1
|
Aizawa E, Peters AHFM, Wutz A. In vitro gametogenesis: Towards competent oocytes: Limitations and future improvements for generating oocytes from pluripotent stem cells in culture. Bioessays 2024:e2400106. [PMID: 39498732 DOI: 10.1002/bies.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Production of oocytes from pluripotent cell cultures in a dish represents a new paradigm in stem cell and developmental biology and has implications for how we think about life. The spark of life for the next generation occurs at fertilization when sperm and oocyte fuse. In animals, gametes are the only cells that transmit their genomes to the next generation. Oocytes contain in addition a large cytoplasm with factors that direct embryonic development. Reconstitution of mouse oocyte and embryonic development in culture provides experimental opportunities and facilitates an unprecedented understanding of molecular mechanisms. However, the application of in vitro gametogenesis to reproductive medicine or infertility treatment remains challenging. One significant concern is the quality of in vitro-derived oocytes. Here, we review the current understanding and identify limitations in generating oocytes in vitro. From this basis, we explore opportunities for future improvements of the in vitro approach to generating high-quality oocytes.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Makhlouf A, Wang A, Sato N, Rosa VS, Shahbazi MN. Integrin signaling in pluripotent cells acts as a gatekeeper of mouse germline entry. SCIENCE ADVANCES 2024; 10:eadk2252. [PMID: 39231227 PMCID: PMC11373592 DOI: 10.1126/sciadv.adk2252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Primordial germ cells (PGCs) are the precursors of gametes and the sole mechanism by which animals transmit genetic information across generations. In the mouse embryo, the transcriptional and epigenetic regulation of PGC specification has been extensively characterized. However, the initial event that triggers the soma-germline segregation remains poorly understood. Here, we uncover a critical role for the basement membrane in regulating germline entry. We show that PGCs arise in a region of the mouse embryo that lacks contact with the basement membrane, and the addition of exogenous extracellular matrix (ECM) inhibits both PGC and PGC-like cell (PGCLC) specification in mouse embryos and stem cell models, respectively. Mechanistically, we demonstrate that the engagement of β1 integrin with laminin blocks PGCLC specification by preventing the Wnt signaling-dependent down-regulation of the PGC transcriptional repressor, Otx2. In this way, the physical segregation of cells away from the basement membrane acts as a morphogenetic fate switch that controls the soma-germline bifurcation.
Collapse
Affiliation(s)
- Aly Makhlouf
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Anfu Wang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Nanami Sato
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
4
|
Shi DL. Interplay of RNA-binding proteins controls germ cell development in zebrafish. J Genet Genomics 2024; 51:889-899. [PMID: 38969260 DOI: 10.1016/j.jgg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Because failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
5
|
Sepulveda-Rincon LP, Wang YF, Whilding C, Moyon B, Ojarikre OA, Maciulyte V, Hamazaki N, Hayashi K, Turner JMA, Leitch HG. Determining the potency of primordial germ cells by injection into early mouse embryos. Dev Cell 2024; 59:695-704.e5. [PMID: 38359835 DOI: 10.1016/j.devcel.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Primordial germ cells (PGCs) are the earliest precursors of the gametes. During normal development, PGCs only give rise to oocytes or spermatozoa. However, PGCs can acquire pluripotency in vitro by forming embryonic germ (EG) cells and in vivo during teratocarcinogenesis. Classic embryological experiments directly assessed the potency of PGCs by injection into the pre-implantation embryo. As no contribution to embryos or adult mice was observed, PGCs have been described as unipotent. Here, we demonstrate that PGCs injected into 8-cell embryos can initially survive, divide, and contribute to the developing inner cell mass. Apoptosis-deficient PGCs exhibit improved survival in isolated epiblasts and can form naive pluripotent embryonic stem cell lines. However, contribution to the post-implantation embryo is limited, with no functional incorporation observed. In contrast, PGC-like cells show an extensive contribution to mid-gestation chimeras. We thus propose that PGC formation in vivo establishes a latent form of pluripotency that restricts chimera contribution.
Collapse
Affiliation(s)
- Lessly P Sepulveda-Rincon
- Medical Research Council (MRC) Laboratory of Medical Sciences (LMS), London W12 0HS, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0HS, UK.
| | - Yi-Fang Wang
- Medical Research Council (MRC) Laboratory of Medical Sciences (LMS), London W12 0HS, UK
| | - Chad Whilding
- Medical Research Council (MRC) Laboratory of Medical Sciences (LMS), London W12 0HS, UK
| | - Benjamin Moyon
- Medical Research Council (MRC) Laboratory of Medical Sciences (LMS), London W12 0HS, UK
| | - Obah A Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan; Department of Genome Biology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 2-2, Suita 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Yamadaoka 2-2, Suita 565-0871, Japan
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Harry G Leitch
- Medical Research Council (MRC) Laboratory of Medical Sciences (LMS), London W12 0HS, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
6
|
Gong W, Zhao J, Yao Z, Zhang Y, Niu Y, Jin K, Li B, Zuo Q. The Establishment and Optimization of a Chicken Primordial Germ Cell Induction Model Using Small-Molecule Compounds. Animals (Basel) 2024; 14:302. [PMID: 38254471 PMCID: PMC10812757 DOI: 10.3390/ani14020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, inducing pluripotent stem cells to differentiate into functional primordial germ cells (PGCs) in vitro has become an important method of obtaining a large number of PGCs. However, the instability and low induction efficiency of the in vitro PGC induction system restrict the application of PGCs in transgenic animal production, germplasm resource conservation and other fields. In this study, we successfully established a two-step induction model of chicken PGCs in vitro, which significantly improved the formation efficiency of PGC-like cells (PGCLCs). To further improve the PGC formation efficiency in vitro, 5025 differentially expressed genes (DEGs) were obtained between embryonic stem cells (ESCs) and PGCs through RNA-seq. GO and KEGG enrichment analysis revealed that signaling pathways such as BMP4, Wnt and Notch were significantly activated during PGC formation, similar to other species. In addition, we noted that cAMP was activated during PGC formation, while MAPK was suppressed. Based on the results of our analysis, we found that the PGC formation efficiency was significantly improved after activating Wnt and inhibiting MAPK, and was lower than after activating cAMP. To sum up, in this study, we successfully established a two-step induction model of chicken PGCs in vitro with high PGC formation efficiency, which lays a theoretical foundation for further demonstrating the regulatory mechanism of PGCs and realizing their specific applications.
