1
|
Szućko-Kociuba I, Trzeciak-Ryczek A, Kupnicka P, Chlubek D. Neurotrophic and Neuroprotective Effects of Hericium erinaceus. Int J Mol Sci 2023; 24:15960. [PMID: 37958943 PMCID: PMC10650066 DOI: 10.3390/ijms242115960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.
Collapse
Affiliation(s)
- Izabela Szućko-Kociuba
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| |
Collapse
|
2
|
Fujitani M, Otani Y, Miyajima H. Do Neurotrophins Connect Neurological Disorders and Heart Diseases? Biomolecules 2021; 11:1730. [PMID: 34827728 PMCID: PMC8615910 DOI: 10.3390/biom11111730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Neurotrophins (NTs) are one of the most characterized neurotrophic factor family members and consist of four members in mammals. Growing evidence suggests that there is a complex inter- and bi-directional relationship between central nervous system (CNS) disorders and cardiac dysfunction, so-called "brain-heart axis". Recent studies suggest that CNS disorders, including neurodegenerative diseases, stroke, and depression, affect cardiovascular function via various mechanisms, such as hypothalamic-pituitary-adrenal axis augmentation. Although this brain-heart axis has been well studied in humans and mice, the involvement of NT signaling in the axis has not been fully investigated. In the first half of this review, we emphasize the importance of NTs not only in the nervous system, but also in the cardiovascular system from the embryonic stage to the adult state. In the second half, we discuss the involvement of NTs in the pathogenesis of cardiovascular diseases, and then examine whether an alteration in NTs could serve as the mediator between neurological disorders and heart dysfunction. The further investigation we propose herein could contribute to finding direct evidence for the involvement of NTs in the axis and new treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
3
|
Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine Alleviates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting p75NTR-Mediated Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5454210. [PMID: 33194004 PMCID: PMC7648709 DOI: 10.1155/2020/5454210] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress and apoptosis play a key role in the pathogenesis of sepsis-associated acute kidney injury (AKI). Dexmedetomidine (DEX) may present renal protective effects in sepsis. Therefore, we studied antioxidant effects and the mechanism of DEX in an inflammatory proximal tubular epithelial cell model and lipopolysaccharide- (LPS-) induced AKI in mice. Methods. We assessed renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)), and apoptosis (TUNEL staining and Cleaved caspase-3) in mice. In vitro experiments including Cleaved caspase-3 and p75NTR/p38MAPK/JNK signaling pathways were evaluated using western blot. Reactive oxidative species (ROS) production and apoptosis were determined using flow cytometry. Results. DEX significantly improved renal function and kidney injury and also revert the substantially increased level of MDA concentrations as well as the reduction of the SOD enzyme activity found in LPS-induced AKI mice. In parallel, DEX treatment also reduced the apoptosis and Cleaved caspase-3 expression evoked by LPS. The expression of p75NTR was increased in kidney tissues of mice with AKI but decreased after treatment with DEX. In cultured human renal tubular epithelial cell line (HK-2 cells), DEX inhibited LPS-induced apoptosis and generation of ROS, but this was reversed by overexpression of p75NTR. Furthermore, pretreatment with DEX significantly downregulated phosphorylation of JNK and p38MAPK in LPS-stimulated HK-2 cells, and this effect was abolished by overexpression of p75NTR. Conclusion. DEX ameliorated AKI in mice with sepsis by partially reducing oxidative stress and apoptosis through regulation of p75NTR/p38MAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiali Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Song HD, Kim SN, Saha A, Ahn SY, Akindehin S, Son Y, Cho YK, Kim M, Park JH, Jung YS, Lee YH. Aging-Induced Brain-Derived Neurotrophic Factor in Adipocyte Progenitors Contributes to Adipose Tissue Dysfunction. Aging Dis 2020; 11:575-587. [PMID: 32489703 PMCID: PMC7220283 DOI: 10.14336/ad.2019.0810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/10/2019] [Indexed: 12/22/2022] Open
Abstract
Aging-related adipose tissue dysfunction contributes to the progression of chronic metabolic diseases. We investigated the role of age-dependent expression of a neurotrophin, brain-derived neurotrophic factor (BDNF) in adipose tissue. Pro-BDNF expression was elevated in epididymal white adipose tissue (eWAT) with advanced age, which was associated with the reduction in sympathetic innervation. Interestingly, BDNF expression was enriched in PDGFRα+ adipocyte progenitors isolated from eWAT, with age-dependent increase in expression. In vitro pro-BDNF treatment caused apoptosis in adipocytes differentiated from C3H10T1/2 cells, and siRNA knockdown of sortilin mitigated these effects. Tamoxifen-inducible PDGFRα+ cell-specific deletion of BDNF (BDNFPdgfra KO) reduced pro-BDNF expression in eWAT, prevented age-associated declines in sympathetic innervation and mitochondrial content in eWAT, and improved insulin sensitivity. Moreover, BDNFPdgfra KO mice showed reduced expression of aging-induced inflammation and senescence markers in eWAT. Collectively, these results identified the upregulation of pro-BDNF expression in adipocyte progenitors as a feature of visceral white adipose tissue aging and suggested that inhibition of BDNF expression in adipocyte progenitors is potentially beneficial to prevent aging-related adipose tissue dysfunction.
