1
|
Di Filippo ES, Chiappalupi S, Falone S, Dolo V, Amicarelli F, Marchianò S, Carino A, Mascetti G, Valentini G, Piccirillo S, Balsamo M, Vukich M, Fiorucci S, Sorci G, Fulle S. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. NPJ Microgravity 2024; 10:92. [PMID: 39362881 PMCID: PMC11450100 DOI: 10.1038/s41526-024-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Marchianò
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Adriana Carino
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | | | | | | | - Michele Balsamo
- Kayser Italia S.r.l, Via di Popogna, 501, 57128, Livorno, Italy
| | - Marco Vukich
- European Space Agency, Keplerlaan 1, NL-2200, AG, Noordwijk, The Netherlands
| | - Stefano Fiorucci
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.
| |
Collapse
|
2
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
3
|
Maeno T, Arimatsu R, Ojima K, Yamaya Y, Imakyure H, Watanabe N, Komiya Y, Kobayashi K, Nakamura M, Nishimura T, Tatsumi R, Suzuki T. Netrin-4 synthesized in satellite cell-derived myoblasts stimulates autonomous fusion. Exp Cell Res 2023; 430:113698. [PMID: 37437770 DOI: 10.1016/j.yexcr.2023.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Satellite cells are indispensable for skeletal muscle regeneration and hypertrophy by forming nascent myofibers (myotubes). They synthesize multi-potent modulator netrins (secreted subtypes: netrin-1, -3, and -4), originally found as classical neural axon guidance molecules. While netrin-1 and -3 have key roles in myogenic differentiation, the physiological significance of netrin-4 is still unclear. This study examined whether netrin-4 regulates myofiber type commitment and myotube formation. Initially, the expression profiles indicated that satellite cells isolated from the extensor digitorum longus muscle (EDL muscle: fast-twitch myofiber-abundant) expressed slightly more netrin-4 than the soleus muscle (slow-type abundant) cells. As netrin-4 knockdown inhibited both slow- and fast-type myotube formation, netrin-4 may not directly regulate myofiber type commitment. However, netrin-4 knockdown in satellite cell-derived myoblasts reduced the myotube fusion index, while exogenous netrin-4 promoted myotube formation, even though netrin-4 expression level was maximum during the initiation stage of myogenic differentiation. Furthermore, netrin-4 knockdown also inhibited MyoD (a master transcriptional factor of myogenesis) and Myomixer (a myoblast fusogenic molecule) expression. These data suggest that satellite cells synthesize netrin-4 during myogenic differentiation initiation to promote their own fusion, stimulating the MyoD-Myomixer signaling axis.
Collapse
Affiliation(s)
- Takahiro Maeno
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rio Arimatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Yuki Yamaya
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hikaru Imakyure
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naruha Watanabe
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mako Nakamura
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. SPORTS MEDICINE - OPEN 2023; 9:27. [PMID: 37149504 PMCID: PMC10164224 DOI: 10.1186/s40798-023-00573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinying Wu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | | | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
de Las Heras JI, Todorow V, Krečinić-Balić L, Hintze S, Czapiewski R, Webb S, Schoser B, Meinke P, Schirmer EC. Metabolic, fibrotic and splicing pathways are all altered in Emery-Dreifuss muscular dystrophy spectrum patients to differing degrees. Hum Mol Genet 2023; 32:1010-1031. [PMID: 36282542 PMCID: PMC9991002 DOI: 10.1093/hmg/ddac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.
Collapse
Affiliation(s)
| | - Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Lejla Krečinić-Balić
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Arpke RW, Moritz TC, Hahn KL, Stark DA, Villalón E, Lorson CL, Cornelison DDW. Normal muscle fiber type distribution is recapitulated in aged ephrin-A3 -/- mice that previously lacked most slow myofibers. Am J Physiol Cell Physiol 2023; 324:C718-C727. [PMID: 36717102 PMCID: PMC10027087 DOI: 10.1152/ajpcell.00519.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Individual limb muscles have characteristic representation and spatial distribution of muscle fiber types (one slow and up to three fast isoforms) appropriate to their unique anatomical location and function. This distribution can be altered by physiological stimuli such as training (i.e., for increased endurance or force) or pathological conditions such as aging. Our group previously showed that ephrin-A3 is expressed only on slow myofibers, and that adult mice lacking ephrin-A3 have dramatically reduced numbers of slow myofibers due to postnatal innervation of previously slow myofibers by fast motor neurons. In this study, fiber type composition of hindlimb muscles of aged and denervated/reinnervated C57BL/6 and ephrin-A3-/- mice was analyzed to determine whether the loss of slow myofibers persists across the lifespan. Surprisingly, fiber-type composition of ephrin-A3-/- mouse muscles at two years of age was nearly indistinguishable from age-matched C57BL/6 mice. After challenge with nerve crush, the percentage of IIa and I/IIa hybrid myofibers increased significantly in aged ephrin-A3-/- mice. While EphA8, the receptor for ephrin-A3, is present at all neuromuscular junctions (NMJs) on fast fibers in 3-6 mo old C57BL/6 and ephrin-A3-/- mice, this exclusive localization is lost with aging, with EphA8 expression now found on a subset of NMJs on some slow muscle fibers. This return to appropriate fiber-type distribution given time and under use reinforces the role of activity in determining fiber-type representation and suggests that, rather than being a passive baseline, the developmentally and evolutionarily selected fiber type pattern may instead be actively reinforced by daily living.
