1
|
Keshet G, Bar S, Sarel-Gallily R, Yanuka O, Benvenisty N, Eldar-Geva T. Differentiation of uniparental human embryonic stem cells into granulosa cells reveals a paternal contribution to gonadal development. Stem Cell Reports 2023; 18:817-828. [PMID: 37001516 PMCID: PMC10147827 DOI: 10.1016/j.stemcr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Genomic imprinting underlies the mammalian requirement for sexual reproduction. Nonetheless, the relative contribution of the two parental genomes during human development is not fully understood. Specifically, a fascinating question is whether the formation of the gonad, which holds the ability to reproduce, depends on equal contribution from both parental genomes. Here, we differentiated androgenetic and parthenogenetic human pluripotent stem cells (hPSCs) into ovarian granulosa-like cells (GLCs). We show that in contrast to biparental and androgenetic cells, parthenogenetic hPSCs present a reduced capacity to differentiate into GLCs. We further identify the paternally expressed gene IGF2 as the most upregulated imprinted gene upon differentiation. Remarkably, while IGF2 knockout androgenetic cells fail to differentiate into GLCs, the differentiation of parthenogenetic cells supplemented with IGF2 is partly rescued. Thus, our findings unravel a surprising essentiality of genes that are only expressed from the paternal genome to the development of the female reproductive system.
Collapse
Affiliation(s)
- Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| | - Shiran Bar
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| | - Talia Eldar-Geva
- Reproductive Endocrinology and Genetics Unit, Division of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; The Hebrew University School of Medicine, Jerusalem, Israel.
| |
Collapse
|
2
|
Distinct Imprinting Signatures and Biased Differentiation of Human Androgenetic and Parthenogenetic Embryonic Stem Cells. Cell Stem Cell 2019; 25:419-432.e9. [DOI: 10.1016/j.stem.2019.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
|
3
|
Espejel S, Eckardt S, Harbell J, Roll GR, McLaughlin KJ, Willenbring H. Brief report: Parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells 2015; 32:1983-8. [PMID: 24740448 DOI: 10.1002/stem.1726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/27/2014] [Accepted: 03/16/2014] [Indexed: 01/03/2023]
Abstract
Parthenogenesis is the development of an oocyte without fertilization. Mammalian parthenogenetic (PG) embryos are not viable, but can develop into blastocysts from which embryonic stem cells (ESCs) have been derived in mouse and human. PG ESCs are frequently homozygous for alleles encoding major histocompatibility complex (MHC) molecules. MHC homozygosity permits much more efficient immune matching than MHC heterozygosity found in conventional ESCs, making PG ESCs a promising cell source for cell therapies requiring no or little immune suppression. However, findings of restricted differentiation and proliferation of PG cells in developmental chimeras have cast doubt on the potential of PG ESC derivatives for organ regeneration. To address this uncertainty, we determined whether PG ESC derivatives are effective in rescuing mice with lethal liver failure due to deficiency of fumarylacetoacetate hydrolase (Fah). In developmental chimeras generated by injecting wild-type PG ESCs into Fah-deficient blastocysts, PG ESCs differentiated into hepatocytes that could repopulate the liver, provide normal liver function, and facilitate long-term survival of adult mice. Moreover, after transplantation into adult Fah-deficient mice, PG ESC-derived hepatocytes efficiently engrafted and proliferated, leading to high-level liver repopulation. Our results show that--despite the absence of a paternal genome--PG ESCs can form therapeutically effective hepatocytes.
Collapse
Affiliation(s)
- Silvia Espejel
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California, USA; Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
4
|
Eckardt S, Dinger TC, Kurosaka S, Leu NA, Müller AM, McLaughlin KJ. In vivo and in vitro differentiation of uniparental embryonic stem cells into hematopoietic and neural cell types. Organogenesis 2012; 4:33-41. [PMID: 19279713 DOI: 10.4161/org.6123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/16/2008] [Indexed: 12/12/2022] Open
Abstract
The biological role of genomic imprinting in adult tissue is central to the consideration of transplanting uniparental embryonic stem (ES) cell-derived tissues. We have recently shown that both maternal (parthenogenetic/gynogenetic) and paternal (androgenetic) uniparental ES cells can differentiate, both in vivo in chimeras and in vitro, into adult-repopulating hematopoietic stem and progenitor cells. This suggests that, at least in some tissues, the presence of two maternal or two paternal genomes does not interfere with stem cell function and tissue homeostasis in the adult. Here, we consider implications of the contribution of uniparental cells to hematopoiesis and to development of other organ systems, notably neural tissue for which consequences of genomic imprinting are associated with a known bias in development and behavioral disorders. Our findings so far indicate that there is little or no limit to the differentiation potential of uniparental ES cells outside the normal developmental paradigm. As a potentially donor MHC-matching source of tissue, uniparental transplants may provide not only a clinical resource but also a unique tool to investigate aspects of genomic imprinting in adults.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research; New Bolton Center; University of Pennsylvania; Kennett Square, Pennsylvania USA
| | | | | | | | | | | |
Collapse
|
5
|
Gómez E, Gutiérrez-Adán A, Díez C, Bermejo-Alvarez P, Muñoz M, Rodriguez A, Otero J, Alvarez-Viejo M, Martín D, Carrocera S, Caamaño JN. Biological differences between in vitro produced bovine embryos and parthenotes. Reproduction 2008; 137:285-95. [PMID: 19036952 DOI: 10.1530/rep-08-0220] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parthenotes may represent an alternate ethical source of stem cells, once biological differences between parthenotes and embryos can be understood. In this study, we analyzed development, trophectoderm (TE) differentiation, apoptosis/necrosis, and ploidy in parthenotes and in vitro produced bovine embryos. Subsequently, using real-time PCR, we analyzed the expression of genes expected to underlie the observed differences at the blastocyst stage. In vitro matured oocytes were either fertilized or activated with ionomycin +6-DMAP and cultured in simple medium. Parthenotes showed enhanced blastocyst development and diploidy and reduced TE cell counts. Apoptotic and necrotic indexes did not vary, but parthenotes evidenced a higher relative proportion of apoptotic cells between inner cell mass and TE. The pluripotence-related POU5F1 and the methylation DNMT3A genes were downregulated in parthenotes. Among pregnancy recognition genes, TP-1 was upregulated in parthenotes, while PGRMC1 and PLAC8 did not change. Expression of p66(shc) and BAX/BCL2 ratio were higher, and p53 lower, in parthenotes. Among metabolism genes, SLC2A1 was downregulated, while AKR1B1, PTGS2, H6PD, and TXN were upregulated in parthenotes, and SLC2A5 did not differ. Among genes involved in compaction/blastulation, GJA1 was downregulated in parthenotes, but no differences were detected within ATP1A1 and CDH1. Within parthenotes, the expression levels of SLC2A1, TP-1, and H6PD, and possibly AKR1B1, resemble patterns described in female embryos. The pro-apoptotic profile is more pronounced in parthenotes than in embryos, which may differ in their way to channel apoptotic stimuli, through p66(shc) and p53 respectively, and in their mechanisms to control pluripotency and de novo methylation.
