1
|
Khan S, Shen M, Bhurke A, Alessio A, Arora R. Analysis pipeline to quantify uterine gland structural variations. Dev Dyn 2024. [PMID: 39543444 DOI: 10.1002/dvdy.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Technical advances in whole tissue imaging and clearing have allowed 3D reconstruction of exocrine uterine glands deep-seated in the endometrium. However, there are limited gland structure analysis platforms to analyze these imaging data sets. Here, we present a pipeline for segmenting and analyzing uterine gland shape. RESULTS Using our segmentation methodology, we derive metrics to describe gland length, shape, and branching patterns. We then quantify gland behavior with respect to organization around the embryo and proximity of each gland to the uterine lumen. We apply this image analysis pipeline to uterine glands at the peri-implantation time points of a mouse pregnancy. Our analysis reveals that at the time of embryo or egg entry into the uterus, glands show changes in length, tortuosity, and proximity to the uterine lumen while gland branch number stays the same. Eventually, these shape changes aid in reorganization of the glands around the embryo implantation site. We further apply our analysis pipeline to human and guinea pig uterine glands, extending feasibility to other mammalian species. CONCLUSION This work serves as a resource for researchers to extract quantitative and reproducible morphological features from three-dimensional uterine gland images to reveal insights about functional and structural patterns.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Aishwarya Bhurke
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Adam Alessio
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Rolfe SM, Mao D, Maga AM. Streamlining Asymmetry Quantification in Fetal Mouse Imaging: A Semi-Automated Pipeline Supported by Expert Guidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621187. [PMID: 39554050 PMCID: PMC11565955 DOI: 10.1101/2024.10.31.621187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Asymmetry is a key feature of numerous developmental disorders and in phenotypic screens is often used as a readout for environmental or genetic perturbations to normal development. A better understanding of the genetic basis of asymmetry and its relationship to disease susceptibility will help unravel the complex genetic and environmental factors and their interactions that increase risk in a range of developmental disorders. Large-scale imaging datasets offer opportunities to work with sample sizes needed to detect and quantify differences in morphology beyond severe deformities while also posing challenges to manual phenotyping protocols. In this work, we introduce a semi-automated open-source workflow to quantify abnormal asymmetry of craniofacial structures that integrates expert anatomical knowledge. We apply this workflow to explore the role of genes contributing to abnormal asymmetry by deep phenotyping 3D fetal microCT images from knockout strains acquired as part of the Knockout Mouse Phenotyping Program (KOMP2). Four knockout strains: Ccdc186, Acvr2a, Nhlh1, and Fam20c were identified with highly significant asymmetry in craniofacial regions, making them good candidates for further analysis into their potential roles in asymmetry and developmental disorders.
Collapse
Affiliation(s)
- S M Rolfe
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - D Mao
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - A M Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Henderson DJ, Alqahtani A, Chaudhry B, Cook A, Eley L, Houyel L, Hughes M, Keavney B, de la Pompa JL, Sled J, Spielmann N, Teboul L, Zaffran S, Mill P, Liu KJ. Beyond genomic studies of congenital heart defects through systematic modelling and phenotyping. Dis Model Mech 2024; 17:dmm050913. [PMID: 39575509 PMCID: PMC11603121 DOI: 10.1242/dmm.050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024] Open
Abstract
Congenital heart defects (CHDs), the most common congenital anomalies, are considered to have a significant genetic component. However, despite considerable efforts to identify pathogenic genes in patients with CHDs, few gene variants have been proven as causal. The complexity of the genetic architecture underlying human CHDs likely contributes to this poor genetic discovery rate. However, several other factors are likely to contribute. For example, the level of patient phenotyping required for clinical care may be insufficient for research studies focused on mechanistic discovery. Although several hundred mouse gene knockouts have been described with CHDs, these are generally not phenotyped and described in the same way as CHDs in patients, and thus are not readily comparable. Moreover, most patients with CHDs carry variants of uncertain significance of crucial cardiac genes, further complicating comparisons between humans and mouse mutants. In spite of major advances in cardiac developmental biology over the past 25 years, these advances have not been well communicated to geneticists and cardiologists. As a consequence, the latest data from developmental biology are not always used in the design and interpretation of studies aimed at discovering the genetic causes of CHDs. In this Special Article, while considering other in vitro and in vivo models, we create a coherent framework for accurately modelling and phenotyping human CHDs in mice, thereby enhancing the translation of genetic and genomic studies into the causes of CHDs in patients.
Collapse
Affiliation(s)
- Deborah J. Henderson
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrew Cook
- University College London, Zayed Centre for Research, London WC1N 1DZ, UK
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Lucile Houyel
- Congenital and Pediatric Cardiology Unit, M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Marina Hughes
- Cardiology Department, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - John Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto M5G 1XS, Canada. Department of Medical Biophysics, University of Toronto, Toronto M5G 1XS, Canada
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell, Oxfordshire OX11 0RD, UK
| | - Stephane Zaffran
- Aix Marseille Université, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France
| | - Pleasantine Mill
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen J. Liu
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
4
|
Zarate YA, Bosanko K, Derar N, Fish JL. Abnormalities in pharyngeal arch-derived structures in SATB2-associated syndrome. Clin Genet 2024; 106:209-213. [PMID: 38693682 PMCID: PMC11216868 DOI: 10.1111/cge.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
SATB2-associated syndrome (SAS, glass syndrome, OMIM#612313) is a neurodevelopmental autosomal dominant disorder with frequent craniofacial abnormalities including palatal and dental anomalies. To assess the role of Satb2 in craniofacial development, we analyzed mutant mice at different stages of development. Here, we show that Satb2 is broadly expressed in early embryonic mouse development including the mesenchyme of the second and third arches. Satb2-/- mutant mice exhibit microglossia, a shortened lower jaw, smaller trigeminal ganglia, and larger thyroids. We correlate these findings with the detailed clinical phenotype of four individuals with SAS and remarkable craniofacial phenotypes with one requiring mandibular distraction in childhood. We conclude that the mouse and patient data presented support less well-described phenotypic aspects of SAS including mandibular morphology and thyroid anatomical/functional issues.
Collapse
Affiliation(s)
- Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, Kentucky, USA
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katherine Bosanko
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nada Derar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
5
|
Roston RA, Whikehart SM, Rolfe SM, Maga M. Morphological simulation tests the limits on phenotype discovery in 3D image analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601430. [PMID: 39005442 PMCID: PMC11244899 DOI: 10.1101/2024.06.30.601430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In the past few decades, advances in 3D imaging have created new opportunities for reverse genetic screens. Rapidly growing datasets of 3D images of genetic knockouts require high-throughput, automated computational approaches for identifying and characterizing new phenotypes. However, exploratory, discovery-oriented image analysis pipelines used to discover these phenotypes can be difficult to validate because, by their nature, the expected outcome is not known a priori . Introducing known morphological variation through simulation can help distinguish between real phenotypic differences and random variation; elucidate the effects of sample size; and test the sensitivity and reproducibility of morphometric analyses. Here we present a novel approach for 3D morphological simulation that uses open-source, open-access tools available in 3D Slicer, SlicerMorph, and Advanced Normalization Tools in R (ANTsR). While we focus on diffusible-iodine contrast-enhanced micro-CT (diceCT) images, this approach can be used on any volumetric image. We then use our simulated datasets to test whether tensor-based morphometry (TBM) can recover our introduced differences; to test how effect size and sample size affect detectability; and to determine the reproducibility of our results. In our approach to morphological simulation, we first generate a simulated deformation based on a reference image and then propagate this deformation to subjects using inverse transforms obtained from the registration of subjects to the reference. This produces a new dataset with a shifted population mean while retaining individual variability because each sample deforms more or less based on how different or similar it is from the reference. TBM is a widely-used technique that statistically compares local volume differences associated with local deformations. Our results showed that TBM recovered our introduced morphological differences, but that detectability was dependent on the effect size, the sample size, and the region of interest (ROI) included in the analysis. Detectability of subtle phenotypes can be improved both by increasing the sample size and by limiting analyses to specific body regions. However, it is not always feasible to increase sample sizes in screens of essential genes. Therefore, methodical use of ROIs is a promising way to increase the power of TBM to detect subtle phenotypes. Generating known morphological variation through simulation has broad applicability in developmental, evolutionary, and biomedical morphometrics and is a useful way to distinguish between a failure to detect morphological difference and a true lack of morphological difference. Morphological simulation can also be applied to AI-based supervised learning to augment datasets and overcome dataset limitations.
