1
|
Hall ET, Dillard ME, Cleverdon ER, Zhang Y, Daly CA, Ansari SS, Wakefield R, Stewart DP, Pruett-Miller SM, Lavado A, Carisey AF, Johnson A, Wang YD, Selner E, Tanes M, Ryu YS, Robinson CG, Steinberg J, Ogden SK. Cytoneme signaling provides essential contributions to mammalian tissue patterning. Cell 2024; 187:276-293.e23. [PMID: 38171360 PMCID: PMC10842732 DOI: 10.1016/j.cell.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miriam E Dillard
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth R Cleverdon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shariq S Ansari
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Randall Wakefield
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel P Stewart
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alfonso Lavado
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alex F Carisey
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amanda Johnson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emma Selner
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael Tanes
- Center for In Vivo Imaging and Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Kyomen S, Murillo-Rincón AP, Kaucká M. Evolutionary mechanisms modulating the mammalian skull development. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220080. [PMID: 37183900 PMCID: PMC10184257 DOI: 10.1098/rstb.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Stella Kyomen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Andrea P Murillo-Rincón
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| |
Collapse
|
3
|
Thompson MJ, Young CA, Munnamalai V, Umulis DM. Early radial positional information in the cochlea is optimized by a precise linear BMP gradient and enhanced by SOX2. Sci Rep 2023; 13:8567. [PMID: 37237002 PMCID: PMC10219982 DOI: 10.1038/s41598-023-34725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Positional information encoded in signaling molecules is essential for early patterning in the prosensory domain of the developing cochlea. The sensory epithelium, the organ of Corti, contains an exquisite repeating pattern of hair cells and supporting cells. This requires precision in the morphogen signals that set the initial radial compartment boundaries, but this has not been investigated. To measure gradient formation and morphogenetic precision in developing cochlea, we developed a quantitative image analysis procedure measuring SOX2 and pSMAD1/5/9 profiles in mouse embryos at embryonic day (E)12.5, E13.5, and E14.5. Intriguingly, we found that the pSMAD1/5/9 profile forms a linear gradient up to the medial ~ 75% of the PSD from the pSMAD1/5/9 peak in the lateral edge during E12.5 and E13.5. This is a surprising activity readout for a diffusive BMP4 ligand secreted from a tightly constrained lateral region since morphogens typically form exponential or power-law gradient shapes. This is meaningful for gradient interpretation because while linear profiles offer the theoretically highest information content and distributed precision for patterning, a linear morphogen gradient has not yet been observed. Furthermore, this is unique to the cochlear epithelium as the pSMAD1/5/9 gradient is exponential in the surrounding mesenchyme. In addition to the information-optimized linear profile, we found that while pSMAD1/5/9 is stable during this timeframe, an accompanying gradient of SOX2 shifts dynamically. Last, through joint decoding maps of pSMAD1/5/9 and SOX2, we see that there is a high-fidelity mapping between signaling activity and position in the regions that will become Kölliker's organ and the organ of Corti. Mapping is ambiguous in the prosensory domain precursory to the outer sulcus. Altogether, this research provides new insights into the precision of early morphogenetic patterning cues in the radial cochlea prosensory domain.
Collapse
Affiliation(s)
- Matthew J Thompson
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Caryl A Young
- University of Maine, 168 College Ave, Orono, ME, 04469, USA
| | - Vidhya Munnamalai
- University of Maine, 168 College Ave, Orono, ME, 04469, USA.
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Morato NM, Hallett JE, Wang WH, Elzey BD, Cresswell GM, Cooper BR, Ferreira CR. Changes in Lipid Profile and SOX-2 Expression in RM-1 Cells after Co-Culture with Preimplantation Embryos or with Deproteinated Blastocyst Extracts. Mol Omics 2022; 18:480-489. [PMID: 35506630 DOI: 10.1039/d2mo00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The embryonic environment can modify cancer cell metabolism, and it is reported to induce the loss of tumorigenic properties and even affect the differentiation of cancer cells into normal tissues....