Collapse
Affiliation(s)
- Enrique Gómez
- Genética y Reproducción Animal, SERIDA, Asturias, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The derivation and study of human embryonic stem cell lines, despite their potential therapeutic usefulness, raise considerable ethical, religious, legal and political concerns because it inevitably leads to the destruction of viable embryos. In an attempt to bridge the division between ethical questions and potential scientific and medical benefits, considerable efforts have been devoted to the search for alternative sources of pluripotent cell lines. In this review we discuss the use of artificial parthenogenesis as a way to create entities, called parthenotes, that may represent an alternative ethical source for pluripotent cell lines. We describe the biological differences between parthenotes and embryos, in order to provide a rationale for the discussion on whether their use can be acceptable as a source of stem cells. We present data derived from animal models on the extent parthenogenetic stem cells are similar to biparental cell lines and discuss these aspects in the context of their extension to the human species. Finally, we present experiments recently carried out in our laboratory that allowed us to generate human parthenotes through artificial activation of human oocytes and to use them as a source for the derivation of parthenogenetic pluripotent cell lines.
Collapse
Affiliation(s)
- T A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, University of Milan, Milan, Italy.
| | | |
Collapse
|
7
|
Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 2008; 17:1008-19. [PMID: 18071366 DOI: 10.1038/cr.2007.102] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen, and the expression of ESC markers was as expected for alkaline phosphatase, octamer-binding transcription factor 4, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81, and there was absence of expression of negative markers such as stage-specific embryonic antigen 1. Expression of genes specific for different embryonic germ layers was detected from the embryoid bodies (EBs) of both hESC lines, suggesting their differentiation potential in vitro. However, in vivo, only hPES-1 formed teratoma consisting of all three embryonic germ layers (hPES-2 did not). Interestingly, after continuous proliferation for more than 100 passages, hPES-1 cells still maintained a normal 46 XX karyotype; hPES-2 displayed abnormalities such as chromosome translocation after long term passages. Short Tandem Repeat (STR) results demonstrated that the hPES lines were genetic matches with the egg donors, and gene imprinting data confirmed the parthenogenetic origin of these ES cells. Genome-wide SNP analysis showed a pattern typical of parthenogenesis. All of these results demonstrated the feasibility to isolate and establish human parthenogenetic ESC lines, which provides an important tool for studying epigenetic effects in ESCs as well as for future therapeutic interventions in a clinical setting.
Collapse
Affiliation(s)
- Qingyun Mai
- 1Reproductive Medical Center, the First Affiliated Hospital of SUMS University, Guangzhou 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dinger TC, Eckardt S, Choi SW, Camarero G, Kurosaka S, Hornich V, McLaughlin KJ, Müller AM. Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 2008; 26:1474-83. [PMID: 18369101 DOI: 10.1634/stemcells.2007-0877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uniparental zygotes with two paternal (androgenetic [AG]) or two maternal (gynogenetic [GG]; parthenogenetic [PG]) genomes are not able to develop into viable offspring but can form blastocysts from which embryonic stem cells (ESCs) can be derived. Although some aspects of the in vitro and in vivo differentiation potential of PG and GG ESCs of several species have been studied, the developmental capacity of AG ESCs is much less clear. Here, we investigate the potential of murine AG ESCs to undergo neural differentiation. We observed that AG ESCs differentiate in vitro into pan-neural progenitor cells (pnPCs) that further give rise to cells that express neuronal- and astroglial-specific markers. Neural progeny of in vitro-differentiated AG ESCs exhibited fidelity of expression of six imprinted genes analyzed, with the exception of Ube3a. Bisulfite sequencing for two imprinting control regions suggested that pnPCs predominantly maintained their methylation pattern. Following blastocyst injection of AG and biparental (normal fertilized [N]) ESCs, we found widespread and evenly distributed contribution of ESC-derived cells in both AG and N chimeric early fetal brains. AG and N ESC-derived cells isolated from chimeric fetal brains by fluorescence-activated cell sorting exhibited similar neurosphere-initiating cell frequencies and neural multilineage differentiation potential. Our results indicate that AG ESC-derived neural progenitor/stem cells do not differ from N neural progenitor/stem cells in their self-renewal and neural multilineage differentiation potential. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Timo C Dinger
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Robertson EJ, Conlon FL, Barth KS, Costantini F, Lee JJ. Use of embryonic stem cells to study mutations affecting postimplantation development in the mouse. CIBA FOUNDATION SYMPOSIUM 2007; 165:237-50; discussion 250-5. [PMID: 1516471 DOI: 10.1002/9780470514221.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The generation and analysis of insertional mutations that perturb early postimplantation development provide a means to identify genes required at this stage of embryogenesis. We have been studying two independently generated insertional mutations termed 413.d and H beta 58 that result in early postimplantation lethality. Each mutation is associated with a distinct phenotype. 413.d mutant embryos become profoundly abnormal around the time of gastrulation: no identifiable embryonic axis or mesodermal structures are formed. H beta 58 mutant embryos proceed further in development, forming a relatively normal anteroposterior axis before developmental arrest occurs. We isolated embryonic stem cell lines homozygous for each of these mutations and assessed their differentiation abilities and developmental potential in vitro and after their introduction into wild-type blastocysts. From these studies we conclude that the 413.d mutation acts in a non-cell-autonomous fashion: mutant cells appear capable of participating, in conjunction with wild-type cells, in the formation of derivatives of all three primary cell lineages of the embryo. H beta 58 mutant embryonic stem cells are clearly pluripotent but they appear to be more restricted in their developmental potential, suggesting that the H beta 58 gene product may be required by specific tissues of the embryo.
