fsm at distances of 0.05 cM and 0.06 cM, respectively. The physical distance between Indel-I2 and Indel-I7 was ~ 1376 kb, with 107 genes remaining in the target region. This region was located on the chromosome A04 centromere, on which low recombination rates and a high frequency of repetitive sequences were present. Whole-genome re-sequencing detected a single-nucleotide (C-to-A) transition (TCG/TAG) on the exon of BraA04001030, resulting in a premature stop codon. Genotyping revealed that the female-sterile phenotype was fully cosegregated with this SNP. BraA04001030 encodes a homologue of STERILE APETALA (SAP) transcriptional regulator, which plays vital roles in floral development. The results of the present study suggest that BraA04001030 is a strong candidate gene for fsm and provide the basis for exploring the molecular mechanism underlying female sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yiheng Wang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
13
|
Fehér A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? FRONTIERS IN PLANT SCIENCE 2019; 10:536. [PMID: 31134106 PMCID: PMC6524723 DOI: 10.3389/fpls.2019.00536] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant developmental biology. The history of plant cell and tissue culture dates back to more than a century. Its basic methodology and terminology were formulated preceding modern plant biology. Recent progress in molecular and cell biology techniques allowed unprecedented insights into the underlying processes of plant cell/tissue culture and regeneration. The main aim of this review is to provide a theoretical framework supported by recent experimental findings to reconsider certain historical, even dogmatic, statements widely used by plant scientists and teachers such as "plant cells are totipotent" or "callus is a mass of dedifferentiated cells," or "somatic embryos have a single cell origin." These statements are based on a confused terminology. Clarification of it might help to avoid further misunderstanding and to overcome potential "terminology-raised" barriers in plant research.
Collapse
Affiliation(s)
- Attila Fehér
- Department of Plant Biology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- *Correspondence: Attila Fehér, ;
| |
Collapse
|
14
|
Bartz M, Gola EM. Meristem development and activity in gametophytes of the model fern, Ceratopteris richardii. Dev Biol 2018; 444:107-115. [DOI: 10.1016/j.ydbio.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
|
15
|
Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X. ARF2-ARF4 and ARF5 are Essential for Female and Male Gametophyte Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:179-189. [PMID: 29145642 DOI: 10.1093/pcp/pcx174] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/07/2017] [Indexed: 05/14/2023]
Abstract
The plant hormone auxin plays critical roles in plant growth and development. Auxin response factors (ARFs) are a class of transcription factors which regulate auxin-mediated gene expression. While the functions of ARFs in sporophytic development have been well characterized, their functions specific to gametophytic development have not been studied extensively. In this study, Arabidopsis ARF genes were selectively down-regulated in gametophytes by misexpression of targeted microRNAs (amiRARF234, amiRARFMP and MIR167a) to silence AtARF2-AtAEF4, AtARF5, AtARF6 and AtARF8. Embryo sacs in amiRARF234- and amiRARFMP-expressing plants exhibited identity defects in cells at the micropylar pole, such as formation of two cells with egg cell-like morphology, concomitant with loss of synergid marker expression and seed abortion. The pollen grains of the transgenic plants were morphologically aberrant and unviable, and the inclusions and nuclei were lost in the abnormal pollen grains. However, plants misexpressing MIR167a showed no obvious abnormal phenotypes in the embryo sacs and pollen grains. Overall, these results provide evidence that AtARF2-AtARF4 and AtARF5 play significant roles in regulating both female and male gametophyte development in Arabidopsis.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Base Sequence
- DNA-Binding Proteins/genetics
- Down-Regulation
- Gametogenesis, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/metabolism
- Germ Cells, Plant/ultrastructure
- Microscopy, Electron, Transmission
- Nuclear Proteins/genetics
- Plants, Genetically Modified
- Repressor Proteins/genetics
- Seeds/genetics
- Seeds/growth & development
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Zhenning Liu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong 276000, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Liming Miao
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Ruxue Huo
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong 276000, China
| | - Xiaoya Song
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Cameron Johnson
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Lijun Kong
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | - Xiaolin Yu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Zhu Q, Zhang XL, Nadir S, DongChen WH, Guo XQ, Zhang HX, Li CY, Chen LJ, Lee DS. A LysM Domain-Containing Gene OsEMSA1 Involved in Embryo sac Development in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1596. [PMID: 28979272 PMCID: PMC5611485 DOI: 10.3389/fpls.2017.01596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The embryo sac plays a vital role in sexual reproduction of angiosperms. LysM domain containing proteins with multiple lysin motifs are widespread proteins and are involved in plant defense responses against fungal chitins and bacterial peptidoglycans. Various studies have reported the role of LysM domain-containing proteins in plant defense mechanisms but their involvement in sexual reproduction remains largely unknown. Here, we report the involvement of a LysM domain-containing gene, EMBRYO SAC 1 (OsEMSA1), in the sexual reproduction of rice. The gene encoded a LysM domain-containing protein that was necessary for embryo sac development and function. The gene was expressed in root, stem, leaf tissues, panicle and ovaries and had some putative role in hormone regulation. Suppression of OsEMSA1 expression resulted in a defective embryo sac with poor differentiation of gametophytic cells, which consequently failed to attract pollen tubes and so reduced the panicle seed-setting rate. Our data offers new insight into the functions of LysM domain-containing proteins in rice.