Collapse
Affiliation(s)
- Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Juanjuan Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Gong W, Liu X, Lv X, Zhang Y, Niu Y, Jin K, Li B, Zuo Q. Ubiquitination plays an important role during the formation of chicken primordial germ cells. J Anim Sci 2024; 102:skae251. [PMID: 39187982 PMCID: PMC11452721 DOI: 10.1093/jas/skae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024] Open
Abstract
As an important posttranslational modification, ubiquitination plays an important role in regulating protein homeostasis in eukaryotic cells. In our previous studies, both the transcriptome and proteome suggested that ubiquitination is involved in the formation of chicken primordial germ cells (PGCs). Here, affinity enrichment combined with liquid chromatography-tandem mass spectrometry (MS/MS) was used to analyze the ubiquitome during the differentiation from embryonic stem cells to PGCs, and we identify that 724 lysine ubiquitinated sites were up-regulated in 558 proteins and 138 lysine ubiquitinated sites were down-regulated in 109 proteins. Furthermore, GO and KEGG enrichment analysis showed that ubiquitination regulates key proteins to participate in the progression of key events related to PGC formation and the transduction of key signals such as Wnt, MAPK, and insulin signals, followed by the detailed explanation of the specific regulatory mechanism of ubiquitination through the combined proteome and ubiquitome analysis. Moreover, both the activation and inhibition of neddylation were detrimental to the maintenance of the biological characteristics of PGCs, which also verified the importance of ubiquitination. In conclusion, this study provides a global view of the ubiquitome during the formation of PGCs by label-free quantitative ubiquitomics, which lays a theoretical foundation for the formation mechanism and specific application of chicken PGCs.
Collapse
Affiliation(s)
- Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xin Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xiaoqian Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
8
|
Wang X, Zhu J, Wang H, Deng W, Jiao S, Wang Y, He M, Zhang F, Liu T, Hao Y, Ye D, Sun Y. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat Commun 2023; 14:7918. [PMID: 38097571 PMCID: PMC10721796 DOI: 10.1038/s41467-023-43587-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of genome editing and primordial germ cell (PGC) transplantation has enormous significance in the study of developmental biology and genetic breeding, despite its low efficiency due to limited number of donor PGCs. Here, we employ a combination of germplasm factors to convert blastoderm cells into induced PGCs (iPGCs) in zebrafish and obtain functional gametes either through iPGC transplantation or via the single blastomere overexpression of germplasm factors. Zebrafish-derived germplasm factors convert blastula cells of Gobiocypris rarus into iPGCs, and Gobiocypris rarus spermatozoa can be produced by iPGC-transplanted zebrafish. Moreover, the combination of genome knock-in and iPGC transplantation perfectly resolves the contradiction between high knock-in efficiency and early lethality during embryonic stages and greatly improves the efficiency of genome knock-in. Together, we present an efficient method for generating PGCs in a teleost, a technique that will have a strong impact in basic research and aquaculture.
Collapse
Affiliation(s)
- Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenqi Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkang Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
9
|
Vijayakumar S, Sala R, Kang G, Chen A, Pablo MA, Adebayo AI, Cipriano A, Fowler JL, Gomes DL, Ang LT, Loh KM, Sebastiano V. Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification. Nat Commun 2023; 14:5690. [PMID: 37709760 PMCID: PMC10502105 DOI: 10.1038/s41467-023-41302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Generating primordial germ cell-like cells (PGCLCs) from human pluripotent stem cells (hPSCs) advances studies of human reproduction and development of infertility treatments, but often entails complex 3D aggregates. Here we develop a simplified, monolayer method to differentiate hPSCs into PGCs within 3.5 days. We use our simplified differentiation platform and single-cell RNA-sequencing to achieve further insights into PGCLC specification. Transient WNT activation for 12 h followed by WNT inhibition specified PGCLCs; by contrast, sustained WNT induced primitive streak. Thus, somatic cells (primitive streak) and PGCLCs are related-yet distinct-lineages segregated by temporally-dynamic signaling. Pluripotency factors including NANOG are continuously expressed during the transition from pluripotency to posterior epiblast to PGCs, thus bridging pluripotent and germline states. Finally, hPSC-derived PGCLCs can be easily purified by virtue of their CXCR4+PDGFRA-GARP- surface-marker profile and single-cell RNA-sequencing reveals that they harbor transcriptional similarities with fetal PGCs.
Collapse
Affiliation(s)
- Sivakamasundari Vijayakumar
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roberta Sala
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gugene Kang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michelle Ann Pablo
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abidemi Ismail Adebayo
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrea Cipriano
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Danielle L Gomes
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Zhao F, Guo X, Li X, Liu F, Fu Y, Sun X, Yang Z, Zhang Z, Qin Z. Identification and Expressional Analysis of Putative PRDI-BF1 and RIZ Homology Domain-Containing Transcription Factors in Mulinia lateralis. BIOLOGY 2023; 12:1059. [PMID: 37626944 PMCID: PMC10451705 DOI: 10.3390/biology12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks.
Collapse
Affiliation(s)
- Feng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaolin Guo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Fang Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Yifan Fu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaohan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| |
Collapse
|
11
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
12
|
Lim J, Shioda T, Malott KF, Shioda K, Odajima J, Leon Parada KN, Nguyen J, Getze S, Lee M, Nguyen J, Reshel Blakeley S, Trinh V, Truong HA, Luderer U. Prenatal exposure to benzo[a]pyrene depletes ovarian reserve and masculinizes embryonic ovarian germ cell transcriptome transgenerationally. Sci Rep 2023; 13:8671. [PMID: 37248279 PMCID: PMC10227008 DOI: 10.1038/s41598-023-35494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
People are widely exposed to polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP). Prior studies showed that prenatal exposure to BaP depletes germ cells in ovaries, causing earlier onset of ovarian senescence post-natally; developing testes were affected at higher doses than ovaries. Our primary objective was to determine if prenatal BaP exposure results in transgenerational effects on ovaries and testes. We orally dosed pregnant germ cell-specific EGFP-expressing mice (F0) with 0.033, 0.2, or 2 mg/kg-day BaP or vehicle from embryonic day (E) 6.5-11.5 (F1 offspring) or E6.5-15.5 (F2 and F3). Ovarian germ cells at E13.5 and follicle numbers at postnatal day 21 were significantly decreased in F3 females at all doses of BaP; testicular germ cell numbers were not affected. E13.5 germ cell RNA-sequencing revealed significantly increased expression of male-specific genes in female germ cells across generations and BaP doses. Next, we compared the ovarian effects of 2 mg/kg-day BaP dosing to wild type C57BL/6J F0 dams from E6.5-11.5 or E12.5-17.5. We observed no effects on F3 ovarian follicle numbers with either of the shorter dosing windows. Our results demonstrate that F0 BaP exposure from E6.5-15.5 decreased the number of and partially disrupted transcriptomic sexual identity of female germ cells transgenerationally.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
| | - Toshihiro Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kelli F Malott
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
- Environmental Health Sciences Graduate Program, UCI, Irvine, CA, 92617, USA
| | - Keiko Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Junko Odajima
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | | | - Julie Nguyen
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Melody Lee
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | | | - Vienna Trinh
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA.