Collapse
Affiliation(s)
- E J Robertson
- Department of Genetics & Development, Columbia University College of Physicians & Surgeons, New York NY 10032
| | | | | | | | | |
Collapse
|
10
|
Yang F, Hao R, Kessler B, Brem G, Wolf E, Zakhartchenko V. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation. Reproduction 2007; 133:219-30. [PMID: 17244748 DOI: 10.1530/rep.1.01206] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.
Collapse
Affiliation(s)
- Feikun Yang
- Department of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich, Hackerstrasse 27, 85764 Oberschleissheim, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Lengerke C, Kim K, Lerou P, Daley GQ. Differentiation potential of histocompatible parthenogenetic embryonic stem cells. Ann N Y Acad Sci 2007; 1106:209-18. [PMID: 17360798 DOI: 10.1196/annals.1392.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem cells (ESCs) hold unique promise for the development of cell replacement therapies, but derivation of therapeutic products from ESCs is hampered by immunological barriers. Creation of HLA-typed ESC banks, or derivation of customized ESC lines by somatic cell nuclear transfer, have been envisioned for engineering histocompatible ESC-derived products. Proof of principle experiments in the mouse have demonstrated that autologous ESCs can be obtained via nuclear transfer and differentiated into transplantable tissues, yet nuclear transfer remains a technology with low efficiency. Parthenogenesis provides an additional means for deriving ESC lines. In parthenogenesis, artificial oocyte activation initiates development without sperm contribution and no viable offspring are produced in the absence of paternal gene expression. Development proceeds readily to the blastocyst stage, from which parthenogenetic ESC (pESC) lines can be derived with high efficiency. We have recently shown that when pESC lines are derived from hybrid mice, early recombination events produce heterozygosity at the major histocompatibility complex (MHC) loci in some of these lines, enabling the generation of histocompatible differentiated cells that can engraft immunocompetent MHC-matched mouse recipients. Here, we explore the differentiation potential of murine pESCs derived in our laboratory.
Collapse
Affiliation(s)
- Claudia Lengerke
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
12
|
Eckardt S, Leu NA, Bradley HL, Kato H, Bunting KD, McLaughlin KJ. Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes Dev 2007; 21:409-19. [PMID: 17322401 PMCID: PMC1804330 DOI: 10.1101/gad.1524207] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 11/25/2022]
Abstract
Parthenogenetic embryonic stem (ES) cells with two oocyte-derived genomes (uniparental) have been proposed as a source of autologous tissue for transplantation. The therapeutic applicability of any uniparental cell type is uncertain due to the consequences of genomic imprinting that in mammalian uniparental tissues causes unbalanced expression of imprinted genes. We transplanted uniparental fetal liver cells into lethally irradiated adult mice to test their capacity to replace adult hematopoietic tissue. Both maternal (gynogenetic) and paternal (androgenetic) derived cells conveyed long-term, multilineage reconstitution of hematopoiesis in recipients, with no associated pathologies. We also establish that uniparental ES cells can differentiate into transplantable hematopoietic progenitors in vitro that contribute to long-term hematopoiesis in recipients. Hematopoietic tissue in recipients maintained fidelity of parent-of-origin methylation marks at the Igf2/H19 locus; however, variability occurred in the maintenance of parental-specific methylation marks at other loci. In summary, despite genomic imprinting and its consequences on development that are particularly evident in the androgenetic phenotype, uniparental cells of both parental origins can form adult-transplantable stem cells and can repopulate an adult organ.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | - N. Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | - Heath L. Bradley
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hiromi Kato
- Institute of Advanced Technology, Kinki University, Kainan, Wakayama 642-0017, Japan
| | - Kevin D. Bunting
- Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Center for Stem Cell and Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - K. John McLaughlin
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| |
Collapse
|
13
|
Hikichi T, Wakayama S, Mizutani E, Takashima Y, Kishigami S, Van Thuan N, Ohta H, Bui HT, Thuy Bui H, Nishikawa SI, Wakayama T. Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer. Stem Cells 2006; 25:46-53. [PMID: 17008422 DOI: 10.1634/stemcells.2006-0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parthenogenesis is the process by which an oocyte develops into an embryo without being fertilized by a spermatozoon. Although such embryos lack the potential to develop to full term, they can be used to establish parthenogenetic embryonic stem (pES) cells for autologous cell therapy in females without needing to destroy normally competent embryos. Unfortunately, the capacity for further differentiation of these pES cells in vivo is very poor. In this study, we succeeded in improving the potential of pES cells using a nuclear transfer (NT) technique. The original pES cell nuclei were transferred into enucleated oocytes, and the resulting NT embryos were used to establish new NT-pES cell lines. We established 84 such lines successfully (78% from blastocysts, 12% from oocytes). All examined cell lines were positive for several ES cell markers and had a normal extent of karyotypes, except for one original pES cell line and its NT-pES cell derivatives, in which all nuclei were triploid. The DNA methylation status of the differentially methylated domain H19 and differentially methylated region IG did not change after NT. However, the in vivo and in vitro differentiation potentials of NT-pES cells were significantly (two to five times) better than the original pES cells, judged by the production of chimeric mice and by in vitro differentiation into neuronal and mesodermal cell lines. Thus, NT could be used to improve the potential of pES cells and may enhance that of otherwise poor-quality ES cells. It also offers a new tool for studying epigenetics.
