1
|
Yuan Q, Verbueken D, Dinani R, Kim R, Schoger E, Morsink CD, Simkooei SA, Kemna LJM, Hjortnaes J, Kuster DWD, Boon RA, Zelarayan LC, van der Velden J, Buikema JW. Glycogen synthase kinase-3 inhibition and insulin enhance proliferation and inhibit maturation of human iPSC-derived cardiomyocytes via TCF and FOXO signaling. Stem Cell Reports 2025; 20:102371. [PMID: 39642876 PMCID: PMC11784517 DOI: 10.1016/j.stemcr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024] Open
Abstract
Embryonic signaling pathways exert stage-specific effects during cardiac development, yet the precise signals for proliferation or maturation remain elusive. To uncover the cues for proliferation, we performed a combinatory cell-cycle screen for insulin and glycogen synthase kinase-3 (GSK3) inhibition in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our analysis for proliferation, and subsequential downstream sarcomere development, gene expression analysis, and molecular interventions identified a temporal interplay between insulin/Akt/FOXO and CHIR99021/Wnt/GSK3/TCF signaling. Combined pathway activation led to proliferation of immature hiPSC-CMs with low sarcomere and mitochondria content, while, in the absence of pathway activators, cardiomyocytes rapidly exited the cell cycle and fetched higher organization of sarcomeres and mitochondria. Our data demonstrate two important pathways, which enhance proliferation and inhibit maturation, and provide molecular mechanistic understanding of these cell fate decisions in immature hiPSC-CMs.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Devin Verbueken
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Rosa Kim
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Schoger
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Chloé D Morsink
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Shamim Amiri Simkooei
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Luuk J M Kemna
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesper Hjortnaes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Heart Lung Center, Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Diederik W D Kuster
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Reinier A Boon
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Laura Cecilia Zelarayan
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; Justus Liebig University, Medical Clinic I, Department of Cardiology and Angiology, Giessen, Germany
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Jan W Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Wang Z, Lan H, Wang Y, Zheng Q, Li C, Wang K, Xiong T, Wu Q, Dong N. Pyruvate Carboxylase Attenuates Myocardial Ischemia-Reperfusion Injury in Heart Transplantation via Wnt/β-Catenin-Mediated Glutamine Metabolism. Biomedicines 2024; 12:1826. [PMID: 39200290 PMCID: PMC11351651 DOI: 10.3390/biomedicines12081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The ischemia-reperfusion process of a donor heart during heart transplantation leads to severe mitochondrial dysfunction, which may be the main cause of donor heart dysfunction after heart transplantation. Pyruvate carboxylase (PC), an enzyme found in mitochondria, is said to play a role in the control of oxidative stress and the function of mitochondria. This research examined the function of PC and discovered the signaling pathways controlled by PC in myocardial IRI. We induced IRI using a murine heterotopic heart transplantation model in vivo and a hypoxia-reoxygenation cell model in vitro and evaluated inflammatory responses, oxidative stress levels, mitochondrial function, and cardiomyocyte apoptosis. In both in vivo and in vitro settings, we observed a significant decrease in PC expression during myocardial IRI. PC knockdown aggravated IRI by increasing MDA content, LDH activity, TUNEL-positive cells, serum cTnI level, Bax protein expression, and the level of inflammatory cytokines and decreasing SOD activity, GPX activity, and Bcl-2 protein expression. PC overexpression yielded the opposite findings. Additional research indicated that reducing PC levels could block the Wnt/β-catenin pathway and glutamine metabolism by hindering the movement of β-catenin to the nucleus and reducing the activity of complex I and complex II, as well as ATP levels, while elevating the ratios of NADP+/NADPH and GSSG/GSH. Overall, the findings indicated that PC therapy can shield the heart from IRI during heart transplantation by regulating glutamine metabolism through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Hongwen Lan
- Department of Thoracic Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Tixiusi Xiong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| |
Collapse
|
3
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chi C, Knight WE, Riching AS, Zhang Z, Tatavosian R, Zhuang Y, Moldovan R, Rachubinski AL, Gao D, Xu H, Espinosa JM, Song K. Interferon hyperactivity impairs cardiogenesis in Down syndrome via downregulation of canonical Wnt signaling. iScience 2023; 26:107012. [PMID: 37360690 PMCID: PMC10285545 DOI: 10.1016/j.isci.2023.107012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Congenital heart defects (CHDs) are frequent in children with Down syndrome (DS), caused by trisomy of chromosome 21. However, the underlying mechanisms are poorly understood. Here, using a human-induced pluripotent stem cell (iPSC)-based model and the Dp(16)1Yey/+ (Dp16) mouse model of DS, we identified downregulation of canonical Wnt signaling downstream of increased dosage of interferon (IFN) receptors (IFNRs) genes on chromosome 21 as a causative factor of cardiogenic dysregulation in DS. We differentiated human iPSCs derived from individuals with DS and CHDs, and healthy euploid controls into cardiac cells. We observed that T21 upregulates IFN signaling, downregulates the canonical WNT pathway, and impairs cardiac differentiation. Furthermore, genetic and pharmacological normalization of IFN signaling restored canonical WNT signaling and rescued defects in cardiogenesis in DS in vitro and in vivo. Our findings provide insights into mechanisms underlying abnormal cardiogenesis in DS, ultimately aiding the development of therapeutic strategies.
Collapse
Affiliation(s)
- Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Zhen Zhang
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Roubina Tatavosian
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Yonghua Zhuang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Radu Moldovan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University; Augusta, GA 30912, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO 80045, USA
| |
Collapse
|
5
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Abstract
During embryo development, cell proliferation, cell fate specification and tissue patterning are coordinated and tightly regulated by a handful of evolutionarily conserved signaling pathways activated by secreted growth factor families including fibroblast growth factor (FGF), Nodal/bone morphogenetic protein (BMP), Hedgehog and Wnt. The spatial and temporal activation of these signaling pathways elicit context-specific cellular responses that ultimately shape the different tissues of the embryo. Extensive efforts have been dedicated to identifying the molecular mechanisms underlying these signaling pathways during embryo development, adult tissue homeostasis and regeneration. In this review, we first describe the role of the Wnt/β-catenin signaling pathway during early embryo development, axis specification and cell differentiation as a prelude to highlight how this knowledge is being leveraged to manipulate Wnt/β-catenin signaling activity with small molecules and biologics for the directed differentiation of pluripotent stem cells into various cell lineages that are physiologically relevant for stem cell therapy and regenerative medicine.