Collapse
Affiliation(s)
- Robert W. Arpke
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Timothy C. Moritz
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Kevin L. Hahn
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Danny A. Stark
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
7
|
LaCombe R, Cecchini A, Seibert M, Cornelison DDW. EphA1 receptor tyrosine kinase is localized to the nucleus in rhabdomyosarcoma from multiple species. Biol Open 2022; 11:bio059352. [PMID: 36214254 PMCID: PMC9581518 DOI: 10.1242/bio.059352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
While the typical role of receptor tyrosine kinases is to receive and transmit signals at the cell surface, in some cellular contexts (particularly transformed cells) they may also act as nuclear proteins. Aberrant nuclear localization of receptor tyrosine kinases associated with transformation often enhances the transformed phenotype (i.e. nuclear ErbBs promote tumor progression in breast cancer). Rhabdomyosarcoma (RMS), the most common soft tissue tumor in children, develops to resemble immature skeletal muscle and has been proposed to derive from muscle stem/progenitor cells (satellite cells). It is an aggressive cancer with a 5-year survival rate of 33% if it has metastasized. Eph receptor tyrosine kinases have been implicated in the development and progression of many other tumor types, but there are only two published studies of Ephs localizing to the nucleus of any cell type and to date no nuclear RTKs have been identified in RMS. In a screen for protein expression of Ephs in canine RMS primary tumors as well as mouse and human RMS cell lines, we noted strong expression of EphA1 in the nucleus of interphase cells in tumors from all three species. This localization pattern changes in dividing cells, with EphA1 localizing to the nucleus or the cytoplasm depending on the phase of the cell cycle. These data represent the first case of a nuclear RTK in RMS, and the first time that EphA1 has been detected in the nucleus of any cell type.
Collapse
Affiliation(s)
- Ronnie LaCombe
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Morgan Seibert
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Hill EW, Stoffel MA, McGivney BA, MacHugh DE, Pemberton JM. Inbreeding depression and the probability of racing in the Thoroughbred horse. Proc Biol Sci 2022; 289:20220487. [PMID: 35765835 PMCID: PMC9240673 DOI: 10.1098/rspb.2022.0487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small effective population sizes and active inbreeding can lead to inbreeding depression due to deleterious recessive mutations exposed in the homozygous state. The Thoroughbred racehorse has low levels of population genetic diversity, but the effects of genomic inbreeding in the population are unknown. Here, we quantified inbreeding based on runs of homozygosity (ROH) using 297 K SNP genotypes from 6128 horses born in Europe and Australia, of which 13.2% were unraced. We show that a 10% increase in inbreeding (FROH) is associated with a 7% lower probability of ever racing. Moreover, a ROH-based genome-wide association study identified a haplotype on ECA14 which, in its homozygous state, is linked to a 32.1% lower predicted probability of ever racing, independent of FROH. The haplotype overlaps a candidate gene, EFNA5, that is highly expressed in cartilage tissue, which when damaged is one of the most common causes of catastrophic musculoskeletal injury in racehorses. Genomics-informed breeding aiming to reduce inbreeding depression and avoid damaging haplotype carrier matings will improve population health and racehorse welfare.
Collapse
Affiliation(s)
- Emmeline W. Hill
- Plusvital Ltd, The Highline, Dún Laoghaire Industrial Estate, Pottery Road, Dún Laoghaire, Co. Dublin, Ireland,UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Martin A. Stoffel
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice A. McGivney
- Plusvital Ltd, The Highline, Dún Laoghaire Industrial Estate, Pottery Road, Dún Laoghaire, Co. Dublin, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
9
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
10
|
Graham ZA. Mini-review: Local and downstream responses to the neuromuscular junction: Potential roles for integrins, connexins and ephrins in altering muscle characteristics and function. Neurosci Lett 2022; 768:136359. [PMID: 34813913 DOI: 10.1016/j.neulet.2021.136359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscle develops in a manner directly related to its innervating motor neuron. The formation of the neuromuscular junction (NMJ) is a well-described process that is coordinated to allow for efficient communication between the central nervous system and muscle for muscle contraction and movement. Some of the major mediators of NMJ formation, like muscle-specific kinase, agrin and laminin, have been thoroughly described but there are other important proteins that have an integral role in muscle health that have also been associated with proper NMJ integrity and fiber health and function. This mini-review focuses on integrins, connexin hemichannels and ephrins and their relationship with the NMJin regulating muscle health.
Collapse
Affiliation(s)
- Zachary A Graham
- Birmingham VA Medical Center, Birmingham, AL, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama-Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Kann AP, Hung M, Krauss RS. Cell-cell contact and signaling in the muscle stem cell niche. Curr Opin Cell Biol 2021; 73:78-83. [PMID: 34352725 PMCID: PMC8678169 DOI: 10.1016/j.ceb.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Muscle stem cells (also called satellite cells or SCs) rely on their local niche for regulatory signals during homeostasis and regeneration. While a number of cell types communicate indirectly through secreted factors, here we focus on the significance of direct contact between SCs and their neighbors. During quiescence, SCs reside under a basal lamina and receive quiescence-promoting signals from their adjacent skeletal myofibers. Upon injury, the composition of the niche changes substantially, enabling the formation of new contacts that mediate proliferation, self-renewal, and differentiation. In this review, we summarize the latest work in understanding cell-cell contact within the satellite cell niche and highlight areas of open questions for future studies.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021; 3:312-341. [PMID: 34207633 PMCID: PMC8293156 DOI: 10.3390/clockssleep3020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-d-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT), and nuclear factor-kappa B (NF-κB) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.
