1
|
Chouly M, Bally-Cuif L. Generating neurons in the embryonic and adult brain: compared principles and mechanisms. C R Biol 2024; 347:199-221. [PMID: 39535540 DOI: 10.5802/crbiol.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
|
2
|
Valcárcel-Hernández V, Mayerl S, Guadaño-Ferraz A, Remaud S. Thyroid hormone action in adult neurogliogenic niches: the known and unknown. Front Endocrinol (Lausanne) 2024; 15:1347802. [PMID: 38516412 PMCID: PMC10954857 DOI: 10.3389/fendo.2024.1347802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.
Collapse
Affiliation(s)
- Victor Valcárcel-Hernández
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
3
|
Li X, Fan R, Xiang J, Yuan Y, Mao X, Zhou N. P-hydroxy benzaldehyde facilitates reprogramming of reactive astrocytes into neurons via endogenous transcriptional regulation. Int J Neurosci 2023; 133:1096-1108. [PMID: 35321633 DOI: 10.1080/00207454.2022.2049775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia leads to linguistic and motor dysfunction, as the death of neurons in ischemic core is permanent and non-renewable. An innovative avenue is to induce and/or facilitate reprogramming of adjacent astrocytes into neurons to replace the lost neurons and re-establish brain homeostasis. PURPOSE This study aimed to investigate whether the p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, could facilitate the reprogramming of oxygen-glucose deprivation/reperfusion (OGD/R)-damaged astrocytes into neurons. STUDY DESIGN/METHODS The primary parenchymal astrocytes of rat were exposure to OGD and reperfusion with define culture medium. Cells were then incubated with different concentration of p-HBA (1, 10, 100, 400 μM) and collected at desired time point for reprogramming process analysis. RESULTS OGD/R could elicit endogenous neurogenic program in primary parenchymal astrocytes of rat under define culture condition, and these so-called reactive astrocytes could be reprogrammed into neurons. However, the neonatal neurons produced by this endogenous procedure could not develop into mature neurons, and the conversion rate was only 1.9%. Treatment of these reactive astrocytes with p-HBA could successfully promote the conversion rate to 6.1%, and the neonatal neurons could develop into mature neurons within 14 days. Further analysis showed that p-HBA down-regulated the Notch signal component genes Dll1, Hes1 and SOX2, while the transcription factor NeuroD1 was up-regulated. CONCLUSION The results of this study demonstrated that p-HBA facilitated the astrocyte-to-neuron conversion. This chemical reprogramming was mediated by inhibition of Notch1 signaling pathway and transcriptional activation of NeuroD1.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Jianming Xiang
- Department of Neurosurgery, Medical School, University of Michigan, MI, USA
| | - Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Xiaojian Mao
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| |
Collapse
|
4
|
Zhang S, Zhai M, Xu Y, Han J, Chen J, Xiong Y, Pan S, Wang Q, Yu C, Rao Z, Sun Q, Sui Y, Fan K, Li H, Guo W, Liu C, Bai Y, Zhou J, Quan D, Zhang X. Decellularised spinal cord matrix manipulates glial niche into repairing phase via serglycin-mediated signalling pathway. Cell Prolif 2023; 56:e13429. [PMID: 36807637 PMCID: PMC10472524 DOI: 10.1111/cpr.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Astrocytes are the most abundant and widespread glial cells in the central nervous system. The heterogeneity of astrocytes plays an essential role in spinal cord injury (SCI) repair. Decellularised spinal cord matrix (DSCM) is advantageous for repairing SCI, but little is known regarding the exact mechanisms and niche alterations. Here, we investigated the DSCM regulatory mechanism of glial niche in the neuro-glial-vascular unit using single-cell RNA sequencing. Our single cell sequencing, molecular and biochemical experiments validated that DSCM facilitated the differentiation of neural progenitor cells through increasing the number of immature astrocytes. Upregulation of mesenchyme-related genes, which maintained astrocyte immaturity, causing insensitivity to inflammatory stimuli. Subsequently, we identified serglycin (SRGN) as a functional component of DSCM, which involves inducing CD44-AKT signalling to trigger human spinal cord-derived primary astrocytes (hspASCs) proliferation and upregulation of genes related to epithelial-mesenchymal transition, thus impeding astrocyte maturation. Finally, we verified that SRGN-COLI and DSCM had similar functions in the human primary cell co-culture system to mimic the glia niche. In conclusion, our work revealed that DSCM reverted astrocyte maturation and altered the glia niche into the repairing phase through the SRGN-mediated signalling pathway.