Collapse
|
6
|
Parobková V, Kompaníková P, Lázňovský J, Kavková M, Hampl M, Buchtová M, Zikmund T, Kaiser J, Bryja V. Ch OP-CT: quantitative morphometrical analysis of the Hindbrain Choroid Plexus by X-ray micro-computed tomography. Fluids Barriers CNS 2024; 21:9. [PMID: 38268040 PMCID: PMC11406807 DOI: 10.1186/s12987-023-00502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.
Collapse
Affiliation(s)
- Viktória Parobková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Jakub Lázňovský
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Kavková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marek Hampl
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
7
|
Lamouroux A, Cardoso M, Bottero C, Gallo M, Duraes M, Salerno J, Bertrand M, Rigau V, Fuchs F, Mousty E, Genevieve D, Subsol G, Goze-Bac C, Captier G. Micro-CT and high-field MRI for studying very early post-mortem human fetal anatomy at 8 weeks of gestation. Prenat Diagn 2024; 44:3-14. [PMID: 38161284 DOI: 10.1002/pd.6489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study involved very early post-mortem (PM) examination of human fetal anatomy at 8 weeks of gestation (WG) using whole-body multimodal micro-imaging: micro-CT and high-field MRI (HF-MRI). We discuss the potential place of this imaging in early first-trimester virtual autopsy. METHODS We performed micro-CT after different contrast-bath protocols including diffusible iodine-based contrast-enhanced (dice) and HF-MRI with a 9.4 T machine with qualitative and quantitative evaluation and obtained histological sections. RESULTS Nine fetuses were included: the crown-rump length was 10-24 mm and corresponded to 7 and 9 WG according to the Robinson formula. The Carnegie stages were 17-21. Dice micro-CT and HF-MRI presented high signal to noise ratio, >5, according to the Rose criterion, and for allowed anatomical phenotyping in these specimens. Imaging did not alter the histology, allowing immunostaining and pathological examination. CONCLUSION PM non-destructive whole-body multimodal micro-imaging: dice micro-CT and HF-MRI allows for PM human fetal anatomy study as early as 8 WG. It paves the way to virtual autopsy in the very early first trimester. Obtaining a precision phenotype, even regarding miscarriage products, allows a reverse phenotyping to select variants of interest in genome-wide analysis, offering potential genetic counseling for bereaved parents.
Collapse
Affiliation(s)
- Audrey Lamouroux
- Clinical Genetics Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, CNRS, Montpellier, France
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Maïda Cardoso
- Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Célia Bottero
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Univ. Montpellier, Montpellier, France
| | - Mathieu Gallo
- Univ. Montpellier, Montpellier, France
- Pathology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Martha Duraes
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
- Anatomy Laboratory, Faculty of Medicine Montpellier-Nimes, University of Montpellier, Montpellier, France
- Obstetrical Gynaecology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Jennifer Salerno
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Univ. Montpellier, Montpellier, France
- Gynaecology and Gynaecology Surgery Department, Clinique Beau Soleil, Montpellier, France
| | - Martin Bertrand
- Univ. Montpellier, Montpellier, France
- Experimental Anatomy Department, Faculty of Medicine Montpellier-Nimes, University Montpellier, Nîmes, France
- Digestive Surgery Department, Nimes University Hospital, Nîmes, France
| | - Valérie Rigau
- Univ. Montpellier, Montpellier, France
- Pathology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Florent Fuchs
- Univ. Montpellier, Montpellier, France
- Obstetrical Gynaecology Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Inserm, CESP Center for Research in Epidemiology and Population Health, U1018, Reproduction and Child Development, Villejuif, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
| | - Eve Mousty
- Obstetrical Gynaecology Department, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Univ. Montpellier, Montpellier, France
| | - David Genevieve
- Clinical Genetics Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Univ. Montpellier, Montpellier, France
- Center for Rare Disease Development Anomaly and Malformative Syndromes, Montpellier University Hospital, Montpellier, France
| | - Gérard Subsol
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Christophe Goze-Bac
- Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
| | - Guillaume Captier
- ICAR Research Team, LIRMM, University of Montpellier, CNRS, Montpellier, France
- Univ. Montpellier, Montpellier, France
- Anatomy Laboratory, Faculty of Medicine Montpellier-Nimes, University of Montpellier, Montpellier, France
- Paediatric Surgery Department, Montpellier University Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Aristizábal O, Qiu Z, Gallego E, Aristizábal M, Mamou J, Wang Y, Ketterling JA, Turnbull DH. Longitudinal in Utero Analysis of Engrailed-1 Knockout Mouse Embryonic Phenotypes Using High-Frequency Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:356-367. [PMID: 36283941 PMCID: PMC9712241 DOI: 10.1016/j.ultrasmedbio.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Large-scale international efforts to generate and analyze loss-of-function mutations in each of the approximately 20,000 protein-encoding gene mutations are ongoing using the "knockout" mouse as a model organism. Because one-third of gene knockouts are expected to result in embryonic lethality, it is important to develop non-invasive in utero imaging methods to detect and monitor mutant phenotypes in mouse embryos. We describe the utility of 3-D high-frequency (40-MHz) ultrasound (HFU) for longitudinal in utero imaging of mouse embryos between embryonic days (E) 11.5 and E14.5, which represent critical stages of brain and organ development. Engrailed-1 knockout (En1-ko) mouse embryos and their normal control littermates were imaged with HFU in 3-D, enabling visualization of morphological phenotypes in the developing brains, limbs and heads of the En1-ko embryos. Recently developed deep learning approaches were used to automatically segment the embryonic brain ventricles and bodies from the 3-D HFU images, allowing quantitative volumetric analyses of the En1-ko brain phenotypes. Taken together, these results show great promise for the application of longitudinal 3-D HFU to analyze knockout mouse embryos in utero.