Collapse
|
13
|
Abundant Synthesis of Netrin-1 in Satellite Cell-Derived Myoblasts Isolated from EDL Rather Than Soleus Muscle Regulates Fast-Type Myotube Formation. Int J Mol Sci 2021; 22:ijms22094499. [PMID: 33925862 PMCID: PMC8123454 DOI: 10.3390/ijms22094499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
Resident myogenic stem cells (satellite cells) are attracting attention for their novel roles in myofiber type regulation. In the myogenic differentiation phase, satellite cells from soleus muscle (slow fiber-abundant) synthesize and secrete higher levels of semaphorin 3A (Sema3A, a multifunctional modulator) than those derived from extensor digitorum longus (EDL; fast fiber-abundant), suggesting the role of Sema3A in forming slow-twitch myofibers. However, the regulatory mechanisms underlying fast-twitch myotube commitment remain unclear. Herein, we focused on netrin family members (netrin-1, -3, and -4) that compete with Sema3A in neurogenesis and osteogenesis. We examined whether netrins affect fast-twitch myotube generation by evaluating their expression in primary satellite cell cultures. Initially, netrins are upregulated during myogenic differentiation. Next, we compared the expression levels of netrins and their cell membrane receptors between soleus- and EDL-derived satellite cells; only netrin-1 showed higher expression in EDL-derived satellite cells than in soleus-derived satellite cells. We also performed netrin-1 knockdown experiments and additional experiments with recombinant netrin-1 in differentiated satellite cell-derived myoblasts. Netrin-1 knockdown in myoblasts substantially reduced fast-type myosin heavy chain (MyHC) expression; exogenous netrin-1 upregulated fast-type MyHC in satellite cells. Thus, netrin-1 synthesized in EDL-derived satellite cells may promote myofiber type commitment of fast muscles.
Collapse
|
14
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
15
|
Gundogdu G, Tosun M, Morhardt D, Gheinani AH, Algarrahi K, Yang X, Costa K, Alegria CG, Adam RM, Yang W, Mauney JR. Molecular mechanisms of esophageal epithelial regeneration following repair of surgical defects with acellular silk fibroin grafts. Sci Rep 2021; 11:7086. [PMID: 33782465 PMCID: PMC8007829 DOI: 10.1038/s41598-021-86511-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Constructive remodeling of focal esophageal defects with biodegradable acellular grafts relies on the ability of host progenitor cell populations to repopulate implant regions and facilitate growth of de novo functional tissue. Intrinsic molecular mechanisms governing esophageal repair processes following biomaterial-based, surgical reconstruction is largely unknown. In the present study, we utilized mass spectrometry-based quantitative proteomics and in silico pathway evaluations to identify signaling cascades which were significantly activated during neoepithelial formation in a Sprague Dawley rat model of onlay esophagoplasty with acellular silk fibroin scaffolds. Pharmacologic inhibitor and rescue experiments revealed that epithelialization of neotissues is significantly dependent in part on pro-survival stimuli capable of suppressing caspase activity in epithelial progenitors via activation of hepatocyte growth factor receptor (c-MET), tropomyosin receptor kinase A (TrkA), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) signaling mechanisms. These data highlight the molecular machinery involved in esophageal epithelial regeneration following surgical repair with acellular implants.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA
| | - Mehmet Tosun
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA
| | - Duncan Morhardt
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Khalid Algarrahi
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Xuehui Yang
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kyle Costa
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Cinthia Galvez Alegria
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joshua R Mauney
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA.
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Building 55, 101 The City Drive South., Rm. 300, Orange, CA, 92868, USA.
| |
Collapse
|
16
|
von Maltzahn J. Regulation of muscle stem cell function. VITAMINS AND HORMONES 2021; 116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
Collapse
|
17
|
Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020; 12:e12357. [PMID: 33210465 PMCID: PMC7721365 DOI: 10.15252/emmm.202012357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Directional cell migration is a critical process underlying morphogenesis and post-natal tissue regeneration. During embryonic myogenesis, migration of skeletal myogenic progenitors is essential to generate the anlagen of limbs, diaphragm and tongue, whereas in post-natal skeletal muscles, migration of muscle satellite (stem) cells towards regions of injury is necessary for repair and regeneration of muscle fibres. Additionally, safe and efficient migration of transplanted cells is critical in cell therapies, both allogeneic and autologous. Although various myogenic cell types have been administered intramuscularly or intravascularly, functional restoration has not been achieved yet in patients with degenerative diseases affecting multiple large muscles. One of the key reasons for this negative outcome is the limited migration of donor cells, which hinders the overall cell engraftment potential. Here, we review mechanisms of myogenic stem/progenitor cell migration during skeletal muscle development and post-natal regeneration. Furthermore, strategies utilised to improve migratory capacity of myogenic cells are examined in order to identify potential treatments that may be applied to future transplantation protocols.
Collapse
Affiliation(s)
- SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
18
|
Wurmser M, Chaverot N, Madani R, Sakai H, Negroni E, Demignon J, Saint-Pierre B, Mouly V, Amthor H, Tapscott S, Birchmeier C, Tajbakhsh S, Le Grand F, Sotiropoulos A, Maire P. SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development 2020; 147:dev.185975. [PMID: 32591430 DOI: 10.1242/dev.185975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Nathalie Chaverot
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Josiane Demignon
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Benjamin Saint-Pierre
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Helge Amthor
- INSERM U1179, LIA BAHN CSM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Fabien Le Grand
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS, INSERM, 69008 Lyon, France
| | - Athanassia Sotiropoulos
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| |
Collapse
|
19
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
20
|
Harnessing the Power of Eph/ephrin Biosemiotics for Theranostic Applications. Pharmaceuticals (Basel) 2020; 13:ph13060112. [PMID: 32492868 PMCID: PMC7345574 DOI: 10.3390/ph13060112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehensive basic biological knowledge of the Eph/ephrin system in the physiologic setting is needed to facilitate an understanding of its role and the effects of pathological processes on its activity, thereby paving the way for development of prospective therapeutic targets. To this end, this review briefly addresses what is currently known and being investigated in order to highlight the gaps and possible avenues for further investigation to capitalize on their diverse potential.