Collapse
Affiliation(s)
- Hyun-Doo Song
- 1College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sang Nam Kim
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Abhirup Saha
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Yeop Ahn
- 1College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Seun Akindehin
- 1College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Yeonho Son
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon Keun Cho
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - MinSu Kim
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hyun Park
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- 3College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Different responses of PC12 cells to different pro-nerve growth factor protein variants. Neurochem Int 2019; 129:104498. [PMID: 31278975 DOI: 10.1016/j.neuint.2019.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023]
Abstract
The present work aimed to explore the innovative hypothesis that different transcript/protein variants of a pro-neurotrophin may generate different biological outcomes in a cellular system. Nerve growth factor (NGF) is important in the development and progression of neurodegenerative and cancer conditions. Mature NGF (mNGF) originates from a precursor, proNGF, produced in mouse in two major variants, proNGF-A and proNGF-B. Different receptors bind mNGF and proNGF, generating neurotrophic or neurotoxic outcomes. It is known that dysregulation in the proNGF/mNGF ratio and in NGF-receptors expression affects brain homeostasis. To date, however, the specific roles of the two major proNGF variants remain unexplored. Here we attempted a first characterization of the possible differential effects of proNGF-A and proNGF-B on viability, differentiation and endogenous ngf gene expression in the PC12 cell line. We also investigated the differential involvement of NGF receptors in the actions of proNGF. We found that native mouse mNGF, proNGF-A and proNGF-B elicited different effects on PC12 cell survival and differentiation. Only mNGF and proNGF-A promoted neurotrophic responses when all NGF receptors are exposed at the cell surface. Tropomyosine receptor kinase A (TrkA) blockade inhibited cell differentiation, regardless of which NGF was added to culture media. Only proNGF-A exerted a pro-survival effect when TrkA was inhibited. Conversely, proNGF-B exerted differentiative effects when the p75 neurotrophin receptor (p75NTR) was antagonized. Stimulation with NGF variants differentially regulated the autocrine production of distinct proNgf mRNA. Overall, our findings suggest that mNGF and proNGF-A may elicit similar neurotrophic effects, not necessarily linked to activation of the same NGF-receptor, while the action of proNGF-B may be determined by the NGF-receptors balance. Thus, the proposed involvement of proNGF/NGF on the development and progression of neurodegenerative and tumor conditions may depend on the NGF-receptors balance, on specific NGF trancript expression and on the proNGF protein variant ratio.