Collapse
Affiliation(s)
- Qian Zhu
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Xiao-Ling Zhang
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Sadia Nadir
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
- Department of Chemistry, University of Science and TechnologyBannu, Pakistan
| | - Wen-Hua DongChen
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Xiao-Qiong Guo
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Hui-Xin Zhang
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural UniversityKunming, China
- Key Laboratory for Agricultural Biodiversity and Pest Management of China Education Ministry, Yunnan Agricultural UniversityKunming, China
| | - Li-Juan Chen
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural UniversityKunming, China
| | - Dong-Sun Lee
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural UniversityKunming, China
| |
Collapse
|
17
|
Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1909-1924. [PMID: 27870062 DOI: 10.1111/nph.14293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/02/2023]
Abstract
The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Helmut Bäumlein
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| |
Collapse
|
18
|
Huang S, Liu Z, Li C, Yao R, Li D, Hou L, Li X, Liu W, Feng H. Transcriptome Analysis of a Female-sterile Mutant ( fsm) in Chinese Cabbage ( Brassica campestris ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2017; 8:546. [PMID: 28443127 PMCID: PMC5385380 DOI: 10.3389/fpls.2017.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/27/2017] [Indexed: 05/03/2023]
Abstract
Female-sterile mutants are ideal materials for studying pistil development in plants. Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which exhibited stable inheritance, was derived from Chinese cabbage DH line 'FT' using a combination of isolated microspore culture and ethyl methanesulfonate mutagenesis. Compared with the wild-type line 'FT,' the fsm plants exhibited pistil abortion, and floral organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm is controlled by a single recessive nuclear gene. Morphological observations revealed that the presence of abnormal ovules in fsm likely influenced normal fertilization process, ultimately leading to female sterility. Comparative transcriptome analysis on the flower buds of 'FT' and fsm using RNA-Seq revealed a total of 1,872 differentially expressed genes (DEGs). Of these, a number of genes involved in pistil development were identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL), AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway enrichment analyses of the DEGs suggested that a variety of biological processes and metabolic pathways are significantly enriched during pistil development. In addition, the expression patterns of 16 DEGs, including four pistil development-related genes and 12 floral organ development-related genes, were analyzed using qRT-PCR. A total of 31,272 single nucleotide polymorphisms were specifically detected in fsm. These results contribute to shed light on the regulatory mechanisms underlying pistil development in Chinese cabbage.
Collapse
|
19
|
Lu C, Yu F, Tian L, Huang X, Tan H, Xie Z, Hao X, Li D, Luan S, Chen L. RPS9M, a Mitochondrial Ribosomal Protein, Is Essential for Central Cell Maturation and Endosperm Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2171. [PMID: 29312411 PMCID: PMC5744018 DOI: 10.3389/fpls.2017.02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 05/15/2023]
Abstract
During double fertilization of angiosperms, the central cell of the female gametophyte fuses with a sperm cell to produce the endosperm, a storage tissue that nourishes the developing embryo within the seed. Although many genetic mutants defective in female gametophytic functions have been characterized, the molecular mechanisms controlling the specification and differentiation of the central cell are still not fully understood. Here, we report a mitochondrial ribosomal protein, RPS9M, is required for central cell maturation. RPS9M was highly expressed in the male and female gametophytes before and after double fertilization. The female gametophytes were defective in the rps9m mutant specifically concerning maturation of central cells. The morphological defects include unfused polar nuclei and smaller central vacuole in central cells. In addition, embryo initiation and early endosperm development were also severely affected in rps9m female gametophytes even after fertilized with wild type pollens. The RPS9M can interact with ANK6, an ankyrin-repeat protein in mitochondria previously reported to be required for fertilization. The expression pattern and mutant phenotype of RPS9M are similar to those of ANK6 as well, suggesting that RPS9M may work together with ANK6 in controlling female gametophyte development, possibly by regulating the expression of some mitochondrial proteins.