Collapse
|
21
|
Arnold LL, Cecchini A, Stark DA, Ihnat J, Craigg RN, Carter A, Zino S, Cornelison D. EphA7 promotes myogenic differentiation via cell-cell contact. eLife 2020; 9:53689. [PMID: 32314958 PMCID: PMC7173967 DOI: 10.7554/elife.53689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The conversion of proliferating skeletal muscle precursors (myoblasts) to terminally-differentiated myocytes is a critical step in skeletal muscle development and repair. We show that EphA7, a juxtacrine signaling receptor, is expressed on myocytes during embryonic and fetal myogenesis and on nascent myofibers during muscle regeneration in vivo. In EphA7-/- mice, hindlimb muscles possess fewer myofibers at birth, and those myofibers are reduced in size and have fewer myonuclei and reduced overall numbers of precursor cells throughout postnatal life. Adult EphA7-/- mice have reduced numbers of satellite cells and exhibit delayed and protracted muscle regeneration, and satellite cell-derived myogenic cells from EphA7-/- mice are delayed in their expression of differentiation markers in vitro. Exogenous EphA7 extracellular domain will rescue the null phenotype in vitro, and will also enhance commitment to differentiation in WT cells. We propose a model in which EphA7 expression on differentiated myocytes promotes commitment of adjacent myoblasts to terminal differentiation.
Collapse
Affiliation(s)
- Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Jacqueline Ihnat
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Rebecca N Craigg
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Amory Carter
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Sammy Zino
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Ddw Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| |
Collapse
|
22
|
Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell Tissue Res 2019; 380:155-172. [PMID: 31820147 DOI: 10.1007/s00441-019-03133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-6 is a proinflammatory cytokine released in injured and contracting skeletal muscles. In this study, we examined cellular expression of proteins associated with cytoskeleton organization and cell migration, chosen on the basis of microRNA profiling, in rat primary skeletal muscle cells (RSkMC) treated with IL-6 (1 ng/ml) for 11 days. MiRNA microarray analysis and qRT-PCR revealed increased expression of miR-154-3p and miR-338-3p in muscle cells treated with IL-6. Pacsin3 was downregulated post-transcriptionally by IL-6, but not by IGF-I. Ephrin4A protein was increased both in IL-6- and IGF-I-treated myocytes. IL-6, but not IGF-I, stimulated migratory ability of RSkMC, examined in wound healing assay. Alpha-actinin protein was slightly augmented in RSKMC treated with IL-6, similarly to IGF-I. IL-6, but not IGF-I, upregulated desmin in differentiating RSkMC. IL-6 supplementation caused accumulation of alpha-actinin and desmin in near-nuclear area of muscle cells, which was manifested by increased ratio: mean near-nuclear fluorescence/mean peripheral cytoplasm fluorescence of these proteins. We concluded that IL-6, a known proinflammatory cytokine and a physical activity-associated myokine, acting during differentiation of primary skeletal muscle cells, alters expression of nonmuscle-specific miRNAs. This cytokine causes differential effects on pacsin-3 and ephrinA4, through post-transcriptional inhibition and stimulation, respectively. IL-6-exerted modifications of cytoskeletal proteins in muscle cells include both transcriptional (desmin and dynein heavy chain 5) and post-transcriptional activation (alpha-actinin). Moreover, IL-6 augments near-nuclear distribution of cytoskeletal proteins, alpha-actinin and desmin and promotes migration of myocytes. Such effects suggest that IL-6 plays a role during skeletal muscle regeneration, acting through mechanisms independent of regulation of myogenic program.
Collapse
Affiliation(s)
- Marta Milewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Domoradzki
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Alicja Majewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Maciej Błaszczyk
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Magdalena Hulanicka
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
23
|
Zfp422 promotes skeletal muscle differentiation by regulating EphA7 to induce appropriate myoblast apoptosis. Cell Death Differ 2019; 27:1644-1659. [PMID: 31685980 PMCID: PMC7206035 DOI: 10.1038/s41418-019-0448-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Zinc finger protein 422 (Zfp422) is a widely expressed zinc finger protein that serves as a transcriptional factor to regulate downstream gene expression, but until now, little is known about its roles in myogenesis. We found here that Zfp422 plays a critical role in skeletal muscle development and regeneration. It highly expresses in mouse skeletal muscle during embryonic development. Specific knockout of Zfp422 in skeletal muscle impaired embryonic muscle formation. Satellite cell-specific Zfp422 deletion severely inhibited muscle regeneration. Myoblast differentiation and myotube formation were suppressed in Zfp422-deleted C2C12 cells, isolated primary myoblasts, and satellite cells. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) revealed that Zfp422 regulated ephrin type-A receptor 7 (EphA7) expression by binding an upstream 169-bp DNA sequence, which was proved to be an enhancer of EphA7. Knocking EphA7 down in C2C12 cells or deleting Zfp422 in myoblasts will inhibit cell apoptosis which is required for myoblast differentiation. These results indicate that Zfp422 is essential for skeletal muscle differentiation and fusion, through regulating EphA7 expression to maintain proper apoptosis.
