1
|
Batool H, Khan FW, Bashir A, Rafique Z, Mustafa BE, Babar K, Chughtai AS, Atiq A. Expression of β-Catenin in Salivary Gland Tumors. Cureus 2024; 16:e72249. [PMID: 39583377 PMCID: PMC11584547 DOI: 10.7759/cureus.72249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
INTRODUCTION Salivary gland tumors are an important group of neoplasms in the head and neck region. This study aims to assess the significance of β-catenin expression in both benign and malignant salivary gland tumors. MATERIALS AND METHODS We included 80 reported cases of benign and malignant salivary gland tumors and employed β-catenin stain on tumor blocks. A consultant histopathologist interpreted the β-catenin expression, and a score of 0, 1, 2, 3 was given based on intensity as completely absent, mild, moderate, or intense. Intracellular localization of β-catenin stain was interpreted as the percentage of membranous, cytoplasmic, or nuclear expression. RESULTS Expression in benign and malignant classes of salivary gland tumors differs in intensity and localization. The benign category of tumors exhibited primarily membranous expression, and all cases of Warthin tumor showed intense membranous expression (p ≤ 0.05). Malignant tumors manifested chiefly cytoplasmic expression, and among the malignant category, adenoid cystic carcinoma showed intense cytoplasmic localization (p ≤ 0.05). None of the tumors showed nuclear expression. CONCLUSION Decreased membranous and increased cytoplasmic expression could predict malignant behavior and invasive potential.
Collapse
Affiliation(s)
- Hira Batool
- Histopathology, Chughtai Institute of Pathology, Lahore, PAK
| | - Faria W Khan
- Histopathology, Chughtai Institute of Pathology, Lahore, PAK
| | - Azra Bashir
- Histopathology, Chughtai Institute of Pathology, Lahore, PAK
| | - Zubaria Rafique
- Histopathology, Chughtai Institute of Pathology, Lahore, PAK
| | | | - Kanwal Babar
- Histopathology, Chughtai Institute of Pathology, Lahore, PAK
| | | | - Aribah Atiq
- Histopathology, Chughtai Institute of Pathology, Lahore, PAK
| |
Collapse
|
2
|
Mikulić P, Ogorevc M, Petričević M, Kaličanin D, Tafra R, Saraga-Babić M, Mardešić S. SOX2, JAGGED1, β-Catenin, and Vitamin D Receptor Expression Patterns during Early Development and Innervation of the Human Inner Ear. Int J Mol Sci 2024; 25:8719. [PMID: 39201406 PMCID: PMC11354891 DOI: 10.3390/ijms25168719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Sensorineural hearing loss can be caused by lesions to the inner ear during development. Understanding the events and signaling pathways that drive inner ear formation is crucial for determining the possible causes of congenital hearing loss. We have analyzed the innervation and expression of SOX2, JAGGED1, β-catenin (CTNNB1), and vitamin D receptor (VDR) in the inner ears of human conceptuses aged 5 to 10 weeks after fertilization (W) using immunohistochemistry. The prosensory domains of the human inner ear displayed SOX2 and JAGGED1 expression throughout the analyzed period, with SOX2 expression being more extensive in all the analyzed timepoints. Innervation of vestibular prosensory domains was present at 6 W and extensive at 10 W, while nerve fibers reached the base of the cochlear prosensory domain at 7-8 W. CTNNB1 and VDR expression was mostly membranous and present during all analyzed timepoints in the inner ear, being the strongest in the non-sensory epithelium. Their expression was stronger in the vestibular region compared to the cochlear duct. CTNNB1 and VDR expression displayed opposite expression trends during the analyzed period, but additional studies are needed to elucidate whether they interact during inner ear development.
Collapse
Affiliation(s)
- Petra Mikulić
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (P.M.); (R.T.)
| | - Marin Ogorevc
- Division of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.O.); (S.M.)
| | - Marin Petričević
- Institute of Emergency Medicine of Split-Dalmatia County, Spinčićeva 1, 21000 Split, Croatia;
| | - Dean Kaličanin
- Department of Medical Biology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia;
| | - Robert Tafra
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (P.M.); (R.T.)
| | - Mirna Saraga-Babić
- Division of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.O.); (S.M.)
| | - Snježana Mardešić
- Division of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.O.); (S.M.)