Collapse
Affiliation(s)
- Changqing Lu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Feng Yu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Xiaoying Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Hong Tan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| | - Sheng Luan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| |
Collapse
|
20
|
Bartoli G, Felici C, Ruffini Castiglione M. Female gametophyte and embryo development in Helleborus bocconei Ten. (Ranunculaceae). PROTOPLASMA 2017; 254:491-504. [PMID: 27048178 DOI: 10.1007/s00709-016-0969-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
In this study, we investigated cytohistochemistry, cycle progression, and relative DNA content of the female gametophyte cells of Helleborus bocconei Ten. before and after fertilization process. The early stages of embryo development were also investigated. H. bocconei possesses a monosporic seven-celled/eight-nucleate Polygonum type female gametophyte, characterized by a morpho-functional polarity. The cells of the embryo sac showed abundant reserves of polysaccharides, strongly increasing in the egg cell just before fertilization. With different timing in DNA replication during cell cycle progression, synergids, egg cells, and polar nuclei showed a haploid DNA content at the end of their differentiation, while antipodes underwent three DNA endoreduplication cycles. Programmed cell death symptoms were detectable in synergid and antipodal cells. After double fertilization, the central cell quickly underwent many mitotic cycles forming the endosperm, which exhibited a progressive increase in protein bodies and starch grains. Close to the developing embryo, the endosperm differentiated a well-defined region rich in a fibrillar carbohydrate matrix. The zygote, that does not start immediately to divide after double fertilization, developed in to an embryo that reached the heart stage at fruit maturation time. A weakly differentiated embryo at this time indicates a morpho-physiological dormancy of seeds, as a survival strategy imposed by the life cycle of this plant with seed dispersal in spring and their germination in the following winter.
Collapse
Affiliation(s)
- Giacomo Bartoli
- Department of Biology, University of Pisa, via Ghini 13, Pisa, I-56126, Italy
| | - Cristiana Felici
- Department of Biology, University of Pisa, via Ghini 13, Pisa, I-56126, Italy
| | | |
Collapse
|
21
|
Abstract
Visualization of the intact embryo sac within the ovular/gynoecial tissues and clear identification of cell types can be logistically difficult and subject to interpretation. Cellular marker technologies have been available for the embryo sac, but have typically labeled only one cell type in a particular line. Here, we describe techniques for simultaneous labeling each cell type in the embryo sac and visualization methods for such in Arabidopsis, soybean, maize, and sorghum.
Collapse
|
22
|
Zhu DZ, Zhao XF, Liu CZ, Ma FF, Wang F, Gao XQ, Zhang XS. Interaction between RNA helicase ROOT INITIATION DEFECTIVE 1 and GAMETOPHYTIC FACTOR 1 is involved in female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5757-5768. [PMID: 27683728 PMCID: PMC5066494 DOI: 10.1093/jxb/erw341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction. Furthermore, we found that RID1 interacts with GAMETOPHYTIC FACTOR 1 (GFA1), which is an integral protein of the spliceosome component U5 small nuclear ribonucleoprotein (snRNP) particle. Substitution of specific RID1 amino acids (Y266F and T267I) inhibited the interaction with GFA1. In addition, the mutated RID1 could not complement the seed-abortion phenotype of the rid1 mutant. The rid1 and gfa1 mutants exhibited similar abnormalities in pre-mRNA splicing and down-regulated expression of some genes involved in FG development. Our results suggest that an interaction between RID1 and the U5 snRNP complex regulates essential pre-mRNA splicing of the genes required for FG development. This study provides new information regarding the mechanism underlying the FG developmental process.
Collapse
Affiliation(s)
- Dong Zi Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xue Fang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Fang Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
23
|
Zhou LZ, Höwing T, Müller B, Hammes UZ, Gietl C, Dresselhaus T. Expression analysis of KDEL-CysEPs programmed cell death markers during reproduction in Arabidopsis. PLANT REPRODUCTION 2016; 29:265-72. [PMID: 27349421 DOI: 10.1007/s00497-016-0288-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/23/2023]
Abstract
CEP cell death markers. Programmed cell death (PCD) is essential for proper plant growth and development. Plant-specific papain-type KDEL-tailed cysteine endopeptidases (KDEL-CysEPs or CEPs) have been shown to be involved in PCD during vegetative development as executors for the last step in the process. The Arabidopsis genome encodes three KDEL-CysEPs: AtCEP1, AtCEP2 and AtCEP3. With the help of fluorescent fusion reporter lines, we report here a detailed expression analysis of KDEL-CysEP (pro)proteins during reproductive processes, including flower organ and germline development, fertilization and seed development. AtCEP1 is highly expressed in different reproductive tissues including nucellus cells of mature ovule and the connecting edge of anther and filament. After fertilization, AtCEP1 marks integument cell layers of the seeds coat as well as suspensor and columella cells of the developing embryo. Promoter activity of AtCEP2 is detected in the style of immature and mature pistils, in other floral organs including anther, sepal and petal. AtCEP2 mainly localizes to parenchyma cells next to xylem vessels. Although there is no experimental evidence to demonstrate that KDEL-CysEPs are involved in PCD during fertilization, the expression pattern of AtCEPs, which were previously shown to represent cell death markers during vegetative development, opens up new avenues to investigate PCD in plant reproduction.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Timo Höwing
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85350, Freising, Germany
| | - Benedikt Müller
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Ulrich Z Hammes
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Christine Gietl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85350, Freising, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
24
|
Wang JG, Feng C, Liu HH, Ge FR, Li S, Li HJ, Zhang Y. HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis. PLoS Genet 2016; 12:e1006269. [PMID: 27541731 PMCID: PMC4991792 DOI: 10.1371/journal.pgen.1006269] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/30/2016] [Indexed: 11/18/2022] Open
Abstract
Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it's achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the μ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis.
