1
|
Zubrzycki M, Schramm R, Costard-Jäckle A, Morshuis M, Gummert JF, Zubrzycka M. Pathogenesis and Surgical Treatment of Dextro-Transposition of the Great Arteries (D-TGA): Part II. J Clin Med 2024; 13:4823. [PMID: 39200964 PMCID: PMC11355351 DOI: 10.3390/jcm13164823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dextro-transposition of the great arteries (D-TGA) is the second most common cyanotic heart disease, accounting for 5-7% of all congenital heart defects (CHDs). It is characterized by ventriculoarterial (VA) connection discordance, atrioventricular (AV) concordance, and a parallel relationship with D-TGA. As a result, the pulmonary and systemic circulations are separated [the morphological right ventricle (RV) is connected to the aorta and the morphological left ventricle (LV) is connected to the pulmonary artery]. This anomaly is included in the group of developmental disorders of embryonic heart conotruncal irregularities, and their pathogenesis is multifactorial. The anomaly's development is influenced by genetic, epigenetic, and environmental factors. It can occur either as an isolated anomaly, or in association with other cardiac defects. The typical concomitant cardiac anomalies that may occur in patients with D-TGA include ventriculoseptal defects, patent ductus arteriosus, left ventricular outflow tract obstruction (LVOTO), mitral and tricuspid valve abnormalities, and coronary artery variations. Correction of the defect during infancy is the preferred treatment for D-TGA. Balloon atrial septostomy (BAS) is necessary prior to the operation. The recommended surgical correction methods include arterial switch operation (ASO) and atrial switch operation (AtrSR), as well as the Rastelli and Nikaidoh procedures. The most common postoperative complications include coronary artery stenosis, neoaortic root dilation, neoaortic insufficiency and neopulmonic stenosis, right ventricular (RV) outflow tract obstruction (RVOTO), left ventricular (LV) dysfunction, arrhythmias, and heart failure. Early diagnosis and treatment of D-TGA is paramount to the prognosis of the patient. Improved surgical techniques have made it possible for patients with D-TGA to survive into adulthood.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Surgery for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (M.M.); (J.F.G.)
| | - Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (M.M.); (J.F.G.)
| | - Michiel Morshuis
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (M.M.); (J.F.G.)
| | - Jan F. Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (M.M.); (J.F.G.)
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of d-Transposition of the Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:683-696. [PMID: 38884742 DOI: 10.1007/978-3-031-44087-8_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During normal cardiovascular development, the outflow tract becomes septated and rotates so that the separate aorta and pulmonary trunk are correctly aligned with the left and right ventricles, respectively. However, when this process goes wrong, the aorta and pulmonary trunk are incorrectly positioned, resulting in oxygenated blood being directly returned to the lungs, with deoxygenated blood being delivered to the systemic circulation. This is termed transposition of the great arteries (TGA). The precise etiology of TGA is not known, but the use of animal models has elucidated that genes involved in determination of the left- embryonic body axis play key roles. Other factors such as retinoic acid levels are also crucial. This chapter reviews the animal models presenting with TGA that have been generated by genetic manipulation or with exogenous agents.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
3
|
Queen R, Crosier M, Eley L, Kerwin J, Turner JE, Yu J, Alqahtani A, Dhanaseelan T, Overman L, Soetjoadi H, Baldock R, Coxhead J, Boczonadi V, Laude A, Cockell SJ, Kane MA, Lisgo S, Henderson DJ. Spatial transcriptomics reveals novel genes during the remodelling of the embryonic human arterial valves. PLoS Genet 2023; 19:e1010777. [PMID: 38011284 PMCID: PMC10703419 DOI: 10.1371/journal.pgen.1010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/07/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.
Collapse
Affiliation(s)
- Rachel Queen
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Moira Crosier
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Janet Kerwin
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jasmin E. Turner
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Ahlam Alqahtani
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Tamilvendhan Dhanaseelan
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lynne Overman
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Hannah Soetjoadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Richard Baldock
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh University, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Veronika Boczonadi
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Alex Laude
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Simon J. Cockell
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Steven Lisgo
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
4
|
Liu N, Kawahira N, Nakashima Y, Nakano H, Iwase A, Uchijima Y, Wang M, Wu SM, Minamisawa S, Kurihara H, Nakano A. Notch and retinoic acid signals regulate macrophage formation from endocardium downstream of Nkx2-5. Nat Commun 2023; 14:5398. [PMID: 37669937 PMCID: PMC10480477 DOI: 10.1038/s41467-023-41039-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors.