| |
Collapse
|
3
|
Żak M, Støle TP, Plagnol V, Daudet N. Regulation of otic neurosensory specification by Notch and Wnt signalling: insights from RNA-seq screenings in the embryonic chicken inner ear. Front Cell Dev Biol 2023; 11:1245330. [PMID: 37900277 PMCID: PMC10600479 DOI: 10.3389/fcell.2023.1245330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
The Notch and Wnt signalling pathways play key roles in the formation of inner ear sensory organs, but little is known about their transcriptional effectors and targets in this context. Here, we perturbed Notch and Wnt activities in the embryonic chicken otic vesicle using pharmacological treatment or in ovo electroporation of plasmid DNA, and used RNA-Seq to analyse the resulting changes in gene expression. Compared to pharmacological treatments, in ovo electroporation changed the expression of fewer genes, a likely consequence of the variability and mosaicism of transfection. The pharmacological inhibition of Notch activity induced a rapid change in the expression of known effectors of this pathway and genes associated with neurogenesis, consistent with a switch towards an otic neurosensory fate. The Wnt datasets contained many genes associated with a neurosensory biological function, confirming the importance of this pathway for neurosensory specification in the otocyst. Finally, the results of a preliminary gain-of-function screening of selected transcription factors and Wnt signalling components suggest that the endogenous programs of otic neurosensory specification are very robust, and in general unaffected by the overexpression of a single factor. Altogether this work provides new insights into the effectors and candidate targets of the Notch and Wnt pathways in the early developing inner ear and could serve as a useful reference for future functional genomics experiments in the embryonic avian inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Thea P. Støle
- UCL Ear Institute, University College London, London, United Kingdom
| | - Vincent Plagnol
- Genetics Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
4
|
Baldera D, Baxendale S, van Hateren NJ, Marzo M, Glendenning E, Geng F, Yokoya K, Knight RD, Whitfield TT. Enhancer trap lines with GFP driven by smad6b and frizzled1 regulatory sequences for the study of epithelial morphogenesis in the developing zebrafish inner ear. J Anat 2023; 243:78-89. [PMID: 36748120 PMCID: PMC10273346 DOI: 10.1111/joa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.
Collapse
Affiliation(s)
- Davide Baldera
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Present address:
CeSASt, University of CagliariCagliariItaly
| | | | | | - Mar Marzo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Fan‐Suo Geng
- Brain and Mind Research Institute, University of SydneySydneyNew South WalesAustralia
- Present address:
Data Science Institute, The University of Technology SydneySydneyAustralia
| | - Kazutomo Yokoya
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | | |
Collapse
|
5
|
Liu W, Lin L, Yang Q, Jin S, Jiang H. Prkra Mutation Alters mRNA Expression During Embryonic External Ear Development. J Craniofac Surg 2023; 34:e387-e391. [PMID: 37185168 DOI: 10.1097/scs.0000000000009318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/16/2023] [Indexed: 05/17/2023] Open
Abstract
To understand the changes in mRNA expression during the embryonic development of the external mouse ear after the point mutation of the Prkra gene, Prkra short ear mouse model was used to study the development of the embryonic external ear. The tissues of the embryonic external ear were obtained when mouse embryos developed to E15.5 and E17.5. The changes in the mRNA expression profile were detected and analyzed. Find_circ and CIRI2 softwares were used to identify the upregulated and down-regulated expression of mRNA in the experimental and control groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional annotations were conducted on the differentially expressed mRNA, and the related signal pathways were analyzed after the upregulation and down-regulation of mRNA expression. This study aimed to understand the regulation of mRNA expression in Prkra short-ear mice during the external ear development in embryos. The results showed a correlation between abnormally expressed mRNA and signal pathways and the regulation of the development of the external ear of Prkra short-ear mice, and there were differences in some key regulatory mRNA changes after the Prkra gene point mutation. This study will provide a new clue for the mechanism of mRNA regulating the development of the external mouse ear. The change in mRNA expression profile can also provide clues for studying the biological regulation mechanism of external ear embryonic development.
Collapse
Affiliation(s)
- Wei Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
6
|
Song H, Morrow BE. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for inner ear development. Dev Biol 2023; 494:71-84. [PMID: 36521641 PMCID: PMC9870991 DOI: 10.1016/j.ydbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.
Collapse
Affiliation(s)
- Hansoo Song
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
7
|
Tan AL, Mohanty S, Guo J, Lekven AC, Riley BB. Pax2a, Sp5a and Sp5l act downstream of Fgf and Wnt to coordinate sensory-neural patterning in the inner ear. Dev Biol 2022; 492:139-153. [PMID: 36244503 DOI: 10.1016/j.ydbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023]
Abstract
In zebrafish, sensory epithelia and neuroblasts of the inner ear form simultaneously in abutting medial and lateral domains, respectively, in the floor of the otic vesicle. Previous studies support regulatory roles for Fgf and Wnt, but how signaling is coordinated is poorly understood. We investigated this problem using pharmacological and transgenic methods to alter Fgf or Wnt signaling from early placodal stages to evaluate later changes in growth and patterning. Blocking Fgf at any stage reduces proliferation of otic tissue and terminates both sensory and neural specification. Wnt promotes proliferation in the otic vesicle but is not required for sensory or neural development. However, sustained overactivation of Wnt laterally expands sensory epithelia and blocks neurogenesis. pax2a, sp5a and sp5l are coregulated by Fgf and Wnt and show overlapping expression in the otic placode and vesicle. Gain- and loss-of-function studies show that these genes are together required for Wnt's suppression of neurogenesis, as well as some aspects of sensory development. Thus, pax2a, sp5a and sp5l are critical for mediating Fgf and Wnt signaling to promote spatially localized sensory and neural development.