Collapse
Affiliation(s)
- Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chong Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hai-Hong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail:
| |
Collapse
|
25
|
Abstract
The genetic regulation of cell patterning within plant gametophytes remains poorly understood. Now, two new studies in the liverwort Marchantia polymorpha shed light on the conserved function of an RKD transcription factor as a key regulator of egg cell fate in the land plant lineage.
Collapse
Affiliation(s)
- Leonor C Boavida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
26
|
|
27
|
Córdoba JP, Marchetti F, Soto D, Martin MV, Pagnussat GC, Zabaleta E. The CA domain of the respiratory complex I is required for normal embryogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1589-603. [PMID: 26721503 PMCID: PMC5854192 DOI: 10.1093/jxb/erv556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/10/2015] [Indexed: 05/04/2023]
Abstract
The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an extra domain composed of putative gamma carbonic anhydrases subunits, named the CA domain, which was proposed to be essential for complex I assembly. There are two kinds of carbonic anhydrase subunits: CAs (of which there are three) and carbonic anhydrase-like proteins (CALs) (of which there are two). In plants, the CA domain has been linked to photorespiration. In this work, we report that Arabidopsis mutant plants affected in two specific CA subunits show a lethal phenotype. Double homozygous knockouts ca1ca2 embryos show a significant developmental delay compared to the non-homozygous embryos, which show a wild-type (WT) phenotype in the same silique. Mutant embryos show impaired mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) accumulation. The characteristic embryo greening does not take place and fewer but larger oil bodies are present. Although seeds look dark brown and wrinkled, they are able to germinate 12 d later than WT seeds. However, they die immediately, most likely due to oxidative stress.Since the CA domain is required for complex I biogenesis, it is predicted that in ca1ca2 mutants no complex I could be formed, triggering the lethal phenotype. The in vivo composition of a functional CA domain is proposed.
Collapse
Affiliation(s)
- Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Fernanda Marchetti
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Débora Soto
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - María Victoria Martin
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| |
Collapse
|
28
|
Figueiredo DD, Köhler C. Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:16-20. [PMID: 26658334 DOI: 10.1016/j.pbi.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/08/2023]
Abstract
In seed plants, as in placental animals, gamete formation and zygotic development take place within the parental tissues. To ensure timely onset and to coordinate the development of the new generation, communication between the parent plant with the filial tissues and its precursors is of utmost importance. During female gametogenesis the maternal tissues tightly regulate megagametophyte formation and the interplay between the sporophyte and the fertilization products, embryo and endosperm, has major implications in the formation of a viable seed. We review the current knowledge on these interactions and highlight the many questions that still remain unanswered, in particular the nature of the pathways involved in these signaling events.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden.
| |
Collapse
|
29
|
Patterning of the angiosperm female gametophyte through the prism of theoretical paradigms. Biochem Soc Trans 2015; 42:332-9. [PMID: 24646240 DOI: 10.1042/bst20140036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The FG (female gametophyte) of flowering plants (angiosperms) is a simple highly polar structure composed of only a few cell types. The FG develops from a single cell through mitotic divisions to generate, depending on the species, four to 16 nuclei in a syncytium. These nuclei are then partitioned into three or four distinct cell types. The mechanisms underlying the specification of the nuclei in the FG has been a focus of research over the last decade. Nevertheless, we are far from understanding the patterning mechanisms that govern cell specification. Although some results were previously interpreted in terms of static positional information, several lines of evidence now show that local interactions are important. In the present article, we revisit the available data on developmental mutants and cell fate markers in the light of theoretical frameworks for biological patterning. We argue that a further dissection of the mechanisms may be impeded by the combinatorial and dynamical nature of developmental cues. However, accounting for these properties of developing systems is necessary to disentangle the diversity of the phenotypic manifestations of the underlying molecular interactions.
Collapse
|
30
|
Panoli A, Martin MV, Alandete-Saez M, Simon M, Neff C, Swarup R, Bellido A, Yuan L, Pagnussat GC, Sundaresan V. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana. PLoS One 2015; 10:e0126164. [PMID: 25970627 PMCID: PMC4430233 DOI: 10.1371/journal.pone.0126164] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.