Collapse
Affiliation(s)
- Norika Liu
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA
| | - Naofumi Kawahira
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA
| | | | - Haruko Nakano
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA
| | - Akiyasu Iwase
- University of Tokyo, Department of Physiological Chemistry and Metabolism, Tokyo, Japan
| | - Yasunobu Uchijima
- University of Tokyo, Department of Physiological Chemistry and Metabolism, Tokyo, Japan
| | - Mei Wang
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan
| | - Sean M Wu
- Stanford University, Cardiovascular Institute and Division of Cardiovascular Medicine, Department of Medicine, Stanford, USA
| | - Susumu Minamisawa
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan
| | - Hiroki Kurihara
- University of Tokyo, Department of Physiological Chemistry and Metabolism, Tokyo, Japan
| | - Atsushi Nakano
- The Jikei University School of Medicine, Department of Cell Physiology, Tokyo, Japan.
- University of California Los Angeles, Department of Molecular Cell and Developmental Biology, Los Angeles, USA.
- University of California Los Angeles, David Geffen Department of Medicine, Division of Cardiology, Los Angeles, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, USA.
| |
Collapse
|
5
|
Restivo A, di Gioia C, Marino B, Putotto C. Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anat Rec (Hoboken) 2023; 306:502-514. [PMID: 36426596 DOI: 10.1002/ar.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
This review examines and discusses the morphology and embryology of two main groups of conotruncal cardiac malformations: (a) transposition of the great arteries (complete transposition and incomplete/partial transposition namely double outlet right ventricle), and (b) aortic dextroposition defects (tetralogy of Fallot and Eisenmenger malformation). In both groups, persistent truncus arteriosus was included because maldevelopment of the neural crest cell supply to the outflow tract, contributing to the production of the persistent truncus arteriosus, is shared by both groups of malformations. The potentially important role of the proximal conal cushions in the rotatory sequence of the conotruncus is emphasized. Most importantly, this study emphasizes the differentiation between the double-outlet right ventricle, which is a partial or incomplete transposition of the great arteries, and the Eisenmenger malformation, which is an aortic dextroposition. Special emphasis is also given to the leftward shift of the conoventricular junction, which covers an important morphogenetic role in both aortic dextropositions and transposition defects as well as in normal development, and whose molecular genetic regulation seems to remain unclear at present. Emphasis is placed on the distinct and overlapping roles of Tbx1 and Pitx2 transcription factors in modulating the development of the cardiac outflow tract.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy.,Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy
| | - Cira di Gioia
- Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Almonaem ERA, Soliman DR, El Sayed MAM, Ahmed IA, Abdelrahman EG. Association between SNP rs59382073 in TBX2 3′ UTR and susceptibility to congenital heart diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ahuja N, Hiltabidle MS, Rajasekhar H, Voss S, Lu SZ, Barlow HR, Cowdin MA, Daniel E, Vaddaraju V, Anandakumar T, Black E, Cleaver O, Maynard C. Endothelial Cyp26b1 restrains murine heart valve growth during development. Dev Biol 2022; 486:81-95. [DOI: 10.1016/j.ydbio.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
|
8
|
Ontoria-Oviedo I, Földes G, Tejedor S, Panadero J, Kitani T, Vázquez A, Wu JC, Harding SE, Sepúlveda P. Modeling Transposition of the Great Arteries with Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms222413270. [PMID: 34948064 PMCID: PMC8705900 DOI: 10.3390/ijms222413270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The dextro-transposition of the great arteries (d-TGA) is one of the most common congenital heart diseases. To identify biological processes that could be related to the development of d-TGA, we established induced pluripotent stem cell (iPSC) lines from two patients with d-TGA and from two healthy subjects (as controls) and differentiated them into endothelial cells (iPSC-ECs). iPSC-EC transcriptome profiling and bioinformatics analysis revealed differences in the expression level of genes involved in circulatory system and animal organ development. iPSC-ECs from patients with d-TGA showed impaired ability to develop tubular structures in an in vitro capillary-like tube formation assay, and interactome studies revealed downregulation of biological processes related to Notch signaling, circulatory system development and angiogenesis, pointing to alterations in vascular structure development. Our study provides an iPSC-based cellular model to investigate the etiology of d-TGA.
Collapse
Affiliation(s)
- Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
- Correspondence: (I.O.-O.); (P.S.); Tel.: +34-96-1246632 (I.O.-O.); +34-96-1246635 (P.S.)
| | - Gabor Földes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (G.F.); (S.E.H.)
- Heart and Vascular Center, Semmelweis University, H1122 Budapest, Hungary
| | - Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
| | - Joaquín Panadero
- IGENOMIX S.L., Edificios Europark, Parque Tecnológico, 46980 Paterna, Spain;
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.K.); (J.C.W.)
| | - Alejandro Vázquez
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; (T.K.); (J.C.W.)
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (G.F.); (S.E.H.)
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.T.); (A.V.)