Collapse
|
7
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
8
|
Tian C, Yang Y, Li B, Liu M, He X, Zhao L, Song X, Yu T, Chu XM. Doxorubicin-Induced Cardiotoxicity May Be Alleviated by Bone Marrow Mesenchymal Stem Cell-Derived Exosomal lncRNA via Inhibiting Inflammation. J Inflamm Res 2022; 15:4467-4486. [PMID: 35966005 PMCID: PMC9365022 DOI: 10.2147/jir.s358471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the therapeutic mechanism of bone marrow mesenchymal stem cells derived exosomes (BMSC-Exos) for doxorubicin (DOX)-induced cardiotoxicity (DIC) and identify the long noncoding RNAs’ (lncRNAs’) anti-inflammation function derived by BMSC-Exos. Materials and Methods High-throughput sequencing and transcriptome bioinformatics analysis of lncRNA were performed between DOX group and BEC (bone marrow mesenchymal stem cells derived exosomes coculture) group. Elevated lncRNA (ElncRNA) in the cardiomyocytes of BEC group compared with DOX group were confirmed. Based on the location and co-expression relationship between ElncRNA and its target genes, we predicted two target genes of ElncRNA, named cis_targets and trans_targets. The target genes were analyzed by enrichment analyses. Then, we identified the key cellular biological pathways regulating DIC. Experiments were performed to verify the therapeutic effects of exosomes and the origin of lncRNAs in vitro and in vivo. Results Three hundred and one lncRNAs were differentially expressed between DOX and BEC groups (fold change >1.5 and p < 0.05), of which 169 lncRNAs were elevated in the BEC group compared with the DOX group. GO enrichment analysis of target genes of ElncRNAs showed that they were predominantly involved in inflammation-associated processes. KEGG analysis indicated that their regulatory pathways were mainly involved in oxidative stress-induced inflammation and proliferation of cardiomyocyte. The verification experiments in vitro showed that the oxidative stress and cell deaths were decreased in BEC groups. Moreover, from the top 10 ElncRNAs identified in the sequencing results, MSTRG.98097.4 and MSTRG.58791.2 were both decreased in the DOX group and elevated in BEC group. While in verification experiments in vivo, only the expression of MSTRG.58791.2 is consistent with the result in vitro. Conclusion Our results show that ElncRNA, MSTRG.58791.2, is possibly secreted by the BMSC-Exos and able to alleviate DIC by suppressing inflammatory response and inflammation-related cell death.
Collapse
Affiliation(s)
- Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, People’s Republic of China
| | - Bing Li
- Department of Genetics, Basic Medicine School, Qingdao University, Qingdao, People’s Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Tao Yu, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China, Tel/Fax +86-532-82991791, Email
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, People’s Republic of China
- Xian-Ming Chu, Department of Cardiology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, People’s Republic of China, Tel +86-532-82913257, Email
| |
Collapse
|
9
|
Jiang S, Feng W, Chang C, Li G. Modeling Human Heart Development and Congenital Defects Using Organoids: How Close Are We? J Cardiovasc Dev Dis 2022; 9:jcdd9050125. [PMID: 35621836 PMCID: PMC9145739 DOI: 10.3390/jcdd9050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of human-induced Pluripotent Stem Cells (hiPSCs) has dramatically improved our understanding of human developmental processes under normal and diseased conditions. The hiPSCs have been differentiated into various tissue-specific cells in vitro, and the advancement in three-dimensional (3D) culture has provided a possibility to generate those cells in an in vivo-like environment. Tissues with 3D structures can be generated using different approaches such as self-assembled organoids and tissue-engineering methods, such as bioprinting. We are interested in studying the self-assembled organoids differentiated from hiPSCs, as they have the potential to recapitulate the in vivo developmental process and be used to model human development and congenital defects. Organoids of tissues such as those of the intestine and brain were developed many years ago, but heart organoids were not reported until recently. In this review, we will compare the heart organoids with the in vivo hearts to understand the anatomical structures we still lack in the organoids. Specifically, we will compare the development of main heart structures, focusing on their marker genes and regulatory signaling pathways.
Collapse
|
10
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
11
|
Yuan Q, Maas RGC, Brouwer ECJ, Pei J, Blok CS, Popovic MA, Paauw NJ, Bovenschen N, Hjortnaes J, Harakalova M, Doevendans PA, Sluijter JPG, van der Velden J, Buikema JW. Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. J Cardiovasc Dev Dis 2022; 9:jcdd9020043. [PMID: 35200697 PMCID: PMC8880351 DOI: 10.3390/jcdd9020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Contractility of the adult heart relates to the architectural degree of sarcomeres in individual cardiomyocytes (CMs) and appears to be inversely correlated with the ability to regenerate. In this study we utilized multiple imaging techniques to follow the sequence of sarcomere disassembly during mitosis resulting in cellular or nuclear division in a source of proliferating human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed that both mono- and binuclear hiPSC-CMs give rise to mononuclear daughter cells or binuclear progeny. Within this source of highly proliferative hiPSC-CMs, treated with the CHIR99021 small molecule, we found that Wnt and Hippo signaling was more present when compared to metabolic matured non-proliferative hiPSC-CMs and adult human heart tissue. Furthermore, we found that CHIR99021 increased the efficiency of non-viral vector incorporation in high-proliferative hiPSC-CMs, in which fluorescent transgene expression became present after the chromosomal segregation (M phase). This study provides a tool for gene manipulation studies in hiPSC-CMs and engineered cardiac tissue. Moreover, our data illustrate that there is a complex biology behind the cellular and nuclear division of mono- and binuclear CMs, with a shared-phenomenon of sarcomere disassembly during mitosis.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ellen C. J. Brouwer
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jiayi Pei
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Snijders Blok
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marko A. Popovic
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Nanne J. Paauw
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Niels Bovenschen
- Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Heart & Lung Center, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Magdalena Harakalova
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jan W. Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
12
|
Pang P, Qu Z, Yu S, Pang X, Li X, Gao Y, Liu K, Liu Q, Wang X, Bian Y, Liu Y, Jia Y, Sun Z, Khan H, Mei Z, Bi X, Wang C, Yin X, Du Z, Du W. Mettl14 Attenuates Cardiac Ischemia/Reperfusion Injury by Regulating Wnt1/β-Catenin Signaling Pathway. Front Cell Dev Biol 2022; 9:762853. [PMID: 35004673 PMCID: PMC8733823 DOI: 10.3389/fcell.2021.762853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
N6-methyladenosine (m6A) methylation in RNA is a dynamic and reversible modification regulated by methyltransferases and demethylases, which has been reported to participate in many pathological processes of various diseases, including cardiac disorders. This study was designed to investigate an m6A writer Mettl14 on cardiac ischemia–reperfusion (I/R) injury and uncover the underlying mechanism. The m6A and Mettl14 protein levels were increased in I/R hearts and neonatal mouse cardiomyocytes upon oxidative stress. Mettl14 knockout (Mettl14+/−) mice showed pronounced increases in cardiac infarct size and LDH release and aggravation in cardiac dysfunction post-I/R. Conversely, adenovirus-mediated overexpression of Mettl14 markedly reduced infarct size and apoptosis and improved cardiac function during I/R injury. Silencing of Mettl14 alone significantly caused a decrease in cell viability and an increase in LDH release and further exacerbated these effects in the presence of H2O2, while overexpression of Mettl14 ameliorated cardiomyocyte injury in vitro. Mettl14 resulted in enhanced levels of Wnt1 m6A modification and Wnt1 protein but not its transcript level. Furthermore, Mettl14 overexpression blocked I/R-induced downregulation of Wnt1 and β-catenin proteins, whereas Mettl14+/− hearts exhibited the opposite results. Knockdown of Wnt1 abrogated Mettl14-mediated upregulation of β-catenin and protection against injury upon H2O2. Our study demonstrates that Mettl14 attenuates cardiac I/R injury by activating Wnt/β-catenin in an m6A-dependent manner, providing a novel therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Ping Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhezhe Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuting Yu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaochen Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuelin Gao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qian Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuzhu Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhiyong Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hanif Khan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhongting Mei
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoqian Bi
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changhao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinda Yin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
13
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
14
|
Gharanei M, Shafaattalab S, Sangha S, Gunawan M, Laksman Z, Hove-Madsen L, Tibbits GF. Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods 2021; 203:364-377. [PMID: 34144175 DOI: 10.1016/j.ymeth.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery and application of human-induced pluripotent stem cells (hiPSCs) have been instrumental in the investigation of the pathophysiology of cardiovascular diseases. Patient-specific hiPSCs can now be generated, genome-edited, and subsequently differentiated into various cell types and used for regenerative medicine, disease modeling, drug testing, toxicity screening, and 3D tissue generation. Modulation of the retinoic acid signaling pathway has been shown to direct cardiomyocyte differentiation towards an atrial lineage. A variety of studies have successfully differentiated patient-specific atrial cardiac myocytes (hiPSC-aCM) and atrial engineered heart tissue (aEHT) that express atrial specific genes (e.g., sarcolipin and ANP) and exhibit atrial electrophysiological and contractility profiles. Identification of protocols to differentiate atrial cells from patients with atrial fibrillation and other inherited diseases or creating disease models using genetic mutation studies has shed light on the mechanisms of atrial-specific diseases and identified the efficacy of atrial-selective pharmacological compounds. hiPSC-aCMs and aEHTs can be used in drug discovery and drug screening studies to investigate the efficacy of atrial selective drugs on atrial fibrillation models. Furthermore, hiPSC-aCMs can be effective tools in studying the mechanism, pathophysiology and treatment options of atrial fibrillation and its genetic underpinnings. The main limitation of using hiPSC-CMs is their immature phenotype compared to adult CMs. A wide range of approaches and protocols are used by various laboratories to optimize and enhance CM maturation, including electrical stimulation, culture time, biophysical cues and changes in metabolic factors.