Collapse
Affiliation(s)
- Amy L Tan
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jinbai Guo
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
8
|
Miwa T, Ito N, Ohta K. Tsukushi is essential for the formation of the posterior semicircular canal that detects gait performance. J Cell Commun Signal 2021; 15:581-594. [PMID: 34061311 DOI: 10.1007/s12079-021-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022] Open
Abstract
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Ougimaci, Kita-ku, Osaka, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
- K.K. Sciex Japan, Shinagawa, Tokyo, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
9
|
Wilkerson BA, Zebroski HL, Finkbeiner CR, Chitsazan AD, Beach KE, Sen N, Zhang RC, Bermingham-McDonogh O. Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris. eLife 2021; 10:e60108. [PMID: 34003106 PMCID: PMC8189719 DOI: 10.7554/elife.60108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
This study provides transcriptomic characterization of the cells of the crista ampullaris, sensory structures at the base of the semicircular canals that are critical for vestibular function. We performed single-cell RNA-seq on ampullae microdissected from E16, E18, P3, and P7 mice. Cluster analysis identified the hair cells, support cells and glia of the crista as well as dark cells and other nonsensory epithelial cells of the ampulla, mesenchymal cells, vascular cells, macrophages, and melanocytes. Cluster-specific expression of genes predicted their spatially restricted domains of gene expression in the crista and ampulla. Analysis of cellular proportions across developmental time showed dynamics in cellular composition. The new cell types revealed by single-cell RNA-seq could be important for understanding crista function and the markers identified in this study will enable the examination of their dynamics during development and disease.
Collapse
Affiliation(s)
- Brent A Wilkerson
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Heather L Zebroski
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Connor R Finkbeiner
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Alex D Chitsazan
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Kylie E Beach
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Nilasha Sen
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Renee C Zhang
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Olivia Bermingham-McDonogh
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
10
|
Żak M, Daudet N. A gradient of Wnt activity positions the neurosensory domains of the inner ear. eLife 2021; 10:59540. [PMID: 33704062 PMCID: PMC7993990 DOI: 10.7554/elife.59540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory and vestibular organs of the inner ear and the neurons that innervate them originate from Sox2-positive and Notch-active neurosensory domains specified at early stages of otic development. Sox2 is initially present throughout the otic placode and otocyst, and then it becomes progressively restricted to a ventro-medial domain. Using gain- and loss-of-function approaches in the chicken otocyst, we show that these early changes in Sox2 expression are regulated in a dose-dependent manner by Wnt/beta-catenin signalling. Both high and very low levels of Wnt activity repress Sox2 and neurosensory competence. However, intermediate levels allow the maintenance of Sox2 expression and sensory organ formation. We propose that a dorso-ventral (high-to-low) gradient and wave of Wnt activity initiated at the dorsal rim of the otic placode progressively restricts Sox2 and Notch activity to the ventral half of the otocyst, thereby positioning the neurosensory competent domains in the inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Yu W, Ishan M, Yao Y, Stice SL, Liu HX. SOX10- Cre-Labeled Cells Under the Tongue Epithelium Serve as Progenitors for Taste Bud Cells That Are Mainly Type III and Keratin 8-Low. Stem Cells Dev 2020; 29:638-647. [PMID: 32098606 PMCID: PMC7232695 DOI: 10.1089/scd.2020.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Taste bud cells are specialized epithelial cells that undergo continuous turnover, and thus require active progenitors for their renewal and an intact taste function. Our previous studies suggested that a population of taste bud cells originates from outside of the surrounding tongue epithelium-previously regarded sole source of taste bud progenitors. In this study, we demonstrated that SOX10 (SRY-related HMG-box gene 10)-expressing cells, known to be in the migrating neural crest, were also distributed in taste bud-surrounding tissue compartments under the tongue epithelium, that is, the connective tissue core of taste papillae and von Ebner's glands. By lineage tracing of SOX10-expressing cells using SOX10-Cre, a Cre model driven by the endogenous SOX10 promoter, crossing with a Cre reporter line R26-tdTomato (tdT), we found SOX10-Cre-labeled tdT+ cells within taste buds in all three types of taste papillae (fungiform, circumvallate, and foliate) as well as in the soft palate in postnatal mice. The tdT+ taste bud cells were progressively more abundant along the developmental stages, from virtually zero at birth to over 35% in adults. Most of tdT+ taste bud cells had a low intensity of immunosignals of Keratin 8 (a widely used taste bud cell marker). In circumvallate taste buds, tdT signals were co-localized principally with a type III taste bud cell marker, less so with type I and II cell makers. Together, our data demonstrate a novel progenitor source for taste buds of postnatal mice-SOX10-Cre-labeled cells in the connective tissue core and/or von Ebner's glands.
Collapse
Affiliation(s)
- Wenxin Yu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Steven L. Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Hwang CH, Keller J, Renner C, Ohta S, Wu DK. Genetic interactions support an inhibitory relationship between bone morphogenetic protein 2 and netrin 1 during semicircular canal formation. Development 2019; 146:dev.174748. [PMID: 30770380 PMCID: PMC6398446 DOI: 10.1242/dev.174748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
The semicircular canals of the mammalian inner ear are derived from epithelial pouches in which epithelial cells in the central region of each pouch undergo resorption, leaving behind the region at the rim to form a tube-shaped canal. Lack of proliferation at the rim and/or over-clearing of epithelial cells in the center of the pouch can obliterate canal formation. Otic-specific knockout of bone morphogenetic protein 2 (Bmp2) results in absence of all three semicircular canals; however, the common crus and ampullae housing the sensory tissue (crista) are intact. The lack of Bmp2 causes Ntn1 (which encodes netrin 1), which is required for canal resorption, to be ectopically expressed at the canal rim. Ectopic Ntn1 results in reduction of Dlx5 and Lmo4, which are required for rim formation. These phenotypes can be partially rescued by removing one allele of Ntn1 in the Bmp2 mutants, indicating that Bmp2 normally negatively regulates Ntn1 for canal formation. Additionally, non-resorption of the canal pouch in Ntn1−/− mutants is partially rescued by removing one allele of Bmp2. Thus, reciprocal inhibition between Bmp2 and netrin 1 is involved in canal formation of the vestibule. Summary:Bmp2-conditional mutant analyses support the hypothesis that presumptive crista induces canal genesis zone in the canal pouch to express Bmp2, which promotes canal formation by restricting Ntn1 expression to the resorption domain.