Collapse
Affiliation(s)
- Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ziming Qiu
- Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, New York, USA
| | - Estefania Gallego
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Matias Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yao Wang
- Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, New York, USA
| | | | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
9
|
Reissig LF, Geyer SH, Winkler V, Preineder E, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. Detailed characterizations of cranial nerve anatomy in E14.5 mouse embryos/fetuses and their use as reference for diagnosing subtle, but potentially lethal malformations in mutants. Front Cell Dev Biol 2022; 10:1006620. [PMID: 36438572 PMCID: PMC9682249 DOI: 10.3389/fcell.2022.1006620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2024] Open
Abstract
Careful phenotype analysis of genetically altered mouse embryos/fetuses is vital for deciphering the function of pre- and perinatally lethal genes. Usually this involves comparing the anatomy of mutants with that of wild types of identical developmental stages. Detailed three dimensional information on regular cranial nerve (CN) anatomy of prenatal mice is very scarce. We therefore set out to provide such information to be used as reference data and selected mutants to demonstrate its potential for diagnosing CN abnormalities. Digital volume data of 152 wild type mice, harvested on embryonic day (E)14.5 and of 18 mutants of the Col4a2, Arid1b, Rpgrip1l and Cc2d2a null lines were examined. The volume data had been created with High Resolution Episcopic Microscopy (HREM) as part of the deciphering the mechanisms of developmental disorders (DMDD) program. Employing volume and surface models, oblique slicing and digital measuring tools, we provide highly detailed anatomic descriptions of the CNs and measurements of the diameter of selected segments. Specifics of the developmental stages of E14.5 mice and anatomic norm variations were acknowledged. Using the provided data as reference enabled us to objectively diagnose CN abnormalities, such as abnormal formation of CN3 (Col4a2), neuroma of the motor portion of CN5 (Arid1b), thinning of CN7 (Rpgrip1l) and abnormal topology of CN12 (Cc2d2a). Although, in a first glimpse perceived as unspectacular, defects of the motor CN5 or CN7, like enlargement or thinning can cause death of newborns, by hindering feeding. Furthermore, abnormal topology of CN12 was recently identified as a highly reliable marker for low penetrating, but potentially lethal defects of the central nervous system.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Viola Winkler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ester Preineder
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
11
|
Dalmasso G, Musy M, Niksic M, Robert-Moreno A, Badía-Careaga C, Sanz-Ezquerro JJ, Sharpe J. 4D reconstruction of murine developmental trajectories using spherical harmonics. Dev Cell 2022; 57:2140-2150.e5. [PMID: 36055247 PMCID: PMC9481268 DOI: 10.1016/j.devcel.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Normal organogenesis cannot be recapitulated in vitro for mammalian organs, unlike in species including Drosophila and zebrafish. Available 3D data in the form of ex vivo images only provide discrete snapshots of the development of an organ morphology. Here, we propose a computer-based approach to recreate its continuous evolution in time and space from a set of 3D volumetric images. Our method is based on the remapping of shape data into the space of the coefficients of a spherical harmonics expansion where a smooth interpolation over time is simpler. We tested our approach on mouse limb buds and embryonic hearts. A key advantage of this method is that the resulting 4D trajectory can take advantage of all the available data while also being able to interpolate well through time intervals for which there are little or no data. This allows for a quantitative, data-driven 4D description of mouse limb morphogenesis. Computer-based method recreating a 3D plus time evolution of a set of volumetric images Technique based on the interpolation of the coefficients of spherical harmonics Data-driven quantitative 4D description of limb and heart morphogenesis Quantitatively reliable baseline description of organ development
Collapse
Affiliation(s)
- Giovanni Dalmasso
- European Molecular Biology Laboratory (EMBL-Barcelona), 08003 Barcelona, Spain.
| | - Marco Musy
- European Molecular Biology Laboratory (EMBL-Barcelona), 08003 Barcelona, Spain
| | - Martina Niksic
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | | | | | - Juan Jose Sanz-Ezquerro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro Nacional de Biotecnologia (CSIC Madrid), 28049 Madrid, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL-Barcelona), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
12
|
Handschuh S, Okada CTC, Walter I, Aurich C, Glösmann M. An optimized workflow for
microCT
imaging of formalin‐fixed and paraffin‐embedded (
FFPE
) early equine embryos. Anat Histol Embryol 2022; 51:611-623. [PMID: 35851500 PMCID: PMC9542120 DOI: 10.1111/ahe.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023]
Abstract
Here, we describe a workflow for high‐detail microCT imaging of formalin‐fixed and paraffin‐embedded (FFPE) equine embryos recovered on Day 34 of pregnancy (E34), a period just before placenta formation. The presented imaging methods are suitable for large animals' embryos with intention to study morphological and developmental aspects, but more generally can be adopted for all kinds of FFPE tissue specimens. Microscopic 3D imaging techniques such as microCT are important tools for detecting and studying normal embryogenesis and developmental disorders. To date, microCT imaging of vertebrate embryos was mostly done on embryos that have been stained with an X‐ray dense contrast agent. Here, we describe an alternative imaging procedure that allows to visualize embryo morphology and organ development in unstained FFPE embryos. Two aspects are critical for high‐quality data acquisition: (i) a proper sample mounting leaving as little as possible paraffin around the sample and (ii) an image filtering pipeline that improves signal‐to‐noise ratio in these inherently low‐contrast data sets. The presented workflow allows overview imaging of the whole embryo proper and can be used for determination of organ volumes and development. Furthermore, we show that high‐resolution interior tomographies can provide virtual histology information from selected regions of interest. In addition, we demonstrate that microCT scanned embryos remain intact during the scanning procedure allowing for a subsequent investigation by routine histology and/or immunohistochemistry. This makes the presented workflow applicable also to archival paraffin‐embedded material.
Collapse
Affiliation(s)
- Stephan Handschuh
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| | - Carolina T. C. Okada
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Ingrid Walter
- VetCore Facility for Research/VetBiobank University of Veterinary Medicine Vienna Vienna Austria
- Institute of Morphology University of Veterinary Medicine Vienna Vienna Austria
| | - Christine Aurich
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
13
|
Geyer SH, Maurer‐Gesek B, Reissig LF, Rose J, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. The venous system of E14.5 mouse embryos-reference data and examples for diagnosing malformations in embryos with gene deletions. J Anat 2022; 240:11-22. [PMID: 34435363 PMCID: PMC8655187 DOI: 10.1111/joa.13536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Approximately one-third of randomly produced knockout mouse lines produce homozygous offspring, which fail to survive the perinatal period. The majority of these die around or after embryonic day (E)14.5, presumably from cardiovascular insufficiency. For diagnosing structural abnormalities underlying death and diseases and for researching gene function, the phenotype of these individuals has to be analysed. This makes the creation of reference data, which define normal anatomy and normal variations the highest priority. While such data do exist for the heart and arteries, they are still missing for the venous system. Here we provide high-quality descriptive and metric information on the normal anatomy of the venous system of E14.5 embryos. Using high-resolution digital volume data and 3D models from 206 genetically normal embryos, bred on the C57BL/6N background, we present precise descriptive and metric information of the venous system as it presents itself in each of the six developmental stages of E14.5. The resulting data shed new light on the maturation and remodelling of the venous system at transition of embryo to foetal life and provide a reference that can be used for detecting venous abnormalities in mutants. To explore this capacity, we analysed the venous phenotype of embryos from 7 knockout lines (Atp11a, Morc2a, 1700067K01Rik, B9d2, Oaz1, Celf4 and Coro1c). Careful comparisons enabled the diagnosis of not only simple malformations, such as dual inferior vena cava, but also complex and subtle abnormalities, which would have escaped diagnosis in the absence of detailed, stage-specific referenced data.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Barbara Maurer‐Gesek
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Lukas F. Reissig
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Julia Rose
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Fabrice Prin
- Crick Advanced Light Microscopy FacilityThe Francis Crick InstituteLondonUK
| | | | - Antonella Galli
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | - Catherine Tudor
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | | | | | - Wolfgang J. Weninger
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Qiu Z, Xu T, Langerman J, Das W, Wang C, Nair N, Aristizabal O, Mamou J, Turnbull DH, Ketterling JA, Wang Y. A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2460-2471. [PMID: 33755564 PMCID: PMC8274381 DOI: 10.1109/tuffc.2021.3068156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume ≈ 1000× faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.
Collapse
|
15
|
Horner NR, Venkataraman S, Armit C, Casero R, Brown JM, Wong MD, van Eede MC, Henkelman RM, Johnson S, Teboul L, Wells S, Brown SD, Westerberg H, Mallon AM. LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development 2021; 148:dev192955. [PMID: 33574040 PMCID: PMC8015254 DOI: 10.1242/dev.192955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.