Collapse
Affiliation(s)
- Mayel Gharanei
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarabjit Sangha
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Zachary Laksman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Gai Z, Wang Y, Tian L, Gong G, Zhao J. Whole Genome Level Analysis of the Wnt and DIX Gene Families in Mice and Their Coordination Relationship in Regulating Cardiac Hypertrophy. Front Genet 2021; 12:608936. [PMID: 34168671 PMCID: PMC8217762 DOI: 10.3389/fgene.2021.608936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
The Wnt signaling pathway is an evolutionarily conserved signaling pathway that plays essential roles in embryonic development, organogenesis, and many other biological activities. Both Wnt proteins and DIX proteins are important components of Wnt signaling. Systematic studies of Wnt and DIX families at the genome-wide level may provide a comprehensive landscape to elucidate their functions and demonstrate their relationships, but they are currently lacking. In this report, we describe the correlations between mouse Wnt and DIX genes in family expansion, molecular evolution, and expression levels in cardiac hypertrophy at the genome-wide scale. We observed that both the Wnt and DIX families underwent more expansion than the overall average in the evolutionarily early stage. In addition, mirrortree analyses suggested that Wnt and DIX were co-evolved protein families. Collectively, these results would help to elucidate the evolutionary characters of Wnt and DIX families and demonstrate their correlations in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhongchao Gai
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yujiao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jieqiong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
16
|
Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell 2021; 27:50-63.e5. [PMID: 32619518 DOI: 10.1016/j.stem.2020.06.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs modestly (<5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e., 100- to 250-fold) by glycogen synthase kinase-3β (GSK-3β) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show that GSK-3β inhibition suppresses CM maturation, while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10 to 25 times greater expansion beyond GSK-3β inhibition alone. Mechanistically, persistent CM proliferation required both LEF/TCF activity and AKT phosphorylation but was independent from yes-associated protein (YAP) signaling. Engineered heart tissues from expanded hiPSC-CMs showed comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In summary, we uncovered a molecular interplay that enables massive hiPSC-CM expansion for large-scale drug screening and tissue engineering applications.
Collapse
|
17
|
Inácio JM, von Gilsa Lopes J, Silva AM, Cristo F, Marques S, Futschik ME, Belo JA. DAND5 Inactivation Enhances Cardiac Differentiation in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:629430. [PMID: 33928078 PMCID: PMC8078107 DOI: 10.3389/fcell.2021.629430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Deciphering the clues of a regenerative mechanism for the mammalian adult heart would save millions of lives in the near future. Heart failure due to cardiomyocyte loss is still one of the significant health burdens worldwide. Here, we show the potential of a single molecule, DAND5, in mouse pluripotent stem cell-derived cardiomyocytes specification and proliferation. Dand5 loss-of-function generated the double of cardiac beating foci compared to the wild-type cells. The early formation of cardiac progenitor cells and the increased proliferative capacity of Dand5 KO mESC-derived cardiomyocytes contribute to the observed higher number of derived cardiac cells. Transcriptional profiling sequencing and quantitative RT-PCR assays showed an upregulation of early cardiac gene networks governing cardiomyocyte differentiation, cell cycling, and cardiac regenerative pathways but reduced levels of genes involved in cardiomyocyte maturation. These findings prompt DAND5 as a key driver for the generation and expansion of pluripotent stem cell-derived cardiomyocytes systems with further clinical application purposes.
Collapse
Affiliation(s)
- José Manuel Inácio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João von Gilsa Lopes
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Mafalda Silva
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fernando Cristo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Sara Marques
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matthias E Futschik
- Faculty of Medicine, School of Public Health, Imperial College London, Medical School, St. Mary's Hospital, London, United Kingdom
| | - José António Belo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Chirico N, Van Laake LW, Sluijter JPG, van Mil A, Dierickx P. Cardiac circadian rhythms in time and space: The future is in 4D. Curr Opin Pharmacol 2020; 57:49-59. [PMID: 33338891 DOI: 10.1016/j.coph.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.