- Correspondence: (I.O.-O.); (P.S.); Tel.: +34-96-1246632 (I.O.-O.); +34-96-1246635 (P.S.)
| |
Collapse
|
9
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
11
|
Tian A, Wang S, Wang H, Li N, Liu H, Zhou H, Chen X, Liu X, Deng J, Xiao J, Liu C. Over-expression of Fgf8 in cardiac neural crest cells leads to persistent truncus arteriosus. J Mol Histol 2021; 52:351-361. [PMID: 33547543 DOI: 10.1007/s10735-021-09956-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
During cardiogenesis, the outflow tract undergoes a complicated morphogenesis, including the re-alignment of the great blood vessels, and the separation of aorta and pulmonary trunk. The deficiency of FGF8 in the morphogenesis of outflow tract has been well studied, however, the effect of over-dosed FGF8 on the development of outflow tract remains unknown. In this study, Rosa26R-Fgf8 knock-in allele was constitutively activated by Wnt1-cre transgene in the mouse neural crest cells presumptive for the endocardial cushion of outflow tract. Surprisingly, Wnt1-cre; Rosa26R-Fgf8 mouse embryos exhibited persistent truncus arteriosus and died prior to E15.5. The cardiac neural crest cells in Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus did not degenerate as in WT controls, but proliferated into a thickened endocardial cushion and then, blocked the blood outflow from cardiac chambers into the lungs, which resulted in the embryonic lethality. Although the spiral aorticopulmonary septum failed to form, the differentiaion of the endothelium and smooth muscle in the Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus were impacted little. However, lineage tracing assay showed that the neural crest derived cells aggregated in the cushion layer, but failed to differentiate into the endothelium of Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus. Further investigation displayed the reduced p-Akt and p-Erk immunostaining, and the decreased Bmp2 and Bmp4 transcription in the endothelium of Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus. Our findings suggested that Fgf8 over-expression in cardiac neural crest impaired the formation of aorticopulmonary septum by suppressing the endothelial differentiation and stimulating the proliferation of endocardial cushion cells, which implicated a novel etiology of persistent truncus arteriosus.
Collapse
Affiliation(s)
- Aijuan Tian
- Department of Nuclear Medicine, The 2nd Hospital Affiliated to Dalian Medical University, Dalian, 116023, China
| | - Shangqi Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Haoru Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Hailing Zhou
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xuena Liu
- Department of Nuclear Medicine, The 2nd Hospital Affiliated to Dalian Medical University, Dalian, 116023, China
| | - Jiamin Deng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China. .,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China. .,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Abstract
As the first organ to form and function in all vertebrates, the heart is crucial to development. Tightly-regulated levels of retinoic acid (RA) are critical for the establishment of the regulatory networks that drive normal cardiac development. Thus, the heart is an ideal organ to investigate RA signaling, with much work remaining to be done in this area. Herein, we highlight the role of RA signaling in vertebrate heart development and provide an overview of the field's inception, its current state, and in what directions it might progress so that it may yield fruitful insight for therapeutic applications within the domain of regenerative medicine.
Collapse
|
14
|
Chu Q, Jiang H, Zhang L, Zhu D, Yin Q, Zhang H, Zhou B, Zhou W, Yue Z, Lian H, Liu L, Nie Y, Hu S. CACCT: An Automated Tool of Detecting Complicated Cardiac Malformations in Mouse Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903592. [PMID: 32328433 PMCID: PMC7175298 DOI: 10.1002/advs.201903592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 06/11/2023]
Abstract
Congenital heart disease (CHD) is the major cause of morbidity/mortality in infancy and childhood. Using a mouse model to uncover the mechanism of CHD is essential to understand its pathogenesis. However, conventional 2D phenotyping methods cannot comprehensively exhibit and accurately distinguish various 3D cardiac malformations for the complicated structure of heart cavity. Here, a new automated tool based on microcomputed tomography (micro-CT) image data sets known as computer-assisted cardiac cavity tracking (CACCT) is presented, which can detect the connections between cardiac cavities and identify complicated cardiac malformations in mouse hearts automatically. With CACCT, researchers, even those without expert training or diagnostic experience of CHD, can identify complicated cardiac malformations in mice conveniently and precisely, including transposition of the great arteries, double-outlet right ventricle and atypical ventricular septal defect, whose accuracy is equivalent to senior fetal cardiologists. CACCT provides an effective approach to accurately identify heterogeneous cardiac malformations, which will facilitate the mechanistic studies into CHD and heart development.