- Department of Developmental and Cell Biology, UCI, Irvine, CA, 92617, USA.
- Department of Medicine, UCI, Irvine, CA, 92617, USA.
- Center for Occupational and Environmental Health, 856 Health Sciences Rd, Suite 3200, Zot 1830, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Carbognin E, Carlini V, Panariello F, Chieregato M, Guerzoni E, Benvegnù D, Perrera V, Malucelli C, Cesana M, Grimaldi A, Mutarelli M, Carissimo A, Tannenbaum E, Kugler H, Hackett JA, Cacchiarelli D, Martello G. Esrrb guides naive pluripotent cells through the formative transcriptional programme. Nat Cell Biol 2023; 25:643-657. [PMID: 37106060 PMCID: PMC7614557 DOI: 10.1038/s41556-023-01131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.
Collapse
Affiliation(s)
- Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Elena Guerzoni
- Department of Biology, University of Padua, Padua, Italy
| | | | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Cristina Malucelli
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti 'Eduardo Caianiello', Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto per le Applicazioni del Calcolo 'Mauro Picone,' Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Eitan Tannenbaum
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples 'Federico II', Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples 'Federico II', Naples, Italy.
| | | |
Collapse
|
14
|
Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. SCIENCE CHINA. LIFE SCIENCES 2023; 66:324-339. [PMID: 36125668 DOI: 10.1007/s11427-022-2151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 10/14/2022]
Abstract
Functional telomeres protect chromosome ends and play important roles in stem cell maintenance and differentiation. Short telomeres negatively impact germ cell development and can contribute to age-associated infertility. Moreover, telomere syndrome resulting from mutations of telomerase or telomere-associated genes exhibits short telomeres and reduced fertility. It remains elusive whether and how telomere lengths affect germ cell specification. We report that functional telomere is required for the coordinated germ cell and somatic cell fate decisions. Using telomerase gene Terc deficient mice as a model, we show that short telomeres restrain germ cell specification of epiblast cells but promote differentiation towards somatic lineage. Short telomeres increase chromatin accessibility to elevate TGFβ and MAPK/ERK signaling for somatic cell differentiation. Notably, elevated Fst expression in TGFβ pathway represses the BMP4-pSmad signaling pathway, thus reducing germ cell formation. Re-elongation of telomeres by targeted knock-in of Terc restores normal chromatin accessibility to suppress TGFβ and MAPK signaling, thereby facilitating germ cell formation. Taken together, our data reveal that functional telomeres are required for germ cell specification by repressing TGFβ and MAPK signaling.
Collapse
|
15
|
Dupont C, Schäffers OJ, Tan BF, Merzouk S, Bindels EM, Zwijsen A, Huylebroeck D, Gribnau J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. SCIENCE ADVANCES 2023; 9:eadd2913. [PMID: 36652512 PMCID: PMC9848479 DOI: 10.1126/sciadv.add2913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier J. M. Schäffers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Beatrice F. Tan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
16
|
Laronda MM. Factors within the Developing Embryo and Ovarian Microenvironment That Influence Primordial Germ Cell Fate. Sex Dev 2023; 17:134-144. [PMID: 36646055 PMCID: PMC10349905 DOI: 10.1159/000528209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Primordial germ cell (PGC) fate is dictated by the designation, taxis, and influence of the surrounding embryonic somatic cells. Whereas gonadal sex determination results from a balance of factors within the tissue microenvironment. SUMMARY Our understanding of mammalian ovary development is formed in large part from developmental time courses established using murine models. Genomic tools where genes implicated in the PGC designation or gonadal sex determination have been modulated through complete or conditional knockouts in vivo, and studies in in situ models with inhibitors or cultures that alter the native gonadal environment have pieced together the interplay of pioneering transcription factors, co-regulators and chromosomes critical for the progression of PGCs to oocytes. Tools such as pluripotent stem cell derivation, genomic modifications, and aggregate differentiation cultures have yielded some insight into the human condition. Additional understanding of sex determination, both gonadal and anatomical, may be inferred from phenotypes that arise from de novo or inherited gene variants in humans who have differences in sex development. KEY MESSAGES This review highlights major factors critical for PGC specification and migration, and in ovarian gonad specification by reviewing seminal murine models. These pathways are compared to what is known about the human condition from expression profiles of fetal gonadal tissue, use of human pluripotent stem cells, or disorders resulting from disease variants. Many of these pathways are challenging to decipher in human tissues. However, the impact of new single-cell technologies and whole-genome sequencing to reveal disease variants of idiopathic reproductive tract phenotypes will help elucidate the mechanisms involved in human ovary development.
Collapse
Affiliation(s)
- Monica M. Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, (IL,) USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, (IL,) USA
| |
Collapse
|
17
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
18
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
19
|
Zhang P, Xue S, Guo R, Liu J, Bai B, Li D, Hyraht A, Sun N, Shao H, Fan Y, Ji W, Yang S, Yu Y, Tan T. Mapping developmental paths of monkey primordial germ-like cells differentiation from pluripotent stem cells by single cell ribonucleic acid sequencing analysis†. Biol Reprod 2022; 107:237-249. [PMID: 35766401 PMCID: PMC9310512 DOI: 10.1093/biolre/ioac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 01/06/2023] Open
Abstract
The induction of primordial germ-like cells (PGCLCs) from pluripotent stem cells (PSCs) provides a powerful system to study the cellular and molecular mechanisms underlying germline specification, which are difficult to study in vivo. The studies reveal the existence of a species-specific mechanism underlying PGCLCs between humans and mice, highlighting the necessity to study regulatory networks in more species, especially in primates. Harnessing the power of single-cell RNA sequencing (scRNA-seq) analysis, the detailed trajectory of human PGCLCs specification in vitro has been achieved. However, the study of nonhuman primates is still needed. Here, we applied an embryoid body (EB) differentiation system to induce PGCLCs specification from cynomolgus monkey male and female PSCs, and then performed high throughput scRNA-seq analysis of approximately 40 000 PSCs and cells within EBs. We found that EBs provided a niche for PGCLCs differentiation by secreting growth factors critical for PGCLC specification, such as bone morphogenetic protein 2 (BMP2), BMP4, and Wnt Family Member 3. Moreover, the developmental trajectory of PGCLCs was reconstituted, and gene expression dynamics were revealed. Our study outlines the roadmap of PGCLC specification from PSCs and provides insights that will improve the differentiation efficiency of PGCLCs from PSCs.