Collapse
Affiliation(s)
- Nino Chirico
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda W Van Laake
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alain van Mil
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
19
|
Wang L, Ma H, Huang P, Xie Y, Near D, Wang H, Xu J, Yang Y, Xu Y, Garbutt T, Zhou Y, Liu Z, Yin C, Bressan M, Taylor JM, Liu J, Qian L. Down-regulation of Beclin1 promotes direct cardiac reprogramming. Sci Transl Med 2020; 12:eaay7856. [PMID: 33087505 PMCID: PMC8188650 DOI: 10.1126/scitranslmed.aay7856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 05/07/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022]
Abstract
Direct reprogramming of fibroblasts to alternative cell fates by forced expression of transcription factors offers a platform to explore fundamental molecular events governing cell fate identity. The discovery and study of induced cardiomyocytes (iCMs) not only provides alternative therapeutic strategies for heart disease but also sheds lights on basic biology underlying CM fate determination. The iCM field has primarily focused on early transcriptome and epigenome repatterning, whereas little is known about how reprogramming iCMs remodel, erase, and exit the initial fibroblast lineage to acquire final cell identity. Here, we show that autophagy-related 5 (Atg5)-dependent autophagy, an evolutionarily conserved self-digestion process, was induced and required for iCM reprogramming. Unexpectedly, the autophagic factor Beclin1 (Becn1) was found to suppress iCM induction in an autophagy-independent manner. Depletion of Becn1 resulted in improved iCM induction from both murine and human fibroblasts. In a mouse genetic model, Becn1 haploinsufficiency further enhanced reprogramming factor-mediated heart function recovery and scar size reduction after myocardial infarction. Mechanistically, loss of Becn1 up-regulated Lef1 and down-regulated Wnt inhibitors, leading to activation of the canonical Wnt/β-catenin signaling pathway. In addition, Becn1 physically interacts with other classical class III phosphatidylinositol 3-kinase (PI3K III) complex components, the knockdown of which phenocopied Becn1 depletion in cardiac reprogramming. Collectively, our study revealed an inductive role of Atg5-dependent autophagy as well as a previously unrecognized autophagy-independent inhibitory function of Becn1 in iCM reprogramming.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Ma
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peisen Huang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Near
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jun Xu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yangxi Xu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tiffany Garbutt
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael Bressan
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Zhao MT, Ye S, Su J, Garg V. Cardiomyocyte Proliferation and Maturation: Two Sides of the Same Coin for Heart Regeneration. Front Cell Dev Biol 2020; 8:594226. [PMID: 33178704 PMCID: PMC7593613 DOI: 10.3389/fcell.2020.594226] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
In the past few decades, cardiac regeneration has been the central target for restoring the injured heart. In mammals, cardiomyocytes are terminally differentiated and rarely divide during adulthood. Embryonic and fetal cardiomyocytes undergo robust proliferation to form mature heart chambers in order to accommodate the increased workload of a systemic circulation. In contrast, postnatal cardiomyocytes stop dividing and initiate hypertrophic growth by increasing the size of the cardiomyocyte when exposed to increased workload. Extracellular and intracellular signaling pathways control embryonic cardiomyocyte proliferation and postnatal cardiac hypertrophy. Harnessing these pathways could be the future focus for stimulating endogenous cardiac regeneration in response to various pathological stressors. Meanwhile, patient-specific cardiomyocytes derived from autologous induced pluripotent stem cells (iPSCs) could become the major exogenous sources for replenishing the damaged myocardium. Human iPSC-derived cardiomyocytes (iPSC-CMs) are relatively immature and have the potential to increase the population of cells that advance to physiological hypertrophy in the presence of extracellular stimuli. In this review, we discuss how cardiac proliferation and maturation are regulated during embryonic development and postnatal growth, and explore how patient iPSC-CMs could serve as the future seed cells for cardiac cell replacement therapy.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Shiqiao Ye
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan Su
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Miao Y, Ha A, de Lau W, Yuki K, Santos AJM, You C, Geurts MH, Puschhof J, Pleguezuelos-Manzano C, Peng WC, Senlice R, Piani C, Buikema JW, Gbenedio OM, Vallon M, Yuan J, de Haan S, Hemrika W, Rösch K, Dang LT, Baker D, Ott M, Depeille P, Wu SM, Drost J, Nusse R, Roose JP, Piehler J, Boj SF, Janda CY, Clevers H, Kuo CJ, Garcia KC. Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy In Vivo. Cell Stem Cell 2020; 27:840-851.e6. [PMID: 32818433 DOI: 10.1016/j.stem.2020.07.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Modulation of Wnt signaling has untapped potential in regenerative medicine due to its essential functions in stem cell homeostasis. However, Wnt lipidation and Wnt-Frizzled (Fzd) cross-reactivity have hindered translational Wnt applications. Here, we designed and engineered water-soluble, Fzd subtype-specific "next-generation surrogate" (NGS) Wnts that hetero-dimerize Fzd and Lrp6. NGS Wnt supports long-term expansion of multiple different types of organoids, including kidney, colon, hepatocyte, ovarian, and breast. NGS Wnts are superior to Wnt3a conditioned media in organoid expansion and single-cell organoid outgrowth. Administration of Fzd subtype-specific NGS Wnt in vivo reveals that adult intestinal crypt proliferation can be promoted by agonism of Fzd5 and/or Fzd8 receptors, while a broad spectrum of Fzd receptors can induce liver zonation. Thus, NGS Wnts offer a unified organoid expansion protocol and a laboratory "tool kit" for dissecting the functions of Fzd subtypes in stem cell biology.
Collapse
Affiliation(s)
- Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Ha
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wim de Lau
- Oncode Institute, Hubrecht Institute, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - António J M Santos
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Changjiang You
- Division of Biophysics, Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maarten H Geurts
- Oncode Institute, Hubrecht Institute, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jens Puschhof
- Oncode Institute, Hubrecht Institute, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Weng Chuan Peng
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ramazan Senlice
- Foundation Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Carol Piani
- Foundation Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Jan W Buikema
- Department of Cardiology, University Medical Center Utrecht & Utrecht Regenerative Medicine Center, Utrecht University, 3508 GA Utrecht, the Netherlands
| | | | - Mario Vallon
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jenny Yuan
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanne de Haan
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Wieger Hemrika
- U-Protein Express BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Kathrin Rösch
- Gladstone Institutes and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Luke T Dang
- Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Melanie Ott
- Gladstone Institutes and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Philippe Depeille
- Department of Cardiology, University Medical Center Utrecht & Utrecht Regenerative Medicine Center, Utrecht University, 3508 GA Utrecht, the Netherlands
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jarno Drost
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Roeland Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob Piehler
- Division of Biophysics, Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sylvia F Boj
- Foundation Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Claudia Y Janda
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, University Medical Centre Utrecht, Utrecht, the Netherlands; Oncode Institute, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Abstract
Cardiovascular disease (CVD) is still a factor of mortality in the whole world. Through canonical and noncanonical pathways and with different receptors, the Wnt/β-catenin signaling pathway plays an essential role in response to heart injuries. Wnt regulates the mobilization and proliferation of cells in endothelium and epicardium in an infarcted heart. Therefore, with its profibrotic effects as well as its antagonism with other proteins, Wnt/β-catenin signaling pathway leads to beneficial effects on fibrosis and cardiac remodeling in myocardium. In addition, Wnt increases the proliferation and differentiation of cardiac progenitors in an ischemic heart. Complex interactions and dual activity of Wnt, the changes in its expression, and mutations that can change its activity during heart development have an adverse effect on cardiac myocardium after injury. However, targeting the Wnt in myocardium with cellular and molecular pathways can be suggested to improve and repair ischemic heart. Given these challenges, in this review article, we deal with the role of Wnt/β-catenin signaling pathway as well as its interactions with other cells and molecules in an ischemic myocardium.