Collapse
|
24
|
Sema3a-Nrp1 Signaling Mediates Fast-Twitch Myofiber Specificity of Tw2 + Cells. Dev Cell 2019; 51:89-98.e4. [PMID: 31474563 DOI: 10.1016/j.devcel.2019.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
We previously identified a unique population of interstitial muscle progenitors, marked by expression of the Twist2 transcription factor, which fuses specifically to type IIb/x fast-twitch myofibers. Tw2+ progenitors are distinct from satellite cells, a muscle progenitor that expresses Pax7 and contributes to all myofiber types. Through RNA sequencing and immunofluorescence, we identify the membrane receptor, Nrp1, as a marker of Tw2+ cells but not Pax7+ cells. We also found that Sema3a, a chemorepellent ligand for Nrp1, is expressed by type I and IIa myofibers but not IIb myofibers. Using stripe migration assays, chimeric cell-cell fusion assays, and a Sema3a transgenic mouse model, we identify Sema3a-Nrp1 signaling as a major mechanism for Tw2+ cell fiber-type specificity. Our findings reveal an extracellular signaling mechanism whereby a cell-surface receptor for a chemorepellent confers specificity of intercellular fusion of a specific muscle progenitor with its target tissue.
Collapse
|
25
|
Alibardi L. Immunodetection of ephrin receptors in the regenerating tail of the lizard Podarcis muralis suggests stimulation of differentiation and muscle segmentation. Zool Res 2019; 40:416-426. [PMID: 31111695 PMCID: PMC6755122 DOI: 10.24272/j.issn.2095-8137.2019.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ephrin receptors are the most common tyrosine kinase effectors operating during development. Ephrin receptor genes are reported to be up-regulated in the regenerating tail of the Podarcis muralis lizard. Thus, in the current study, we investigated immunolocalization of ephrin receptors in the Podarcis muralis tail during regeneration. Weak immunolabelled bands for ephrin receptors were detected at 15-17 kDa, with a stronger band also detected at 60-65 kDa. Labelled cells and nuclei were seen in the basal layer of the apical wound epidermis and ependyma, two key tissues stimulating tail regeneration. Strong nuclear and cytoplasmic labelling were present in the segmental muscles of the regenerating tail, sparse blood vessels, and perichondrium of regenerating cartilage. The immunolocalization of ephrin receptors in muscle that gives rise to large portions of new tail tissue was correlated with their segmentation. This study suggests that the high localization of ephrin receptors in differentiating epidermis, ependyma, muscle, and cartilaginous cells is connected to the regulation of cell proliferation through the activation of programs for cell differentiation in the proximal regions of the regenerating tail. The lower immunolabelling of ephrin receptors in the apical blastema, where signaling proteins stimulating cell proliferation are instead present, helps maintain the continuous growth of this region.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna 40126, Italy; E-mail:
| |
Collapse
|
26
|
Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 2019; 76:2559-2570. [PMID: 30976839 PMCID: PMC6586695 DOI: 10.1007/s00018-019-03093-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration is a finely tuned process involving the activation of various cellular and molecular processes. Satellite cells, the stem cells of skeletal muscle, are indispensable for skeletal muscle regeneration. Their functionality is critically modulated by intrinsic signaling pathways as well as by interactions with the stem cell niche. Here, we discuss the properties of satellite cells, including heterogeneity regarding gene expression and/or their phenotypic traits and the contribution of satellite cells to skeletal muscle regeneration. We also summarize the process of regeneration with a specific emphasis on signaling pathways, cytoskeletal rearrangements, the importance of miRNAs, and the contribution of non-satellite cells such as immune cells, fibro-adipogenic progenitor cells, and PW1-positive/Pax7-negative interstitial cells.
Collapse
Affiliation(s)
- Manuel Schmidt
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
27
|
Jin CL, Zhang ZM, Ye JL, Gao CQ, Yan HC, Li HC, Yang JZ, Wang XQ. Lysine-induced swine satellite cell migration is mediated by the FAK pathway. Food Funct 2019; 10:583-591. [PMID: 30672919 DOI: 10.1039/c8fo02066c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lysine (Lys) is an essential amino acid for mammals in promoting protein synthesis and skeletal muscle growth. However, the underlying mechanism by which Lys governs muscle growth remains unknown. Lys is not only a material for protein synthesis but also a signaling molecule. Cell migration is a fundamental process for satellite cells (SCs) to promote muscle fiber hypertrophy and thus increase muscle mass. Nevertheless, the communication between Lys and SC has not yet attracted sufficient attention. In this study, we investigated whether Lys directly stimulates SC migration and whether this effect is mediated via the focal adhesion kinase (FAK) pathway. The results of a cell wound-healing assay and transwell assays indicated a significant inhibition of migration ability by Lys deficiency. In addition, the phosphorylation of FAK, paxillin and protein kinase B (Akt) was significantly suppressed, as were the level of integrin β3. Fortunately, we found that increasing Lys levels from deficiency to sufficiency rescued the migration ability to the control level. Moreover, compared with those in the Lys-deficiency group, the proteins in the FAK pathways were reactivated in the Lys-resupplementation group. In conclusion, these findings indicate that the FAK pathway mediates Lys-induced SC migration.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Brandt AM, Kania JM, Gonzalez ML, Johnson SE. Hepatocyte growth factor acts as a mitogen for equine satellite cells via protein kinase C δ-directed signaling. J Anim Sci 2018; 96:3645-3656. [PMID: 29917108 PMCID: PMC6127786 DOI: 10.1093/jas/sky234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0.05) the duration of G0/G1 transition suggesting the growth factor does not affect activation. Treatment with 25 ng/mL HGF increased (P < 0.05) eqSC proliferation that was coincident with phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and AKT serine/threonine kinase 1 (AKT1). Chemical inhibition of the upstream effectors of ERK1/2 or AKT1 elicited no effect (P > 0.05) on HGF-mediated 5-ethynyl-2'-deoxyuridine (EdU) incorporation. By contrast, treatment of eqSC with 2 µm Gö6983, a pan-protein kinase C (PKC) inhibitor, blocked (P < 0.05) HGF-initiated mitotic activity. Gene-expression analysis revealed that eqSC express PKCα, PKCδ, and PKCε isoforms. Knockdown of PKCδ with a small interfering RNA (siRNA) prevented (P > 0.05) HGF-mediated EdU incorporation. The siPKCδ was specific to the kinase and did not affect (P > 0.05) expression of either PKCα or PKCε. Treatment of confluent eqSC with 25 ng/mL HGF suppressed (P < 0.05) nuclear myogenin expression during the early stages of differentiation. These results demonstrate that HGF may not affect activation but can act as a mitogen and modest suppressor of differentiation.