Collapse
|
6
|
Lauzon MA, Faucheux N. A small peptide derived from BMP-9 can increase the effect of bFGF and NGF on SH-SY5Y cells differentiation. Mol Cell Neurosci 2018; 88:83-92. [PMID: 29341901 DOI: 10.1016/j.mcn.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The current aging of the world population will increase the number of people suffering from brain degenerative diseases such as Alzheimer's disease (AD). There are evidence showing that the use of growth factors such as BMP-9 could restored cognitive function as it acts on many AD hallmarks at the same time. However, BMP-9 is a big protein expensive to produce that can hardly access the central nervous system. We have therefore developed a small peptide, SpBMP-9, derived from the knuckle epitope of BMP-9 and showed its therapeutic potential in a previous study. Since it is known that the native protein, BMP-9, can act in synergy with other growth factors in the context of AD, here we study the potential synergistic effect of various combinations of SpBMP-9 with bFGF, EGF, IGF-2 or NGF on the cholinergic differentiation of human neuroblastoma cells SH-SY5Y. We found that, in opposition to IGF-2 or EGF, the combination of SpBMP-9 with bFGF or NGF can stimulate to a greater extent the neurite outgrowth and neuronal differentiation toward the cholinergic phenotype as shown by expression and localization of the neuronal markers NSE and VAchT and the staining of intracellular calcium. Those results strongly suggest that SpBMP-9 plus NGF or bFGF are promising therapeutic combinations against AD that required further attention.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke, 12e Avenue N, Sherbrooke, Québec J1H 5N4, Canada; Pharmacology Institute of Sherbrooke, 12e Avenue N, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
7
|
Faulkner S, Roselli S, Demont Y, Pundavela J, Choquet G, Leissner P, Oldmeadow C, Attia J, Walker MM, Hondermarck H. ProNGF is a potential diagnostic biomarker for thyroid cancer. Oncotarget 2017; 7:28488-97. [PMID: 27074571 PMCID: PMC5053740 DOI: 10.18632/oncotarget.8652] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The precursor for nerve growth factor (proNGF) is expressed in some cancers but its clinicopathological significance is unclear. The present study aimed to define the clinicopathological significance of proNGF in thyroid cancer. ProNGF expression was analysed by immunohistochemistry in two cohorts of cancer versus benign tumors (adenoma) and normal thyroid tissues. In the first cohort (40 thyroid cancers, 40 thyroid adenomas and 80 normal thyroid tissues), proNGF was found overexpressed in cancers compared to adenomas and normal samples (p<0.0001). The area under the receiver-operating characteristic (ROC) curve was 0.84 (95% CI 0.75-0.93, p<0.0001) for cancers versus adenomas, and 0.99 (95% CI 0.98-1.00, p<0.0001) for cancers versus normal tissues. ProNGF overexpression was confirmed in a second cohort (127 cancers of various histological types and 55 normal thyroid tissues) and using a different antibody (p<0.0001). ProNGF staining intensity was highest in papillary carcinomas compared to other histological types (p<0.0001) and there was no significant association with age, gender, tumor size, stage and lymph node status. In conclusion, proNGF is increased in thyroid cancer and should be considered as a new potential diagnostic biomarker.
Collapse
Affiliation(s)
- Sam Faulkner
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Severine Roselli
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Yohann Demont
- Inserm U908, Growth Factor Signaling and Functional Proteomics of Breast Cancer, University of Lille, 59655 Villeneuve d'Ascq, France.,Present address: INSERM U1138 team 11, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jay Pundavela
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Genevieve Choquet
- Medical Diagnostic Discovery Department, bioMérieux, 69280 Marcy l'Etoile, France
| | - Philippe Leissner
- Medical Diagnostic Discovery Department, bioMérieux, 69280 Marcy l'Etoile, France
| | - Christopher Oldmeadow
- School of Mathematical and Physical Sciences, Faculty of Science and Information Technology, University of Newcastle, Callaghan NSW 2308, Australia
| | - John Attia
- Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia.,School of Public Health & Medicine, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia.,School of Public Health & Medicine, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| |
Collapse
|
8
|
low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017; 8:1988. [PMID: 29215016 PMCID: PMC5719420 DOI: 10.1038/s41467-017-01573-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the “phenotype switching” model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival. The aggressive nature of melanoma cells relies on their ability to switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state; however, the mechanisms governing this switch are unclear. Here, using in vivo models of human melanoma, the authors show that CD271 is a key regulator of phenotype switching and metastasis formation.