Collapse
Affiliation(s)
- Puyao Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Sengren Xue
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rongrong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dexuan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Ahjol Hyraht
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Honglian Shao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yong Fan
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shihua Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
20
|
A Krüppel-like factor is required for development and regeneration of germline and yolk cells from somatic stem cells in planarians. PLoS Biol 2022; 20:e3001472. [PMID: 35839223 PMCID: PMC9286257 DOI: 10.1371/journal.pbio.3001472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell–generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell–like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.
Collapse
|
21
|
Liu Q, Chen X, Qiao J. Advances in studying human gametogenesis and embryonic development in China. Biol Reprod 2022; 107:12-26. [PMID: 35788258 DOI: 10.1093/biolre/ioac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive medicine in China has developed rapidly since 1988 due to the support from the government and scientific exploration. However, the success rate of assisted reproduction technology (ART) is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells (PGCs), gametes and embryos has been investigated in depth. Furthermore, pre-implantation genetic testing (PGT) has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.
Collapse
Affiliation(s)
- Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Qian J, Guo F. De novo programming: establishment of epigenome in mammalian oocytes. Biol Reprod 2022; 107:40-53. [PMID: 35552602 DOI: 10.1093/biolre/ioac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
Innovations in ultrasensitive and single-cell measurements enable us to study layers of genome regulation in the view of cellular and regulatory heterogeneity. Genome-scale mapping allows to evaluate epigenetic features and dynamics in different genomic contexts, including genebodies, CGIs, ICRs, promoters, PMDs, and repetitive elements. The epigenome of early embryos, fetal germ cells, and sperm has been extensively studied for the past decade, while oocytes remain less clear. Emerging evidence now supports the notion that transcription and chromatin accessibility precede de novo DNA methylation in both human and mouse oocytes. Recent studies also start to chart correlations among different histone modifications and DNA methylation. We discussed the potential mechanistic hierarchy by which shapes oocyte DNA methylome, also provided insights into the convergent and divergent features between human and mice.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev Rep 2022; 18:2535-2546. [PMID: 35397052 DOI: 10.1007/s12015-022-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Primordial germ cells (PGCs) are the undifferentiated progenitors of the gametes. Unlike the poor maintenance of cultured mammalian PGCs, the avian PGCs can be expanded in vitro indefinitely while preserving pluripotency and germline competence. In mammals, the Oct4 is the master transcription factor that ensures the stemness of pluripotent cells such as PGCs, but the specific function of Oct4 in chicken PGCs remains unclear. As expected, the loss of Oct4 in chicken PGCs reduced the expression of key pluripotency factors and promoted the genes involved in endoderm and ectoderm differentiation. Furthermore, the global active chromatin was reduced as shown by the depletion of the H3K27ac upon Oct4 suppression. Interestingly, the de-activated chromatin caused the down-regulation of adjacent genes which are mostly known regulators of cell junction, chemotaxis and cell migration. Consequently, the Oct4-deficient PGCs show impaired cell migration and could not colonize the gonads when re-introduced into the bloodstream of the embryo. We propose that, in addition to maintaining pluripotency, the Oct4 mediated chromatin activation is dictating chicken PGC migration.
Collapse
|
24
|
Bonefas KM, Iwase S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J 2022; 289:2301-2317. [PMID: 34514717 PMCID: PMC8918023 DOI: 10.1111/febs.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023]
Abstract
Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| |
Collapse
|
25
|
Gao J, Zhang K, Cheng YJ, Yu S, Shang GD, Wang FX, Wu LY, Xu ZG, Mai YX, Zhao XY, Zhai D, Lian H, Wang JW. A robust mechanism for resetting juvenility during each generation in Arabidopsis. NATURE PLANTS 2022; 8:257-268. [PMID: 35318444 DOI: 10.1038/s41477-022-01110-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 05/02/2023]
Abstract
Multicellular organisms undergo several developmental transitions during their life cycles. In contrast to animals, the plant germline is derived from adult somatic cells. As such, the juvenility of a plant must be reset in each generation. Previous studies have demonstrated that the decline in the levels of miR156/7 with age drives plant maturation. Here we show that the resetting of plant juvenility during each generation is mediated by de novo activation of MIR156/7 in Arabidopsis. Blocking this process leads to a shortened juvenile phase and premature flowering in the offspring. In particular, an Arabidopsis plant devoid of miR156/7 flowers even without formation of rosette leaves in long days. Mechanistically, we find that different MIR156/7 genes are reset at different developmental stages through distinct reprogramming routes. Among these genes, MIR156A, B and C are activated de novo during sexual reproduction and embryogenesis, while MIR157A and C are reset upon seed germination. This redundancy generates a robust reset mechanism that ensures accurate restoration of the juvenile phase in each plant generation.
Collapse
Affiliation(s)
- Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Juan Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sha Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin-Yan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
26
|
Chakraborty AR, Vassilev A, Jaiswal SK, O'Connell CE, Ahrens JF, Mallon BS, Pera MF, DePamphilis ML. Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors. Stem Cell Reports 2022; 17:397-412. [PMID: 35063131 PMCID: PMC8828683 DOI: 10.1016/j.stemcr.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.
Collapse
Affiliation(s)
- Arup R Chakraborty
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Alex Vassilev
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Sushil K Jaiswal
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Constandina E O'Connell
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - John F Ahrens
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Melvin L DePamphilis
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA.
| |
Collapse
|
27
|
Zuo Q, Jing J, Zhou J, Zhang Y, Wei W, Chen G, Li B. Dual regulatory actions of LncBMP4 on BMP4 promote chicken primordial germ cell formation. EMBO Rep 2022; 23:e52491. [PMID: 34747116 PMCID: PMC8728602 DOI: 10.15252/embr.202152491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
The unique characteristics of chicken primordial germ cells (PGCs) provide potential strategies for transgenic animal generation; however, insufficient PGC availability has limited their application. Regulation of bone morphogenic protein 4 (BMP4), a crucial factor for PGCs formation, may provide new strategies for PGC generation. We here identify a long noncoding RNA (lncRNA) that targets BMP4 (LncBMP4). LncBMP4 has similar functions as BMP4, in that it facilitates the formation and migration of PGCs. LncBMP4 promotes BMP4 expression by adsorbing the miRNA gga-mir-12211, thus reducing its inhibitory effect on BMP4 expression. In addition, the small peptide EPC5 encoded by LncBMP4 promotes the transcription of BMP4. The competing endogenous RNA (ceRNA) effect of LncBMP4 requires N6-methyladenosine (m6A) modification, in a dose-dependent manner, and high levels of m6A modification hinder EPC5 translation. Understanding the molecular mechanisms through which LncBMP4 promotes BMP4 expression during PGC formation may provide new avenues for efficient PGC generation.