Collapse
Affiliation(s)
- Chan Ho Hwang
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - James Keller
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Charles Renner
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Sho Ohta
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Chen L, Zhang YH, Zhang Z, Huang T, Cai YD. Inferring Novel Tumor Suppressor Genes with a Protein-Protein Interaction Network and Network Diffusion Algorithms. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:57-67. [PMID: 30069494 PMCID: PMC6068090 DOI: 10.1016/j.omtm.2018.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Extensive studies on tumor suppressor genes (TSGs) are helpful to understand the pathogenesis of cancer and design effective treatments. However, identifying TSGs using traditional experiments is quite difficult and time consuming. Developing computational methods to identify possible TSGs is an alternative way. In this study, we proposed two computational methods that integrated two network diffusion algorithms, including Laplacian heat diffusion (LHD) and random walk with restart (RWR), to search possible genes in the whole network. These two computational methods were LHD-based and RWR-based methods. To increase the reliability of the putative genes, three strict screening tests followed to filter genes obtained by these two algorithms. After comparing the putative genes obtained by the two methods, we designated twelve genes (e.g., MAP3K10, RND1, and OTX2) as common genes, 29 genes (e.g., RFC2 and GUCY2F) as genes that were identified only by the LHD-based method, and 128 genes (e.g., SNAI2 and FGF4) as genes that were inferred only by the RWR-based method. Some obtained genes can be confirmed as novel TSGs according to recent publications, suggesting the utility of our two proposed methods. In addition, the reported genes in this study were quite different from those reported in a previous one.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Zhenghua Zhang
- Department of Clinical Oncology, Jing’an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’An Branch), Shanghai 200040, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
- Corresponding author: Tao Huang, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
- Corresponding author: Yu-Dong Cai, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China.
| |
Collapse
|
14
|
Li X, Wu Y, Xie F, Zhang F, Zhang S, Zhou J, Chen D, Liu A. miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Mol Med Rep 2018; 18:1279-1286. [PMID: 29901112 PMCID: PMC6072140 DOI: 10.3892/mmr.2018.9110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Our previous study indicated that loureirin A induces hair follicle stem cell (HFSC) differentiation through Wnt/β-catenin signaling pathway activation. However, if and how microRNAs (miRNAs/miRs) modulate loureirin A-induced differentiation remains to be elucidated. In the present study, HFSCs were separated from the vibrissae of rats and identified by CD34 and keratin, type 1 cytoskeletal (K)15 expression. Microarray-based miRNA profiling analysis revealed that miR-339-5p was downregulated in loureirin A-induced HFSC differentiation. miR-339-5p overexpression by transfection with miR-339-5p mimics markedly inhibited the expression of K10 and involucrin, which are markers of epidermal differentiation, whereas inhibition of miR-339-5p by miR-339-5p inhibitor transfection promoted the expression of K10 and involucrin. These results suggest that miR-339-5p is a negative regulator of HFSC differentiation following induction by loureirin A. These findings were confirmed by a luciferase assay. Homeobox protein DLX-5 (DLX5) was identified as a direct target of miR-339-5p. Furthermore, it was demonstrated that miR-339-5p inhibited DLX5. Overexpression of miR-339-5p by mimic transfection significantly inhibited protein Wnt-3a (Wnt3a) expression, while inhibition of miR-339-5p by inhibitor transfection significantly increased the expression of Wnt3a. Furthermore, small interfering RNA targeting DLX5 was transfected into HFSCs, and western blot analysis revealed that Wnt3a, involucrin and K10 expression was significantly downregulated. Taken together, these results suggest that miR-339-5p negatively regulated loureirin A-induced HFSC differentiation by targeting DLX5, resulting in Wnt/β-catenin signaling pathway inhibition. This may provide a possible therapeutic target for skin repair and regeneration.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yuqiong Wu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fangfang Xie
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fengxue Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Aijun Liu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
15
|
Nishitani AM, Ohta S, Yung AR, Del Rio T, Gordon MI, Abraira VE, Avilés EC, Schoenwolf GC, Fekete DM, Goodrich LV. Distinct functions for netrin 1 in chicken and murine semicircular canal morphogenesis. Development 2017; 144:3349-3360. [PMID: 28851705 DOI: 10.1242/dev.144519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
The vestibular system of the inner ear detects head position using three orthogonally oriented semicircular canals; even slight changes in their shape and orientation can cause debilitating behavioral defects. During development, the canals are sculpted from pouches that protrude from the otic vesicle, the embryonic anlage of the inner ear. In the center of each pouch, a fusion plate forms where cells lose their epithelial morphology and the basement membrane breaks down. Cells in the fusing epithelia intercalate and are removed, creating a canal. In mice, fusion depends on the secreted protein netrin 1 (Ntn1), which is necessary for basement membrane breakdown, although the underlying molecular mechanism is unknown. Using gain-of-function approaches, we found that overexpression of Ntn1 in the chick otic vesicle prevented canal fusion by inhibiting apoptosis. In contrast, ectopic expression of the same chicken Ntn1 in the mouse otic vesicle, where apoptosis is less prominent, resulted in canal truncation. These findings highlight the importance of apoptosis for tissue morphogenesis and suggest that Ntn1 may play divergent cellular roles despite its conserved expression during canal morphogenesis in chicken and mouse.