Collapse
Affiliation(s)
- Amanda M Brandt
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Joanna M Kania
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| |
Collapse
|
29
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Nuclear envelope links to a wide range of disorders, including several myopathies and neuropathies over the past 2 decades, has spurred research leading to a completely changed view of this important cellular structure and its functions. However, the many functions now assigned to the nuclear envelope make it increasingly hard to determine which functions underlie these disorders. RECENT FINDINGS New nuclear envelope functions in genome organization, regulation and repair, signaling, and nuclear and cellular mechanics have been added to its classical barrier function. Arguments can be made for any of these functions mediating abnormality in nuclear envelope disorders and data exist supporting many. Moreover, transient and/or distal nuclear envelope connections to other cellular proteins and structures may increase the complexity of these disorders. SUMMARY Although the increased understanding of nuclear envelope functions has made it harder to distinguish specific causes of nuclear envelope disorders, this is because it has greatly expanded the spectrum of possible mechanisms underlying them. This change in perspective applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear envelope in a much wider range of myopathies and neuropathies.
Collapse
|
31
|
Hirasawa T, Kuratani S. Evolution of the muscular system in tetrapod limbs. ZOOLOGICAL LETTERS 2018; 4:27. [PMID: 30258652 PMCID: PMC6148784 DOI: 10.1186/s40851-018-0110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
32
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
33
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
González MN, de Mello W, Butler-Browne GS, Silva-Barbosa SD, Mouly V, Savino W, Riederer I. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle 2017; 7:20. [PMID: 29017538 PMCID: PMC5635537 DOI: 10.1186/s13395-017-0138-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. Methods We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. Results We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. Conclusions We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach. Electronic supplementary material The online version of this article (10.1186/s13395-017-0138-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Wallace de Mello
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Suse Dayse Silva-Barbosa
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Department of Clinical Research, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil.
| |
Collapse
|
35
|
Megiorni F, Gravina GL, Camero S, Ceccarelli S, Del Fattore A, Desiderio V, Papaccio F, McDowell HP, Shukla R, Pizzuti A, Beirinckx F, Pujuguet P, Saniere L, der Aar EV, Maggio R, De Felice F, Marchese C, Dominici C, Tombolini V, Festuccia C, Marampon F. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells. J Hematol Oncol 2017; 10:161. [PMID: 28985758 PMCID: PMC6389084 DOI: 10.1186/s13045-017-0530-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background EPH (erythropoietin-producing hepatocellular) receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS) cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM). GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg) in vivo activity alone or in combination with irradiation (2 Gy) was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that its pharmacological inhibition might represent a potential therapeutic strategy to impair stemness and to rescue myogenic program in ERMS cells.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy
| | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Del Fattore
- Multi-Factorial Disease and Complex Phenotype Research Area, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embriology, Second University of Naples, Naples, Italy
| | - Federica Papaccio
- Division of Medical Oncology, Department of Clinical and Experimental Medicine and Surgery "F. Magrassi A. Lanzara", Second University of Naples, Naples, Italy
| | - Heather P McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Antonio Pizzuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Filip Beirinckx
- Galapagos NV, Industriepark Mechelen Noord, General De Wittelaan L11 A3, 2880, Mechelen, Belgium
| | - Philippe Pujuguet
- Galapagos France, 102 avenue Gaston Roussel, 93230, Romainville, France
| | - Laurent Saniere
- Galapagos France, 102 avenue Gaston Roussel, 93230, Romainville, France
| | - Ellen Van der Aar
- Galapagos NV, Industriepark Mechelen Noord, General De Wittelaan L11 A3, 2880, Mechelen, Belgium
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, Division of Pharmacology, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
36
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
37
|
Kaifer KA, Villalón E, Osman EY, Glascock JJ, Arnold LL, Cornelison DDW, Lorson CL. Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy. JCI Insight 2017; 2:e89970. [PMID: 28289706 PMCID: PMC5333955 DOI: 10.1172/jci.insight.89970] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (SMN1). Importantly, a nearly identical gene is present called SMN2; however, the majority of SMN2-derived transcripts are alternatively spliced and encode a truncated, dysfunctional protein. Recently, several compounds designed to increase SMN protein have entered clinical trials, including antisense oligonucleotides (ASOs), traditional small molecules, and gene therapy. Expanding beyond SMN-centric therapeutics is important, as it is likely that the breadth of the patient spectrum and the inherent complexity of the disease will be difficult to address with a single therapeutic strategy. Several SMN-independent pathways that could impinge upon the SMA phenotype have been examined with varied success. To identify disease-modifying pathways that could serve as stand-alone therapeutic targets or could be used in combination with an SMN-inducing compound, we investigated adeno-associated virus-mediated (AAV-mediated) gene therapy using plastin-3 (PLS3). Here, we report that AAV9-PLS3 extends survival in an intermediate model of SMA mice as well as in a pharmacologically induced model of SMA using a splice-switching ASO that increases SMN production. PLS3 coadministration improves the phenotype beyond the ASO, demonstrating the potential utility of combinatorial therapeutics in SMA that target SMN-independent and SMN-dependent pathways.