Collapse
Affiliation(s)
- Takafusa Hikichi
- Laboratory for Genomic Reprogramming, Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Though a topic of medical interest for centuries, our understanding of vertebrate hematopoietic or "blood-forming" tissue development has improved greatly only in recent years and given a series of scientific and technical milestones. Key among these observations was the description of procedures that allowed the transplantation of blood-forming activity. Beyond this, other advances include the creation of a variety of knock-out animals (mice and more recently zebrafish), microdissection of embryonic and fetal blood-forming tissues, hematopoietic stem (HSC) and progenitor cell (HPC) colony-forming assays, the discovery of cytokines with defined hematopoietic activities, gene transfer technologies, and the description of lineage-specific surface antigens for the identification and purification of pluripotent and differentiated blood cells. The availability of both murine and human embryonic stem cells (ESC) and the delineation of in vitro systems to direct their differentiation have now been added to this analytical arsenal. Such tools have allowed researchers to interrogate the complex developmental processes behind both primitive (yolk sac or extraembryonic) and definitive (intraembryonic) hematopoietic tissue formation. Using ES cells, we hope to not only gain additional basic insights into hematopoietic development but also to develop platforms for therapeutic use in patients suffering from hematological disease. In this review, we will focus on points of convergence and divergence between murine and human hematopoiesis in vivo and in vitro, and use these observations to evaluate the literature regarding attempts to create hematopoietic tissue from embryonic stem cells, the pitfalls encountered therein, and what challenges remain.
Collapse
Affiliation(s)
- M William Lensch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
15
|
IMAHIE H, ASANO Y, TOYODA Y, SATO E. Pre- and Post-implantation Development of Parthenogenetic Embryos Induced by Progesterone, and Birth of Aggregation Chimeras with Diploids in Mice. J Reprod Dev 2002. [DOI: 10.1262/jrd.48.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Yuzo ASANO
- Safety Research Laboratory, Tanabe Seiyaku Co. Ltd
| | - Yutaka TOYODA
- Obihiro University of Agriculture and Veterinary Medicine
| | - Eimei SATO
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
16
|
The use of chimeric mice in studying the effects of genomic imprinting. Russ J Dev Biol 2000. [DOI: 10.1007/bf02758910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Affiliation(s)
- J D West
- Department of Obstetrics and Gynaecology, University of Edinburgh, United Kingdom
| |
Collapse
|
18
|
|
19
|
Abstract
Genomic imprinting in mammals results in the unequal expression of the two parental alleles of specific genes. The existence of imprinting in the mouse emerged from nuclear transplantation studies and from the abnormal phenotypes associated with uniparental inheritance of particular chromosome segments. Over the past 5 years, 20 or so imprinted genes have been identified. This has emphasized the important roles played by some imprinted genes in development, permitted a description of the epigenetic properties associated with imprinting, and provided the first insights into the regulation of imprinting. In this article, we discuss the generation of experimental material in which imprinting effects can be analyzed, review the properties of imprinted genes, and discuss how to examine them using state-of-the-art techniques. Finally, we consider the means by which new imprinted genes can be identified.
Collapse
Affiliation(s)
- G Kelsey
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Tucker KL, Beard C, Dausmann J, Jackson-Grusby L, Laird PW, Lei H, Li E, Jaenisch R. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev 1996; 10:1008-20. [PMID: 8608936 DOI: 10.1101/gad.10.8.1008] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Embryonic stem (ES) cells homozygous for a disruption of the DNA (cytosine-5)-methyltransferase gene (Dnmt) proliferate normally with their DNA highly demethylated but die upon differentiation. Expression of the wild-type Dnmt cDNA in mutant male ES cells caused an increase in methylation of bulk DNA and of the Xist and Igf2 genes to normal levels, but did not restore the methylation of the imprinted genes H19 and Igf2r. These cells differentiated normally in vitro and contributed substantially to adult chimeras. While the Xist gene was not expressed in the remethylated male ES cells, no restoration of the normal expression profile was seen for H19, Igf2r, or Igf2. This indicates that ES cells can faithfully reestablish normal methylation and expression patterns of nonimprinted genes but lack the ability to restore those of imprinted genes. Full restoration of monoallelic methylation and expression was imposed on H19, Igf2, and Igf2r upon germ-line transmission. These results are consistent with the presence of distinct de novo DNA methyltransferase activities during oogenesis and spermatogenesis, which specifically recognize imprinted genes but are absent in the postimplantation embryo and in ES cells.