Collapse
|
9
|
Affiliation(s)
- Franziska Denk
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Suzuki K, Tanaka H, Ebara M, Uto K, Matsuoka H, Nishimoto S, Okada K, Murase T, Yoshikawa H. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater 2017; 53:250-259. [PMID: 28179161 DOI: 10.1016/j.actbio.2017.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Peripheral nerve injury is one of common traumas. Although injured peripheral nerves have the capacity to regenerate, axon regeneration proceeds slowly and functional outcomes are often poor. Pharmacological enhancement of regeneration can play an important role in increasing functional recovery. In this study, we developed a novel electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), one of the active forms of vitamin B12 homologues, to deliver it enough locally to the peripheral nerve injury site. We evaluated whether local administration of MeCbl at the nerve injury site was effective in promoting nerve regeneration. Electrospun nanofiber sheets gradually released MeCbl for at least 8weeks when tested in vitro. There was no adverse effect of nanofiber sheets on function in vivo of the peripheral nervous system. Local implantation of nanofiber sheets incorporating MeCbl contributed to the recovery of the motor and sensory function, the recovery of nerve conduction velocity, and the promotion of myelination after sciatic nerve injury, without affecting plasma concentration of MeCbl. STATEMENT OF SIGNIFICANCE Methylcobalamin (MeCbl) is a vitamin B12 analog and we previously reported its effectiveness in axonal outgrowth of neurons and differentiation of Schwann cells both in vitro and in vivo. Here we estimated the effect of local administered MeCbl with an electrospun nanofiber sheet on peripheral nerve injury. Local administration of MeCbl promoted functional recovery in a rat sciatic nerve crush injury model. These sheets are useful for nerve injury in continuity differently from artificial nerve conduits, which are useful only for nerve defects. We believe that the findings of this study are relevant to the scope of your journal and will be of interest to its readership.
Collapse
Affiliation(s)
- Koji Suzuki
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 304-0044, Japan
| | - Koichiro Uto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 304-0044, Japan
| | - Hozo Matsuoka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Medical Center for Translational and Clinical Research, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Benrick A, Kokosar M, Hu M, Larsson M, Maliqueo M, Marcondes RR, Soligo M, Protto V, Jerlhag E, Sazonova A, Behre CJ, Højlund K, Thorén P, Stener-Victorin E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture. FASEB J 2017; 31:3288-3297. [PMID: 28404742 DOI: 10.1096/fj.201601381r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 12/15/2022]
Abstract
A single bout of low-frequency electroacupuncture (EA) causing muscle contractions increases whole-body glucose uptake in insulin-resistant rats. We explored the underlying mechanism of this finding and whether it can be translated into clinical settings. Changes in glucose infusion rate (GIR) were measured by euglycemic-hyperinsulinemic clamp during and after 45 min of low-frequency EA in 21 overweight/obese women with polycystic ovary syndrome (PCOS) and 21 controls matched for age, weight, and body mass index (experiment 1) and in rats receiving autonomic receptor blockers (experiment 2). GIR was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS, but not in controls, suggesting increased sympathetic-driven adipose tissue metabolism. Administration of α-/β-adrenergic receptor blockers in rats blocked the increase in GIR in response to EA. Muscarinic and dopamine receptor antagonist also blocked the response but with slower onset. In conclusion, a single bout of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture.
Collapse
Affiliation(s)
- Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,School of Health and Education, University of Skövde, Skövde, Sweden
| | - Milana Kokosar
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Larsson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Rodrigues Marcondes
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Disciplina de Ginecologia, Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Virginia Protto
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonina Sazonova
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Johan Behre
- Department of Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Peter Thorén
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
12
|
Kourdougli N, Pellegrino C, Renko JM, Khirug S, Chazal G, Kukko-Lukjanov TK, Lauri SE, Gaiarsa JL, Zhou L, Peret A, Castrén E, Tuominen RK, Crépel V, Rivera C. Depolarizing γ-aminobutyric acid contributes to glutamatergic network rewiring in epilepsy. Ann Neurol 2017; 81:251-265. [PMID: 28074534 DOI: 10.1002/ana.24870] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/16/2023]
Abstract
OBJECTIVE Rewiring of excitatory glutamatergic neuronal circuits is a major abnormality in epilepsy. Besides the rewiring of excitatory circuits, an abnormal depolarizing γ-aminobutyric acidergic (GABAergic) drive has been hypothesized to participate in the epileptogenic processes. However, a remaining clinically relevant question is whether early post-status epilepticus (SE) evoked chloride dysregulation is important for the remodeling of aberrant glutamatergic neuronal circuits. METHODS Osmotic minipumps were used to infuse intracerebrally a specific inhibitor of depolarizing GABAergic transmission as well as a functionally blocking antibody toward the pan-neurotrophin receptor p75 (p75NTR ). The compounds were infused between 2 and 5 days after pilocarpine-induced SE. Immunohistochemistry for NKCC1, KCC2, and ectopic recurrent mossy fiber (rMF) sprouting as well as telemetric electroencephalographic and electrophysiological recordings were performed at day 5 and 2 months post-SE. RESULTS Blockade of NKCC1 after SE with the specific inhibitor bumetanide restored NKCC1 and KCC2 expression, normalized chloride homeostasis, and significantly reduced the glutamatergic rMF sprouting within the dentate gyrus. This mechanism partially involves p75NTR signaling, as bumetanide application reduced SE-induced p75NTR expression and functional blockade of p75NTR decreased rMF sprouting. The early transient (3 days) post-SE infusion of bumetanide reduced rMF sprouting and recurrent seizures in the chronic epileptic phase. INTERPRETATION Our findings show that early post-SE abnormal depolarizing GABA and p75NTR signaling fosters a long-lasting rearrangement of glutamatergic network that contributes to the epileptogenic process. This finding defines promising and novel targets to constrain reactive glutamatergic network rewiring in adult epilepsy. Ann Neurol 2017;81:251-265.