Collapse
Affiliation(s)
| | - Sho Ohta
- Departments of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tony Del Rio
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael I Gordon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gary C Schoenwolf
- Departments of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Donna M Fekete
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Haraguchi R, Kitazawa R, Murashima A, Yamada G, Kitazawa S. Developmental Contribution of Wnt-signal-responsive Cells to Mouse Reproductive Tract Formation. Acta Histochem Cytochem 2017; 50:127-133. [PMID: 28928542 PMCID: PMC5593815 DOI: 10.1267/ahc.17017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
In mammals, the müllerian duct (MD) is an embryonic tubular structure that gives rise to the female reproductive tract (FRT). The MD originates from the coelomic epithelium (CoE) and takes on a rostral to caudal shape to establish the primary structure of the FRT under the regulation of morphogenetic signals. During these developmental processes, the MD and its derivatives require proper regulation of the Wnt-signaling-pathway. Here, to investigate the developmental contribution of FRT primordia under the influence of the Wnt-signaling, genetic lineage tracing was carried out using TopCreER/Rosa-LacZ mice to follow the fate of Wnt-signal-responsive cells during reproductive tract formation. TopCreER-marked-LacZ+ cells, arising from the Wnt-signal-responsive progenitors in CoE, give rise to spatially restricted MD and the uterine luminal epithelium. Similarly, the progeny from LacZ+ mesenchymal cells surrounding the MD contribute to both the uterine smooth muscle and stroma. Furthermore, in males, the Wnt-signal-responsive MD mesenchyme develops into the epididymis. These results show, for the first time, evidence of the sequential involvement of reproductive tract progenitors under the influence of Wnt-signal throughout the developmental term. This study provides a precise outline for assessing the lineage relation between the reproductive tract and the cell fate of its primordia in a temporally regulated manner.
Collapse
Affiliation(s)
- Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
- Department of Diagnostic Pathology, Ehime University Hospital
| | - Aki Murashima
- Department of Developmental Genetics, Wakayama Medical University
- Department of Anatomy, Iwate Medical University
| | - Gen Yamada
- Department of Developmental Genetics, Wakayama Medical University
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| |
Collapse
|
17
|
Xia W, Hu J, Liu F, Ma J, Sun S, Zhang J, Jin K, Huang J, Jiang N, Wang X, Li W, Ma Z, Ma D. New role of LRP5, associated with nonsyndromic autosomal-recessive hereditary hearing loss. Hum Mutat 2017; 38:1421-1431. [PMID: 28677207 DOI: 10.1002/humu.23285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
Human hearing loss is a common neurosensory disorder about which many basic research and clinically relevant questions are unresolved. At least 50% of hearing loss are due to a genetic etiology. Although hundreds of genes have been reported, there are still hundreds of related deafness genes to be found. Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual nonsyndromic sensorineural hearing loss. Whole-exome sequencing (WES) identified lipoprotein receptor-related protein 5 (LRP5), a member of the low-density lipoprotein receptor family, as the causative gene in this family. In the zebrafish model, lrp5 downregulation using morpholinos led to significant abnormalities in zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. Rescue experiments showed that LRP5 mutation is associated with hearing loss. Knocking down lrp5 in zebrafish results in reduced expression of several genes linked to Wnt signaling pathway and decreased cell proliferation when compared with those in wild-type zebrafish. In conclusion, the LRP5 mutation influences cell proliferation through the Wnt signaling pathway, thereby reducing the number of supporting cells and hair cells and leading to nonsyndromic hearing loss in this Chinese family.
Collapse
Affiliation(s)
- Wenjun Xia
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Jiongjiong Hu
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Fei Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center Laboratory, Bao'an Maternal and Children Healthcare Hospital, Key Laboratory of Birth Defects Research, Shenzhen, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiyue Jin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianbo Huang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Li
- Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhaoxin Ma
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Duan Ma
- Institutes of Biomedical Science, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
19
|
Møller MN, Kirkeby S, Cayé-Thomasen P. Innate immune defense in the inner ear - mucines are expressed by the human endolymphatic sac. J Anat 2016; 230:297-302. [PMID: 28106268 DOI: 10.1111/joa.12559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 01/31/2023] Open
Abstract
The human endolymphatic sac has been shown recently to have immunological capacities and has thus been proposed as the main entity protecting the inner ear from pathogen invasion, equivalent to mucosa-associated lymphoid tissue (MALT). Although the sac expresses molecules of the innate immune system, the potential expression of members of the important mucin family has not been detailed. Thus, this paper explores endolymphatic sac expression of a number of mucins and mucin precursors. Twelve fresh tissue samples from the human endolymphatic sac were obtained during translabyrinthine surgery. The expression of Mucin 1, 2, 5B/AC and 16, as well as the core structure elements (mucin precursors) T-antigen, Tn-antigen and Sialyl-Tn-antigen was investigated by immunohistochemistry. The endolymphatic sac epithelium expressed MUC1 (both apically towards the endolymphatic sac (ES) lumen and basally towards the capillary network), MUC 16 and Tn-antigen. There was no labeling after incubation with antibodies against T-antigen, sialyl-Tn-antigen, MUC2 and MUC5B/AC. We conclude that the human endolymphatic sac epithelium expresses a number of mucin molecules, which supports the hypothesis of the sac as the primary immunological tissue structure of the inner ear, equivalent to MALT in other organs. The mucins may also play a role in the formation and continuous homeostasis of the inner ear fluids, as well as the pathogenesis of Meniere's disease.