Collapse
Affiliation(s)
- Kevin A Kaifer
- Molecular Pathogeneses and Therapeutics Program.,Bond Life Sciences Center
| | - Eric Villalón
- Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Erkan Y Osman
- Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | | | - Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - D D W Cornelison
- Bond Life Sciences Center.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Christian L Lorson
- Molecular Pathogeneses and Therapeutics Program.,Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| |
Collapse
|
38
|
de Las Heras JI, Zuleger N, Batrakou DG, Czapiewski R, Kerr ARW, Schirmer EC. Tissue-specific NETs alter genome organization and regulation even in a heterologous system. Nucleus 2017; 8:81-97. [PMID: 28045568 PMCID: PMC5287206 DOI: 10.1080/19491034.2016.1261230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.
Collapse
Affiliation(s)
- Jose I de Las Heras
- a The Wellcome Trust Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Nikolaj Zuleger
- a The Wellcome Trust Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Dzmitry G Batrakou
- a The Wellcome Trust Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Rafal Czapiewski
- a The Wellcome Trust Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Alastair R W Kerr
- a The Wellcome Trust Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Eric C Schirmer
- a The Wellcome Trust Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
39
|
Lund DK, McAnulty P, Siegel AL, Cornelison D. Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro. Methods Mol Biol 2017; 1556:303-315. [PMID: 28247357 DOI: 10.1007/978-1-4939-6771-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motility and/or chemotaxis of satellite cells has been suggested or observed in multiple in vitro and in vivo contexts. Satellite cell motility also affects the efficiency of muscle regeneration, particularly in the context of engrafted exogenous cells. Consequently, there is keen interest in determining what cell-autonomous and environmental factors influence satellite cell motility and chemotaxis in vitro and in vivo. In addition, the ability of activated satellite cells to relocate in vivo would suggest that they must be able to invade and transit through the extracellular matrix (ECM), which is supported by studies in which alteration or addition of matrix metalloprotease (MMP) activity enhanced the spread of engrafted satellite cells. However, despite its potential importance, analysis of satellite cell motility or invasion quantitatively even in an in vitro setting can be difficult; one of the most powerful techniques for overcoming these difficulties is timelapse microscopy. Identification and longitudinal evaluation of individual cells over time permits not only quantification of variations in motility due to intrinsic or extrinsic factors, it permits observation and analysis of other (frequently unsuspected) cellular activities as well. We describe here three protocols developed in our group for quantitatively analyzing satellite cell motility over time in two dimensions on purified ECM substrates, in three dimensions on a living myofiber, and in three dimensions through an artificial matrix.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Patrick McAnulty
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashley L Siegel
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA
- Elemental Enzymes, St. Louis, MO, USA
| | - Ddw Cornelison
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65211 7310, USA.
| |
Collapse
|
40
|
Chardon JW, Jasmin BJ, Kothary R, Parks RJ. Report on the 3rd Ottawa International Conference on Neuromuscular Biology, Disease and Therapy - September 24-26, 2015, Ottawa, Canada. J Neuromuscul Dis 2016; 3:431-442. [PMID: 27854234 PMCID: PMC5123627 DOI: 10.3233/jnd-169001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jodi Warman Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa.,Centre for Neuromuscular Disease, University of Ottawa.,Department of Pediatrics (Genetics), Children's Hospital of Eastern Ontario.,Neurosciences and Clinical Epidemiology Programs, Ottawa Hospital Research Institute
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa.,Department of Cellular and Molecular Medicine, University of Ottawa
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute.,Department of Medicine, The Ottawa Hospital and University of Ottawa.,Centre for Neuromuscular Disease, University of Ottawa.,Department of Cellular and Molecular Medicine, University of Ottawa
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute.,Department of Medicine, The Ottawa Hospital and University of Ottawa.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa.,Centre for Neuromuscular Disease, University of Ottawa
| |
Collapse
|
41
|
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang THT, Zammit PS, Relaix F. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Front Cell Dev Biol 2016; 4:58. [PMID: 27446912 PMCID: PMC4914952 DOI: 10.3389/fcell.2016.00058] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Anne Rochat
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Jessica Morais
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer Paris, France
| | - Frédéric Auradé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Center for Research in Myology Paris, France
| | - Ted Hung-Tse Chang
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France; Etablissement Français du SangCréteil, France; APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy and Centre de Référence des Maladies Neuromusculaires GNMHCréteil, France
| |
Collapse
|
42
|
Yamagishi S, Kesavamoorthy G, Bastmeyer M, Sato K. Stripe Assay to Study the Attractive or Repulsive Activity of a Protein Substrate Using Dissociated Hippocampal Neurons. J Vis Exp 2016. [PMID: 27403728 DOI: 10.3791/54096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Growing axons develop a highly motile structure at their tip, termed the growth cone. The growth cone contacts extracellular environmental cues to navigate axonal growth. Netrin, slit, semaphorin, and ephrins are known guidance molecules that can attract or repel axons upon binding to receptors and co-receptors on the axon. The activated receptors initiate various signaling molecules in the growth cone that alter the structure and movement of the neuron. Here, we describe the detailed protocol for a stripe assay to assess the ability of a guidance molecule to attract or repel neurons. In this method, dissociated hippocampal neurons from E15.5 mice are cultured on laminin-coated dishes processed with alternating stripes of ectodomain of fibronectin and leucine-rich transmembrane protein-2 (FLRT2) and control immunoglobulin G (IgG) fragment crystallizable region (Fc) protein. Both axons and cell bodies were strongly repelled from the FLRT2-coated stripe regions after 24 h of culture. Immunostaining with tau1 showed that ~90% of the neurons were distributed on the Fc-coated stripes compared to the FLRT2-Fc-coated stripes (~10%). This result indicates that FLRT2 has a strong repulsive effect on these neurons. This powerful method is applicable not only for primary cultured neurons but also for a variety of other cells, such as neuroblasts.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Anatomy and Neuroscience, Hamamatsu University School of Medicine;
| | | | - Martin Bastmeyer
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT)
| | - Kohji Sato
- Anatomy and Neuroscience, Hamamatsu University School of Medicine
| |
Collapse
|
43
|
Rundle CH, Xing W, Lau KHW, Mohan S. Bidirectional ephrin signaling in bone. Osteoporos Sarcopenia 2016; 2:65-76. [PMID: 30775469 PMCID: PMC6372807 DOI: 10.1016/j.afos.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
The interaction between ephrin ligands (efn) and their receptors (Eph) is capable of inducing forward signaling, from ligand to receptor, as well as reverse signaling, from receptor to ligand. The ephrins are widely expressed in many tissues, where they mediate cell migration and adherence, properties that make the efn-Eph signaling critically important in establishing and maintaining tissue boundaries. The efn-Eph system has also received considerable attention in skeletal tissues, as ligand and receptor combinations are predicted to mediate interactions between the different types of cells that regulate bone development and homeostasis. This review summarizes our current understanding of efn-Eph signaling with a particular focus on the expression and functions of ephrins and their receptors in bone.