Collapse
Affiliation(s)
- Aneesh Panoli
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Maria Victoria Martin
- Institute of Biological Research IIB-CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Monica Alandete-Saez
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
- PIPRA, University of California Davis, Davis, California, 95616, United States of America
| | - Marissa Simon
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Christina Neff
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Ranjan Swarup
- University of Nottingham, Nottingham, United Kingdom
| | - Andrés Bellido
- Institute of Biological Research IIB-CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Li Yuan
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
| | - Gabriela C. Pagnussat
- Institute of Biological Research IIB-CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
- * E-mail: (GCP); (VS)
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California Davis, Davis, California, 95616, United States of America
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
- * E-mail: (GCP); (VS)
| |
Collapse
|
31
|
Schmidt A, Schmid MW, Grossniklaus U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 2015; 142:229-41. [PMID: 25564620 DOI: 10.1242/dev.102103] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| |
Collapse
|
32
|
DePaoli HC, Dornelas MC, Goldman MHS. SCI1 is a component of the auxin-dependent control of cell proliferation in Arabidopsis upper pistil. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:122-130. [PMID: 25443839 DOI: 10.1016/j.plantsci.2014.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
To characterize the recently described SCI1 (stigma/style cell cycle inhibitor 1) gene relationship with the auxin pathway, we have taken the advantage of the Arabidopsis model system and its available tools. At first, we have analyzed the At1g79200 T-DNA insertion mutants and constructed various transgenic plants. The loss- and gain-of-function plants displayed cell number alterations in upper pistils that were controlled by the amino-terminal domain of the protein. These data also confirmed that this locus holds the functional homolog (AtSCI1) of the Nicotiana tabacum SCI1 gene. Then, we have provided some evidences the auxin synthesis/signaling pathways are required for downstream proper AtSCI1 control of cell number: (a) its expression is downregulated in yuc2yuc6 and npy1 auxin-deficient mutants, (b) triple (yuc2yuc6sci1) and double (npy1sci1) mutants mimicked the auxin-deficient phenotypes, with no synergistic interactions, and (c) the increased upper pistil phenotype in these last mutants, which is a consequence of an increased cell number, was able to be complemented by AtSCI1 overexpression. Taken together, our data strongly suggests SCI1 as a component of the auxin signaling transduction pathway to control cell proliferation/differentiation in stigma/style, representing a molecular effector of this hormone on pistil development.
Collapse
Affiliation(s)
- Henrique Cestari DePaoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil; Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA; PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
33
|
Song X, Yuan L, Sundaresan V. Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. PLANT REPRODUCTION 2014; 27:197-203. [PMID: 25389024 DOI: 10.1007/s00497-014-0251-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 05/09/2023]
Abstract
The female gametophyte of most flowering plants forms four cell types after cellularization, namely synergid cell, egg cell, central cell and antipodal cell. Of these, only the antipodal cells have no established functions, and it has been proposed that in many plants including Arabidopsis, the antipodal cells undergo programmed cell death during embryo sac maturation and prior to fertilization. Here, we examined the expression of female gametophyte-specific fluorescent reporters in mature embryo sacs of Arabidopsis, and in developing seeds shortly after fertilization. We observed expression of the fluorescence from the reporter genes in the three antipodal cells in the mature stage embryo sac, and continuing through the early syncytial endosperm stages. These observations suggest that rather than undergoing programmed cell death and degenerating at the mature stage of female gametophyte as previously supposed, the antipodal cells in Arabidopsis persist beyond fertilization, even when the other cell types are no longer present. The results support the concept that the Arabidopsis female gametophyte at maturity should be considered to be composed of seven cells and four cell types, rather than the previously prevailing view of four cells and three cell types.
Collapse
Affiliation(s)
- Xiaoya Song
- Department of Plant Biology, University of California-Davis, One Shields Ave., Davis, CA, 95616, USA
| | | | | |
Collapse
|
34
|
The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res 2014; 25:121-34. [PMID: 25378179 PMCID: PMC4650584 DOI: 10.1038/cr.2014.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
Ovules are essential for plant reproduction and develop into seeds after fertilization. Sporocyteless/nozzle (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits topless/topless-related (TPL/TPR) co-repressors to inhibit the Cincinnata (CIN)-like Teosinte branched1/cycloidea/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.
Collapse
|
35
|
Somatic embryogenesis - Stress-induced remodeling of plant cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:385-402. [PMID: 25038583 DOI: 10.1016/j.bbagrm.2014.07.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/13/2023]
Abstract
Plants as sessile organisms have remarkable developmental plasticity ensuring heir continuous adaptation to the environment. An extreme example is somatic embryogenesis, the initiation of autonomous embryo development in somatic cells in response to exogenous and/or endogenous signals. In this review I briefly overview the various pathways that can lead to embryo development in plants in addition to the fertilization of the egg cell and highlight the importance of the interaction of stress- and hormone-regulated pathways during the induction of somatic embryogenesis. Somatic embryogenesis can be initiated in planta or in vitro, directly or indirectly, and the requirement for dedifferentiation as well as the way to achieve developmental totipotency in the various systems is discussed in light of our present knowledge. The initiation of all forms of the stress/hormone-induced in vitro as well as the genetically provoked in planta somatic embryogenesis requires extensive and coordinated genetic reprogramming that has to take place at the chromatin level, as the embryogenic program is under strong epigenetic repression in vegetative plant cells. Our present knowledge on chromatin-based mechanisms potentially involved in the somatic-to-embryogenic developmental transition is summarized emphasizing the potential role of the chromatin to integrate stress, hormonal, and developmental pathways leading to the activation of the embryogenic program. The role of stress-related chromatin reorganization in the genetic instability of in vitro cultures is also discussed. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
36
|
Wang H, Liu R, Wang J, Wang P, Shen Y, Liu G. The Arabidopsis kinesin gene AtKin-1 plays a role in the nuclear division process during megagametogenesis. PLANT CELL REPORTS 2014; 33:819-828. [PMID: 24667993 DOI: 10.1007/s00299-014-1594-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles. Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, 810001, China,
| | | | | | | | | | | |
Collapse
|
37
|
Heydlauff J, Groß-Hardt R. Love is a battlefield: programmed cell death during fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1323-30. [PMID: 24567492 DOI: 10.1093/jxb/eru030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant development and growth is sustained by the constant generation of tremendous amounts of cells, which become integrated into various types of tissues and organs. What is all too often overlooked is that this thriving life also requires the targeted degeneration of selected cells, which undergo cell death according to genetically encoded programmes or environmental stimuli. The side-by-side existence of generation and demise is particularly evident in the haploid phase of the flowering plants cycle. Here, the lifespan of terminally differentiated accessory cells contrasts with that of germ cells, which by definition live on to form the next generation. In fact, with research in recent years it is becoming increasingly clear that the gametophytes of flowering plants constitute an attractive and powerful system for investigating the molecular mechanisms underlying selective cell death.