Collapse
Affiliation(s)
- Neil R Horner
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Shanmugasundaram Venkataraman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh EH4 2XU, UK
- BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, New Territories, Hong Kong
| | - Ramón Casero
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - James M Brown
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS
| | - Michael D Wong
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Sara Johnson
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Lydia Teboul
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Sara Wells
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Steve D Brown
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | | | - Ann-Marie Mallon
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| |
Collapse
|
16
|
Llambrich S, Wouters J, Himmelreich U, Dierssen M, Sharpe J, Gsell W, Martínez-Abadías N, Vande Velde G. ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Sci Rep 2020; 10:18772. [PMID: 33128010 PMCID: PMC7599226 DOI: 10.1038/s41598-020-75720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jens Wouters
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Willy Gsell
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Neus Martínez-Abadías
- GREAB-Research Group in Biological Anthropology. Department of Evolutionary Biology, Ecology and Environmental Sciences, BEECA. Universitat de Barcelona, Barcelona, Spain
| | - Greetje Vande Velde
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Hipsley CA, Aguilar R, Black JR, Hocknull SA. High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing. Sci Rep 2020; 10:13863. [PMID: 32807929 PMCID: PMC7431592 DOI: 10.1038/s41598-020-70970-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
High-resolution X-ray microcomputed tomography, or microCT (μCT), enables the digital imaging of whole objects in three dimensions. The power of μCT to visualize internal features without disarticulation makes it particularly valuable for the study of museum collections, which house millions of physical specimens documenting the spatio-temporal patterns of life. Despite the potential for comparative analyses, most μCT studies include limited numbers of museum specimens, due to the challenges of digitizing numerous individuals within a project scope. Here we describe a method for high-throughput μCT scanning of hundreds of small (< 2 cm) specimens in a single container, followed by individual labelling and archival storage. We also explore the effects of various packing materials and multiple specimens per capsule to minimize sample movement that can degrade image quality, and hence μCT investment. We demonstrate this protocol on vertebrate fossils from Queensland Museum, Australia, as part of an effort to track community responses to climate change over evolutionary time. This system can be easily modified for other types of wet and dry material amenable to X-ray attenuation, including geological, botanical and zoological samples, providing greater access to large-scale phenotypic data and adding value to global collections.
Collapse
Affiliation(s)
- Christy A Hipsley
- School of BioSciences, University of Melbourne, BioSciences 4, Building 147, Parkville, VIC, 3010, Australia. .,Museums Victoria, GPO Box 666, Melbourne, VIC, 3001, Australia.
| | - Rocio Aguilar
- School of BioSciences, University of Melbourne, BioSciences 4, Building 147, Parkville, VIC, 3010, Australia.,Museums Victoria, GPO Box 666, Melbourne, VIC, 3001, Australia.,School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Jay R Black
- School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Scott A Hocknull
- School of BioSciences, University of Melbourne, BioSciences 4, Building 147, Parkville, VIC, 3010, Australia.,Queensland Museum, Geosciences, 122 Gerler Rd., Hendra, QLD, 4011, Australia
| |
Collapse
|
18
|
X-ray Micro-Computed Tomography: An Emerging Technology to Analyze Vascular Calcification in Animal Models. Int J Mol Sci 2020; 21:ijms21124538. [PMID: 32630604 PMCID: PMC7352990 DOI: 10.3390/ijms21124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.
Collapse
|
19
|
Gabner S, Böck P, Fink D, Glösmann M, Handschuh S. The visible skeleton 2.0: phenotyping of cartilage and bone in fixed vertebrate embryos and foetuses based on X-ray microCT. Development 2020; 147:dev187633. [PMID: 32439754 DOI: 10.1242/dev.187633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
For decades, clearing and staining with Alcian Blue and Alizarin Red has been the gold standard to image vertebrate skeletal development. Here, we present an alternate approach to visualise bone and cartilage based on X-ray microCT imaging, which allows the collection of genuine 3D data of the entire developing skeleton at micron resolution. Our novel protocol is based on ethanol fixation and staining with Ruthenium Red, and efficiently contrasts cartilage matrix, as demonstrated in whole E16.5 mouse foetuses and limbs of E14 chicken embryos. Bone mineral is well preserved during staining, thus the entire embryonic skeleton can be imaged at high contrast. Differences in X-ray attenuation of ruthenium and calcium enable the spectral separation of cartilage matrix and bone by dual energy microCT (microDECT). Clearing of specimens is not required. The protocol is simple and reproducible. We demonstrate that cartilage contrast in E16.5 mouse foetuses is adequate for fast visual phenotyping. Morphometric skeletal parameters are easily extracted. We consider the presented workflow to be a powerful and versatile extension to the toolkit currently available for qualitative and quantitative phenotyping of vertebrate skeletal development.
Collapse
Affiliation(s)
- Simone Gabner
- Histology and Embryology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Peter Böck
- Histology and Embryology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Dieter Fink
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinaärplatz 1, A-1210 Vienna, Austria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging Unit, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Stephan Handschuh
- VetCore Facility for Research/Imaging Unit, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
20
|
Moysés-Oliveira M, Cabral V, Gigek CO, Corrêa DCDC, Di-Battista A, Stumpp T, Melaragno MI. Search for appropriate reference genes for quantitative reverse transcription PCR studies in somite, prosencephalon and heart of early mouse embryo. Gene 2019; 710:148-155. [DOI: 10.1016/j.gene.2019.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
|
21
|
Desgrange A, Lokmer J, Marchiol C, Houyel L, Meilhac SM. Standardised imaging pipeline for phenotyping mouse laterality defects and associated heart malformations, at multiple scales and multiple stages. Dis Model Mech 2019; 12:dmm.038356. [PMID: 31208960 PMCID: PMC6679386 DOI: 10.1242/dmm.038356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Laterality defects are developmental disorders resulting from aberrant left/right patterning. In the most severe cases, such as in heterotaxy, they are associated with complex malformations of the heart. Advances in understanding the underlying physiopathological mechanisms have been hindered by the lack of a standardised and exhaustive procedure in mouse models for phenotyping left/right asymmetries of all visceral organs. Here, we have developed a multimodality imaging pipeline, which combines non-invasive micro-ultrasound imaging, micro-computed tomography (micro-CT) and high-resolution episcopic microscopy (HREM) to acquire 3D images at multiple stages of development and at multiple scales. On the basis of the position in the uterine horns, we track in a single individual, the progression of organ asymmetry, the situs of all visceral organs in the thoracic or abdominal environment, and the fine anatomical left/right asymmetries of cardiac segments. We provide reference anatomical images and organ reconstructions in the mouse, and discuss differences with humans. This standardised pipeline, which we validated in a mouse model of heterotaxy, offers a fast and easy-to-implement framework. The extensive 3D phenotyping of organ asymmetry in the mouse uses the clinical nomenclature for direct comparison with patient phenotypes. It is compatible with automated and quantitative image analyses, which is essential to compare mutant phenotypes with incomplete penetrance and to gain mechanistic insight into laterality defects. Summary: Laterality defects, which combine anomalies in several visceral organs, are challenging to phenotype. We have developed here a standardised approach for multimodality 3D imaging in mice, generating quantifiable phenotypes.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Johanna Lokmer
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Carmen Marchiol
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France
| | - Lucile Houyel
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,Unité de Cardiologie Pédiatrique et Congénitale, Hôpital Necker Enfants Malades, Centre de référence des Malformations Cardiaques Congénitales Complexes-M3C, APHP, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| |
Collapse
|
22
|
Ban S, Cho NH, Min E, Bae JK, Ahn Y, Shin S, Park SA, Lee Y, Jung W. Label-free optical projection tomography for quantitative three-dimensional anatomy of mouse embryo. JOURNAL OF BIOPHOTONICS 2019; 12:e201800481. [PMID: 30729697 DOI: 10.1002/jbio.201800481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
Recent progress in three-dimensional optical imaging techniques allows visualization of many comprehensive biological specimens. Optical clearing methods provide volumetric and quantitative information by overcoming the limited depth of light due to scattering. However, current imaging technologies mostly rely on the synthetic or genetic fluorescent labels, thus limits its application to whole-body visualization of generic mouse models. Here, we report a label-free optical projection tomography (LF-OPT) technique for quantitative whole mouse embryo imaging. LF-OPT is based on the attenuation contrast of light rather than fluorescence, and it utilizes projection imaging technique similar to computed tomography for visualizing the volumetric structure. We demonstrate this with a collection of mouse embryo morphologies in different stages using LF-OPT. Additionally, we extract quantitative organ information applicable toward high-throughput phenotype screening. Our results indicate that LF-OPT can provide multi-scale morphological information in various tissues including bone, which can be difficult in conventional optical imaging technique.