Collapse
Affiliation(s)
- Qing Chu
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Haobin Jiang
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Libo Zhang
- State Key Laboratory of Computer ScienceInstitute of Software Chinese Academy of SciencesBeijing100089China
| | - Dekun Zhu
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Qianqian Yin
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Hao Zhang
- Heart Center and Shanghai Institution of Pediatric Congenital Heart DiseasesShanghai Children's Medical CenterNational Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Bin Zhou
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of Sciences (CAS)University of Chinese Academy of SciencesShanghai200031China
| | - Wenzhang Zhou
- State Key Laboratory of Computer ScienceInstitute of Software Chinese Academy of SciencesBeijing100089China
| | - Zhang Yue
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hong Lian
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Lihui Liu
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Yu Nie
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| |
Collapse
|
15
|
Xiao WL, Yu G, Zhao N. Development and gene expression of C57BL/6 mouse embryo palate shelves in rotary organ culture. Exp Ther Med 2020; 19:1235-1242. [PMID: 32010294 PMCID: PMC6966210 DOI: 10.3892/etm.2019.8354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/11/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to improve methods for the suspension culture of mouse palatal shelves by comparing the expression of platelet-derived growth factor receptor (PDGFR)-α in palatal shelves in vivo, to that in vitro. The palatal shelves of C57BL/6 mouse embryos were obtained on gestation days (GDs) 13.5, 14.5, 15.0 and 15.5 for in vivo experiments. The palatal shelves were removed and observed under a stereomicroscope to investigate palatal development. For in vitro experiments, the palatal shelves were dissected under a stereomicroscope on GD 13.5 and then subjected to rotary culture for 0, 24, 36 or 48 h. The expression of PDGFR-α at different time points was detected by immunohistochemical staining and western blot analysis. Both methods of analysis displayed PDGFR-α expression in mesenchymal and epithelial cells at GD 13.5, 14.5, 15.0 and 15.5, in vivo and in vitro. The level of PDGFR-α expression peaked on GD 14.5. The expression of PDGFR-α in palatal shelves in in vitro rotary culture was consistent with that in vivo. Therefore, the novel technique of palatal rotary organ culture presented in the current study could provide a good model for studying the mechanism of pathological palatal fusion in vitro. Additionally, the present study further confirmed that PDGFR-α gene expression was associated with the development of palatal shelves.
Collapse
Affiliation(s)
- Wen-Lin Xiao
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Guo Yu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ning Zhao
- School of Stomatology, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
16
|
Saracino R, Capponi C, Di Persio S, Boitani C, Masciarelli S, Fazi F, Fera S, Vicini E. Regulation of
Gdnf
expression by retinoic acid in Sertoli cells. Mol Reprod Dev 2020; 87:419-429. [DOI: 10.1002/mrd.23323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Rossana Saracino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Chiara Capponi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Sara Di Persio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Carla Boitani
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Silvia Masciarelli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Francesco Fazi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Stefania Fera
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| |
Collapse
|
17
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
18
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
19
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
20
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
21
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
22
|
Nakajima Y. Retinoic acid signaling in heart development. Genesis 2019; 57:e23300. [PMID: 31021052 DOI: 10.1002/dvg.23300] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four-chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart-forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium-secreted insulin-like growth factor, the expression of which is regulated by hepatic mesoderm-derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium-derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
23
|
Susceptibility to congenital heart defects associated with a polymorphism in TBX2 3' untranslated region in the Han Chinese population. Pediatr Res 2019; 85:378-383. [PMID: 30262811 DOI: 10.1038/s41390-018-0181-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tbx2 plays a critical role in determining fates of cardiomyocytes. Little is known about the contribution of TBX2 3' untranslated region (UTR) variants to the risk of congenital heart defect (CHD). Thus, we aimed to determine the association of single-nucleotide polymorphisms (SNPs) in TBX2 3' UTR with CHD susceptibility. METHODS We recruited 1285 controls and 1241 CHD children from China. SNPs identification and genotyping were detected using Sanger Sequencing and SNaPshot. Stratified analysis was conducted to explore the association between rs59382073 polymorphism and CHD subtypes. Functional analyses were performed by luciferase assays in HEK-293T and H9c2 cells. RESULTS Among five TBX2 3'UTR variants identified, rs59382073 minor allele T carriers had a 1.89-fold increased CHD risk compared to GG genotype (95% CI = 1.48-2.46, P = 4.48 × 10-7). The most probable subtypes were right ventricular outflow tract obstruction, conotruncal, and septal defect. G to T variation decreased luciferase activity in cells. This discrepancy was exaggerated by miR-3940 and miR-708, while their corresponding inhibitors eliminated it. CONCLUSION T allele of rs59382073 in TBX2 3'UTR contributed to greater CHD risk in the Han Chinese population. G to T variation created binding sites for miR-3940 and miR-708 to inhibit gene expression.