Collapse
Affiliation(s)
- Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Jin Jing
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Jing Zhou
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Wanhong Wei
- Department of Biological SciencesCollege of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| |
Collapse
|
28
|
Tyser RCV, Mahammadov E, Nakanoh S, Vallier L, Scialdone A, Srinivas S. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 2021; 600:285-289. [PMID: 34789876 PMCID: PMC7615353 DOI: 10.1038/s41586-021-04158-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Gastrulation is the fundamental process in all multicellular animals through which the basic body plan is first laid down1-4. It is pivotal in generating cellular diversity coordinated with spatial patterning. In humans, gastrulation occurs in the third week after fertilization. Our understanding of this process in humans is relatively limited and based primarily on historical specimens5-8, experimental models9-12 or, more recently, in vitro cultured samples13-16. Here we characterize in a spatially resolved manner the single-cell transcriptional profile of an entire gastrulating human embryo, staged to be between 16 and 19 days after fertilization. We use these data to analyse the cell types present and to make comparisons with other model systems. In addition to pluripotent epiblast, we identified primordial germ cells, red blood cells and various mesodermal and endodermal cell types. This dataset offers a unique glimpse into a central but inaccessible stage of our development. This characterization provides new context for interpreting experiments in other model systems and represents a valuable resource for guiding directed differentiation of human cells in vitro.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Shota Nakanoh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany.
- Institute of Functional Epigenetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Mo C, Li W, Jia K, Liu W, Yi M. Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish. Int J Mol Sci 2021; 22:11962. [PMID: 34769390 PMCID: PMC8584686 DOI: 10.3390/ijms222111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish.
Collapse
Affiliation(s)
- Chengyu Mo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| |
Collapse
|
30
|
Hansen CL, Chamberlain TJ, Trevena RL, Kurek JE, Pelegri F. Conserved germ plasm characteristics across the Danio and Devario lineages. Genesis 2021; 59:e23452. [PMID: 34617657 DOI: 10.1002/dvg.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/06/2022]
Abstract
In many animal species, germ cell specification requires the inheritance of germ plasm, a biomolecular condensate containing maternally derived RNAs and proteins. Most studies of germ plasm composition and function have been performed in widely evolutionarily divergent model organisms, such as Caenorhabditis elegans, Drosophila, Xenopus laevis, and Danio rerio (zebrafish). In zebrafish, 12 RNAs localize to germ plasm at the furrows of the early embryo. Here, we tested for the presence of these RNAs in three additional species within the Danionin clade: Danio kyathit, Danio albolineatus, and Devario aequipinnatus. By visualizing nanos RNA, we find that germ plasm segregation patterns during early embryogenesis are conserved across these species. Ten additional germ plasm RNAs exhibit localization at the furrows of early embryos in all three non-zebrafish Danionin species, consistent with germ plasm localization. One component of zebrafish germ plasm, ca15b, lacked specific localization in embryos of the more distantly related D. aequipinnatus. Our findings show that within a subset of closely related Danionin species, the vast majority of germ plasm RNA components are conserved. At the same time, the lack of ca15b localization in D. aequipinnatus germ plasm highlights the potential for the divergence of germ plasm composition across a restricted phylogenetic space.
Collapse
Affiliation(s)
- Christina L Hansen
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Trevor J Chamberlain
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Ryan L Trevena
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Jacob E Kurek
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
32
|
Verdikt R, Allard P. Metabolo-epigenetics: the interplay of metabolism and epigenetics during early germ cells development. Biol Reprod 2021; 105:616-624. [PMID: 34132770 PMCID: PMC8444669 DOI: 10.1093/biolre/ioab118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolites control epigenetic mechanisms, and conversly, cell metabolism is regulated at the epigenetic level in response to changes in the cellular environment. In recent years, this metabolo-epigenetic control of gene expression has been implicated in the regulation of multiple stages of embryonic development. The developmental potency of stem cells and their embryonic counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge on the interplay between epigenetics and metabolism in the specific context of early germ cell development. We explore the implications of metabolic rewiring in primordial germ cells in light of their epigenetic remodeling during cell fate determination. Finally, we discuss the relevance of concerted metabolic and epigenetic regulation of primordial germ cells in the context of mammalian transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
34
|
Pillai A, Gungi A, Reddy PC, Galande S. Epigenetic Regulation in Hydra: Conserved and Divergent Roles. Front Cell Dev Biol 2021; 9:663208. [PMID: 34041242 PMCID: PMC8141815 DOI: 10.3389/fcell.2021.663208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Transitions in gene regulatory processes responsible for the emergence of specialized cell types and spatiotemporal regulation of developmental signaling prior to the divergence of Cnidaria and Bilateria are poorly understood. As a sister group of Bilateria, the phylum Cnidaria can provide significant insights into these processes. Among the cnidarians, hydrae have been studied for >250 years to comprehend the mechanisms underlying their unique immortality and robust regenerative capacity. Studies on Hydra spp. and other pre-bilaterians alike have advanced our understanding of the evolutionary underpinnings governing eumetazoan tissue development, homeostasis, and regeneration. In addition to its regenerative potential, Hydra exhibits continuously active axial patterning due to its peculiar tissue dynamics. These distinctive physiological processes necessitate large scale gene expression changes that are governed by the multitude of epigenetic mechanisms operating in cells. This review highlights the contemporary knowledge of epigenetic regulation in Hydra with contemporary studies from other members of Cnidaria, as well as the interplay between regulatory mechanisms wherever demonstrated. The studies covered in the scope of this review reveal both ancestral and divergent roles played by conserved epigenetic mechanisms with emphasis on transcriptional regulation. Additionally, single-cell transcriptomics data was mined to predict the physiological relevance of putative gene regulatory components, which is in agreement with published findings and yielded insights into the possible functions of the gene regulatory mechanisms that are yet to be deciphered in Hydra, such as DNA methylation. Finally, we delineate potentially rewarding epigenetics research avenues that can further leverage the unique biology of Hydra.