Collapse
Affiliation(s)
- Charles H Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
44
|
Robson MI, de Las Heras JI, Czapiewski R, Lê Thành P, Booth DG, Kelly DA, Webb S, Kerr ARW, Schirmer EC. Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis. Mol Cell 2016; 62:834-847. [PMID: 27264872 PMCID: PMC4914829 DOI: 10.1016/j.molcel.2016.04.035] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/21/2015] [Accepted: 04/28/2016] [Indexed: 12/28/2022]
Abstract
Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis Expression changes for NET-repositioned genes depend on cell differentiation state Isolating position from differentiation reveals its contribution to gene expression Three NETs together affect 37% of all genes normally changing in myogenesis
Collapse
Affiliation(s)
- Michael I Robson
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jose I de Las Heras
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Rafal Czapiewski
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Phú Lê Thành
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel G Booth
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David A Kelly
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Shaun Webb
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alastair R W Kerr
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
45
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases. Sci Rep 2016; 6:20376. [PMID: 26847534 PMCID: PMC4742887 DOI: 10.1038/srep20376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/31/2015] [Indexed: 11/08/2022] Open
Abstract
The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.
Collapse
|
47
|
An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates. Dev Cell 2016; 36:215-24. [PMID: 26777211 DOI: 10.1016/j.devcel.2015.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/04/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
Skeletal muscle growth immediately following birth is critical for proper body posture and locomotion. However, compared with embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight into this process by revealing a unique NF-κB-dependent communication between NG2(+) interstitial cells and myoblasts. NF-κB in NG2(+) cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2(+) cells, which we further deduce is an NF-κB target gene. Together, these results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth.
Collapse
|
48
|
Popov C, Kohler J, Docheva D. Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Front Aging Neurosci 2016; 7:246. [PMID: 26779014 PMCID: PMC4701947 DOI: 10.3389/fnagi.2015.00246] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Tendon tissues, due to their composition and function, are prone to suffer age-related degeneration and diseases as well as to respond poorly to current repair strategies. It has been suggested that local stem cells, named tendon stem/progenitor cells (TSPCs), play essential roles in tendon maintenance and healing. Recently, we have shown that TSPC exhibit a distinct age-related phenotype involving transcriptomal shift, poor self-renewal, and elevated senescence coupled with reduced cell migration and actin dynamics. Here, we report for the first time the significant downregulation of the ephrin receptors EphA4, EphB2 and B4 and ligands EFNB1 in aged-TSPC (A-TSPC). Rescue experiments, by delivery of target-specific clustered proteins, revealed that activation of EphA4- or EphB2-dependent reverse signaling could restore the migratory ability and normalize the actin turnover of A-TSPC. However, only EphA4-Fc stimulation improved A-TSPC cell proliferation to levels comparable to young-TSPC (Y-TSPC). Hence, our novel data suggests that decreased expression of ephrin receptors during tendon aging and degeneration limits the establishment of appropriate cell-cell interactions between TSPC and significantly diminished their proliferation, motility, and actin turnover. Taken together, we could propose that this mechanism might be contributing to the inferior and delayed tendon healing common for aged individuals.
Collapse
Affiliation(s)
- Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Julia Kohler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
49
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
50
|
Webster MT, Manor U, Lippincott-Schwartz J, Fan CM. Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. Cell Stem Cell 2015; 18:243-52. [PMID: 26686466 DOI: 10.1016/j.stem.2015.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
Abstract
How resident stem cells and their immediate progenitors rebuild tissues of pre-injury organization and size for proportional regeneration is not well understood. Using 3D, time-lapse intravital imaging for direct visualization of the muscle regeneration process in live mice, we report that extracellular matrix remnants from injured skeletal muscle fibers, "ghost fibers," govern muscle stem/progenitor cell behaviors during proportional regeneration. Stem cells were immobile and quiescent without injury whereas their activated progenitors migrated and divided after injury. Unexpectedly, divisions and migration were primarily bi-directionally oriented along the ghost fiber longitudinal axis, allowing for spreading of progenitors throughout ghost fibers. Re-orienting ghost fibers impacted myogenic progenitors' migratory paths and division planes, causing disorganization of regenerated muscle fibers. We conclude that ghost fibers are autonomous, architectural units necessary for proportional regeneration after tissue injury. This finding reinforces the need to fabricate bioengineered matrices that mimic living tissue matrices for tissue regeneration therapy.
Collapse
Affiliation(s)
- Micah T Webster
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Uri Manor
- Cell Biology and Metabolism Branch, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institute of Health, Building 35A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Branch, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institute of Health, Building 35A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|