Collapse
|
24
|
Kawai T, Richards JS, Shimada M. The Cell Type-Specific Expression of Lhcgr in Mouse Ovarian Cells: Evidence for a DNA-Demethylation-Dependent Mechanism. Endocrinology 2018; 159:2062-2074. [PMID: 29579175 PMCID: PMC5905396 DOI: 10.1210/en.2018-00117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Abstract
The luteinizing hormone receptor (LHCGR) is expressed at low levels in mural granulosa cells and cumulus cells of antral follicles and is induced dramatically in granulosa cells but not in cumulus cells by follicle-stimulating hormone (FSH). Therefore, we hypothesized that FSH not only activates transcription factors controlling Lhcgr expression but also alters other events to permit and enhance Lhcgr expression in granulosa cells but not in cumulus cells. In granulosa cells, the level of DNA methylation in the Lhcgr promoter region was significantly decreased by equine chorionic gonadotropin (eCG) in vivo. However, in cumulus cells, hypermethylation of the Lhcgr promoter remained after eCG stimulation. eCG induced estrogen production from testosterone (T) and retinoic acid (RA) synthesis in granulosa cells. When either T or RA in the presence or absence of FSH was added to granulosa cell cultures, the combined treatment with FSH and RA induced demethylation of Lhcgr-promoter region and Lhcgr expression. FSH-dependent RA synthesis was negatively regulated by coculture of granulosa cells with denuded oocytes, suggesting that oocyte-secreted factors downregulate RA production in cumulus cells where Lhcgr expression was not induced. Strikingly, treatment of cultured cumulus-oocyte complexes with a SMAD inhibitor, SB431542, significantly induced RA production, demethylation of Lhcgr-promoter region, and Lhcgr expression in cumulus cells. These results indicate the demethylation of the Lhcgr-promoter region is mediated, at least in part, by RA synthesis and is a key mechanism regulating the cell type-specific differentiation during follicular development.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Correspondence: Masayuki Shimada, PhD, Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan. E-mail:
| |
Collapse
|
25
|
Abstract
The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
Collapse
|
26
|
Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev 2016; 143:9-19. [PMID: 28007475 DOI: 10.1016/j.mod.2016.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Substantial experimental and epidemiological data have highlighted the interplay between nutritional and genetic factors in the development of congenital heart defects. Retinoic acid (RA), a derivative of vitamin A, plays a key role during vertebrate development including the formation of the heart. Retinoids bind to RA and retinoid X receptors (RARs and RXRs) which then regulate tissue-specific genes. Here, we will focus on the roles of RA signaling and receptors in gene regulation during cardiogenesis, and the consequence of deregulated retinoid signaling on heart formation and congenital heart defects.
Collapse
|
27
|
Gu R, Xu J, Lin Y, Zhang J, Wang H, Sheng W, Ma D, Ma X, Huang G. Liganded retinoic acid X receptor α represses connexin 43 through a potential retinoic acid response element in the promoter region. Pediatr Res 2016; 80:159-68. [PMID: 26991262 DOI: 10.1038/pr.2016.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Retinoic acid X receptor alpha (RXRα) and Connexin 43 (Cx43) both play a crucial role in cardiogenesis. However, little is known about the interplay mechanism between the RXRα and Cx43. METHODS The activations of retinoic acid response element (RARE) in Cx43 were measured by luciferase transfection assay. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) was performed to prove that RXRα can directly bind to the RARE sequence. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to analyze the RXRα and Cx43 mRNA level and protein level in cells. RESULTS In this study, we confirmed the negative association of the gene expression between the RXRα and Cx43 in the cell level. Interestingly, a functional RARE was detected in the region from -1,426 to -314 base pairs upstream from the transcriptional start site of Cx43. Moreover, we also prove that RXRα can directly bind to this RARE sequence in vitro and in vivo. CONCLUSIONS RXRα negatively regulates the transcription and expression by directly binding to the RARE in the promoter of Cx43. The RARE-like sequence harbored in the Cx43 promoter region may serve as a functional RARE in the retinoic acid (RA) signaling pathway.
Collapse
Affiliation(s)
- Ruoyi Gu
- Children's Hospital of Fudan University, Shanghai, China
| | - Jun Xu
- Children's Hospital of Fudan University, Shanghai, China
| | - Yixiang Lin
- Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Children's Hospital of Fudan University, Shanghai, China.,Present address: Department of Pediatrics, Chengdu Women and Children's Medical Center, Sichuan, China
| | - Huijun Wang
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Shanghai, China.,Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
28
|
All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS One 2015. [PMID: 26225425 PMCID: PMC4520553 DOI: 10.1371/journal.pone.0134003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective We have shown previously that preterm infants are at risk of necrotizing enterocolitis (NEC), an inflammatory bowel necrosis typically seen in infants born prior to 32 weeks’ gestation, because of the developmental deficiency of transforming growth factor (TGF)-β2 in the intestine. The present study was designed to investigate all-trans retinoic acid (atRA) as an inducer of TGF-β2 in intestinal epithelial cells (IECs) and to elucidate the involved signaling mechanisms. Methods AtRA effects on intestinal epithelium were investigated using IEC6 cells. TGF-β2 expression was measured using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blots. Signaling pathways were investigated using Western blots, transiently-transfected/transduced cells, kinase arrays, chromatin immunoprecipitation, and selective small molecule inhibitors. Results AtRA-treatment of IEC6 cells selectively increased TGF-β2 mRNA and protein expression in a time- and dose-dependent fashion, and increased the activity of the TGF-β2 promoter. AtRA effects were mediated via RhoA GTPase, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), p38α MAPK, and activating transcription factor (ATF)-2. AtRA increased phospho-ATF2 binding to the TGF-β2 promoter and increased histone H2B acetylation in the TGF-β2 nucleosome, which is typically associated with transcriptional activation. Conclusions AtRA induces TGF-β2 expression in IECs via RhoA- and p38α MAPK-mediated activation of the transcription factor ATF2. Further studies are needed to investigate the role of atRA as a protective/therapeutic agent in gut mucosal inflammation.