Collapse
Affiliation(s)
- Nicolás M Morato
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - Judy E Hallett
- Transgenic and Genome Editing Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Wen-Hung Wang
- Gene Editing Core, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Gregory M Cresswell
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Blackley DG, Cooper JH, Pokorska P, Ratheesh A. Mechanics of developmental migration. Semin Cell Dev Biol 2021; 120:66-74. [PMID: 34275746 DOI: 10.1016/j.semcdb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The ability to migrate is a fundamental property of animal cells which is essential for development, homeostasis and disease progression. Migrating cells sense and respond to biochemical and mechanical cues by rapidly modifying their intrinsic repertoire of signalling molecules and by altering their force generating and transducing machinery. We have a wealth of information about the chemical cues and signalling responses that cells use during migration. Our understanding of the role of forces in cell migration is rapidly evolving but is still best understood in the context of cells migrating in 2D and 3D environments in vitro. Advances in live imaging of developing embryos combined with the use of experimental and theoretical tools to quantify and analyse forces in vivo, has begun to shed light on the role of mechanics in driving embryonic cell migration. In this review, we focus on the recent studies uncovering the physical basis of embryonic cell migration in vivo. We look at the physical basis of the classical steps of cell migration such as protrusion formation and cell body translocation and review the recent research on how these processes work in the complex 3D microenvironment of a developing organism.
Collapse
Affiliation(s)
- Deannah G Blackley
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jack H Cooper
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Paulina Pokorska
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Aparna Ratheesh
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Bayir E, Sendemir A, Missirlis YF. Mechanobiology of cells and cell systems, such as organoids. Biophys Rev 2019; 11:721-728. [PMID: 31502190 DOI: 10.1007/s12551-019-00590-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
Organoids are in vitro 3D self-organizing tissues that mimic embryogenesis. Organoid research is advancing at a tremendous pace, since it offers great opportunities for disease modeling, drug development and screening, personalized medicine, as well as understanding organogenesis. Mechanobiology of organoids is an unexplored area, which can shed light to several unexplained aspects of self-organization behavior in organogenesis. It is becoming evident that collective cell behavior is distinctly different from individual cells' conduct against certain stimulants. Inherently consisting of higher number of degrees of freedom for cell motility and more complex cell-to-cell and cell-to-extracellular matrix behavior, understanding mechanotransduction in organoids is even more challenging compared with cell communities in 2D culture conditions. Yet, deciphering mechanobiology of organoids can help us understand effects of mechanical cues in health and disease, and translate findings of basic research toward clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Ece Bayir
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| | - Aylin Sendemir
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Yannis F Missirlis
- Department of Mechanical Engineering & Aeronautics, University of Patras, Patras, Greece.
| |
Collapse
|
7
|
Topal T, Kim BC, Villa-Diaz LG, Deng CX, Takayama S, Krebsbach PH. Rapid translocation of pluripotency-related transcription factors by external uniaxial forces. Integr Biol (Camb) 2019; 11:41-52. [PMID: 30809641 PMCID: PMC6428113 DOI: 10.1093/intbio/zyz003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 11/14/2022]
Abstract
Human embryonic stem cells subjected to a one-time uniaxial stretch for as short as 30-min on a flexible substrate coated with Matrigel experienced rapid and irreversible nuclear-to-cytoplasmic translocation of NANOG and OCT4, but not Sox2. Translocations were directed by intracellular transmission of biophysical signals from cell surface integrins to nuclear CRM1 and were independent of exogenous soluble factors. On E-CADHERIN-coated substrates, presumably with minimal integrin engagement, mechanical strain-induced rapid nuclear-to-cytoplasmic translocation of the three transcription factors. These findings might provide fundamental insights into early developmental processes and may facilitate mechanotransduction-mediated bioengineering approaches to influencing stem cell fate determination.