Collapse
Affiliation(s)
- K L Tucker
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA. Genomic imprinting and the differential roles of parental genomes in brain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 92:91-100. [PMID: 8861727 DOI: 10.1016/0165-3806(95)00209-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Certain genes are expressed either from the maternal or the paternal genome as a result of genomic imprinting, a process that confers functional differences on parental genomes during mammalian development. In this study we focus on the cumulative effects of imprinted genes on brain development by examining the fate of androgenetic (Ag: duplicated paternal genome) and parthenogenetic/gynogenetic (Pg/Gg: duplicated maternal genome) cells in chimeric embryos. Striking cell autonomous differences in the phenotypic properties of the uniparental cells were observed. Ag cells contributed substantially to the hypothalamic structures and not the cortex. By contrast, Pg/Gg cells contributed substantially to the cortex, striatum and hippocampus but not to the hypothalamic structures. Furthermore growth of the brain was enhanced by Pg/Gg and retarded by Ag cells. We propose that genomic imprinting may be responsible for a change in strategy controlling brain development in mammals. In particular, genomic imprinting may have facilitated a rapid non-linear expansion of the brain, especially the cortex, during development over evolutionary time.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, UK
| | | | | | | | | |
Collapse
|
22
|
Abstract
In mice, parthenogenetic embryos die at the early postimplantation stage as a result of developmental requirements for paternally imprinted genes, particularly for formation of extraembryonic tissues. Chimaeric parthenogenetic<==>normal mice are viable, however, due to non-random differences in distribution of their two cell types. Species differences in imprinting patterns in embryo and extra-embryonic tissues mean that there are uncertainties in extrapolating these experimental studies to humans. Here, however, we demonstrate that parthenogenetic chimaerism can indeed result in viable human offspring, and suggest possible mechanisms of origin for this presumably rare event.
Collapse
Affiliation(s)
- L Strain
- University of Edinburgh, Department of Medicine, Western General Hospital, UK
| | | | | | | |
Collapse
|
23
|
Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, Viville S, Barton SC, Ishino F, Surani MA. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 1995; 11:52-9. [PMID: 7550314 DOI: 10.1038/ng0995-52] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Parthenogenesis in the mouse is embryonic lethal partly because of imprinted genes that are expressed only from the paternal genome. In a systematic screen using subtraction hybridization between cDNAs from normal and parthenogenetic embryos, we initially identified two apparently novel imprinted genes, Peg1 and Peg3. Peg1 (paternally expressed gene 1) or Mest, the first imprinted gene found on the mouse chromosome 6, may contribute to the lethality of parthenogenones and of embryos with a maternal duplication for the proximal chromosome 6. Peg1/Mest is widely expressed in mesodermal tissues and belongs to the alpha/beta hydrolase fold family. A similar approach with androgenones can be used to identify imprinted genes that are expressed from the maternal genome only.
Collapse
Affiliation(s)
- T Kaneko-Ishino
- Gene Research Center, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Distribution of androgenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:484-493. [DOI: 10.1007/bf00360856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1995] [Accepted: 04/26/1995] [Indexed: 10/26/2022]
|
25
|
Fundele R, Herzfeld A, Li LL, Barton SC, Surani MA. Proliferation and differentiation of androgenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:494-501. [DOI: 10.1007/bf00360857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1995] [Accepted: 05/11/1995] [Indexed: 10/26/2022]
|
26
|
Tissue specific loss of proliferative capacity of parthenogenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:436-443. [PMID: 28305863 DOI: 10.1007/bf00360851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1994] [Accepted: 01/05/1995] [Indexed: 10/26/2022]
Abstract
Parthenogenetic cells are lost from fetal chimeras. This may be due to decreased proliferative potential. To address this question, we have made use of combined cell lineage and cell proliferation analysis. Thus, the incorporation of bromodeoxyuridine in S-phase was determined for both parthenogenetic and normal cells in several tissues of fetal day 13 and 17 chimeras. A pronounced reduction of bromodesoxyuridine incorporation by parthenogenetic cells at both developmental stages was only observed in cartilage. In brain, skeletal muscle, heart and intestinal epithelium, this reduction was either less pronounced or observed only at one of the developmental stages analysed. No difference between parthenogenetic and normal cells was observed in epidermis and ganglia. Our results show that a loss of proliferative potential of parthenogenetic cells during fetal development contributes to their rapid elimination in some tissues. The analysis of the fate of parthenogenetic cells in skeletal muscle and cartilage development demonstrated different selection mechanisms in these tissues. In skeletal muscle, parthenogenetic cells were largely excluded from the myogenic lineage proper by early post-midgestation. In primary hyaline cartilage, parthenogenetic cells persisted into adulthood but were lost from cartilages that undergo ossification during late fetal development.