Collapse
|
29
|
Narematsu M, Kamimura T, Yamagishi T, Fukui M, Nakajima Y. Impaired development of left anterior heart field by ectopic retinoic acid causes transposition of the great arteries. J Am Heart Assoc 2015; 4:jah3958. [PMID: 25929268 PMCID: PMC4599416 DOI: 10.1161/jaha.115.001889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Transposition of the great arteries is one of the most commonly diagnosed conotruncal heart defects at birth, but its etiology is largely unknown. The anterior heart field (AHF) that resides in the anterior pharyngeal arches contributes to conotruncal development, during which heart progenitors that originated from the left and right AHF migrate to form distinct conotruncal regions. The aim of this study is to identify abnormal AHF development that causes the morphology of transposition of the great arteries. Methods and Results We placed a retinoic acid–soaked bead on the left or the right or on both sides of the AHF of stage 12 to 14 chick embryos and examined the conotruncal heart defect at stage 34. Transposition of the great arteries was diagnosed at high incidence in embryos for which a retinoic acid–soaked bead had been placed in the left AHF at stage 12. Fluorescent dye tracing showed that AHF exposed to retinoic acid failed to contribute to conotruncus development. FGF8 and Isl1 expression were downregulated in retinoic acid–exposed AHF, and differentiation and expansion of cardiomyocytes were suppressed in cultured AHF in medium supplemented with retinoic acid. Conclusions The left AHF at the early looped heart stage, corresponding to Carnegie stages 10 to 11 (28 to 29 days after fertilization) in human embryos, is the region of the impediment that causes the morphology of transposition of the great arteries.
Collapse
Affiliation(s)
- Mayu Narematsu
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| | - Tatsuya Kamimura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| | - Toshiyuki Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| | - Mitsuru Fukui
- Laboratory of Statics, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.F.)
| | - Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| |
Collapse
|
30
|
Harikrishnan K, Cooley MA, Sugi Y, Barth JL, Rasmussen LM, Kern CB, Argraves KM, Argraves WS. Fibulin-1 suppresses endothelial to mesenchymal transition in the proximal outflow tract. Mech Dev 2015; 136:123-32. [PMID: 25575930 DOI: 10.1016/j.mod.2014.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 12/08/2014] [Accepted: 12/29/2014] [Indexed: 02/04/2023]
Abstract
Endothelial to mesenchymal transition (EMT) that occurs during cardiac outflow tract (OFT) development is critical for formation of the semilunar valves. Fibulin-1 (Fbln1) is an extracellular matrix protein that is present at several sites of EMT, including the OFT (i.e., E9.5-10.5). The aim of this study was to determine the role of Fbln1 in EMT during the earliest events of OFT development. Examination of proximal OFT cushions in Fbln1 null embryos detected hypercellularity at both E9.5 (93% increase; p = 0.002) and E10.5 (43% increase; p = 0.01) as compared to wild type, suggesting that Fbln1 normally suppresses OFT endocardial cushion EMT. This was supported by studies of proximal OFT cushion explants, which showed that explants from Fbln1 null embryos displayed a 58% increase in cells migrating from the explants as compared to wild type (p = 0.005). We next evaluated the effects of Fbln1 deficiency on the expression of factors that regulate proximal OFT EMT. At E9.5, Fbln1 null proximal OFT endocardium and EMT-derived mesenchyme showed increased TGFβ2 (58% increase; p = 0.01) and increased Snail1-positive nuclei (27% increase; p = 0.0003). Histological examination of OFT cushions in Fbln1 null embryos (E9.5) also detected cells present in the cushion that were determined to be erythrocytes based on round morphology, autofluorescence, and positive staining for hemoglobin. Erythrocytes were also detected in Fbln1 null OFT cushions at E10.5. Together, the findings indicate that Fbln1 normally suppresses proximal OFT EMT preventing proximal cushion hypercellularity and blood cell accumulation.