Collapse
|
23
|
Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Rep 2020; 26:546-554.e5. [PMID: 30650349 PMCID: PMC6366857 DOI: 10.1016/j.celrep.2018.12.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies demonstrate that the regenerative zebrafish heart responds to injury by upregulating Notch receptors in the endocardium and epicardium. Moreover, global suppression of Notch activity following injury impairs cardiomyocyte proliferation and induces scarring. However, the lineage-specific requirements for Notch signaling and full array of downstream targets remain unidentified. Here, we demonstrate that inhibition of endocardial Notch signaling following ventricular amputation compromises cardiomyocyte proliferation and stimulates fibrosis. RNA sequencing uncovered reduced levels of two transcripts encoding secreted Wnt antagonists, Wif1 and Notum1b, in Notch-suppressed hearts. Like Notch receptors, wif1 and notum1b are induced following injury in the endocardium and epicardium. Small-molecule-mediated activation of Wnt signaling is sufficient to impair cardiomyocyte proliferation and induce scarring. Last, Wnt pathway suppression partially restored cardiomyocyte proliferation in hearts experiencing endocardial Notch inhibition. Taken together, our data demonstrate that Notch signaling supports cardiomyocyte proliferation by dampening myocardial Wnt activity during zebrafish heart regeneration. The highly regenerative zebrafish heart responds to injury by upregulating Notch receptors in the endocardium and epicardium to support myocardial proliferation and regeneration. Zhao et al. demonstrate that endocardial (EC) Notch signaling augments the expression of secreted endocardial Wnt antagonists that dampen myocardial Wnt signaling to support regenerative cardiomyocyte renewal.
Collapse
|
24
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Blankesteijn WM. Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways. Mol Pharmacol 2019; 97:90-101. [PMID: 31757861 DOI: 10.1124/mol.119.118018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
Myocardial infarction is a frequent cardiovascular event and a major cause for cardiomyocyte loss. In adult mammals, cardiomyocytes are traditionally considered to be terminally differentiated cells, unable to proliferate. Therefore, the wound-healing response in the infarct area typically yields scar tissue rather than newly formed cardiomyocytes. In the last decade, several lines of evidence have challenged the lack of proliferative capacity of the differentiated cardiomyocyte: studies in zebrafish and neonatal mammals have convincingly demonstrated the regenerative capacity of cardiomyocytes. Moreover, multiple signaling pathways have been identified in these models that-when activated in adult mammalian cardiomyocytes-can reactivate the cell cycle in these cells. However, cardiomyocytes frequently exit the cell cycle before symmetric division into daughter cells, leading to polyploidy and multinucleation. Now that there is more insight into the reactivation of the cell cycle machinery, other prerequisites for successful symmetric division of cardiomyocytes, such as the control of sarcomere disassembly to allow cytokinesis, require more investigation. This review aims to discuss the signaling pathways involved in cardiomyocyte proliferation, with a specific focus on wingless/int-1 protein signaling. Comparing the conflicting results from in vitro and in vivo studies on this pathway illustrates that the interaction with other cells and structures around the infarct is likely to be essential to determine the outcome of these interventions. The extensive crosstalk with other pathways implicated in cardiomyocyte proliferation calls for the identification of nodal points in the cell signaling before cardiomyocyte proliferation can be moved forward toward clinical application as a cure of cardiac disease. SIGNIFICANCE STATEMENT: Evidence is mounting that proliferation of pre-existing cardiomyocytes can be stimulated to repair injury of the heart. In this review article, an overview is provided of the different signaling pathways implicated in cardiomyocyte proliferation with emphasis on wingless/int-1 protein signaling, crosstalk between the pathways, and controversial results obtained in vitro and in vivo.
Collapse
Affiliation(s)
- W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| |
Collapse
|
26
|
Conway SJ, McConnell R, Simmons O, Snider PL. Armadillo-like helical domain containing-4 is dynamically expressed in both the first and second heart fields. Gene Expr Patterns 2019; 34:119077. [PMID: 31655130 DOI: 10.1016/j.gep.2019.119077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022]
Abstract
Armadillo repeat and Armadillo-like helical domain containing proteins form a large family with diverse and fundamental functions in many eukaryotes. Herein we investigated the spatiotemporal expression pattern of Armadillo-like helical domain containing 4 (or Armh4) as an uncharacterized protein coding mouse gene, within the mouse embryo during the initial stages of heart morphogenesis. We found Armh4 is initially expressed in both first heart field as well as the second heart field progenitors and subsequently within predominantly their cardiomyocyte derivatives. Armh4 expression is initially cardiac-restricted in the developing embryo and is expressed in second heart field subpharyngeal mesoderm prior to cardiomyocyte differentiation, but Armh4 diminishes as the embryonic heart matures into the fetal heart. Armh4 is subsequently expressed in craniofacial structures and neural crest-derived dorsal root and trigeminal ganglia. Whereas lithium chloride-induced stimulation of Wnt/β-catenin signaling elevated Armh4 expression in both second heart field subpharyngeal mesodermal progenitors and outflow tract, right ventricle and atrial cardiomyocytes, neither a systemic loss of Islet-1 nor an absence of cardiac neural crest cells had any effect upon Armh4 expression. These results confirm that Wnt/β-catenin-responsive Armh4 is a useful specific biomarker of the FHF and SHF cardiomyocyte derivatives only.
Collapse
Affiliation(s)
- Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Reagan McConnell
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Olga Simmons
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paige L Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration? Int J Mol Sci 2019; 20:ijms20163986. [PMID: 31426283 PMCID: PMC6721231 DOI: 10.3390/ijms20163986] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by sudden death in young people and featured by fibro-adipose myocardium replacement, malignant arrhythmias, and heart failure. To date, no etiological therapies are available. Mutations in desmosomal genes cause abnormal mechanical coupling, trigger pro-apoptotic signaling pathways, and induce fibro-adipose replacement. Here, we discuss the hypothesis that the ACM causative mechanism involves a defect in the expression and/or activity of the cardiac Ca2+ handling machinery, focusing on the available data supporting this hypothesis. The Ca2+ toolkit is heavily remodeled in cardiomyocytes derived from a mouse model of ACM defective of the desmosomal protein plakophilin-2. Furthermore, ACM-related mutations were found in genes encoding for proteins involved in excitation‒contraction coupling, e.g., type 2 ryanodine receptor and phospholamban. As a consequence, the sarcoplasmic reticulum becomes more eager to release Ca2+, thereby inducing delayed afterdepolarizations and impairing cardiac contractility. These data are supported by preliminary observations from patient induced pluripotent stem-cell-derived cardiomyocytes. Assessing the involvement of Ca2+ signaling in the pathogenesis of ACM could be beneficial in the treatment of this life-threatening disease.
Collapse
|
28
|
Li G, Tian L, Goodyer W, Kort EJ, Buikema JW, Xu A, Wu JC, Jovinge S, Wu SM. Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development. Development 2019; 146:dev.173476. [PMID: 31142541 DOI: 10.1242/dev.173476] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
The heart is a complex organ composed of multiple cell and tissue types. Cardiac cells from different regions of the growing embryonic heart exhibit distinct patterns of gene expression, which are thought to contribute to heart development and morphogenesis. Single cell RNA sequencing allows genome-wide analysis of gene expression at the single cell level. Here, we have analyzed cardiac cells derived from early stage developing hearts by single cell RNA-seq and identified cell cycle gene expression as a major determinant of transcriptional variation. Within cell cycle stage-matched CMs from a given heart chamber, we found that CMs in the G2/M phase downregulated sarcomeric and cytoskeletal markers. We also identified cell location-specific signaling molecules that may influence the proliferation of other nearby cell types. Our data highlight how variations in cell cycle activity selectively promote cardiac chamber growth during development, reveal profound chamber-specific cell cycle-linked transcriptional shifts, and open the way to deeper understanding of pathogenesis of congenital heart disease.