Collapse
Affiliation(s)
- Sungbea Ban
- Samsung Electro-Mechanics, Global Technology Center (GTC), Suwon, Republic of Korea
| | - Nam Hyun Cho
- Department of Otorhinolaryngology, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Eunjung Min
- Rowland Institute at Harvard, Cambridge, Massachusetts
| | - Jung Kweon Bae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yujin Ahn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungwon Shin
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Soo-Ah Park
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity Institute for Basic Science, UNIST, Ulsan, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
23
|
Hsu CW, Kalaga S, Akoma U, Rasmussen TL, Christiansen AE, Dickinson ME. High Resolution Imaging of Mouse Embryos and Neonates with X-Ray Micro-Computed Tomography. ACTA ACUST UNITED AC 2019; 9:e63. [PMID: 31195428 DOI: 10.1002/cpmo.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Iodine-contrast micro-computed tomography (microCT) 3D imaging provides a non-destructive and high-throughput platform for studying mouse embryo and neonate development. Here we provide protocols on preparing mouse embryos and neonates between embryonic day 8.5 (E8.5) to postnatal day 4 (P4) for iodine-contrast microCT imaging. With the implementation of the STABILITY method to create a polymer-tissue hybrid structure, we have demonstrated that not only is soft tissue shrinkage minimized but also the minimum required time for soft tissue staining with iodine is decreased, especially for E18.5 to P4 samples. In addition, we also provide a protocol on using commercially available X-CLARITYTM hydrogel solution to create the similar polymer-tissue hybrid structure on delicate early post-implantation stage (E8.5 to E14.5) embryos. With its simple sample staining and mounting processes, this protocol is easy to adopt and implement for most of the commercially available, stand-alone microCT systems in order to study mouse development between early post-implantation to early postnatal stages. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Optical Imaging and Vital Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Optical Imaging and Vital Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Uchechukwu Akoma
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Tara L Rasmussen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Optical Imaging and Vital Microscopy Core, Baylor College of Medicine, Houston, Texas.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
24
|
Psychology, not technology, is our biggest challenge to open digital morphology data. Sci Data 2019; 6:41. [PMID: 31028285 PMCID: PMC6486585 DOI: 10.1038/s41597-019-0047-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 02/01/2023] Open
Abstract
The past two decades have seen a revolution in digital imaging techniques for capturing gross morphology, offering an unprecedented volume of data for biological research. Despite the rapid increase in scientific publications incorporating those images, the underlying datasets remain largely inaccessible. As the technical barriers to data sharing continue to fall, we face a more intimate, and perhaps more complicated, obstacle to open data – the one in our minds.
Collapse
|
25
|
Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography. Sci Rep 2018; 8:16531. [PMID: 30410001 PMCID: PMC6224569 DOI: 10.1038/s41598-018-34848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates.
Collapse
|
26
|
Brown JM, Horner NR, Lawson TN, Fiegel T, Greenaway S, Morgan H, Ring N, Santos L, Sneddon D, Teboul L, Vibert J, Yaikhom G, Westerberg H, Mallon AM. A bioimage informatics platform for high-throughput embryo phenotyping. Brief Bioinform 2018; 19:41-51. [PMID: 27742664 PMCID: PMC5862285 DOI: 10.1093/bib/bbw101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org. Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest.
Collapse
Affiliation(s)
- James M Brown
- MRC Harwell Institute, Harwell Campus, Oxfordshire
- Corresponding author: James Brown, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD. Tel. +44-0-1235-841237; Fax: +44-0-1235-841172; E-mail:
| | | | | | - Tanja Fiegel
- MRC Harwell Institute, Harwell Campus, Oxfordshire
| | | | - Hugh Morgan
- MRC Harwell Institute, Harwell Campus, Oxfordshire
| | - Natalie Ring
- MRC Harwell Institute, Harwell Campus, Oxfordshire
| | - Luis Santos
- MRC Harwell Institute, Harwell Campus, Oxfordshire
| | | | - Lydia Teboul
- MRC Harwell Institute, Harwell Campus, Oxfordshire
| | | | | | | | | |
Collapse
|
27
|
Lin AY, Ding Y, Vanselow DJ, Katz SR, Yakovlev MA, Clark DP, Mandrell D, Copper JE, van Rossum DB, Cheng KC. Rigid Embedding of Fixed and Stained, Whole, Millimeter-Scale Specimens for Section-free 3D Histology by Micro-Computed Tomography. J Vis Exp 2018. [PMID: 30394379 PMCID: PMC6235553 DOI: 10.3791/58293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
For over a hundred years, the histological study of tissues has been the gold standard for medical diagnosis because histology allows all cell types in every tissue to be identified and characterized. Our laboratory is actively working to make technological advances in X-ray micro-computed tomography (micro-CT) that will bring the diagnostic power of histology to the study of full tissue volumes at cellular resolution (i.e., an X-ray Histo-tomography modality). Toward this end, we have made targeted improvements to the sample preparation pipeline. One key optimization, and the focus of the present work, is a straightforward method for rigid embedding of fixed and stained millimeter-scale samples. Many of the published methods for sample immobilization and correlative micro-CT imaging rely on placing the samples in paraffin wax, agarose, or liquids such as alcohol. Our approach extends this work with custom procedures and the design of a 3-dimensional printable apparatus to embed the samples in an acrylic resin directly into polyimide tubing, which is relatively transparent to X-rays. Herein, sample preparation procedures are described for the samples from 0.5 to 10 mm in diameter, which would be suitable for whole zebrafish larvae and juveniles, or other animals and tissue samples of similar dimensions. As proof of concept, we have embedded the specimens from Danio, Drosophila, Daphnia, and a mouse embryo; representative images from 3-dimensional scans for three of these samples are shown. Importantly, our methodology leads to multiple benefits including rigid immobilization, long-term preservation of laboriously-created resources, and the ability to re-interrogate samples.