Collapse
|
27
|
Latham KE, Rambhatla L. Expression of X-linked genes in androgenetic, gynogenetic, and normal mouse preimplantation embryos. DEVELOPMENTAL GENETICS 1995; 17:212-22. [PMID: 8565328 DOI: 10.1002/dvg.1020170306] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A quantitative RT-PCR approach has been used to examine the expression of a number of X-linked genes during preimplantation development of normal mouse embryos and in androgenetic and gynogenetic mouse embryos. The data reveal moderately reduced expression of the Prps1, Hprt, and Pdha1 mRNAs in androgenetic eight-cell and morula stage embryos, but not in androgenetic blastocysts. Pgk1 mRNA abundance was severely reduced in androgenones at the eight-cell and morula stages and remained reduced, but to a lesser degree, in androgenetic blastocysts. These data indicate that paternally inherited X chromosomes are at least partially repressed in androgenones, as they are in normal XX embryos, and that the degree of this repression is chromosome position-dependent or gene-dependent. Gynogenetic embryos expressed elevated amounts of some mRNAs at the morula and blastocyst stages, indicative of a delay in dosage compensation that may be chromosome position-dependent. The Xist RNA was expressed at a greater abundance in androgenones than in gynogenones at the eight-cell and morula stages, consistent with previous studies. Xist expression was observed in both androgenones and gynogenones at the blastocyst stage. We conclude that the developmental arrest in early androgenones may be, in part, due to reduced expression of essential X-linked genes, particularly those near the X inactivation center, whereas the developmental defects of gynogenones and parthenogenones, by contrast, may be partially due to overexpression of X-linked genes in extraembryonic tissues, possibly those farthest away from the X inactivation center.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
28
|
Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev 1994; 8:2953-63. [PMID: 8001817 DOI: 10.1101/gad.8.24.2953] [Citation(s) in RCA: 415] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Murine embryos that inherit a nonfunctional insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor (Igf2r) gene from their fathers are viable and develop normally into adults. However, the majority of mice inheriting the same mutated allele from their mothers die around birth, as a consequence of major cardiac abnormalities. These mice do not express IGF2R in their tissues, are 25-30% larger than their normal siblings, have elevated levels of circulating IGF2 and IGF-binding proteins, and exhibit a slight kink in their tails. These results show that Igf2r is paternally imprinted and reveal that the receptor is crucial for regulating normal fetal growth, circulating levels of IGF2, and heart development.
Collapse
Affiliation(s)
- M M Lau
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | | | | | | | |
Collapse
|
29
|
Sturm KS, Flannery ML, Pedersen RA. Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos. Dev Dyn 1994; 201:11-28. [PMID: 7803844 DOI: 10.1002/aja.1002010103] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Parthenogetically activated, diploid mouse oocytes can develop to midgestation stages in utero. However, even these advanced parthenogenones appear to die because of much reduced trophoblast and yolk sac development. Previous studies have compared the general features of parthenogenetic and androgenetic development and determined the fate of uniparental cells in chimeras with normal embryos. These studies led to the concept of genomic imprinting as the cause for developmental failure when either the maternal or the paternal genome is duplicated, with the corresponding deficiency of the other. Genomic imprinting appears to arise during gametogenesis and to act through dosage effects in a set of imprinted genes, whose expression depends on their parental origin. In this study we undertook a more detailed morphological analysis of parthenogenetic development in the mouse and established a classification system to quantify the developmental extent of parthenogenones. We found that the failure of parthenogenones occurred at different times during early postimplantation development, generating a spectrum of concepti which had developed to different extents, with only a small fraction of the embryos reaching advanced somite stages. In all parthenogenones differentiation and proliferation of the trophectoderm and primitive endoderm lineages (both extraembryonic) was abnormal, and in all, even the best-developed parthenogenones, we observed similar deficiencies in the embryonic lineages, especially the mesoderm. Common to all abnormally developed lineages was that the proportion of undifferentiated precursor cells was much reduced, while their differentiated descendants were relatively abundant. We propose, therefore, that the failure of parthenogenones to develop to term is due to abnormal regulation of differentiation and proliferation in both embryonic and extraembryonic lineages. In this hypothesis, the apparent tissue specific defects observed in parthenogenones arise as a consequence of the functional importance of certain tissues (like the trophoblast) early in development. The spectrum of parthenogenones thus appears to reflect critical events in early development, whose regulation are affected by genomic imprinting.
Collapse
Affiliation(s)
- K S Sturm
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750
| | | | | |
Collapse
|
30
|
Allen ND, Barton SC, Hilton K, Norris ML, Surani MA. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 1994; 120:1473-82. [PMID: 8050357 DOI: 10.1242/dev.120.6.1473] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A detailed analysis of the developmental potential of parthenogenetic embryonic stem cells (PGES) was made in vivo and in vitro, and a comparison was made with the development of cells from parthenogenetic embryos (PG). In vivo, in chimeras with normal host cells (N), PGES cells showed a restricted tissue distribution consistent with that of PG cells, suggesting faithful imprinting in PGES cells with respect to genes involved in lineage allocation and differentiation. Restricted developmental potential was also observed in teratomas formed by ectopic transfer under the kidney capsule. In contrast, the classic phenotype of growth retardation normally observed in PG<==>N chimeras was not seen, suggesting aberrant regulation in PGES cells of genes involved in growth regulation. We also analysed the expression of known imprinted genes after ES cell differentiation. Igf2, H19 and Igf2r were all appropriately expressed in the PGES derived cells following induction of differentiation in vitro with all-trans retinoic acid or DMSO, when compared with control (D3) and androgenetic ES cells (AGES). Interestingly, H19 was found to be expressed at high levels following differentiation of the AGES cells. Due to the unexpected normal growth regulation of PGES<==>N chimeras we also examined Igf2 expression in PGES derived cells differentiated in vivo and found that this gene was still repressed. Our studies show that PGES cells provide a valuable in vitro model system to study the effects of imprinting on cell differentiation and they also provide invaluable material for extensive molecular studies on imprinted genes. In addition, the aberrant growth phenotype observed in chimeras has implications for mechanisms that regulate the somatic establishment and maintenance of some imprints. This is of particular interest as aberrant imprinting has recently been invoked in the etiology of some human diseases.