Collapse
Affiliation(s)
- Guang Li
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA .,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Lei Tian
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric J Kort
- DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI 49503, USA.,Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI 49503, USA
| | - Jan W Buikema
- Department of Cardiology, Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Adele Xu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Deparment of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefan Jovinge
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA .,DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI 49503, USA.,Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI 49503, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA .,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Buikema JW, Wu SM. Prometheus Unbound in Ya(p) Heart. Dev Cell 2019; 48:741-742. [PMID: 30913402 DOI: 10.1016/j.devcel.2019.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The adult mammalian heart, unlike in some amphibian and fish species, is generally considered a post-mitotic organ. In this issue of Developmental Cell, Monroe et al. (2019) show that the expression of constitutively active YAP induces a remarkable degree of proliferation in preexisting adult cardiomyocytes by globally altering chromatin accessibility.
Collapse
Affiliation(s)
- Jan W Buikema
- Department of Cardiology, Utrecht Regenerative Medicine Center, University Utrecht, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Singha SK, Muhammad I, Ibrahim MA, Wang M, Ashpole NM, Shariat-Madar Z. 4- O-Methylhonokiol Influences Normal Cardiovascular Development in Medaka Embryo. Molecules 2019; 24:molecules24030475. [PMID: 30699965 PMCID: PMC6384692 DOI: 10.3390/molecules24030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 11/21/2022] Open
Abstract
Although 4-O-Methylhonokiol (MH) effects on neuronal and immune cells have been established, it is still unclear whether MH can cause a change in the structure and function of the cardiovascular system. The overarching goal of this study was to evaluate the effects of MH, isolated from Magnolia grandiflora, on the development of the heart and vasculature in a Japanese medaka model in vivo to predict human health risks. We analyzed the toxicity of MH in different life-stages of medaka embryos. MH uptake into medaka embryos was quantified. The LC50 of two different exposure windows (stages 9–36 (0–6 days post fertilization (dpf)) and 25–36 (2–6 dpf)) were 5.3 ± 0.1 μM and 9.9 ± 0.2 μM. Survival, deformities, days to hatch, and larval locomotor response were quantified. Wnt 1 was overexpressed in MH-treated embryos indicating deregulation of the Wnt signaling pathway, which was associated with spinal and cardiac ventricle deformities. Overexpression of major proinflammatory mediators and biomarkers of the heart were detected. Our results indicated that the differential sensitivity of MH in the embryos was developmental stage-specific. Furthermore, this study demonstrated that certain molecules can serve as promising markers at the transcriptional and phenotypical levels, responding to absorption of MH in the developing embryo.
Collapse
Affiliation(s)
- Santu K Singha
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
| | - Ilias Muhammad
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Mohamed Ali Ibrahim
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
- Chemistry of Natural Compounds Department, National Research Centre, Dokki-Giza 12622, Egypt.
| | - Mei Wang
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
- Light Microscopy Core, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
31
|
Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes. Stem Cell Res Ther 2018; 9:338. [PMID: 30526659 PMCID: PMC6286613 DOI: 10.1186/s13287-018-1086-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway plays an important role in the development of second heart field (SHF Isl1+) that gives rise to the anterior heart field (AHF) cardiac progenitor cells (CPCs) for the formation of the right ventricle, outflow tract (OFT), and a portion of the inflow tract (IFT). During early cardiogenesis, these AHF CPCs reside within the pharyngeal mesoderm (PM) that provides a microenvironment for them to receive signals that direct their cell fates. Here, N-cadherin, which is weakly expressed by CPCs, plays a significant role by promoting the adhesion of CPCs within the AHF, regulating β-catenin levels in the cytoplasm to maintain high Wnt signaling and cardioproliferation while also preventing the premature differentiation of CPCs. On the contrary, strong expression of N-cadherin observed throughout matured myocardium is associated with downregulation of Wnt signaling due to β-catenin sequestration at the cell membrane, inhibiting cardioproliferation. As such, upregulation of Wnt signaling pathway to enhance cardiac tissue proliferation in mature cardiomyocytes can be explored as an interesting avenue for regenerative treatment to patients who have suffered from myocardial infarction. Methods To investigate if Wnt signaling is able to enhance cellular proliferation of matured cardiomyocytes, we treated cardiomyocytes isolated from adult mouse heart and both murine and human ES cell-derived matured cardiomyocytes with N-cadherin antibody or CHIR99021 GSK inhibitor in an attempt to increase levels of cytoplasmic β-catenin. Immunostaining, western blot, and quantitative PCR for cell proliferation markers, cell cycling markers, and Wnt signaling pathway markers were used to quantitate re-activation of cardioproliferation and Wnt signaling. Results N-cadherin antibody treatment releases sequestered β-catenin at N-cadherin-based adherens junction, resulting in an increased pool of cytoplasmic β-catenin, similar in effect to CHIR99021 GSK inhibitor treatment. Both treatments therefore upregulate Wnt signaling successfully and result in significant increases in matured cardiomyocyte proliferation. Conclusion Although both N-cadherin antibody and CHIR99021 treatment resulted in increased Wnt signaling and cardioproliferation, CHIR99021 was found to be the more effective treatment method for human ES cell-derived cardiomyocytes. Therefore, we propose that CHIR99021 could be a potential therapeutic option for myocardial infarction patients in need of regeneration of cardiac tissue. Electronic supplementary material The online version of this article (10.1186/s13287-018-1086-8) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
33
|
Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Sci Rep 2018; 8:6618. [PMID: 29700394 PMCID: PMC5920079 DOI: 10.1038/s41598-018-24954-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Bioactive lipids such as sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) regulate diverse processes including cell proliferation, differentiation, and migration. However, their roles in cardiac differentiation and cardiomyocyte proliferation have not been explored. Using a 96-well differentiation platform for generating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) we found that S1P and LPA can independently enhance cardiomyocyte generation when administered at an early stage of differentiation. We showed that the combined S1P and LPA treatment of undifferentiated hiPSCs resulted in increased nuclear accumulation of β-catenin, the canonical Wnt signaling pathway mediator, and synergized with CHIR99021, a glycogen synthase kinase 3 beta inhibitor, to enhance mesodermal induction and subsequent cardiac differentiation. At later stages of cardiac differentiation, the addition of S1P and LPA resulted in cell cycle initiation in hiPSC-CMs, an effect mediated through increased ERK signaling. Although the addition of S1P and LPA alone was insufficient to induce cell division, it was able to enhance β-catenin-mediated hiPSC-CM proliferation. In summary, we demonstrated a developmental stage-specific effect of bioactive lipids to enhance hiPSC-CM differentiation and proliferation via modulating the effect of canonical Wnt/β-catenin and ERK signaling. These findings may improve hiPSC-CM generation for cardiac disease modeling, precision medicine, and regenerative therapies.