Collapse
Affiliation(s)
- Alex Y Lin
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Yifu Ding
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine; Medical Scientist Training Program, Penn State College of Medicine
| | - Daniel J Vanselow
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Spencer R Katz
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine; Medical Scientist Training Program, Penn State College of Medicine
| | - Maksim A Yakovlev
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Darin P Clark
- Center for In Vivo Microscopy, Duke University Medical Center
| | | | - Jean E Copper
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Damian B van Rossum
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine
| | - Keith C Cheng
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine; Division of Experimental Pathology, Department of Pathology, Penn State College of Medicine;
| |
Collapse
|
28
|
McDole K, Guignard L, Amat F, Berger A, Malandain G, Royer LA, Turaga SC, Branson K, Keller PJ. In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level. Cell 2018; 175:859-876.e33. [PMID: 30318151 DOI: 10.1016/j.cell.2018.09.031] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/12/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
The mouse embryo has long been central to the study of mammalian development; however, elucidating the cell behaviors governing gastrulation and the formation of tissues and organs remains a fundamental challenge. A major obstacle is the lack of live imaging and image analysis technologies capable of systematically following cellular dynamics across the developing embryo. We developed a light-sheet microscope that adapts itself to the dramatic changes in size, shape, and optical properties of the post-implantation mouse embryo and captures its development from gastrulation to early organogenesis at the cellular level. We furthermore developed a computational framework for reconstructing long-term cell tracks, cell divisions, dynamic fate maps, and maps of tissue morphogenesis across the entire embryo. By jointly analyzing cellular dynamics in multiple embryos registered in space and time, we built a dynamic atlas of post-implantation mouse development that, together with our microscopy and computational methods, is provided as a resource. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Fernando Amat
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew Berger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Grégoire Malandain
- Université Côte d'Azur, Inria, CNRS, I3S, 06900 Sophia Antipolis, France
| | - Loïc A Royer
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Srinivas C Turaga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
29
|
Brown SDM, Holmes CC, Mallon AM, Meehan TF, Smedley D, Wells S. High-throughput mouse phenomics for characterizing mammalian gene function. Nat Rev Genet 2018; 19:357-370. [PMID: 29626206 PMCID: PMC6582361 DOI: 10.1038/s41576-018-0005-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are entering a new era of mouse phenomics, driven by large-scale and economical generation of mouse mutants coupled with increasingly sophisticated and comprehensive phenotyping. These studies are generating large, multidimensional gene-phenotype data sets, which are shedding new light on the mammalian genome landscape and revealing many hitherto unknown features of mammalian gene function. Moreover, these phenome resources provide a wealth of disease models and can be integrated with human genomics data as a powerful approach for the interpretation of human genetic variation and its relationship to disease. In the future, the development of novel phenotyping platforms allied to improved computational approaches, including machine learning, for the analysis of phenotype data will continue to enhance our ability to develop a comprehensive and powerful model of mammalian gene-phenotype space.
Collapse
Affiliation(s)
| | - Chris C Holmes
- Nuffield Department of Medicine and Department of Statistics, University of Oxford, Oxford, UK.
| | | | - Terrence F Meehan
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | |
Collapse
|
30
|
Boughner JC, van Eede MC, Spring S, Yu LX, Rostampour N, Henkelman RM. P63 expression plays a role in developmental rate, embryo size, and local morphogenesis. Dev Dyn 2018; 247:779-787. [DOI: 10.1002/dvdy.24622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Julia C. Boughner
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | | | - Shoshana Spring
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Lisa X. Yu
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
31
|
Geyer SH, Reissig LF, Hüsemann M, Höfle C, Wilson R, Prin F, Szumska D, Galli A, Adams DJ, White J, Mohun TJ, Weninger WJ. Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat 2017; 231:600-614. [PMID: 28776665 PMCID: PMC5603791 DOI: 10.1111/joa.12663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Accurate identification of abnormalities in the mouse embryo depends not only on comparisons with appropriate, developmental stage‐matched controls, but also on an appreciation of the range of anatomical variation that can be expected during normal development. Here we present a morphological, topological and metric analysis of the heart and arteries of mouse embryos harvested on embryonic day (E)14.5, based on digital volume data of whole embryos analysed by high‐resolution episcopic microscopy (HREM). By comparing data from 206 genetically normal embryos, we have analysed the range and frequency of normal anatomical variations in the heart and major arteries across Theiler stages S21–S23. Using this, we have identified abnormalities in these structures among 298 embryos from mutant mouse lines carrying embryonic lethal gene mutations produced for the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme. We present examples of both commonly occurring abnormal phenotypes and novel pathologies that most likely alter haemodynamics in these genetically altered mouse embryos. Our findings offer a reference baseline for identifying accurately abnormalities of the heart and arteries in embryos that have largely completed organogenesis.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Markus Hüsemann
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Cordula Höfle
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wilson R, Geyer SH, Reissig L, Rose J, Szumska D, Hardman E, Prin F, McGuire C, Ramirez-Solis R, White J, Galli A, Tudor C, Tuck E, Mazzeo CI, Smith JC, Robertson E, Adams DJ, Mohun T, Weninger WJ. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res 2017. [PMID: 27996060 DOI: 10.12688/wellcomeopenres.9899.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve.Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates.
Collapse
Affiliation(s)
| | - Stefan H Geyer
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| | - Lukas Reissig
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| | - Julia Rose
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
33
|
Wilson R, Geyer SH, Reissig L, Rose J, Szumska D, Hardman E, Prin F, McGuire C, Ramirez-Solis R, White J, Galli A, Tudor C, Tuck E, Mazzeo CI, Smith JC, Robertson E, Adams DJ, Mohun T, Weninger WJ. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res 2017; 1:1. [PMID: 27996060 PMCID: PMC5159622 DOI: 10.12688/wellcomeopenres.9899.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 11/20/2022] Open
Abstract
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates.
Collapse
Affiliation(s)
| | - Stefan H Geyer
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| | - Lukas Reissig
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| | - Julia Rose
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
34
|
Green RM, Leach CL, Hoehn N, Marcucio RS, Hallgrímsson B. Quantifying three-dimensional morphology and RNA from individual embryos. Dev Dyn 2017; 246:431-436. [PMID: 28152580 DOI: 10.1002/dvdy.24490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 01/23/2023] Open
Abstract
Quantitative analysis of morphogenesis aids our understanding of developmental processes by providing a method to link changes in shape with cellular and molecular processes. Over the last decade, many methods have been developed for 3D imaging of embryos using microCT scanning to quantify the shape of embryos during development. These methods generally involve a powerful, cross-linking fixative such as paraformaldehyde to limit shrinkage during the CT scan. However, the extended time frames that these embryos are incubated in such fixatives prevent use of the tissues for molecular analysis after microCT scanning. This is a significant problem because it limits the ability to correlate variation in molecular data with morphology at the level of individual embryos. Here we outline a novel method that allows RNA, DNA, or protein isolation following CT scan while also allowing imaging of different tissue layers within the developing embryo. We show shape differences early in craniofacial development (E11.5) between common mouse genetic backgrounds, and demonstrate that we are able to generate RNA from these embryos after CT scanning that is suitable for downstream real time PCR (RT-PCR) and RNAseq analyses. Developmental Dynamics 246:431-436, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney L Leach
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Natasha Hoehn
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ralph S Marcucio
- Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
OLA1, a Translational Regulator of p21, Maintains Optimal Cell Proliferation Necessary for Developmental Progression. Mol Cell Biol 2016; 36:2568-82. [PMID: 27481995 DOI: 10.1128/mcb.00137-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
OLA1, an Obg-family GTPase, has been implicated in eukaryotic initiation factor 2 (eIF2)-mediated translational control, but its physiological functions remain obscure. Here we report that mouse embryos lacking OLA1 have stunted growth, delayed development leading to immature organs-especially lungs-at birth, and frequent perinatal lethality. Proliferation of primary Ola1(-/-) mouse embryonic fibroblasts (MEFs) is impaired due to defective cell cycle progression, associated with reduced cyclins D1 and E1, attenuated Rb phosphorylation, and increased p21(Cip1/Waf1) Accumulation of p21 in Ola1(-/-) MEFs is due to enhanced mRNA translation and can be prevented by either reconstitution of OLA1 expression or treatment with an eIF2α dephosphorylation inhibitor, suggesting that OLA1 regulates p21 through a translational mechanism involving eIF2. With immunohistochemistry, overexpression of p21 protein was detected in Ola1-null embryos with reduced cell proliferation. Moreover, we have generated p21(-/-) Ola1(-/-) mice and found that knockout of p21 can partially rescue the growth retardation defect of Ola1(-/-) embryos but fails to rescue them from developmental delay and the lethality. These data demonstrate, for the first time, that OLA1 is required for normal progression of mammalian development. OLA1 plays an important role in promoting cell proliferation at least in part through suppression of p21 and organogenesis via factors yet to be discovered.