Collapse
Affiliation(s)
- Martin N Møller
- Department of Otorhinolaryngology, Head and Neck Surgery, Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svend Kirkeby
- Department of Oral Medicine, Dental School, Panum Institute, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Cayé-Thomasen
- Department of Otorhinolaryngology, Head and Neck Surgery, Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
DeJonge RE, Liu XP, Deig CR, Heller S, Koehler KR, Hashino E. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture. PLoS One 2016; 11:e0162508. [PMID: 27607106 PMCID: PMC5015985 DOI: 10.1371/journal.pone.0162508] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles—a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo.
Collapse
Affiliation(s)
- Rachel E. DeJonge
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Xiao-Ping Liu
- Department of Otolaryngology, F.M. Kirby Neurobiology Center Boston Children’s Hospital, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Christopher R. Deig
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Palo Alto, CA, 94305, United States of America
| | - Karl R. Koehler
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail: (EH); (KRK)
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail: (EH); (KRK)
| |
Collapse
|
21
|
Liu L, Chen Y, Qi J, Zhang Y, He Y, Ni W, Li W, Zhang S, Sun S, Taketo MM, Wang L, Chai R, Li H. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Death Dis 2016; 7:e2136. [PMID: 26962686 PMCID: PMC4823936 DOI: 10.1038/cddis.2016.35] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
Recent studies have reported the role of Wnt/β-catenin signaling in hair cell (HC) development, regeneration, and differentiation in the mouse cochlea; however, the role of Wnt/β-catenin signaling in HC protection remains unknown. In this study, we took advantage of transgenic mice to specifically knockout or overactivate the canonical Wnt signaling mediator β-catenin in HCs, which allowed us to investigate the role of Wnt/β-catenin signaling in protecting HCs against neomycin-induced damage. We first showed that loss of β-catenin in HCs made them more vulnerable to neomycin-induced injury, while constitutive activation of β-catenin in HCs reduced HC loss both in vivo and in vitro. We then showed that loss of β-catenin in HCs increased caspase-mediated apoptosis induced by neomycin injury, while β-catenin overexpression inhibited caspase-mediated apoptosis. Finally, we demonstrated that loss of β-catenin in HCs led to increased expression of forkhead box O3 transcription factor (Foxo3) and Bim along with decreased expression of antioxidant enzymes; thus, there were increased levels of reactive oxygen species (ROS) after neomycin treatment that might be responsible for the increased aminoglycoside sensitivity of HCs. In contrast, β-catenin overexpression reduced Foxo3 and Bim expression and ROS levels, suggesting that β-catenin is protective against neomycin-induced HC loss. Our findings demonstrate that Wnt/β-catenin signaling has an important role in protecting HCs against neomycin-induced HC loss and thus might be a new therapeutic target for the prevention of HC death.
Collapse
Affiliation(s)
- L Liu
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Y Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - J Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Y Zhang
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - Y He
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - W Ni
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - W Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - S Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - S Sun
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - M M Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - L Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - R Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - H Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| |
Collapse
|
22
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
23
|
Billet G, Hautier L, Lebrun R. Morphological diversity of the bony labyrinth (inner ear) in extant Xenarthrans and its relation to phylogeny. J Mammal 2015. [DOI: 10.1093/jmammal/gyv074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
We present a survey of the morphological diversity of the bony labyrinth of the inner ear in Xenarthra, including the fossil ground sloth Megatherium. Using a combination of traditional and geometric morphometrics, correlation analyses, and qualitative observations, we attempt to extract independent and informative phylogenetic characters of the bony labyrinth for the superorder. Geometric morphometric analyses demonstrate a strong imprint of phylogenetic history on the shape of the bony labyrinth of xenarthrans and a weak influence of allometry. Discrete characters mapped on a consensus cladogram for xenarthrans show support for many traditional nodes within the superorder and may also provide critical information for problematic nodes within Cingulata. A relatively large lateral semicircular canal may, for instance, represent a synapomorphy for the molecular clade allying fairy armadillos (Chlamyphorinae) to the Tolypeutinae. Striking convergences were detected when comparing Megatherium, the giant ground sloth, with extant armadillos and Chlamyphorus, the pink fairy armadillo, with the extant three- and two-toed sloths. These findings have the potential to help understand the phylogenetic relationships of fossil xenarthrans.