Collapse
Affiliation(s)
- Tuğba Topal
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Byoung Choul Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Luis G Villa-Diaz
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA, USA
| | - Paul H Krebsbach
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
- Section of Periodontics, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
8
|
Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin Anat 2018; 31:812-823. [PMID: 29637627 DOI: 10.1002/ca.23083] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the principal regulator of transport of molecules and cells into and out of the central nervous system (CNS). It comprises endothelial cells, pericytes, immune cells, astrocytes, and basement membrane, collectively known as the neurovascular unit. The development of the barrier involves many complex pathways from all the progenitors of the neurovascular unit, but the timing of its formation is not entirely known. The coordinated activities of all the components of the neurovascular unit and other tissues ensure that materials required for growth and maintenance are allowed into the CNS while extraneous ones are excluded. This review summarizes current knowledge of the anatomy, development, and physiology of the BBB, and alterations that occur in disease conditions. Clin. Anat. 31:812-823, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yousra Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Fareed Jumah
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alec Krosser
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
9
|
Lucas T, Tran H, Perez Romero CA, Guillou A, Fradin C, Coppey M, Walczak AM, Dostatni N. 3 minutes to precisely measure morphogen concentration. PLoS Genet 2018; 14:e1007676. [PMID: 30365533 PMCID: PMC6221364 DOI: 10.1371/journal.pgen.1007676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/07/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022] Open
Abstract
Morphogen gradients provide concentration-dependent positional information along polarity axes. Although the dynamics of the establishment of these gradients is well described, precision and noise in the downstream activation processes remain elusive. A simple paradigm to address these questions is the Bicoid morphogen gradient that elicits a rapid step-like transcriptional response in young fruit fly embryos. Focusing on the expression of the major Bicoid target, hunchback (hb), at the onset of zygotic transcription, we used the MS2-MCP approach which combines fluorescent labeling of nascent mRNA with live imaging at high spatial and temporal resolution. Removing 36 putative Zelda binding sites unexpectedly present in the original MS2 reporter, we show that the 750 bp of the hb promoter are sufficient to recapitulate endogenous expression at the onset of zygotic transcription. After each mitosis, in the anterior, expression is turned on to rapidly reach a plateau with all nuclei expressing the reporter. Consistent with a Bicoid dose-dependent activation process, the time period required to reach the plateau increases with the distance to the anterior pole. Despite the challenge imposed by frequent mitoses and high nuclei-to-nuclei variability in transcription kinetics, it only takes 3 minutes at each interphase for the MS2 reporter loci to distinguish subtle differences in Bicoid concentration and establish a steadily positioned and steep (Hill coefficient ~ 7) expression boundary. Modeling based on the cooperativity between the 6 known Bicoid binding sites in the hb promoter region, assuming rate limiting concentrations of the Bicoid transcription factor at the boundary, is able to capture the observed dynamics of pattern establishment but not the steepness of the boundary. This suggests that a simple model based only on the cooperative binding of Bicoid is not sufficient to describe the spatiotemporal dynamics of early hb expression.
Collapse
Affiliation(s)
- Tanguy Lucas
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| | - Huy Tran
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
- Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Physique Théorique, Paris, France
| | - Carmina Angelica Perez Romero
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
- Dept. of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Aurélien Guillou
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| | - Cécile Fradin
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
- Dept. of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Mathieu Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - Aleksandra M. Walczak
- Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Physique Théorique, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| |
Collapse
|
10
|
Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP. Boundary Formation through a Direct Threshold-Based Readout of Mobile Small RNA Gradients. Dev Cell 2017; 43:265-273.e6. [PMID: 29107557 DOI: 10.1016/j.devcel.2017.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022]
Abstract
Small RNAs have emerged as a new class of mobile signals. Here, we investigate their mechanism of action and show that mobile small RNAs generate sharply defined domains of target gene expression through an intrinsic and direct threshold-based readout of their mobility gradients. This readout is highly sensitive to small RNA levels at the source, allowing plasticity in the positioning of a target gene expression boundary. Besides patterning their immediate targets, the readouts of opposing small RNA gradients enable specification of robust, uniformly positioned developmental boundaries. These patterning properties of small RNAs are reminiscent of those of animal morphogens. However, their mode of action and the intrinsic nature of their gradients distinguish mobile small RNAs from classical morphogens and present a unique direct mechanism through which to relay positional information. Mobile small RNAs and their targets thus emerge as highly portable, evolutionarily tractable regulatory modules through which to create pattern.
Collapse
Affiliation(s)
| | - Anna H Benkovics
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Aman Y Husbands
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Marja C P Timmermans
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Forceful patterning in mouse preimplantation embryos. Semin Cell Dev Biol 2017; 71:129-136. [PMID: 28577924 DOI: 10.1016/j.semcdb.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/22/2022]
Abstract
The generation of a functional organism from a single, fertilized ovum requires the spatially coordinated regulation of diverse cell identities. The establishment and precise arrangement of differentiated cells in developing embryos has, historically, been extensively studied by geneticists and developmental biologists. While chemical gradients and genetic regulatory networks are widely acknowledged to play significant roles in embryo patterning, recent studies have highlighted that mechanical forces generated by, and exerted on, embryos are also crucial for the proper control of cell differentiation and morphogenesis. Here we review the most recent findings in murine preimplantation embryogenesis on the roles of cortical tension in the coupling of cell-fate determination and cell positioning in 8-16-cell-stage embryos. These basic principles of mechanochemical coupling in mouse embryos can be applied to other pattern formation phenomena that rely on localized modifications of cell polarity proteins and actin cytoskeletal components and activities.