Collapse
Affiliation(s)
- N D Allen
- AFRC Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
31
|
Fundele RH, Surani MA. Experimental embryological analysis of genetic imprinting in mouse development. DEVELOPMENTAL GENETICS 1994; 15:515-22. [PMID: 7834910 DOI: 10.1002/dvg.1020150610] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R H Fundele
- Institut für Biologie III, Universität Freiburg, Germany
| | | |
Collapse
|
32
|
Affiliation(s)
- N De-Groot
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
33
|
James R, Flockhart JH, Keighren M, West JD. Quantitative analysis of mid-gestation mouse aggregation chimaeras: non-random composition of the placenta. ACTA ACUST UNITED AC 1993; 202:296-305. [DOI: 10.1007/bf00363218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1992] [Accepted: 02/04/1993] [Indexed: 10/26/2022]
|
34
|
Genomic Imprinting in the Regulation of Mammalian Development. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1566-3116(08)60027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Jägerbauer EM, Fraser A, Herbst EW, Kothary R, Fundele R. Parthenogenetic stem cells in postnatal mouse chimeras. Development 1992; 116:95-102. [PMID: 1483398 DOI: 10.1242/dev.116.1.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability of parthenogenetic (pg) cells to contribute to proliferating stem cell populations of postnatal aggregation chimeras was investigated. Using DNA in situ analysis, pg participation was observed in highly regenerative epithelia of various regions of the gastrointestinal tract, e.g., stomach, duodenum and colon, in the epithelia of tongue and uterus and in the epidermis. Pg cells also contributed to the epithelium of the urinary bladder, which is characterized by a relatively slow cellular turnover. Using a sensitive proliferation marker to determine division rate of pg and normal (wt) cells in tissues of a 24-day-old chimera, no significant differences between pg and fertilized cells were observed. However, in colon and uterus of a pg <==> wt chimera aged 101 days, a significant loss of proliferative capacity of pg cells was found. In the colon, this loss of proliferative potential was accompanied by an altered morphology of pg crypts. In general, they were situated at the periphery of the epithelium and lacked access to the lumen, with consequent cystic enlargement and flattened epithelium. No obvious morphological changes were observed in the pg-derived areas of the uterine epithelium of this chimera. Our results provide evidence that pg cells can persist as proliferating stem cells in various tissues of early postnatal chimeras. They suggest that pg-derived stem cells may cease to proliferate in restricted areas of the gastrointestinal tract and in the uterine epithelium of pg <==> wt chimeras of advanced age.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E M Jägerbauer
- Institut für Biologie III, Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Ng YK, Iannaccone PM. Experimental chimeras: current concepts and controversies in normal development and pathogenesis. Curr Top Dev Biol 1992; 27:235-74. [PMID: 1424764 DOI: 10.1016/s0070-2153(08)60536-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y K Ng
- Department of Pathology, Northwestern University, Chicago, Illinois 60611
| | | |
Collapse
|
37
|
Affiliation(s)
- W Reik
- Department of Molecular Embryology, Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| |
Collapse
|
38
|
Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 1991; 351:667-70. [PMID: 2052093 DOI: 10.1038/351667a0] [Citation(s) in RCA: 224] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mouse embryos with duplications of whole maternal (parthenogenetic and gynogenetic) or paternal (androgenetic) genomes show reciprocal phenotypes and do not develop to term. Genetic complementation has identified the distal region of chromosome 7 (Chr 7) as one of the regions for which both a maternal and paternal chromosome copy are essential for normal development, presumably because of the presence of imprinted genes whose expression is dependent on their parental origin. Embryos with the maternal duplication and paternal deficiency of distal Chr 7 are growth retarded and die around day 16 of gestation; the reciprocal paternal duplication embryos die at an unidentified earlier stage. We report here the incorporation of cells with the paternal duplication into chimaeras, resulting in a striking growth enhancement of the embryos. One gene located on mouse distal Chr 7 (ref. 5) is the insulin-like growth factor 2 (Igf2) gene, an embryonic mitogen. In embryos with the maternal duplication of distal Chr 7, the two maternal alleles of the Igf2 gene are repressed. The presence of two paternal alleles of this gene in many cells is probably responsible for the growth enhancement observed in chimaeras. We propose that there are other imprinted genes in this Chr 7 region. We also compare the imprinting of this subgenomic region with phenotypes resulting from the duplication of the whole parental genome in parthenogenones and androgenones.
Collapse
Affiliation(s)
- A C Ferguson-Smith
- Department of Molecular Embryology, AFRC Institute of Animal Physiology & Genetics Research, Babraham, Cambridge, UK
| | | | | | | | | |
Collapse
|
39
|
Gordon JW, Bradbury MW. Genomic imprinting: a gene regulatory phenomenon with important implications for micromanipulation-assisted in vitro fertilization (IVF). JOURNAL OF IN VITRO FERTILIZATION AND EMBRYO TRANSFER : IVF 1991; 8:5-14. [PMID: 2016564 DOI: 10.1007/bf01131585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J W Gordon
- Molecular Biology, Mt. Sinai Medical Center, New York, New York 10029
| | | |
Collapse
|
40
|
Ito M, Kaneko-Ishino T, Ishino F, Matsuhashi M, Yokoyama M, Katsuki M. Fate of haploid parthenogenetic cells in mouse chimeras during development. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1991; 257:178-83. [PMID: 1990050 DOI: 10.1002/jez.1402570206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The developmental capability of haploid parthenogenetic cells was investigated by studies on haploid parthenogenetic in equilibrium fertilized mouse chimeras. Two chimeras were born. One female chimera was smaller at birth and grew slower than its littermates. The distribution of haploid-derived cells in the chimeras was analyzed 11 months after their birth. Cells derived from haploid embryos were found only in the brain, eyes, pigment cells in hair follicles, and spleen, in which they constituted 30%, 20%, 10%, and less than 5%, respectively, of the cells. The correlation between the parthenogenetic contribution to the brain and growth retardation is discussed. All of the cells examined in these chimeric organs (brain and eyes) contained a diploid amount of DNA, suggesting that diploidization of the haploid parthenogenetic cells occurred during development. Possibly, the haploid state is not sufficient for cell growth, even in chimeras with fertilized embryos.