Collapse
Affiliation(s)
- Juliane Heydlauff
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | |
Collapse
|
38
|
Lituiev DS, Krohn NG, Müller B, Jackson D, Hellriegel B, Dresselhaus T, Grossniklaus U. Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development 2014; 140:4544-53. [PMID: 24194471 DOI: 10.1242/dev.098301] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant life cycle alternates between a diploid sporophytic and a haploid gametophytic generation. The female gametophyte (FG) of flowering plants is typically formed through three syncytial mitoses, followed by cellularisation that forms seven cells belonging to four cell types. The specification of cell fates in the FG has been suggested to depend on positional information provided by an intrinsic auxin concentration gradient. The goal of this study was to develop mathematical models that explain the formation of this gradient in a syncytium. Two factors were proposed to contribute to the maintenance of the auxin gradient in Arabidopsis FGs: polar influx at early stages and localised auxin synthesis at later stages. However, no gradient could be generated using classical, one-dimensional theoretical models under these assumptions. Thus, we tested other hypotheses, including spatial confinement by the large central vacuole, background efflux and localised degradation, and investigated the robustness of cell specification under different parameters and assumptions. None of the models led to the generation of an auxin gradient that was steep enough to allow sufficiently robust patterning. This led us to re-examine the response to an auxin gradient in developing FGs using various auxin reporters, including a novel degron-based reporter system. In agreement with the predictions of our models, auxin responses were not detectable within the FG of Arabidopsis or maize, suggesting that the effects of manipulating auxin production and response on cell fate determination might be indirect.
Collapse
Affiliation(s)
- Dmytro S Lituiev
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Barcaccia G, Albertini E. Apomixis in plant reproduction: a novel perspective on an old dilemma. PLANT REPRODUCTION 2013; 26:159-79. [PMID: 23852378 PMCID: PMC3747320 DOI: 10.1007/s00497-013-0222-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/23/2013] [Indexed: 05/19/2023]
Abstract
Seed is one of the key factors of crop productivity. Therefore, a comprehension of the mechanisms underlying seed formation in cultivated plants is crucial for the quantitative and qualitative progress of agricultural production. In angiosperms, two pathways of reproduction through seed exist: sexual or amphimictic, and asexual or apomictic; the former is largely exploited by seed companies for breeding new varieties, whereas the latter is receiving continuously increasing attention from both scientific and industrial sectors in basic research projects. If apomixis is engineered into sexual crops in a controlled manner, its impact on agriculture will be broad and profound. In fact, apomixis will allow clonal seed production and thus enable efficient and consistent yields of high-quality seeds, fruits, and vegetables at lower costs. The development of apomixis technology is expected to have a revolutionary impact on agricultural and food production by reducing cost and breeding time, and avoiding the complications that are typical of sexual reproduction (e.g., incompatibility barriers) and vegetative propagation (e.g., viral transfer). However, the development of apomixis technology in agriculture requires a deeper knowledge of the mechanisms that regulate reproductive development in plants. This knowledge is a necessary prerequisite to understanding the genetic control of the apomictic process and its deviations from the sexual process. Our molecular understanding of apomixis will be greatly advanced when genes that are specifically or differentially expressed during embryo and embryo sac formation are discovered. In our review, we report the main findings on this subject by examining two approaches: i) analysis of the apomictic process in natural apomictic species to search for genes controlling apomixis and ii) analysis of gene mutations resembling apomixis or its components in species that normally reproduce sexually. In fact, our opinion is that a novel perspective on this old dilemma pertaining to the molecular control of apomixis can emerge from a cross-check among candidate genes in natural apomicts and a high-throughput analysis of sexual mutants.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
40
|
Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. PLANT REPRODUCTION 2013; 26:125-137. [PMID: 23539301 DOI: 10.1007/s00497-013-0215-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.