Collapse
|
36
|
Powell NM, Modat M, Cardoso MJ, Ma D, Holmes HE, Yu Y, O’Callaghan J, Cleary JO, Sinclair B, Wiseman FK, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome. PLoS One 2016; 11:e0162974. [PMID: 27658297 PMCID: PMC5033246 DOI: 10.1371/journal.pone.0162974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
We describe a fully automated pipeline for the morphometric phenotyping of mouse brains from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to identify new morphological phenotypes in the brain of this first transchromosomic animal carrying human chromosome 21. We incorporate an accessible approach for simultaneously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and novel image processing steps for their separation and orientation. We employ clinically established multi-atlas techniques–superior to single-atlas methods–together with publicly-available atlas databases for automatic skull-stripping and tissue segmentation, providing high-quality, subject-specific tissue maps. We follow these steps with group-wise registration, structural parcellation and both Voxel- and Tensor-Based Morphometry–advantageous for their ability to highlight morphological differences without the laborious delineation of regions of interest. We show the application of freely available open-source software developed for clinical MRI analysis to mouse brain data: NiftySeg for segmentation and NiftyReg for registration, and discuss atlases and parameters suitable for the preclinical paradigm. We used this pipeline to compare 29 Tc1 brains with 26 wild-type littermate controls, imaged ex vivo at 9.4T. We show an unexpected increase in Tc1 total intracranial volume and, controlling for this, local volume and grey matter density reductions in the Tc1 brain compared to the wild-types, most prominently in the cerebellum, in agreement with human DS and previous histological findings.
Collapse
Affiliation(s)
- Nick M. Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
- * E-mail:
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - M. Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Holly E. Holmes
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - James O’Callaghan
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Jon O. Cleary
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ben Sinclair
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom
| | - Victor L. J. Tybulewicz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
- Imperial College, London W12 0NN, United Kingdom
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Sébastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| |
Collapse
|
37
|
Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, Meehan TF, Weninger WJ, Westerberg H, Adissu H, Baker CN, Bower L, Brown JM, Caddle LB, Chiani F, Clary D, Cleak J, Daly MJ, Denegre JM, Doe B, Dolan ME, Edie SM, Fuchs H, Gailus-Durner V, Galli A, Gambadoro A, Gallegos J, Guo S, Horner NR, Hsu CW, Johnson SJ, Kalaga S, Keith LC, Lanoue L, Lawson TN, Lek M, Mark M, Marschall S, Mason J, McElwee ML, Newbigging S, Nutter LM, Peterson KA, Ramirez-Solis R, Rowland DJ, Ryder E, Samocha KE, Seavitt JR, Selloum M, Szoke-Kovacs Z, Tamura M, Trainor AG, Tudose I, Wakana S, Warren J, Wendling O, West DB, Wong L, Yoshiki A, MacArthur DG, Tocchini-Valentini GP, Gao X, Flicek P, Bradley A, Skarnes WC, Justice MJ, Parkinson HE, Moore M, Wells S, Braun RE, Svenson KL, de Angelis MH, Herault Y, Mohun T, Mallon AM, Henkelman RM, Brown SD, Adams DJ, Lloyd KK, McKerlie C, Beaudet AL, Bucan M, Murray SA. High-throughput discovery of novel developmental phenotypes. Nature 2016; 537:508-514. [PMID: 27626380 PMCID: PMC5295821 DOI: 10.1038/nature19356] [Citation(s) in RCA: 844] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 08/10/2016] [Indexed: 12/29/2022]
Abstract
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
Collapse
Affiliation(s)
- Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Xiao Ji
- Genomics and Computational Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Lydia Teboul
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Michael D. Wong
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacqueline K. White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Terrence F. Meehan
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Wolfgang J. Weninger
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Henrik Westerberg
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Lynette Bower
- Mouse Biology Program, University of California, Davis
| | - James M. Brown
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | | | - Francesco Chiani
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Itally
| | - Dave Clary
- Mouse Biology Program, University of California, Davis
| | - James Cleak
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | | | - Brendan Doe
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | - Helmut Fuchs
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Antonella Galli
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Alessia Gambadoro
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Itally
| | - Juan Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Shiying Guo
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Neil R. Horner
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Chih-wei Hsu
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Sara J. Johnson
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Lance C. Keith
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California, Davis
| | - Thomas N. Lawson
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | - Manuel Mark
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Susan Marschall
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Jeremy Mason
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauryl M.J. Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Edward Ryder
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kaitlin E. Samocha
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Mohammed Selloum
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Zsombor Szoke-Kovacs
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | | | | | - Ilinca Tudose
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Jonathan Warren
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Olivia Wendling
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - David B. West
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Leeyean Wong
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | | | | | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | - Glauco P. Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Itally
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Paul Flicek
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - William C. Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Helen E. Parkinson
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Sara Wells
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | | | | | - Martin Hrabe de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Yann Herault
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tim Mohun
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - R. Mark Henkelman
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steve D.M. Brown
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Maja Bucan
- Departments of Genetics and Psychiatry, Perlman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | | |
Collapse
|
38
|
Henkelman RM, Friedel M, Lerch JP, Wilson R, Mohun T. Comparing homologous microscopic sections from multiple embryos using HREM. Dev Biol 2016; 415:1-5. [PMID: 27208393 PMCID: PMC6278891 DOI: 10.1016/j.ydbio.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/21/2022]
Abstract
3D HREM embryo images can be registered. Homologous microscopic sections can be obtained from multiple embryos. Anatomical phenotypes can be analyzed by computer.
Collapse
Affiliation(s)
- R Mark Henkelman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Miriam Friedel
- Mouse Imaging Centre (MICe), Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Robert Wilson
- The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Timothy Mohun
- The Francis Crick Institute Mill Hill Laboratory, London, UK
| |
Collapse
|
39
|
Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC, Cerio D, Cost IN, Cox PG, Daza JD, Early CM, Echols MS, Henkelman RM, Herdina AN, Holliday CM, Li Z, Mahlow K, Merchant S, Müller J, Orsbon CP, Paluh DJ, Thies ML, Tsai HP, Witmer LM. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 2016; 228:889-909. [PMID: 26970556 PMCID: PMC5341577 DOI: 10.1111/joa.12449] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Morphologists have historically had to rely on destructive procedures to visualize the three‐dimensional (3‐D) anatomy of animals. More recently, however, non‐destructive techniques have come to the forefront. These include X‐ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard‐tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT‐based research is the use of chemical agents to render visible, and differentiate between, soft‐tissue structures in X‐ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine‐based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine‐based, contrast‐enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting‐edge applications of diffusible iodine‐based contrast‐enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.