Collapse
Affiliation(s)
- M Ito
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Howlett SK. Genomic imprinting and nuclear totipotency during embryonic development. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 127:175-92. [PMID: 1880005 DOI: 10.1016/s0074-7696(08)60694-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S K Howlett
- Department of Molecular Embryology, Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, England
| |
Collapse
|
42
|
Gardner RL, Barton SC, Surani MA. Use of triple tissue blastocyst reconstitution to study the development of diploid parthenogenetic primitive ectoderm in combination with fertilization-derived trophectoderm and primitive endoderm. Genet Res (Camb) 1990; 56:209-22. [PMID: 2272512 DOI: 10.1017/s001667230003531x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diploid mouse conceptuses lacking a paternal genome can form morphologically normal but small fetuses of up to 25 somites, but they invariably fail to develop beyond mid-gestation. Such conceptuses differ from normal most notably in the poor development of extra-embryonic tissues which are largely of trophectodermal and primitive endodermal origin. However, it is not clear whether the demise of diploid parthenogenetic (P) or gynogenetic (G) conceptuses is attributable entirely to the defective development of these two tissues or whether differentiation of the primitive ectoderm, the precursor of the foetus, extra-embryonic mesoderm and amnion, is also impaired by the absence of a paternal genome. Therefore, a new blastocyst reconstitution technique was used which enabled primitive ectoderm from P blastocysts to be combined with primitive endoderm and trophectoderm from fertilization-derived (F) blastocysts. One third of the 'triple tissue' reconstituted blastocysts that implanted yielded foetuses. However, all foetuses recovered on the 11th or 12th day of gestation were small and, with one exception, either obviously retarded or arrested in development. The exception was a living 44 somite specimen which is the most advanced P foetus yet recorded. Foetuses were invariably degenerating in conceptuses recovered on the 13th day. In contrast, at least 16% of control reconstituted blastocysts with primitive ectoderm as well as primitive endoderm and trophectoderm of F origin developed normally on the 13th day of gestation or to term. Hence, the presence of a paternal genome seems to be essential for normal differentiation of all 3 primary tissues of the mouse blastocyst. The P foetuses that developed from reconstituted blastocysts were so closely invested by their membranes that they often showed abnormal flexure of the posterior region of the body. Several also showed a deficiency of allantoic tissue. Therefore, the possibility that the defect in development of P primitive ectoderms resided in their extra-embryonic tissues was investigated by analysing a series of chimaeras produced by injecting them into intact F blastocysts. The foregoing anomalies were not discernible even when P cells made a large contribution to the extra-embryonic mesoderm or amnion plus umbilical cord. Furthermore, selection against P cells was no greater in extra-embryonic derivatives of the primitive ectoderm than in the foetus itself.
Collapse
Affiliation(s)
- R L Gardner
- Imperial Cancer Research Fund, Department of Zoology, Oxford
| | | | | |
Collapse
|
43
|
Ishino F, Kaneko-Ishino T, Ito M, Matsuhashi M, Yokoyama M, Katsuki M. Developmental Potential of Haploid-derived Parthenogenetic Cells in Mouse Chimeric Embryos1. (haploid/parthenogenesis/chimeric embryo/embryogenesis/maternal genome). Dev Growth Differ 1990. [DOI: 10.1111/j.1440-169x.1990.00139.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Surani MA, Allen ND, Barton SC, Fundele R, Howlett SK, Norris ML, Reik W. Developmental consequences of imprinting of parental chromosomes by DNA methylation. Philos Trans R Soc Lond B Biol Sci 1990; 326:313-27. [PMID: 1968667 DOI: 10.1098/rstb.1990.0014] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genomic imprinting by epigenetic modifications, such as DNA methylation, confers functional differences on parental chromosomes during development so that neither the male nor the female genome is by itself totipotential. We propose that maternal chromosomes are needed at the time when embryonic cells are totipotential or pluripotential, but paternal chromosomes are probably required for the proliferation of progenitor cells of differentiated tissues. Selective elimination or proliferation of embryonic cells may occur if there is an imbalance in the parental origin of some alleles. The inheritance of repressed and derepressed chromatin structures probably constitutes the initial germ-line-dependent 'imprints'. The subsequent modifications, such as changes in DNA methylation during early development, will be affected by the initial inheritance of epigenetic modifications and by the genotype-specific modifier genes. A significant number of transgene inserts are prone to reversible methylation imprinting so that paternally transmitted transgenes are undermethylated, whereas maternal transmission results in hypermethylation. Hence, allelic differences in epigenetic modifications can affect their potential for expression. The germ line evidently reverses the previously acquired epigenetic modifications before the introduction of new modifications. Errors in the reversal process could result in the transmission of epigenetic modifications to subsequent generation(s) with consequent cumulative phenotypic and grandparental effects.
Collapse
Affiliation(s)
- M A Surani
- Department of Molecular Embryology, AFRC Institute of Animal Physiology and Genetics Research, Baraham, Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|