Collapse
Affiliation(s)
| | | | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
35
|
LncRNAs induce oxidative stress and spermatogenesis by regulating endoplasmic reticulum genes and pathways. Aging (Albany NY) 2021; 13:13764-13787. [PMID: 34001678 PMCID: PMC8202879 DOI: 10.18632/aging.202971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Oligozoospermia or low sperm count is a leading cause of male infertility worldwide. Despite decades of work on non-coding RNAs (ncRNAs) as regulators of spermatogenesis, fertilization, and male fertility, the literature on the function of long non-coding RNAs (lncRNAs) in human oligozoospermia is scarce. We integrated lncRNA and mRNA sequencing data from 12 human normozoospermic and oligozoospermic samples and comprehensively analyzed the function of differentially expressed lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in male infertility. The target genes of DE lncRNAs were identified using a Gaussian graphical model. Gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were primarily enriched in protein transport and localization to the endoplasmic reticulum (ER). The lncRNA–mRNA co-expression network revealed cis- and trans-regulated target genes of lncRNAs. The transcriptome data implicated DE lncRNAs and DE mRNAs and their target genes in the accumulation of unfolded proteins in sperm ER, PERK-EIF2 pathway-induced ER stress, oxidative stress, and sperm cell apoptosis in individuals with oligozoospermia. These findings suggest that the identified lncRNAs and pathways could serve as effective therapeutic targets for male infertility.
Collapse
|
36
|
Is It Possible to Treat Infertility with Stem Cells? Reprod Sci 2021; 28:1733-1745. [PMID: 33834375 DOI: 10.1007/s43032-021-00566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Infertility is a major health problem, and despite improved treatments over the years, there are still some conditions that cannot be treated successfully using a conventional approach. Therefore, new options are being considered and one of them is cell therapy using stem cells. Stem cell treatments for infertility can be divided into two major groups, the first one being direct transplantation of stem cells or their paracrine factors into reproductive organs and the second one being in vitro differentiation into germ cells or gametes. In animal models, all of these approaches were able to improve the reproductive potential of tested animals, although in humans there is still too little evidence to suggest successful use. The reasons for lack of evidence are unavailability of proper material, the complexity of explored biological processes, and ethical considerations. Despite all of the above-mentioned hurdles, researchers were able to show that in women, it seems to be possible to improve some conditions, but in men, no similar clinically important improvement was achieved. To conclude, the data presented in this review suggest that the treatment of infertility with stem cells seems plausible, because some types of treatments have already been tested in humans, achieving live births, while others show great potential only in animal studies, for now.
Collapse
|
37
|
Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Dev Biol 2021; 472:85-97. [PMID: 33482173 PMCID: PMC7956150 DOI: 10.1016/j.ydbio.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-β signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.
Collapse
Affiliation(s)
- Alice Pieplow
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Meseret Dastaw
- Ethiopian Biotechnology Institute, Addis Ababa University, NBH1, 4killo King George VI St, Addis Ababa, Ethiopia
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
38
|
Production and Analysis of Human Primordial Germ Cell-Like Cells. Methods Mol Biol 2021. [PMID: 32852762 DOI: 10.1007/978-1-0716-0860-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Primordial germ cells (PGCs) are common ancestors of all germline cells. In mammals, PGCs emerge in early-stage embryos around the timing of gastrulation at or near epiblast, and specification of PGCs from their precursor cells involves multiple growth factors secreted by adjacent cells. Recent advancements in germline stem cell biology have made it possible to generate PGC-like cell culture models (PGCLCs for PGC-like cells) from human and mouse pluripotent stem cells by mimicking the embryonic growth factor environment in vitro. Here we describe a method of producing human PGCLCs from primed-pluripotency induced pluripotent stem cells (iPSCs) via temporal conversion to naive pluripotency followed by formation of embryoid bodies (EBs) using the spin-EB method.
Collapse
|
39
|
Jiang J, Chen C, Cheng S, Yuan X, Jin J, Zhang C, Sun X, Song J, Zuo Q, Zhang Y, Chen G, Li B. Long Noncoding RNA LncPGCR Mediated by TCF7L2 Regulates Primordial Germ Cell Formation in Chickens. Animals (Basel) 2021; 11:ani11020292. [PMID: 33498947 PMCID: PMC7912682 DOI: 10.3390/ani11020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The potential of primordial germ cells (PGCs) for multidirectional differentiation, together with their unique regeneration ability, makes them one of the most promising seed cells in clinical medicine and tissue engineering research. However, not enough PGCs can be obtained to meet the demand, which limits their application. We defined a novel long noncoding RNA (lncRNA) mediated by epigenetics, which could activate the miR-6577-5p/Btrc pathway to promote the formation of PGCs. The technical system we have established is a useful tool to obtain sufficient PGCs for scientific research. Our study offers great theoretical and practical value in the production of transgenic animals or genomic imprinting in poultry. We believe that our study will help researchers in the fields of agricultural production, developmental biology, and cell biology. Abstract Although lncRNAs have been identified as playing critical roles in the development of germ cells, their potential involvement in the development of PGCs in chickens remains poorly understood. Differentially expressed lncRNAs (DELs) from previous RNA-seq of embryonic stem cells (ESCs), PGCs, and spermatogonial stem cells (SSCs) were analyzed by K-means clustering, from which a key candidate, lncRNA (lncRNA PGC regulator, LncPGCR) was obtained. We confirmed that LncPGCR plays a positive role in the development of PGCs by increasing the expression of the PGC marker gene (Cvh and C-kit), while downregulating the pluripotency-associated gene (Nanog) in vitro and in vivo. The activation and expression of LncPGCR are regulated by histone acetylation, and transcription factor TCF7L2. Mechanistically, a rescue assay was performed to further confirm that LncPGCR contributed to the development of PGCs by regulating the gga-miR-6577-5p/Btrc signaling pathway. Adsorption of gga-miR-6577-5p activated the WNT signaling cascade by relieving the gga-miR-6577-5p-dependent inhibition of Btrc expression. Taken together, our study discovered the growth-expedited role of LncPGCR in PGCs development, showing the potential LncPGCR/miR-6577-5p/Btrc pathway. The results and findings provide a novel insight into the development of PGCs.
Collapse
Affiliation(s)
- Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Chen Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Shaoze Cheng
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Xia Yuan
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Xiaolin Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MD 20741, USA;
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; (J.J.); (C.C.); (S.C.); (X.Y.); (J.J.); (C.Z.); (X.S.); (Q.Z.); (Y.Z.); (G.C.)