Collapse
Affiliation(s)
- Keerthi Harikrishnan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Christine B Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Mizuta K, Sakabe M, Hashimoto A, Ioka T, Sakai C, Okumura K, Hattammaru M, Fujita M, Araki M, Somekawa S, Saito Y, Nakagawa O. Impairment of endothelial-mesenchymal transformation during atrioventricular cushion formation inTmem100null embryos. Dev Dyn 2014; 244:31-42. [DOI: 10.1002/dvdy.24216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/28/2014] [Accepted: 10/08/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ken Mizuta
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Masahide Sakabe
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Aya Hashimoto
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Tomoko Ioka
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Chihiro Sakai
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Kazuki Okumura
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Miwa Hattammaru
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
- Department of Internal Medicine; Tokyo Women's Medical University Medical Center East; Tokyo Japan
| | - Masahide Fujita
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Mutsumi Araki
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| | - Satoshi Somekawa
- The First Department of Internal Medicine; Nara Medical University; Kashihara Nara Japan
| | - Yoshihiko Saito
- The First Department of Internal Medicine; Nara Medical University; Kashihara Nara Japan
| | - Osamu Nakagawa
- Laboratory for Cardiovascular System Research; Nara Medical University Advanced Medical Research Center; Kashihara Nara Japan
| |
Collapse
|
32
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
33
|
Meng Y, Ma X, Zhang J, Wang H, Ma D, Huang G. The genotype and expression of the TGFβ2 gene in children with congenital conotruncal defects. Pediatr Cardiol 2014; 34:1823-8. [PMID: 23712828 DOI: 10.1007/s00246-013-0696-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022]
Abstract
Animal studies have shown that knockout of the transforming growth factor beta-2 (TGFβ2) gene results in diverse cardiovascular malformations and that its unregulated expression is involved in the pathogenesis of heart defects. However, little information is available on the genetic and expression alternations of the TGFβ2 gene in children with congenital heart disease. This study investigated the genotype and expression of the TGFβ2 gene in children with congenital conotruncal defects (CTDs). The whole coding region of the TGFβ2 gene was sequenced in 400 children with CTD. The mRNA and protein expression of the TGFβ2 gene was further analyzed in the myocardial tissues of 37 children with CTD and 5 age-matched healthy children using real-time polymerase chain reaction and immunohistochemistry. No pathogenic mutations in the coding region of the TGFβ2 gene were shown by DNA sequencing except for a silent mutation (c.597T > C) in exon 4 of one patient. The TGFβ2 expression at either the mRNA or the protein level in the myocardial tissues did not differ significantly between the children with CTD and the children without heart defects. The results indicate that germline mutation of the TGFβ2 gene is not a common cause of CTD in humans and that the TGFβ2 expression level may be less critical in humans than in animals for the pathogenesis of CTD.
Collapse
Affiliation(s)
- Yingying Meng
- Cardiac Center, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China,
| | | | | | | | | | | |
Collapse
|
34
|
AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: implications for myocardial differentiation and regional identity. Dev Biol 2014; 390:191-207. [PMID: 24680892 DOI: 10.1016/j.ydbio.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
Collapse
|
35
|
Zhang Y, Han Q, Fan H, Li W, Xing Q, Yan B. Genetic analysis of the TBX2 gene promoter in indirect inguinal hernia. Hernia 2013; 18:513-7. [PMID: 24309999 DOI: 10.1007/s10029-013-1199-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/24/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Inguinal hernia is a common disease, majority of which are indirect inguinal hernia (IIH). A positive family history indicates that genetic factors play important roles in the IIH development. To date, genetic causes for IIH remain unknown. T-box transcription factor 2 (TBX2) is a major regulator in the morphogenesis and organogenesis. The human TBX2 gene is widely expressed in fetal and adult tissues, including muscle and connective tissues. Therefore, we speculated that altered TBX2 gene expression may be involved in the IIH formation. METHODS IIH patients (n = 129) and ethnic-matched healthy subjects (n = 198) were recruited for this study. The human TBX2 gene promoters were generated with PCR and directly sequenced to identify DNA sequence variants (DSVs). Furthermore, biological functions of the DSVs were examined with reporter gene constructs in cultured cells. RESULTS Total six DSVs within the TBX2 gene promoter were identified. A heterozygous DSV (g.59476307G>C) was identified in an IIH patient, but in none of controls, which significantly decreased the TBX2 gene promoter activities. Another heterozygous DSV (g.59476704G>C) was only found in one control, which did not affect TBX2 gene promoter activities. Four DSVs, g.59476316C>A (rs73991913), g.59476415T>C (rs1476781), g.59476510G>C (rs4455026) and g.59476892C>T (rs2286524), all of which were single nucleotide polymorphisms, were found in both IIH patients and controls with similar frequencies. CONCLUSIONS Our data suggested that the DSV within the TBX2 gene promoter was implicated in the IIH development as a rare cause.