Presentamos un estudio de la diversidad morfológica del laberinto óseo del oído interno de los xenartros, incluyendo el perezoso fósil Megatherium. Utilizamos una combinación de morfométrica tradicional y geométrica, análisis de correlación y observaciones cuantitativas para intentar extraer caracteres filogenéticos independientes e informativos del laberinto óseo para el superorden. Los análisis geométricos morfométricos muestran una fuerte impronta de la historia filogenética de la forma del laberinto óseo de los xenartros y una baja influencia de la alometría. Los caracteres discretos mapeados en un cladograma de consenso para xenartros apoyan varios nodos tradicionales dentro del superorden y podrían también brindar información importante para los nodos problemáticos dentro de los Cingulata. Un canal semicircular lateral relativamente largo podría, por ejemplo, representar una sinapomorfía que apoye el clado molecular que une a los pichiciegos con los Tolypeutinae. Se hallaron notables convergencias al comparar Megatherium con los armadillos actuales, y Chlamyphorus con los perezosos actuales. Estos hallazgos tienen el potencial para ayudar a entender las relaciones filogenéticas de los xenartros fósiles.
Collapse
Affiliation(s)
- Guillaume Billet
- CR2P, UMR CNRS 7207, CP 38, Muséum national d’Histoire naturelle, Univ Paris 06, 8 rue Buffon, 75005 Paris, France (GB)
| | - Lionel Hautier
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| | - Renaud Lebrun
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| |
Collapse
|
24
|
Zhang Y, Chen Y, Ni W, Guo L, Lu X, Liu L, Li W, Sun S, Wang L, Li H. Dynamic expression of Lgr6 in the developing and mature mouse cochlea. Front Cell Neurosci 2015; 9:165. [PMID: 26029045 PMCID: PMC4428082 DOI: 10.3389/fncel.2015.00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea.
Collapse
Affiliation(s)
- Yanping Zhang
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Yan Chen
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wenli Ni
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Luo Guo
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Xiaoling Lu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Liman Liu
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wen Li
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Huawei Li
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
25
|
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9:66. [PMID: 25814927 PMCID: PMC4356074 DOI: 10.3389/fncel.2015.00066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.
Collapse
Affiliation(s)
- Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Grace S Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| |
Collapse
|
26
|
Nakajima Y. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects. Congenit Anom (Kyoto) 2015; 55:17-25. [PMID: 25040109 DOI: 10.1111/cga.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/07/2014] [Indexed: 12/28/2022]
Abstract
The membranous labyrinth of the inner ear is a highly complex organ that detects sound and balance. Developmental defects in the inner ear cause congenital hearing loss and balance disorders. The membranous labyrinth consists of three semicircular ducts, the utricle, saccule, and endolymphatic ducts, and the cochlear duct. These complex structures develop from the simple otic placode, which is established in the cranial ectoderm adjacent to the neural crest at the level of the hindbrain at the early neurula stage. During development, the otic placode invaginates to form the otic vesicle, which subsequently gives rise to neurons for the vestibulocochlear ganglion, the non-sensory and sensory epithelia of the membranous labyrinth that includes three ampullary crests, two maculae, and the organ of Corti. Combined paracrine and autocrine signals including fibroblast growth factor, Wnt, retinoic acid, hedgehog, and bone morphogenetic protein regulate fate determination, axis formation, and morphogenesis in the developing inner ear. Juxtacrine signals mediated by Notch pathways play a role in establishing the sensory epithelium, which consists of mechanosensory hair cells and supporting cells. The highly differentiated organ of Corti, which consists of uniformly oriented inner/outer hair cells and specific supporting cells, develops during fetal development. Developmental alterations/arrest causes congenital malformations in the inner ear in a spatiotemporal-restricted manner. A clearer understanding of the mechanisms underlying inner ear development is important not only for the management of patients with congenital inner ear malformations, but also for the development of regenerative therapy for impaired function.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
27
|
Brown AS, Rakowiecki SM, Li JYH, Epstein DJ. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev Biol 2015; 399:177-187. [PMID: 25592224 DOI: 10.1016/j.ydbio.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Wnt1 and Wnt3a secreted from the dorsal neural tube were previously shown to regulate a gene expression program in the dorsal otic vesicle that is necessary for vestibular morphogenesis (Riccomagno et al., 2005. Genes Dev. 19, 1612-1623). Unexpectedly, Wnt1(-/-); Wnt3a(-/-) embryos also displayed a pronounced defect in the outgrowth of the ventrally derived cochlear duct. To determine how Wnt signaling in the dorsal otocyst contributes to cochlear development we performed a series of genetic fate mapping experiments using two independent Wnt responsive driver strains (TopCreER and Gbx2(CreER)) that when crossed to inducible responder lines (Rosa(lacZ) or Rosa(zsGreen)) permanently labeled dorsomedial otic progenitors and their derivatives. Tamoxifen time course experiments revealed that most vestibular structures showed some degree of labeling when recombination was induced between E7.75 and E12.5, consistent with continuous Wnt signaling activity in this tissue. Remarkably, a population of Wnt responsive cells in the dorsal otocyst was also found to contribute to the sensory epithelium of the cochlear duct, including auditory hair and support cells. Similar results were observed with both TopCreER and Gbx2(CreER) strains. The ventral displacement of Wnt responsive cells followed a spatiotemporal sequence that initiated in the anterior otic cup at, or immediately prior to, the 17-somite stage (E9) and then spread progressively to the posterior pole of the otic vesicle by the 25-somite stage (E9.5). These lineage-tracing experiments identify the earliest known origin of auditory sensory progenitors within a population of Wnt responsive cells in the dorsomedial otic cup.