Collapse
|
12
|
Cao Y, Ryser MD, Payne S, Li B, Rao CV, You L. Collective Space-Sensing Coordinates Pattern Scaling in Engineered Bacteria. Cell 2016; 165:620-30. [PMID: 27104979 DOI: 10.1016/j.cell.2016.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/11/2015] [Accepted: 03/01/2016] [Indexed: 01/12/2023]
Abstract
Scale invariance refers to the maintenance of a constant ratio of developing organ size to body size. Although common, its underlying mechanisms remain poorly understood. Here, we examined scaling in engineered Escherichia coli that can form self-organized core-ring patterns in colonies. We found that the ring width exhibits perfect scale invariance to the colony size. Our analysis revealed a collective space-sensing mechanism, which entails sequential actions of an integral feedback loop and an incoherent feedforward loop. The integral feedback is implemented by the accumulation of a diffusive chemical produced by a colony. This accumulation, combined with nutrient consumption, sets the timing for ring initiation. The incoherent feedforward is implemented by the opposing effects of the domain size on the rate and duration of ring maturation. This mechanism emphasizes a role of timing control in achieving robust pattern scaling and provides a new perspective in examining the phenomenon in natural systems.
Collapse
Affiliation(s)
- Yangxiaolu Cao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Marc D Ryser
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | - Stephen Payne
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bochong Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana Champaign, IL 61801, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
13
|
Abstract
Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.
Collapse
Affiliation(s)
| | - J Sosnik
- University of California, Irvine, CA, United States
| | - Q Nie
- University of California, Irvine, CA, United States
| |
Collapse
|
14
|
Unachukwu UJ, Warren A, Li Z, Mishra S, Zhou J, Sauane M, Lim H, Vazquez M, Redenti S. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina. Sci Rep 2016; 6:22392. [PMID: 26935401 PMCID: PMC4776098 DOI: 10.1038/srep22392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α – CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.
Collapse
Affiliation(s)
- Uchenna John Unachukwu
- Biochemistry Doctoral Program, The Graduate School, City University of New York, New York, NY, USA.,Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Alice Warren
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Ze Li
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Shawn Mishra
- Department of Biomedical Engineering, City College of New York, City University of New York, NY, USA
| | - Jing Zhou
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA.,Neuroscience Doctoral Program, The Graduate School, City University of New York, New York, NY, USA
| | - Moira Sauane
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Hyungsik Lim
- Departments of Physics and Biology, Hunter College of the City University of New York, New York, NY USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, City University of New York, NY, USA
| | - Stephen Redenti
- Biochemistry Doctoral Program, The Graduate School, City University of New York, New York, NY, USA.,Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| |
Collapse
|
15
|
Abstract
It is pointed out that the mystery of how biological systems measure their lengths vanishes away if one premises that they have discovered a way to generate linear waves analogous to compressional sound. These can be used to detect length at either large or small scales using echo timing and fringe counting. It is shown that suitable linear chemical potential waves can, in fact, be manufactured by tuning to criticality conventional reaction-diffusion with a small number substance. Min oscillations in Escherichia coli are cited as precedent resonant length measurement using chemical potential waves analogous to laser detection. Mitotic structures in eukaryotes are identified as candidates for such an effect at higher frequency. The engineering principle is shown to be very general and functionally the same as that used by hearing organs.
Collapse
|
16
|
Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol 2015; 6:235. [PMID: 26074915 PMCID: PMC4443741 DOI: 10.3389/fimmu.2015.00235] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
17
|
Dynamic scaling of morphogen gradients on growing domains. Nat Commun 2014; 5:5077. [PMID: 25295831 DOI: 10.1038/ncomms6077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/26/2014] [Indexed: 11/08/2022] Open
Abstract
Developmental mechanisms are highly conserved, yet act in embryos of very different sizes. How scaling is achieved has remained elusive. Here we identify a generally applicable mechanism for dynamic scaling on growing domains and show that it quantitatively agrees with data from the Drosophila wing imaginal disc. We show that for the measured parameter ranges, the Dpp gradient does not reach steady state during Drosophila wing development. We further show that both, pre-steady-state dynamics and advection of cell-bound ligand in a growing tissue can, in principle, enable scaling, even for non-uniform tissue growth. For the parameter values that have been established for the Dpp morphogen in the Drosophila wing imaginal disc, we show that scaling is mainly a result of the pre-steady-state dynamics. Pre-steady-state dynamics are pervasive in morphogen-controlled systems, thus making this a probable general mechanism for dynamic scaling of morphogen gradients in growing developmental systems.
Collapse
|
18
|
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 2014; 355:687-99. [PMID: 24590145 PMCID: PMC3972432 DOI: 10.1007/s00441-014-1811-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
Abstract
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt/Main, Germany
| |
Collapse
|