Collapse
Affiliation(s)
- Nazim Kourdougli
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Christophe Pellegrino
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | | | - Geneviève Chazal
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | | | - Sari E Lauri
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jean-Luc Gaiarsa
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Liang Zhou
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Angélique Peret
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Valérie Crépel
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Claudio Rivera
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, Jiang Z, Tanaka T, Dubeykovskaya ZA, Kim W, Chen X, Urbanska AM, Nagar K, Westphalen CB, Quante M, Lin CS, Gershon MD, Hara A, Zhao CM, Chen D, Worthley DL, Koike K, Wang TC. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell 2017; 31:21-34. [PMID: 27989802 PMCID: PMC5225031 DOI: 10.1016/j.ccell.2016.11.005] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/17/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Within the gastrointestinal stem cell niche, nerves help to regulate both normal and neoplastic stem cell dynamics. Here, we reveal the mechanisms underlying the cancer-nerve partnership. We find that Dclk1+ tuft cells and nerves are the main sources of acetylcholine (ACh) within the gastric mucosa. Cholinergic stimulation of the gastric epithelium induced nerve growth factor (NGF) expression, and in turn NGF overexpression within gastric epithelium expanded enteric nerves and promoted carcinogenesis. Ablation of Dclk1+ cells or blockade of NGF/Trk signaling inhibited epithelial proliferation and tumorigenesis in an ACh muscarinic receptor-3 (M3R)-dependent manner, in part through suppression of yes-associated protein (YAP) function. This feedforward ACh-NGF axis activates the gastric cancer niche and offers a compelling target for tumor treatment and prevention.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Kosuke Sakitani
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Mitsuru Konishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Samuel Asfaha
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
- Department of Medicine, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Ryota Niikura
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - Bernhard W. Renz
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, Munich, 81377, Germany
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Marina Macchini
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Takayuki Tanaka
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Zinaida A. Dubeykovskaya
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Aleksandra M. Urbanska
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Karan Nagar
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Christoph B. Westphalen
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
- Department of Internal Medicine III, Klinikum der Universität München, Munich, 81377, Germany
| | - Michael Quante
- Department of Internal Medicine II, Klinikum rechts der Isar, II. Technische Universität München, Munich, 81675, Germany
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Transgenic Mouse Shared Resource, Columbia University, New York, NY, 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Daniel L. Worthley
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
- Cancer theme, SAHMRI and Department of Medicine, University of Adelaide, SA, 5000, Australia
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
- Corresponding Author: Timothy C. Wang, M.D., Chief, Division of Digestive and Liver Diseases, Silberberg Professor of Medicine, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, Room #925, New York, NY 10032-3802, Tel: 212-851-4581, Fax: 212-851-4590,
| |
Collapse
|
14
|
Leng Y, Wang J, Wang Z, Liao HM, Wei M, Leeds P, Chuang DM. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3. Int J Neuropsychopharmacol 2016; 19:pyw035. [PMID: 27207921 PMCID: PMC5006201 DOI: 10.1093/ijnp/pyw035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. METHODS C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. RESULTS Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. CONCLUSIONS In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth in glia.
Collapse
Affiliation(s)
- Yan Leng
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| | | | | | | | | | | | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
15
|
Trigos AS, Longart M, García L, Castillo C, Forsyth P, Medina R. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells. Front Cell Neurosci 2015; 9:364. [PMID: 26441535 PMCID: PMC4569732 DOI: 10.3389/fncel.2015.00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/02/2015] [Indexed: 01/19/2023] Open
Abstract
Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the CM, is one of the main inhibitors of full neuronal differentiation, acting through sortilin receptor.