Collapse
Affiliation(s)
- Sheng Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Man Zhai
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yiwei Xu
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jiandong Han
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Shihua Pan
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Qizheng Wang
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Chunlai Yu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Qi Sun
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yufei Sui
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ke Fan
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Heying Li
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Cuicui Liu
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhou
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Galante C, Marichal N, Scarante FF, Ghayad LM, Shi Y, Schuurmans C, Berninger B, Péron S. Enhanced proliferation of oligodendrocyte progenitor cells following retrovirus mediated Achaete-scute complex-like 1 overexpression in the postnatal cerebral cortex in vivo. Front Neurosci 2022; 16:919462. [PMID: 36532282 PMCID: PMC9755855 DOI: 10.3389/fnins.2022.919462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
The proneural transcription factor Achaete-scute complex-like 1 (Ascl1) is a major regulator of neural fate decisions, implicated both in neurogenesis and oligodendrogliogenesis. Focusing on its neurogenic activity, Ascl1 has been widely used to reprogram non-neuronal cells into induced neurons. In vitro, Ascl1 induces efficient reprogramming of proliferative astroglia from the early postnatal cerebral cortex into interneuron-like cells. Here, we examined whether Ascl1 can similarly induce neuronal reprogramming of glia undergoing proliferation in the postnatal mouse cerebral cortex in vivo. Toward this goal, we targeted cortical glia during the peak of proliferative expansion (i.e., postnatal day 5) by injecting a retrovirus encoding for Ascl1 into the mouse cerebral cortex. In contrast to the efficient reprogramming observed in vitro, in vivo Ascl1-transduced glial cells were converted into doublecortin-immunoreactive neurons only with very low efficiency. However, we noted a drastic shift in the relative number of retrovirus-transduced Sox10-positive oligodendrocyte progenitor cells (OPCs) as compared to glial fibrillary acidic protein (GFAP)-positive astrocytes. Genetic fate mapping demonstrated that this increase in OPCs was not due to Ascl1-mediated astrocyte-to-OPC fate conversion. Rather, EdU incorporation experiments revealed that Ascl1 caused a selective increase in proliferative activity of OPCs, but not astrocytes. Our data indicate that rather than inducing neuronal reprogramming of glia in the early postnatal cortex, Ascl1 is a selective enhancer of OPC proliferation.
Collapse
Affiliation(s)
- Chiara Galante
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Franciele Franco Scarante
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Litsa Maria Ghayad
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Youran Shi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada,Department of Biochemistry, University of Toronto, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany,Benedikt Berninger,
| | - Sophie Péron
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,*Correspondence: Sophie Péron,
| |
Collapse
|
6
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
7
|
Ghibaudi M, Bonfanti L. How Widespread Are the “Young” Neurons of the Mammalian Brain? Front Neurosci 2022; 16:918616. [PMID: 35733930 PMCID: PMC9207312 DOI: 10.3389/fnins.2022.918616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
After the discovery of adult neurogenesis (stem cell-driven production of new neuronal elements), it is conceivable to find young, undifferentiated neurons mixed with mature neurons in the neural networks of the adult mammalian brain. This “canonical” neurogenesis is restricted to small stem cell niches persisting from embryonic germinal layers, yet, the genesis of new neurons has also been reported in various parenchymal brain regions. Whichever the process involved, several populations of “young” neurons can be found at different locations of the brain. Across the years, further complexity emerged: (i) molecules of immaturity can also be expressed by non-dividing cells born during embryogenesis, then maintaining immature features later on; (ii) remarkable interspecies differences exist concerning the types, location, amount of undifferentiated neurons; (iii) re-expression of immaturity can occur in aging (dematuration). These twists are introducing a somewhat different definition of neurogenesis than normally assumed, in which our knowledge of the “young” neurons is less sharp. In this emerging complexity, there is a need for complete mapping of the different “types” of young neurons, considering their role in postnatal development, plasticity, functioning, and interspecies differences. Several important aspects are at stake: the possible role(s) that the young neurons may play in maintaining brain efficiency and in prevention/repair of neurological disorders; nonetheless, the correct translation of results obtained from laboratory rodents. Hence, the open question is: how many types of undifferentiated neurons do exist in the brain, and how widespread are they?