- Correspondence:
| |
Collapse
|
40
|
Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M, Tao Y, Zheng Y, Fu J, Liu W, Kellis M, Clark A. Human Primordial Germ Cells Are Specified from Lineage-Primed Progenitors. Cell Rep 2020; 29:4568-4582.e5. [PMID: 31875561 PMCID: PMC6939677 DOI: 10.1016/j.celrep.2019.11.083] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 11/20/2019] [Indexed: 12/03/2022] Open
Abstract
In vitro gametogenesis is the process of making germline cells from human pluripotent stem cells. The foundation of this model is the quality of the first progenitors called primordial germ cells (PGCs), which in vivo are specified during the peri-implantation window of human development. Here, we show that human PGC (hPGC) specification begins at day 12 post-fertilization. Using single-cell RNA sequencing of hPGC-like cells (hPGCLCs) differentiated from pluripotent stem cells, we discovered that hPGCLC specification involves resetting pluripotency toward a transitional state with shared characteristics between naive and primed pluripotency, followed by differentiation into lineage-primed TFAP2A+ progenitors. Applying the germline trajectory to TFAP2C mutants reveals that TFAP2C functions in the TFAP2A+ progenitors upstream of PRDM1 to regulate the expression of SOX17. This serves to protect hPGCLCs from crossing the Weismann’s barrier to adopt somatic cell fates and, therefore, is an essential mechanism for successfully initiating in vitro gametogenesis. Using genetics, genomics, and single-cell RNA-seq, Chen et al. characterize the human germline trajectory, revealing two pluripotent cell transitions during primordial germ cell specification. They reveal the identity of primordial germ cell progenitors and show that TFAP2C prevents gastrulation and amnion-like fate at the point of primordial germ cell specification.
Collapse
Affiliation(s)
- Di Chen
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lei Hou
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachel Kim
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jared Faith
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marianna Aslanyan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Tao
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, 310058 Hangzhou, PR China
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amander Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Functional Oocytes Derived from Granulosa Cells. Cell Rep 2020; 29:4256-4267.e9. [PMID: 31875537 DOI: 10.1016/j.celrep.2019.11.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of genomically stable and functional oocytes has great potential for preserving fertility and restoring ovarian function. It remains elusive whether functional oocytes can be generated from adult female somatic cells through reprogramming to germline-competent pluripotent stem cells (gPSCs) by chemical treatment alone. Here, we show that somatic granulosa cells isolated from adult mouse ovaries can be robustly induced to generate gPSCs by a purely chemical approach, with additional Rock inhibition and critical reprogramming facilitated by crotonic sodium or acid. These gPSCs acquired high germline competency and could consistently be directed to differentiate into primordial-germ-cell-like cells and form functional oocytes that produce fertile mice. Moreover, gPSCs promoted by crotonylation and the derived germ cells exhibited longer telomeres and high genomic stability like PGCs in vivo, providing additional evidence supporting the safety and effectiveness of chemical induction, which is particularly important for germ cells in genetic inheritance.
Collapse
|
42
|
Chen CY, McKinney SA, Ellington LR, Gibson MC. Hedgehog signaling is required for endomesodermal patterning and germ cell development in the sea anemone Nematostella vectensis. eLife 2020; 9:e54573. [PMID: 32969790 PMCID: PMC7515634 DOI: 10.7554/elife.54573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/05/2020] [Indexed: 12/27/2022] Open
Abstract
Two distinct mechanisms for primordial germ cell (PGC) specification are observed within Bilatera: early determination by maternal factors or late induction by zygotic cues. Here we investigate the molecular basis for PGC specification in Nematostella, a representative pre-bilaterian animal where PGCs arise as paired endomesodermal cell clusters during early development. We first present evidence that the putative PGCs delaminate from the endomesoderm upon feeding, migrate into the gonad primordia, and mature into germ cells. We then show that the PGC clusters arise at the interface between hedgehog1 and patched domains in the developing mesenteries and use gene knockdown, knockout and inhibitor experiments to demonstrate that Hh signaling is required for both PGC specification and general endomesodermal patterning. These results provide evidence that the Nematostella germline is specified by inductive signals rather than maternal factors, and support the existence of zygotically-induced PGCs in the eumetazoan common ancestor.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Sean A McKinney
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Matthew C Gibson
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, The University of Kansas School of MedicineKansas CityUnited States
| |
Collapse
|
43
|
Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, Klages S, Timmermann B, Mukherji S, Meissner A. Epigenetic regulator function through mouse gastrulation. Nature 2020; 584:102-108. [PMID: 32728215 PMCID: PMC7415732 DOI: 10.1038/s41586-020-2552-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
During ontogeny, proliferating cells become restricted in their fate through the combined action of cell-type specific transcription factors and ubiquitous epigenetic machinery, which recognize universally available histone residues or nucleotides but are nonetheless deployed in a highly context-dependent manner1,2. The molecular functions of these regulators are generally well understood, but assigning direct developmental roles is hampered by complex mutant phenotypes that often emerge following gastrulation3,4. Recently, single-cell RNA sequencing (scRNA-seq) and analytical approaches have explored this highly conserved process across numerous model organisms5–8, including mouse9–18. To elaborate on these strategies, we investigated a panel of ten essential regulators using a combined zygotic perturbation, scRNA-seq platform where many mutant embryos can be assayed simultaneously to recover robust transcriptional and morphological information. Deeper analysis of central Polycomb Repressive Complex (PRC) 1 and 2 members indicate substantial cooperativity, but distinguishes a PRC2-dominant role in restricting the germline that emerges from gross molecular changes within the initial conceptus. We believe our experimental framework will eventually allow for a fully quantitative view of how cellular diversity emerges using an identical genetic template and from a single totipotent cell.