Collapse
Affiliation(s)
- Y Zhang
- Division of Hand and Foot Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, 272029, Shandong, China
| | | | | | | | | | | |
Collapse
|
36
|
Wu TS, Yang JJ, Yu FY, Liu BH. Cardiotoxicity of mycotoxin citrinin and involvement of microRNA-138 in zebrafish embryos. Toxicol Sci 2013; 136:402-12. [PMID: 24052562 DOI: 10.1093/toxsci/kft206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Citrinin (CTN) is a fungal secondary metabolite that contaminates various foodstuffs and animal feeds; it also exhibits organotoxicity in several animal models. In this study, the zebrafish was used to elucidate the mechanism of CTN cardiotoxicity in developing embryos. Following CTN administration, the gross morphology of the embryonic heart was apparently altered, including heart malformation, pericardial edema, and red blood accumulation. Whole-mount immunostaining and histological analysis of ventricle and atrium indicated incorrect heart looping and reduced size of heart chambers. From the perspective of cardiac function, the heartbeat and blood flow rate of embryos were significantly decreased in the presence of CTN. CTN also modulated the expression of tbx2a and jun B genes, but not that of bmp4 and nkx2.5. Furthermore, the heart areas of CTN-exposed embryos demonstrated an elevated levels of aldh1a2 and cspg2 messenger RNA; these 2 cardiac-related genes are known to be involved in retinoic acid (RA) pathway as well as downstream targets of microRNA-138 (miR-138) in zebrafish. CTN treatment also downregulated the expression of miR-138. Moreover, overexpression of miR-138 was able to rescue the heart defects generated by CTN. These results support the notion that CTN exposure has a severe impact on heart development, affecting heart morphogenesis through the dysregulation of miR-138, RA signaling, and tbx2a.
Collapse
|
37
|
Pang S, Liu Y, Zhao Z, Huang W, Chen D, Yan B. Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie 2013; 95:1807-9. [PMID: 23727221 DOI: 10.1016/j.biochi.2013.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defects in humans. To date, genetic causes for CHD remain largely unknown. T-box transcription factor 2 (TBX2) gene is expressed in the myocardium of atrioventricular canal, outflow tract and inflow tract and plays a critical role in heart chamber formation. Genomic deletion and duplication of TBX2 gene have been associated with cardiac defects. As TBX2 acts in a dose-dependent manner, we hypothesized that DNA sequence variants (DSVs) within TBX2 gene promoter may mediate CHD development by changing TBX2 levels. In this study, TBX2 gene promoter was genetically analyzed in large cohorts of patients with ventricular septal defect (VSD) (n = 324) and ethnic-matched healthy controls (n = 328). Four novel and heterozygous DSVs, g.59477201C > T, g.59477347G > A, g.59477353delG and g.59477371G > A were identified in VSD patients, but in none of controls. Functional analyses revealed that all of the four DSVs significantly decreased transcriptional activities of TBX2 gene promoter. Therefore, our data suggested that the DSVs within TBX2 gene promoter identified in VSD patients may contribute to VSD etiology.
Collapse
Affiliation(s)
- Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, 79 Guhuai Road, Jining, Shandong 272029, China
| | | | | | | | | | | |
Collapse
|
38
|
Huk DJ, Hammond HL, Kegechika H, Lincoln J. Increased dietary intake of vitamin A promotes aortic valve calcification in vivo. Arterioscler Thromb Vasc Biol 2012. [PMID: 23202364 DOI: 10.1161/atvbaha.112.300388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is a major public health problem with no effective treatment available other than surgery. We previously showed that mature heart valves calcify in response to retinoic acid (RA) treatment through downregulation of the SRY transcription factor Sox9. In this study, we investigated the effects of excess vitamin A and its metabolite RA on heart valve structure and function in vivo and examined the molecular mechanisms of RA signaling during the calcification process in vitro. METHODS AND RESULTS Using a combination of approaches, we defined calcific aortic valve disease pathogenesis in mice fed 200 IU/g and 20 IU/g of retinyl palmitate for 12 months at molecular, cellular, and functional levels. We show that mice fed excess vitamin A develop aortic valve stenosis and leaflet calcification associated with increased expression of osteogenic genes and decreased expression of cartilaginous markers. Using a pharmacological approach, we show that RA-mediated Sox9 repression and calcification is regulated by classical RA signaling and requires both RA and retinoid X receptors. CONCLUSIONS Our studies demonstrate that excess vitamin A dietary intake promotes heart valve calcification in vivo. Therefore suggesting that hypervitaminosis A could serve as a new risk factor of calcific aortic valve disease in the human population.
Collapse
Affiliation(s)
- Danielle J Huk
- Center for Cardiovascular and Pulmonary Research, Columbus, OH, USA
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Jennifer L Hand
- Department of Dermatology, Medical Genetics, and Pediatrics, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|