Collapse
|
34
|
Park S, Choe M, Yeo H, Han H, Kim J, Chang W, Yun S, Lee H, Lee M. Yes-associated protein mediates human embryonic stem cell-derived cardiomyocyte proliferation: Involvement of epidermal growth factor receptor signaling. J Cell Physiol 2018; 233:7016-7025. [PMID: 29693249 DOI: 10.1002/jcp.26625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022]
Abstract
Unlike mature cardiomyocytes, human pluripotent stem cell-derived cardiomyocytes exhibit higher proliferative capacity; however, the underlying mechanisms involved are yet to be elucidated. Here, we revealed that the Yes-associated protein (YAP) plays a critical role in regulating cell proliferation in association with epidermal growth factor receptor (EGFR) in human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Our results show that low-density culture significantly promotes the proliferation of hESC-CMs via YAP. Interestingly, the low-density culture-induced YAP expression further induced EGFR expression, without any alterations in the activity of EGFR and its two major downstream kinases, ERK, and AKT. However, treatment of a low-density-culture of hESC-CMs with epidermal growth factor (EGF) increased proliferation via phosphorylation of EGFR, ERK, and AKT, and the EGF-induced phosphorylation of EGFR, ERK, and AKT was significantly higher in low-density hESC-CMs than in high-density hESC-CMs. Furthermore, the EGF-induced activation of EGFR, ERK, and AKT increased YAP expression and subsequently proliferation. In conclusion, YAP mediates both low-density culture-induced and EGF-induced proliferation of hESC-CMs in low-density culture conditions.
Collapse
Affiliation(s)
- Somi Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Museog Choe
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hancheol Yeo
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hojae Han
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Joongsun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Woocheol Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Seungpil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hojin Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Minyoung Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
35
|
Human ISL1 + Ventricular Progenitors Self-Assemble into an In Vivo Functional Heart Patch and Preserve Cardiac Function Post Infarction. Mol Ther 2018; 26:1644-1659. [PMID: 29606507 PMCID: PMC6035340 DOI: 10.1016/j.ymthe.2018.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 11/26/2022] Open
Abstract
The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm × 3 mm × 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy.
Collapse
|
36
|
Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction. Clin Sci (Lond) 2017; 131:2919-2932. [PMID: 29162747 DOI: 10.1042/cs20171256] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
Abstract
After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.
Collapse
|
37
|
Buikema JW, Wu SM. Untangling the Biology of Genetic Cardiomyopathies with Pluripotent Stem Cell Disease Models. Curr Cardiol Rep 2017; 19:30. [DOI: 10.1007/s11886-017-0842-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Ponnusamy M, Li PF, Wang K. Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci 2017; 74:1019-1034. [PMID: 27695872 PMCID: PMC11107761 DOI: 10.1007/s00018-016-2375-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
Cardiomyocyte proliferation and regeneration are key to the functional recovery of myocardial tissue from injury. In the recent years, studies on cardiomyocyte proliferation overturned the traditional belief that adult cardiomyocytes permanently withdraw from the cell cycle activity. Hence, targeting cardiomyocyte proliferation is one of the potential therapeutic strategies for myocardial regeneration and repair. To achieve this, a deep understanding of the fundamental mechanisms involved in cardiomyocyte cell cycle as well as differences between neonatal and adult cardiomyocytes' cell cycle activity is required. This review focuses on the recent progress in understanding of cardiomyocyte cell cycle activity at different life stages viz., gestation, birth, and adulthood. The temporal expression/activities of major cell cycle activators (cyclins and CDKs), inhibitors (p21, p27, p57, p16, and p18), and cell-cycle-associated proteins (Rb, p107, and p130) in cardiomyocytes during gestation and postnatal life are described in this review. The influence of different transcription factors and microRNAs on the expression of cell cycle proteins is demonstrated. This review also deals major pathways (PI3K/AKT, Wnt/β-catenin, and Hippo-YAP) associated with cardiomyocyte cell cycle progression. Furthermore, the postnatal alterations in structure and cellular events responsible for the loss of cell cycle activity are also illustrated.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
39
|
Atmanli A, Domian IJ. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends Cell Biol 2016; 27:352-364. [PMID: 28007424 DOI: 10.1016/j.tcb.2016.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice.
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ibrahim John Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
40
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
41
|
Passer D, van de Vrugt A, Atmanli A, Domian IJ. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep 2016; 14:1662-1672. [PMID: 26876178 DOI: 10.1016/j.celrep.2016.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022] Open
Abstract
A hallmark of cardiac development is the formation of myocardial trabeculations exclusively from the luminal surface of the primitive heart tube. Although a number of genetic defects in the endocardium and cardiac jelly disrupt myocardial trabeculation, the role of cell polarization remains unclear. Here, we demonstrate that atypical protein kinase C iota (Prkci) and its interacting partners are localized primarily to the luminal side of myocardial cells of early murine embryonic hearts. A subset of these cells undergoes polarized cell division with the cell division plane perpendicular to the heart's lumen. Disruption of the cell polarity complex by targeted gene mutations results in aberrant mitotic spindle alignment, loss of polarized cardiomyocyte division, and loss of normal myocardial trabeculation. Collectively, these results suggest that, in response to inductive signals, Prkci and its downstream partners direct polarized cell division of luminal myocardial cells to drive trabeculation in the nascent heart.
Collapse
Affiliation(s)
- Derek Passer
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annebel van de Vrugt
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Ayhan Atmanli
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Ibrahim J Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
42
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
44
|
Ye B, Hou N, Xiao L, Xu Y, Boyer J, Xu H, Li F. APC controls asymmetric Wnt/β-catenin signaling and cardiomyocyte proliferation gradient in the heart. J Mol Cell Cardiol 2015; 89:287-96. [PMID: 26493106 PMCID: PMC4801005 DOI: 10.1016/j.yjmcc.2015.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/05/2015] [Accepted: 10/17/2015] [Indexed: 10/22/2022]
Abstract
AIMS Cardiomyocyte (CM) proliferation increases from the inner trabecular to outer compact myocardium in fetal hearts. We determined if canonical Wnt signaling has directional and graded activity to maintain this CM proliferation gradient. Moreover, we investigated whether perturbation of Wnt signaling intensity could modulate CM proliferative activity. METHODS AND RESULTS With confocal microscopy and image analysis we found that the Wnt effector, β-catenin, formed a signaling gradient which positively correlated with CM proliferative activity across ventricular walls of wild type (WT) embryos at embryonic day (E) 13.5 and 17.5. Negative Wnt regulators, adenomatosis polyposis coli (APC), had a reverse distribution pattern. The activation of canonical Wnt/β-catenin signaling by deletion of Apc in CMs led to ventricular hyperplasia with no adverse effects on fetal survival or CM differentiation. In contrast, cardiac deletion of β-catenin resulted in ventricular hypoplasia and fetal demise by E14.5. We further revealed differential distribution and regulation of three cyclin Ds in fetal hearts. Cyclin D1 was mainly expressed in endothelial cells. Although both cyclin D2 and D3 were present in CMs, only cyclin D2 was regulated by Wnt signaling perturbation: downregulation by β-catenin deletion and upregulation by Apc knockout. CONCLUSION Canonical Wnt signaling is asymmetrical and graded across ventricular walls and positively regulates CM proliferation via cyclin D2.