Collapse
Affiliation(s)
- Shai J Lawit
- Agricultural Biotechnology, DuPont Pioneer, Johnston, IA 50131-1004, USA.
| | | | | | | | | |
Collapse
|
41
|
Domoki M, Szűcs A, Jäger K, Bottka S, Barnabás B, Fehér A. Identification of genes preferentially expressed in wheat egg cells and zygotes. PLANT CELL REPORTS 2013; 32:339-48. [PMID: 23160639 DOI: 10.1007/s00299-012-1367-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/28/2012] [Accepted: 10/31/2012] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE : Wheat genes differentially expressed in the egg cell before and after fertilization were identified. The data support zygotic gene activation before the first cell division in wheat. To have an insight into fertilization-induced gene expression, cDNA libraries have been prepared from isolated wheat egg cells and one-celled zygotes. Two-hundred and twenty-six egg cell and 253 zygote-expressed EST sequences were determined. Most of the represented transcripts were detected in the wheat egg cell or zygote transcriptome at the first time. Expression analysis of fourteen of the identified genes and three controls was carried out by real-time quantitative PCR. The preferential expression of all investigated genes in the female gametophyte-derived samples (egg cells, zygotes, two-celled proembryos, and basal ovule parts with synergids) in comparison to the anthers, and the leaves were verified. Three genes with putative signaling/regulatory functions were expressed at a low level in the egg cell but exhibited increased (2-to-33-fold) relative expression in the zygote and the proembryo. Genes with high EST abundance in cDNA libraries exhibited strong expression in the egg cell and the zygote, while the ones coding for unknown or hypothetical proteins exhibited differential expression patterns with preferential transcript accumulation in egg cells and/or zygotes. The obtained data support the activation of the zygotic genome before the first cell division in wheat.
Collapse
Affiliation(s)
- Mónika Domoki
- Biological Research Centre, Institute of Plant Biology, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | | | | | | | | | | |
Collapse
|
42
|
Feng X, Zilberman D, Dickinson H. A Conversation across Generations: Soma-Germ Cell Crosstalk in Plants. Dev Cell 2013; 24:215-25. [DOI: 10.1016/j.devcel.2013.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/15/2022]
|
43
|
Wang SQ, Shi DQ, Long YP, Liu J, Yang WC. GAMETOPHYTE DEFECTIVE 1, a putative subunit of RNases P/MRP, is essential for female gametogenesis and male competence in Arabidopsis. PLoS One 2012; 7:e33595. [PMID: 22509260 PMCID: PMC3324470 DOI: 10.1371/journal.pone.0033595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/13/2012] [Indexed: 01/15/2023] Open
Abstract
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.
Collapse
Affiliation(s)
- Si-Qi Wang
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (DQS); (WCY)
| | - Yan-Ping Long
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (DQS); (WCY)
| |
Collapse
|
44
|
Li CH, Fu SX, Chen XJ, Qi CK. Phenotypic characterization and genetic analysis of a partially female-sterile mutant in Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:112-117. [PMID: 22325872 DOI: 10.1016/j.plantsci.2011.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 05/31/2023]
Abstract
mfs is a partially female-sterile Brassica napus mutant derived from a spontaneous mutation. When the mutant is crossed as a female, very poor seed set is obtained, whereas it is fertile as a pollen donor. The floret of the mutant consisted of almost equal-length stamens, a short pistil, a flat style and ovary, and the stigma was chapped. Measures of pollen viability and pollen tube growth in vitro indicated that the mutation enhanced pollen viability. The papillae of mfs consisted of two conjoint bilobed domes, and the papillar cells were sparse, oblate and large at anthesis, but become withered and senesced quickly afterward. Pollen grains could germinate over the papillar cells, but pollen tubes could not penetrate into it. After flower opening, the number of organelles in mfs papillar cell decreased, the structure of it distinctly degenerated, and vacuolization was abnormally high. Genetic analysis of 3 F2 populations and 3 BC1F1 populations suggested that the mutant trait was controlled by two recessive genes.