Collapse
Affiliation(s)
- Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Nathan J Kley
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew W Colbert
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | | | - Donald Cerio
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Ian N Cost
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Philip G Cox
- Department of Archaeology, University of York and Hull York Medical School, York, UK
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | | | | | - R Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - A Nele Herdina
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Zhiheng Li
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Samer Merchant
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Courtney P Orsbon
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Daniel J Paluh
- Department of Biology, Villanova University, Villanova, PA, USA
| | - Monte L Thies
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Henry P Tsai
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA.,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | |
Collapse
|
40
|
Wong MD, van Eede MC, Spring S, Jevtic S, Boughner JC, Lerch JP, Henkelman RM. 4D atlas of the mouse embryo for precise morphological staging. Development 2016; 142:3583-91. [PMID: 26487781 DOI: 10.1242/dev.125872] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development.
Collapse
Affiliation(s)
- Michael D Wong
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Stefan Jevtic
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Julia C Boughner
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
41
|
A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast. PLoS One 2015; 10:e0142974. [PMID: 26571123 PMCID: PMC4646620 DOI: 10.1371/journal.pone.0142974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.
Collapse
|
42
|
Hallgrimsson B, Percival CJ, Green R, Young NM, Mio W, Marcucio R. Morphometrics, 3D Imaging, and Craniofacial Development. Curr Top Dev Biol 2015; 115:561-97. [PMID: 26589938 DOI: 10.1016/bs.ctdb.2015.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map.
Collapse
Affiliation(s)
- Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Christopher J Percival
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Green
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
43
|
Anderson GA, Udan RS, Dickinson ME, Henkelman RM. Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics. PLoS One 2015; 10:e0137175. [PMID: 26340748 PMCID: PMC4560395 DOI: 10.1371/journal.pone.0137175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Background Vascular patterning depends on coordinated timing of arteriovenous specification of endothelial cells and the concomitant hemodynamic forces supplied by the onset of cardiac function. Using a combination of 3D imaging by OPT and embryo registration techniques, we sought to identify structural differences between three different mouse models of cardiovascular perturbation. Results Endoglin mutant mice shared a high degree of similarity to Mlc2a mutant mice, which have been shown to have a primary developmental heart defect causing secondary vessel remodeling failures. Dll4 mutant mice, which have well-characterized arterial blood vessel specification defects, showed distinct differences in vascular patterning when compared to the disruptions seen in Mlc2a-/- and Eng-/- models. While Mlc2a-/- and Eng-/- embryos exhibited significantly larger atria than wild-type, Dll4-/- embryos had significantly smaller hearts than wild-type, but this quantitative volume decrease was not limited to the developing atrium. Dll4-/- embryos also had atretic dorsal aortae and smaller trunks, suggesting that the cardiac abnormalities were secondary to primary arterial blood vessel specification defects. Conclusions The similarities in Eng-/- and Mlc2a-/- embryos suggest that Eng-/- mice may suffer from a primary heart developmental defect and secondary defects in vessel patterning, while defects in Dll4-/- embryos are consistent with primary defects in vessel patterning.
Collapse
Affiliation(s)
- Gregory A. Anderson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital For Sick Children, Toronto, Ontario, Canada
- * E-mail:
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital For Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
44
|
A mouse informatics platform for phenotypic and translational discovery. Mamm Genome 2015; 26:413-21. [PMID: 26314589 PMCID: PMC4602054 DOI: 10.1007/s00335-015-9599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023]
Abstract
The International Mouse Phenotyping Consortium (IMPC) is providing the world's first functional catalogue of a mammalian genome by characterising a knockout mouse strain for every gene. A robust and highly structured informatics platform has been developed to systematically collate, analyse and disseminate the data produced by the IMPC. As the first phase of the project, in which 5000 new knockout strains are being broadly phenotyped, nears completion, the informatics platform is extending and adapting to support the increasing volume and complexity of the data produced as well as addressing a large volume of users and emerging user groups. An intuitive interface helps researchers explore IMPC data by giving overviews and the ability to find and visualise data that support a phenotype assertion. Dedicated disease pages allow researchers to find new mouse models of human diseases, and novel viewers provide high-resolution images of embryonic and adult dysmorphologies. With each monthly release, the informatics platform will continue to evolve to support the increased data volume and to maintain its position as the primary route of access to IMPC data and as an invaluable resource for clinical and non-clinical researchers.
Collapse
|
45
|
Miura H, Inoko H, Tanaka M, Nakaoka H, Kimura M, Gurumurthy CB, Sato M, Ohtsuka M. Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. PLoS One 2015; 10:e0135919. [PMID: 26285215 PMCID: PMC4540464 DOI: 10.1371/journal.pone.0135919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
RNAi-based strategies have been used for hypomorphic analyses. However, there are technical challenges to achieve robust, reproducible knockdown effect. Here we examined the artificial microRNA (amiRNA) architectures that could provide higher knockdown efficiencies. Using transient and stable transfection assays in cells, we found that simple amiRNA-expression cassettes, that did not contain a marker gene (−MG), displayed higher amiRNA expression and more efficient knockdown than those that contained a marker gene (+MG). Further, we tested this phenomenon in vivo, by analyzing amiRNA-expressing mice that were produced by the pronuclear injection-based targeted transgenesis (PITT) method. While we observed significant silencing of the target gene (eGFP) in +MG hemizygous mice, obtaining −MG amiRNA expression mice, even hemizygotes, was difficult and the animals died perinatally. We obtained only mosaic mice having both “−MG amiRNA” cells and “amiRNA low-expression” cells but they exhibited growth retardation and cataracts, and they could not transmit the –MG amiRNA allele to the next generation. Furthermore, +MG amiRNA homozygotes could not be obtained. These results suggested that excessive amiRNAs transcribed by −MG expression cassettes cause deleterious effects in mice, and the amiRNA expression level in hemizygous +MG amiRNA mice is near the upper limit, where mice can develop normally. In conclusion, the PITT-(+MG amiRNA) system demonstrated here can generate knockdown mouse models that reliably express highest and tolerable levels of amiRNAs.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411–8540, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-20 Korimoto, Kagoshima, Kagoshima 890–0065, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- * E-mail:
| |
Collapse
|
46
|
Weninger WJ, Geyer SH, Martineau A, Galli A, Adams DJ, Wilson R, Mohun TJ. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy. Dis Model Mech 2015; 7:1143-52. [PMID: 25256713 PMCID: PMC4174525 DOI: 10.1242/dmm.016337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The arrival of simple and reliable methods for 3D imaging of mouse embryos has opened the possibility of analysing normal and abnormal development in a far more systematic and comprehensive manner than has hitherto been possible. This will not only help to extend our understanding of normal tissue and organ development but, by applying the same approach to embryos from genetically modified mouse lines, such imaging studies could also transform our knowledge of gene function in embryogenesis and the aetiology of developmental disorders. The International Mouse Phenotyping Consortium is coordinating efforts to phenotype single gene knockouts covering the entire mouse genome, including characterising developmental defects for those knockout lines that prove to be embryonic lethal. Here, we present a pilot study of 34 such lines, utilising high-resolution episcopic microscopy (HREM) for comprehensive 2D and 3D imaging of homozygous null embryos and their wild-type littermates. We present a simple phenotyping protocol that has been developed to take advantage of the high-resolution images obtained by HREM and that can be used to score tissue and organ abnormalities in a reliable manner. Using this approach with embryos at embryonic day 14.5, we show the wide range of structural abnormalities that are likely to be detected in such studies and the variability in phenotypes between sibling homozygous null embryos.
Collapse
Affiliation(s)
- Wolfgang J Weninger
- Centre for Anatomy and Cell Biology & MIC, Medical University of Vienna, 1090 Wien, Austria.
| | - Stefan H Geyer
- Centre for Anatomy and Cell Biology & MIC, Medical University of Vienna, 1090 Wien, Austria
| | | | | | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Robert Wilson
- MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Timothy J Mohun
- MRC National Institute for Medical Research, London NW7 1AA, UK
| |
Collapse
|