Collapse
Affiliation(s)
- Anna Sofía Trigos
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela ; Departamento de Biología Celular, Universidad Simón Bolívar (USB) Caracas, Venezuela
| | - Marines Longart
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Lisbeth García
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Patricia Forsyth
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Rafael Medina
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| |
Collapse
|
16
|
Dixon AR, Philbert MA. Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro 2015; 29:564-74. [PMID: 25553915 PMCID: PMC4418429 DOI: 10.1016/j.tiv.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/05/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023]
Abstract
With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB. Morphometric analysis of the neuronal area revealed that m-DNB exposure produced no significant change in mean neuronal cell area in "full-contact" co-cultures, whereas a significant decrease was observed for neuron monocultures. Neurite elaboration into a neurite exclusive compartment in a compartmentalized microfluidic device, for both monocultures (no astrocytes) and "restricted" co-cultures (astrocytes touching neurites), decreased with exposure to increasing concentrations of m-DNB, but the average neurite area was higher in co-cultures. By using co-culture systems that more closely approach biological and architectural complexities, and the directionality of exposure found in the brain, this study provides a methodological foundation for unraveling the role of physical contact between astrocytes and neurons in mitigating the toxic effects of chemicals such as m-DNB.
Collapse
Affiliation(s)
- Angela R Dixon
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Martin A Philbert
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
18
|
Pundavela J, Demont Y, Jobling P, Lincz LF, Roselli S, Thorne RF, Bond D, Bradshaw RA, Walker MM, Hondermarck H. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3156-62. [PMID: 25285721 DOI: 10.1016/j.ajpath.2014.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/16/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Nerve infiltration is essential to prostate cancer progression, but the mechanism by which nerves are attracted to prostate tumors remains unknown. We report that the precursor of nerve growth factor (proNGF) is overexpressed in prostate cancer and involved in the ability of prostate cancer cells to induce axonogenesis. A series of 120 prostate cancer and benign prostate hyperplasia (BPH) samples were analyzed by IHC for proNGF. ProNGF was mainly localized in the cytoplasm of epithelial cells, with marked expression in cancer compared with BPH. Importantly, the proNGF level positively correlated with the Gleason score (n = 104, τB = 0.51). A higher level of proNGF was observed in tumors with a Gleason score of ≥8 compared with a Gleason score of 7 and 6 (P < 0.001). In vitro, proNGF was detected in LNCaP, DU145, and PC-3 prostate cancer cells and BPH-1 cells but not in RWPE-1 immortalized nontumorigenic prostate epithelial cells or primary normal prostate epithelial cells. Co-culture of PC12 neuronal-like cells or 50B11 neurons with PC-3 cells resulted in neurite outgrowth in neuronal cells that was inhibited by blocking antibodies against proNGF, indicating that prostate cancer cells can induce axonogenesis via secretion of proNGF. These data reveal that ProNGF is a biomarker associated with high-risk prostate cancers and a potential driver of infiltration by nerves.
Collapse
Affiliation(s)
- Jay Pundavela
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Yohann Demont
- INSERM U908, University Lille 1, Villeneuve d'Ascq, France
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lisa F Lincz
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Haematology Research Group, Calvary Mater Hospital, Waratah, New South Wales, Australia
| | - Severine Roselli
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Danielle Bond
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Ralph A Bradshaw
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| | - Marjorie M Walker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
19
|
Lewin GR, Nykjaer A. Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 2014; 39:363-74. [PMID: 24494677 PMCID: PMC4232910 DOI: 10.1111/ejn.12466] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Nerve growth factor (NGF) signaling is important in the development and functional maintenance of nociceptors, but it also plays a central role in initiating and sustaining heat and mechanical hyperalgesia following inflammation. NGF signaling in pain has traditionally been thought of as primarily engaging the classic high-affinity receptor tyrosine kinase receptor TrkA to initiate sensitization events. However, the discovery that secreted proforms of nerve NGF have biological functions distinct from the processed mature factors raised the possibility that these proneurotrophins (proNTs) may have distinct function in painful conditions. ProNTs engage a novel receptor system that is distinct from that of mature neurotrophins, consisting of sortilin, a type I membrane protein belonging to the VPS10p family, and its co-receptor, the classic low-affinity neurotrophin receptor p75NTR. Here, we review how this new receptor system may itself function with or independently of the classic TrkA system in regulating inflammatory or neuropathic pain.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation Group, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany
| | | |
Collapse
|
20
|
Arisi I, D'Onofrio M, Brandi R, Malerba F, Paoletti F, Storti AE, Florenzano F, Fasulo L, Cattaneo A. proNGF/NGF mixtures induce gene expression changes in PC12 cells that neither singly produces. BMC Neurosci 2014; 15:48. [PMID: 24713110 PMCID: PMC4098786 DOI: 10.1186/1471-2202-15-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growing evidence shows that, in vivo, the precursor of Nerve Growth Factor (NGF), proNGF, displays biological activities different from those of its mature NGF counterpart, mediated by distinct, and somewhat complementary, receptor binding properties. NGF and proNGF induce distinct transcriptional signatures in target cells, highlighting their different bioactivities. In vivo, proNGF and mature NGF coexist. It was proposed that the relative proNGF/NGF ratio is important for their biological outcomes, especially in pathological conditions, since proNGF, the principal form of NGF in Central Nervous System (CNS), is increased in Alzheimer's disease brains. These observations raise a relevant question: does proNGF, in the presence of NGF, influence the NGF transcriptional response and viceversa? In order to understand the specific proNGF effect on NGF activity, depending on the relative proNGF/NGF concentration, we investigated whether proNGF affects the pattern of well-known NGF-regulated mRNAs. RESULTS To test any influence of proNGF on pure NGF expression fingerprinting, the expression level of a set of candidate genes was analysed by qReal-Time PCR in rat adrenal pheochromocytoma cell line PC12, treated with a mixture of NGF and proNGF recombinant proteins, in different stoichiometric ratios. These candidates were selected amongst a set of genes well-known as being rapidly induced by NGF treatment. We found that, when PC12 cells are treated with proNGF/NGF mixtures, a unique pattern of gene expression, which does not overlap with that deriving from treatment with either proNGF or NGF alone, is induced. The specific effect is also dependent on the stoichiometric composition of the mixture. The proNGF/NGF equimolar mixture seems to partially neutralize the specific effects of the proNGF or NGF individual treatments, showing a weaker overall response, compared to the individual contributions of NGF and proNGF alone. CONCLUSIONS Using gene expression as a functional read-out, our data demonstrate that the relative availability of NGF and proNGF in vivo might modulate the biological outcome of these ligands.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Laboratory, European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Via del Fosso di Fiorano, 64, 00143 Roma, Italy.
| |
Collapse
|
21
|
Zhan XQ, Yao JJ, Liu DD, Ma Q, Mei YA. Aβ40 modulates GABA(A) receptor α6 subunit expression and rat cerebellar granule neuron maturation through the ERK/mTOR pathway. J Neurochem 2013; 128:350-62. [PMID: 24118019 DOI: 10.1111/jnc.12471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 01/10/2023]
Abstract
In addition to their neurotoxic role in Alzheimer's disease (AD), β-amyloid peptides (Aβs) are also known to play physiological roles. Here, we show that recombinant Aβ40 significantly increased the outward current of the GABA(A) receptor containing (GABA(A)α6) in rat cerebellar granule neurons (CGNs). The Aβ40-mediated increase in GABA(A)α6 current was mediated by an increase in GABA(A)α6 protein expression at the translational rather than the transcriptional level. The exposure of CGNs to Aβ40 markedly induced the phosphorylation of ERK (pERK) and mammalian target of rapamycin (pmTOR). The increase in GABA(A)α6 current and expression was attenuated by specific inhibitors of ERK or mTOR, suggesting that the ERK and mTOR signaling pathways are required for the effect of Aβ40 on GABA(A)α6 current and expression in CGNs. A pharmacological blockade of the p75 neurotrophin receptor (p75(NTR)), but not the insulin or α7-nAChR receptors, abrogated the effect of Aβ40 on GABA(A)α6 protein expression and current. Furthermore, the expression of GABA(A)α6 was lower in CGNs from APP(-/-) mice than in CGNs from wild-type mice. Moreover, the internal granule layer (IGL) in APP(-/-) mice was thinner than the IGL in wild-type mice. The injection of Aβ40 into the cerebellum reversed this effect, and the application of p75(NTR) blocking antibody abolished the effects of Aβ40 on cerebellum morphology in APP(-/-) mice. Our results suggest that low concentrations of Aβ40 play a role in regulating CGN maturation through p75(NTR).
Collapse
Affiliation(s)
- Xiao-Qin Zhan
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|