Collapse
Affiliation(s)
- Chun-Hong Li
- Nanjing Sub-Center of National Rapeseed Development Center, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | | | | | | |
Collapse
|
45
|
Radchuk V, Kumlehn J, Rutten T, Sreenivasulu N, Radchuk R, Rolletschek H, Herrfurth C, Feussner I, Borisjuk L. Fertility in barley flowers depends on Jekyll functions in male and female sporophytes. THE NEW PHYTOLOGIST 2012; 194:142-157. [PMID: 22269089 DOI: 10.1111/j.1469-8137.2011.04032.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Owing to its evolutional plasticity and adaptability, barley (Hordeum vulgare) is one of the most widespread crops in the world. Despite this evolutionary success, sexual reproduction of small grain cereals is poorly investigated, making discovery of novel genes and functions a challenging priority. Barley gene Jekyll appears to be a key player in grain development; however, its role in flowers has remained unknown. • Here, we studied RNAi lines of barley, where Jekyll expression was repressed to different extents. The impact of Jekyll on flower development was evaluated based on differential gene expression analysis applied to anthers and gynoecia of wildtype and transgenic plants, as well as using isotope labeling experiments, hormone analysis, immunogold- and TUNEL-assays and in situ hybridization. • Jekyll is expressed in nurse tissues mediating gametophyte-sporophyte interaction in anthers and gynoecia, where JEKYLL was found within the intracellular membranes. The repression of Jekyll impaired pollen maturation, anther dehiscence and induced a significant loss of fertility. The presence of JEKYLL on the pollen surface also hints at possible involvement in the fertilization process. • We conclude that the role of Jekyll in cereal sexual reproduction is clearly much broader than has been hitherto realized.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Cornelia Herrfurth
- Georg August University, Albrecht von Haller Institute, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg August University, Albrecht von Haller Institute, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| |
Collapse
|
46
|
Migicovsky Z, Kovalchuk I. Epigenetic Modifications during Angiosperm Gametogenesis. FRONTIERS IN PLANT SCIENCE 2012; 3:20. [PMID: 22645573 PMCID: PMC3355800 DOI: 10.3389/fpls.2012.00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/19/2012] [Indexed: 06/01/2023]
Abstract
Angiosperms do not contain a distinct germline, but rather develop gametes from gametophyte initials that undergo cell division. These gametes contain cells that give rise to an endosperm and the embryo. DNA methylation is decreased in the vegetative nucleus (VN) and central cell nuclei (CCN) resulting in expression of transposable elements (TEs). It is thought that the siRNAs produced in response to TE expression are able to travel to the sperm cells and egg cells (EC) from VN and CCN, respectively, in order to enforce silencing there. Demethylation during gametogenesis helps ensure that even newly integrated TEs are expressed and therefore silenced by the resulting siRNA production. A final form of epigenetic control is modification of histones, which includes accumulation of the H3 variant HTR10 in mature sperm that is then completely replaced following fertilization. In females, the histone isoforms present in the EC and CCN differ, potentially helping to differentiate the two components during gametogenesis.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
47
|
|
48
|
Chen D, Deng Y, Zhao J. Distribution and change patterns of free IAA, ABP 1 and PM H⁺-ATPase during ovary and ovule development of Nicotiana tabacum L. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:127-36. [PMID: 22070974 DOI: 10.1016/j.jplph.2011.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 05/25/2023]
Abstract
Auxin plays key roles in flower induction, embryogenesis, seed formation and seedling development, but little is known about whether auxin regulates the development of ovaries and ovules before pollination. In the present report, we measured the content of free indole-3-acetic (IAA) in ovaries of Nicotiana tabacum L., and localized free IAA, auxin binding protein 1 (ABP1) and plasma membrane (PM) H⁺-ATPase in the ovaries and ovules. The level of free IAA in the developmental ovaries increased gradually from the stages of ovular primordium to the functional megaspore, but slightly decreased when the embryo sacs formed. Immunoenzyme labeling clearly showed that both IAA and ABP1 were distributed in the ovules, the edge of the placenta, vascular tissues and the ovary wall, while PM H⁺-ATPase was mainly localized in the ovules. By using immunogold labeling, the subcellular distributions of IAA, ABP1 and PM H⁺-ATPase in the ovules were also shown. The results suggest that IAA, ABP1 and PM H⁺-ATPase may play roles in the ovary and ovule initiation, formation and differentiation.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
49
|
Palanivelu R, Tsukamoto T. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:96-113. [PMID: 23801670 DOI: 10.1002/wdev.6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube's journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube-pistil interactions.
Collapse
|
50
|
Alandete-Saez M, Ron M, Leiboff S, McCormick S. Arabidopsis thaliana GEX1 has dual functions in gametophyte development and early embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:620-32. [PMID: 21831199 DOI: 10.1111/j.1365-313x.2011.04713.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GEX1 is a plasma membrane protein that is conserved among plant species, and has previously been shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immediately after fertilization and in the pollen vegetative cell. We functionally characterize GEX1 in Arabidopsis thaliana, and show that it is a versatile protein that performs functions during male and female gametophyte development, and during early embryogenesis. gex1-1/+ plants, which synthesize a truncated GEX1 mRNA encoding a protein lacking the predicted cytoplasmic domain, but still targeted to the plasma membrane, had embryos that arrested before the pre-globular stage. gex1-3/+ plants, carrying a null GEX1 allele, had defects during male and female gametophyte development, and during early embryogenesis. Using an antisense GEX1 transgenic line we demonstrate that the predicted GEX1 extracellular domain is sufficient and necessary for GEX1 function during the development of both gametophytes. The predicted cytoplasmic domain is necessary for correct early embryogenesis and mediates homodimer formation at the plasma membrane. We propose that dimerization of GEX1 in the zygote might be an upstream step in a signaling cascade regulating early embryogenesis.
Collapse
Affiliation(s)
- Monica Alandete-Saez
- Plant Gene Expression Center and Department of Plant and Microbial Biology, USDA/ARS-UC-Berkeley, Albany, CA 94710, USA
| | | | | | | |
Collapse
|