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - James Y H Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Sang Q, Zhang J, Feng R, Wang X, Li Q, Zhao X, Xing Q, Chen W, Du J, Sun S, Chai R, Liu D, Jin L, He L, Li H, Wang L. Ildr1b is essential for semicircular canal development, migration of the posterior lateral line primordium and hearing ability in zebrafish: implications for a role in the recessive hearing impairment DFNB42. Hum Mol Genet 2014; 23:6201-11. [PMID: 24990150 DOI: 10.1093/hmg/ddu340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunoglobulin-like domain containing receptor 1 (ILDR1) is a poorly characterized gene that was first identified in lymphoma cells. Recently, ILDR1 has been found to be responsible for autosomal recessive hearing impairment DFNB42. Patients with ILDR1 mutations cause bilateral non-progressive moderate-to-profound sensorineural hearing impairment. However, the etiology and mechanism of ILDR1-related hearing loss remains to be elucidated. In order to uncover the pathology of DFNB42 deafness, we used the morpholino injection technique to establish an ildr1b-morphant zebrafish model. Ildr1b-morphant zebrafish displayed defective hearing and imbalanced swimming, and developmental delays were seen in the semicircular canals of the inner ear. The gene expression profile and real-time PCR revealed down-regulation of atp1b2b (encoding Na(+)/K(+) transporting, beta 2b polypeptide) in ildr1b-morphant zebrafish. We found that injection of atp1b2b mRNA into ildr1b-knockdown zebrafish could rescue the phenotype of developmental delay of the semicircular canals. Moreover, ildr1b-morphant zebrafish had reduced numbers of lateral line neuromasts due to the disruption of lateral line primordium migration. In situ hybridization showed the involvement of attenuated FGF signaling and the chemokine receptor 4b (cxcr4b) and chemokine receptor 7b (cxcr7b) in posterior lateral line primordium of ildr1b-morphant zebrafish. We concluded that Ildr1b is crucial for the development of the inner ear and the lateral line system. This study provides the first evidence for the mechanism of Ildr1b on hearing in vivo and sheds light on the pathology of DFNB42.
Collapse
Affiliation(s)
- Qing Sang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200032, PR China, Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Junyu Zhang
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Ruizhi Feng
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Xu Wang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiaoli Li
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Xinzhi Zhao
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Weiyu Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Jiulin Du
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Shan Sun
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China and
| | - Dong Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200032, PR China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China, Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Huawei Li
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China,
| | - Lei Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200032, PR China, Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China,
| |
Collapse
|
29
|
Abstract
The development of hair cells in the auditory system can be separated into steps; first, the establishment of progenitors for the sensory epithelium, and second, the differentiation of hair cells. Although the differentiation of hair cells is known to require the expression of basic helix-loop-helix transcription factor, Atoh1, the control of cell proliferation in the region of the developing cochlea that will ultimately become the sensory epithelium and the cues that initiate Atoh1 expression remain obscure. We assessed the role of Wnt/β-catenin in both steps in gain- and loss-of-function models in mice. The canonical Wnt pathway mediator, β-catenin, controls the expression of Atoh1. Knock-out of β-catenin inhibited hair-cell, as well as pillar-cell, differentiation from sensory progenitors but was not required to maintain a hair-cell fate once specified. Constitutive activation of β-catenin expanded sensory progenitors by inducing additional cell division and resulted in the differentiation of extra hair cells. Our data demonstrate that β-catenin plays a role in cell division and differentiation in the cochlear sensory epithelium.
Collapse
|
30
|
Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, Hammerschmidt M, Topczewski J, Whitfield TT. Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development 2013; 140:4362-74. [PMID: 24067352 PMCID: PMC4007713 DOI: 10.1242/dev.098061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Morphogenesis of the semicircular canal ducts in the vertebrate inner ear is a dramatic example of epithelial remodelling in the embryo, and failure of normal canal development results in vestibular dysfunction. In zebrafish and Xenopus, semicircular canal ducts develop when projections of epithelium, driven by extracellular matrix production, push into the otic vesicle and fuse to form pillars. We show that in the zebrafish, extracellular matrix gene expression is high during projection outgrowth and then rapidly downregulated after fusion. Enzymatic disruption of hyaluronan in the projections leads to their collapse and a failure to form pillars: as a result, the ears swell. We have cloned a zebrafish mutant, lauscher (lau), identified by its swollen ear phenotype. The primary defect in the ear is abnormal projection outgrowth and a failure of fusion to form the semicircular canal pillars. Otic expression of extracellular matrix components is highly disrupted: several genes fail to become downregulated and remain expressed at abnormally high levels into late larval stages. The lau mutations disrupt gpr126, an adhesion class G protein-coupled receptor gene. Expression of gpr126 is similar to that of sox10, an ear and neural crest marker, and is partially dependent on sox10 activity. Fusion of canal projections and downregulation of otic versican expression in a hypomorphic lau allele can be restored by cAMP agonists. We propose that Gpr126 acts through a cAMP-mediated pathway to control the outgrowth and adhesion of canal projections in the zebrafish ear via the regulation of extracellular matrix gene expression.
Collapse
Affiliation(s)
- Fan-Suo Geng
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|