Collapse
Affiliation(s)
- Stefanie Grosswendt
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shankar Mukherji
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
44
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
45
|
Valdivieso A, Ribas L, Monleón-Getino A, Orbán L, Piferrer F. Exposure of zebrafish to elevated temperature induces sex ratio shifts and alterations in the testicular epigenome of unexposed offspring. ENVIRONMENTAL RESEARCH 2020; 186:109601. [PMID: 32371278 DOI: 10.1016/j.envres.2020.109601] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Accumulating evidence shows that environmental changes can affect population sex ratios through epigenetic regulation of gene expression in species where sex depends on both genetic and environmental cues. Sometimes, altered sex ratios persist in the next generation even when the environmental cue is no longer present (a multigenerational effect). However, evidence of transgenerational effects (i.e., beyond the first non-exposed generation), which tend to be paternally transmitted, is scarce and a matter of debate. Here, we used the AB strain of zebrafish, where sex depends on both genetic and environmental influences, to study possible multi- (to the F1) and transgenerational (to the F2) effects of elevated temperature during the critical period of sex differentiation. From eight initial different families, five were selected in order to capture sufficient variation between the sex ratio of the control group (28 °C) and the group exposed to elevated (35 °C) temperature only at the parental (P) generation. Results showed a consistent increase in the proportion of males in the P generation in all five families as a result of heat treatment. Sex ratios were then determined in the F1 and F2 offspring derived from both above groups, which were all raised at 28 °C. A persisting male-skewed sex ratio in the 35°C-derived, unexposed offspring of the F1 generation was observed in three families, denoting family-dependent multigenerational effects. However, no transgenerational effects were observed in the F2 generation of any family. DNA methylation was also assessed in the testis of P, F1 and F2 males derived from exposed and non-exposed fathers and grandfathers. DNA methylation was significantly decreased only in the testis of the 35°C-derived males in the F1 generation but not of the F2 generation and, surprisingly, neither in the 35°C-exposed males of the P generation. Taken together, our results show great interfamily variation, not only in sex ratio response to elevated temperature, but also on its multigenerational effects, denoting a strong influence of genetics. Alterations in the testicular epigenome in F1 males calls for attention to possible, previously unnoticed, effects of temperature in the unexposed offspring of heat-exposed parents in a global warming scenario.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Antonio Monleón-Getino
- Group of Research in Biostatistics and Bioinformatics (GRBIO), BIOST(3), Department of Genetics, Microbiology and Statistics: Section of Statistics. University of Barcelona (UB), Barcelona, Spain
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Animal Sciences, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
46
|
Moravec CE, Pelegri F. The role of the cytoskeleton in germ plasm aggregation and compaction in the zebrafish embryo. Curr Top Dev Biol 2020; 140:145-179. [PMID: 32591073 DOI: 10.1016/bs.ctdb.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transmission of genetic information from one generation to another is crucial for survival of animal species. This is accomplished by the induction of primordial germ cells (PGCs) that will eventually establish the germline. In some animals the germline is induced by signals in gastrula, whereas in others it is specified by inheritance of maternal determinants, known as germ plasm. In zebrafish, aggregation and compaction of maternally derived germ plasm during the first several embryonic cell cycles is essential for generation of PGCs. These processes are controlled by cellular functions associated with the cellular division apparatus. Ribonucleoparticles containing germ plasm components are bound to both the ends of astral microtubules and a dynamic F-actin network through a mechanism integrated with that which drives the cell division program. In this chapter we discuss the role that modifications of the cell division apparatus, including the cytoskeleton and cytoskeleton-associated proteins, play in the regulation of zebrafish germ plasm assembly.
Collapse
Affiliation(s)
- Cara E Moravec
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
47
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
48
|
Zuo Q, Jin J, Jin K, Zhou J, Sun C, Song J, Chen G, Zhang Y, Li B. P53 and H3K4me2 activate N6-methylated LncPGCAT-1 to regulate primordial germ cell formation via MAPK signaling. J Cell Physiol 2020; 235:9895-9909. [PMID: 32458486 DOI: 10.1002/jcp.29805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in the formation of primordial germ cells (PGCs); however, the identity of the key lncRNAs and the molecular mechanisms responsible for the formation of PGCs remain unknown. Here, we identify a key candidate lncRNA (lncRNA PGC transcript-1, LncPGCAT-1) via RNA sequencing of embryonic stem cells, PGCs, and Spermatogonial stem cells (SSCs). Functional experiments confirmed that LncPGCAT-1 positively regulated the formation of PGCs by elevating the expression of Cvh and C-kit while downregulating the pluripotency(Nanog) in vitro and in vivo; PAS staining of genital ridges in vivo also showed that interference with LncPGCAT-1 can significantly reduce the number of PGCs in genital ridges, while overexpression of LncPGCAT-1 had the opposite result. The result of luciferase reporter assay combined with CHIP-qPCR showed that the expression of LncPGCAT-1 was promoted by the transcription factor P53 and high levels of H3K4me2. Mechanistically, the luciferase reporter assay confirmed that mitogen-activated protein kinase 1 (MAPK1) was the target gene of LncPGCAT-1 and gga-mir-1591. In the ceRNA system, high levels of N6 methylation of LncPGCAT-1 enhanced the adsorption capacity of LncPGCAT-1 for gga-mir-1591. Adsorption of gga-mir-1591 activated the MAPK1/ERK signaling cascade by relieving the gga-mir-1591-dependent inhibition of MAPK1 expression. Moreover, LncPGCAT-1 interacted with interleukin enhancer binding factor 3 (ILF3) to regulate the ubiquitination of P53 and phosphorylation of JNK. Interaction with ILF3 resulted in positive self-feedback regulation of LncPGCAT-1 and activation of JNK signaling, ultimately promoting PGC formation. Altogether, the study expands our knowledge of the function and molecular mechanisms of lncRNAs in PGC development.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
49
|
Law NC, Oatley JM. Developmental underpinnings of spermatogonial stem cell establishment. Andrology 2020; 8:852-861. [PMID: 32356598 DOI: 10.1111/andr.12810] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The germline serves as a conduit for transmission of genetic and epigenetic information from one generation to the next. In males, spermatozoa are the final carriers of inheritance and their continual production is supported by a foundational population of spermatogonial stem cells (SSCs) that forms from prospermatogonial precursors during the early stages of neonatal development. In mammals, the timing for which SSCs are specified and the underlying mechanisms guiding this process remain to be completely understood. OBJECTIVES To propose an evolving concept for how the foundational SSC population is established. MATERIALS AND METHODS This review summarizes recent and historical findings from peer-reviewed publications made primarily with mouse models while incorporating limited studies from humans and livestock. RESULTS AND CONCLUSION Establishment of the SSC population appears to follow a biphasic pattern involving a period of fate programming followed by an establishment phase that culminates in formation of the SSC population. This model for establishment of the foundational SSC population from precursors is anticipated to extend across mammalian species and include humans and livestock, albeit on different timescales.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
50
|
Prasad MS, Uribe-Querol E, Marquez J, Vadasz S, Yardley N, Shelar PB, Charney RM, García-Castro MI. Blastula stage specification of avian neural crest. Dev Biol 2020; 458:64-74. [PMID: 31610145 PMCID: PMC7050198 DOI: 10.1016/j.ydbio.2019.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022]
Abstract
Cell fate specification defines the earliest steps towards a distinct cell lineage. Neural crest, a multipotent stem cell population, is thought to be specified from the ectoderm, but its varied contributions defy canons of segregation potential and challenges its embryonic origin. Aiming to resolve this conflict, we have assayed the earliest specification of neural crest using blastula stage chick embryos. Specification assays on isolated chick epiblast explants identify an intermediate region specified towards the neural crest cell fate. Furthermore, low density culture suggests that the specification of intermediate cells towards the neural crest lineage is independent of contact mediated induction and Wnt-ligand induced signaling, but is, however, dependent on transcriptional activity of β-catenin. Finally, we have validated the regional identity of the intermediate region towards the neural crest cell fate using fate map studies. Our results suggest a model of neural crest specification within a restricted epiblast region in blastula stage chick embryos.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | | | | | | | | | - Patrick B Shelar
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA.
| |
Collapse
|