Collapse
Affiliation(s)
- Bo Ye
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Room 293, Dwan Variety Club Cardiovascular Research Center, 425 E River Pkwy, Minneapolis, MN 55455, USA
| | - Ning Hou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lu Xiao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yifan Xu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James Boyer
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Haodong Xu
- Department of Pathology and Laboratory Medicine, UCLA Center for the Health Science, Room 13-145E, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Room 293, Dwan Variety Club Cardiovascular Research Center, 425 E River Pkwy, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Cardona M, López JA, Serafín A, Rongvaux A, Inserte J, García-Dorado D, Flavell R, Llovera M, Cañas X, Vázquez J, Sanchis D. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS One 2015; 10:e0131411. [PMID: 26121671 PMCID: PMC4487935 DOI: 10.1371/journal.pone.0131411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/01/2015] [Indexed: 01/29/2023] Open
Abstract
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development.
Collapse
Affiliation(s)
- Maria Cardona
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Anna Serafín
- PCB-PRBB Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4–6, Torre R, 4ª planta, Barcelona, 08028, Spain
| | - Anthony Rongvaux
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520, United States of America
| | - Javier Inserte
- Institut de Recerca Hospital Universitari Vall d’Hebron—UAB, Passeig de la Vall d’Hebron, 119, Barcelona, 08035, Spain
| | - David García-Dorado
- Institut de Recerca Hospital Universitari Vall d’Hebron—UAB, Passeig de la Vall d’Hebron, 119, Barcelona, 08035, Spain
| | - Richard Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520, United States of America
| | - Marta Llovera
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Xavier Cañas
- PCB-PRBB Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4–6, Torre R, 4ª planta, Barcelona, 08028, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Daniel Sanchis
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
- * E-mail:
| |
Collapse
|
46
|
Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. ACTA ACUST UNITED AC 2015; 10:034105. [PMID: 25826196 DOI: 10.1088/1748-6041/10/3/034105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac malformations and disease are the leading causes of death in the United States in live-born infants and adults, respectively. In both of these cases, a decrease in the number of functional cardiomyocytes often results in improper growth of heart tissue, wound healing complications, and poor tissue repair. The field of cardiac tissue engineering seeks to address these concerns by developing cardiac patches created from a variety of biomaterial scaffolds to be used in surgical repair of the heart. These scaffolds should be fully degradable biomaterial systems with tunable properties such that the materials can be altered to meet the needs of both in vitro culture (e.g. disease modeling) and in vivo application (e.g. cardiac patch). Current platforms do not utilize both structural anisotropy and proper cell-matrix contacts to promote functional cardiac phenotypes and thus there is still a need for critically sized scaffolds that mimic both the structural and adhesive properties of native tissue. To address this need, we have developed a silk-based scaffold platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM composite scaffolds have tunable architectures, degradation rates, and mechanical properties. Subcutaneous implantation in rats demonstrated that addition of the cECM to aligned silk scaffold led to 99% endogenous cell infiltration and promoted vascularization of a critically sized scaffold (10 × 5 × 2.5 mm) after 4 weeks in vivo. In vitro, silk-cECM scaffolds maintained the HL-1 atrial cardiomyocytes and human embryonic stem cell-derived cardiomyocytes and promoted a more functional phenotype in both cell types. This class of hybrid silk-cECM anisotropic scaffolds offers new opportunities for developing more physiologically relevant tissues for cardiac repair and disease modeling.
Collapse
Affiliation(s)
- Whitney L Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|
47
|
The Phosphorylation State of GSK3β Serine 9 Correlated to the Development of Valproic Acid-Associated Fetal Cardiac Teratogenicity, Fetal VPA Syndrome, Rescued by Folic Acid Administration. Cardiovasc Toxicol 2015; 16:34-45. [DOI: 10.1007/s12012-015-9316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Li G, Plonowska K, Kuppusamy R, Sturzu A, Wu SM. Identification of cardiovascular lineage descendants at single-cell resolution. Development 2015; 142:846-57. [PMID: 25633351 DOI: 10.1242/dev.116897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcriptional profiles of cardiac cells derived from murine embryos and from mouse embryonic stem cells (mESCs) have primarily been studied within a cell population. However, the characterization of gene expression in these cells at a single-cell level might demonstrate unique variations that cannot be appreciated within a cell pool. In this study, we aimed to establish a single-cell quantitative PCR platform and perform side-by-side comparison between cardiac progenitor cells (CPCs) and cardiomyocytes (CMs) derived from mESCs and mouse embryos. We first generated a reference map for cardiovascular single cells through quantifying lineage-defining genes for CPCs, CMs, smooth muscle cells (SMCs), endothelial cells (EDCs), fibroblasts and mESCs. This panel was then applied against single embryonic day 10.5 heart cells to demonstrate its ability to identify each endocardial cell and chamber-specific CM. In addition, we compared the gene expression profile of embryo- and mESC-derived CPCs and CMs at different developmental stages and showed that mESC-derived CMs are phenotypically similar to embryo-derived CMs up to the neonatal stage. Furthermore, we showed that single-cell expression assays coupled with time-lapse microscopy can resolve the identity and the lineage relationships between progenies of single cultured CPCs. With this approach, we found that mESC-derived Nkx2-5(+) CPCs preferentially become SMCs or CMs, whereas single embryo-derived Nkx2-5(+) CPCs represent two phenotypically distinct subpopulations that can become either EDCs or CMs. These results demonstrate that multiplex gene expression analysis in single cells is a powerful tool for examining the unique behaviors of individual embryo- or mESC-derived cardiac cells.
Collapse
Affiliation(s)
- Guang Li
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karolina Plonowska
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rajarajan Kuppusamy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony Sturzu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA Cardiovascular Medicine Division, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA Cardiovascular Medicine Division, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Abstract
During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed.
Collapse
Affiliation(s)
- Daniela Später
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Bioscience, CVMD iMED, AstraZeneca, Pepparedsleden 1, Mölndal 43150, Sweden
| | - Emil M Hansson
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cardiology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| |
Collapse
|
50
|
Atmanli A, Hu D, Domian IJ. Molecular etching: a novel methodology for the generation of complex micropatterned growth surfaces for human cellular assays. Adv Healthc Mater 2014; 3:1759-64. [PMID: 24805162 PMCID: PMC4224634 DOI: 10.1002/adhm.201400010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/29/2014] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) is the non-cellular component of all tissues consisting of many different bioactive macromolecules including proteins, proteoglycans, glycoproteins and gradients of growth factors. It is a highly complex and dynamic structure that is subject to constant remodeling in vivo . The ECM not only provides essential structural support for tissues and cell layers but also modulates molecular and biomechanical signaling cues.[1 -4 ] ECM composition is tightly regulated during normal development and hemostasis and varies with tissue type as well as developmental stage. Hearts of different developmental stages have significant differences in ECM composition and elasticity.[5 , 6 ] Dysregulation of the ECM has also been shown to result in human aortic and connective tissue diseases.[7 ] In addition, ECM has been shown to control cell behavior and function through its elasticity, topography, and dimensionality. In vitro , culture surface stiffness has been shown to directly control the lineage commitment of mesenchymal stem cells.[8 , 9 ]
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
| | - Dongjian Hu
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
| | - Ibrahim J. Domian
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
- Harvard Stem Cell Institute 1350 Massachusetts Avenue Cambridge, MA 02138, USA
| |
Collapse
|