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- *Correspondence: Luca Bonfanti,
| |
Collapse
|
8
|
Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis 2022; 14:e1557. [PMID: 35546493 PMCID: PMC9539907 DOI: 10.1002/wsbm.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
Astrocytes are a major type of glial cells that have essential functions in development and homeostasis of the central nervous system (CNS). Immature astrocytes in the developing CNS support neuronal maturation and possess neural-stem-cell-like properties. Mature astrocytes partially lose these functions but gain new functions essential for adult CNS homeostasis. In pathological conditions, astrocytes become "reactive", which disrupts their mature homeostatic functions and reactivates some immature astrocyte-like properties, suggesting a partial reversal of astrocyte maturation. The loss of homeostatic astrocyte functions contributes to the pathogenesis of various neurological conditions, and therefore activating maturation-promoting mechanisms may be a promising therapeutic strategy to restore homeostasis. Manipulating the mechanisms underlying astrocyte maturation might also allow to facilitate CNS regeneration by enhancing developmental functions of adult astrocytes. However, such therapeutic strategies are still some distance away because of our limited understanding of astrocyte differentiation and maturation, due to biological and technical challenges, including the high degree of similarity of astrocytes with neural stem cells and the shortcomings of astrocyte markers. Current advances in systems biology have a huge potential to overcome these challenges. Recent transcriptomic analyses have already revealed new astrocyte markers and new regulators of astrocyte differentiation. However, the epigenomic changes that presumably occur during astrocyte differentiation remain an important, largely unexplored area for future research. Emerging technologies such as CRISPR/Cas9-based functional screens will further improve our understanding of the mechanisms underlying astrocyte differentiation. This may open up new clinical approaches to restore homeostasis in neurological disorders and/or promote CNS regeneration. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
9
|
Blood Vessels: The Pathway Used by Schwann Cells to Colonize Nerve Conduits. Int J Mol Sci 2022; 23:ijms23042254. [PMID: 35216370 PMCID: PMC8879195 DOI: 10.3390/ijms23042254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The repair of severe nerve injuries requires an autograft or conduit to bridge the gap and avoid axon dispersion. Several conduits are used routinely, but their effectiveness is comparable to that of an autograft only for short gaps. Understanding nerve regeneration within short conduits could help improve their efficacy for longer gaps. Since Schwann cells are known to migrate on endothelial cells to colonize the “nerve bridge”, the new tissue spontaneously forming to connect the injured nerve stumps, here we aimed to investigate whether this migratory mechanism drives Schwann cells to also proceed within the nerve conduits used to repair large nerve gaps. Injured median nerves of adult female rats were repaired with 10 mm chitosan conduits and the regenerated nerves within conduits were analyzed at different time points using confocal imaging of sequential thick sections. Our data showed that the endothelial cells formed a dense capillary network used by Schwann cells to migrate from the two nerve stumps into the conduit. We concluded that angiogenesis played a key role in the nerve conduits, not only by supporting cell survival but also by providing a pathway for the migration of newly formed Schwann cells.
Collapse
|
10
|
Köse B, Özkan M, Sur-Erdem İ, Çavdar S. Does astrocyte gap junction protein expression level differ during development in the absence epileptic rats? Synapse 2022; 76:e22225. [PMID: 35137459 DOI: 10.1002/syn.22225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Intercellular communication via gap junctions (GJ) has a wide variety of complex and essential functions in the CNS. In the present developmental study, we aimed to quantify the number of astrocytic GJ protein connexin 30 (Cx30) of genetic absence epilepsy rats from Strasbourg (GAERS) at postnatal P10, P30, and P60 days in the epileptic focal areas involved in the cortico-thalamic circuit. We compared the results with Wistar rats using immunohistochemistry and Western Blotting. The number of Cx30 immunopositive astrocytes in per unit area were quantified for the somatosensory cortex (SSCx), ventrobasal (VB), and lateral geniculate (LGN) of the two strains and Cx30 Western Blot was applied to the tissue samples from the same regions. Both immunohistochemical and Western Blot results revealed the presence of Cx30 in all regions studied at P10 in both Wistar and GAERS animals. The SSCx, VB, and LGN of Wistar animals showed progressive increase in the number of Cx30 immunopositive labelled astrocytes from P10 to P30 and reached a peak at P30; then a significant decline was observed from P30 to P60 for the SSCx and VB. However, in GAERS Cx30 immunopositive labelled astrocytes showed a progressive increase from P10 to P60 for all brain regions studied. The immunohistochemical data highly corresponded with Western Blotting results. We conclude that the developmental disproportional expression of Cx30 in the epileptic focal areas in GAERS may be related to the onset of absence seizures or may be related to the neurogenesis of absence epilepsy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Büşra Köse
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| | - İlknur Sur-Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
12
|
Astrocyte-derived neurons provide excitatory input to the adult striatal circuitry. Proc Natl Acad Sci U S A 2021; 118:2104119118. [PMID: 34389674 DOI: 10.1073/pnas.2104119118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.
Collapse
|
13
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L. Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 2021; 78:1971-1982. [PMID: 33151389 PMCID: PMC7966193 DOI: 10.1007/s00018-020-03689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Collapse
Affiliation(s)
- María Figueres-Oñate
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt am Main, Germany
| | - Rebeca Sánchez-González
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain.
| |
Collapse
|
15
|
Sharif N, Calzolari F, Berninger B. Direct In Vitro Reprogramming of Astrocytes into Induced Neurons. Methods Mol Biol 2021; 2352:13-29. [PMID: 34324177 DOI: 10.1007/978-1-0716-1601-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spontaneous neuronal replacement is almost absent in the postnatal mammalian nervous system. However, several studies have shown that both early postnatal and adult astroglia can be reprogrammed in vitro or in vivo by forced expression of proneural transcription factors, such as Neurogenin-2 or Achaete-scute homolog 1 (Ascl1), to acquire a neuronal fate. The reprogramming process stably induces properties such as distinctly neuronal morphology, expression of neuron-specific proteins, and the gain of mature neuronal functional features. Direct conversion of astroglia into neurons thus possesses potential as a basis for cell-based strategies against neurological diseases. In this chapter, we describe a well-established protocol used for direct reprogramming of postnatal cortical astrocytes into functional neurons in vitro and discuss available tools and approaches to dissect molecular and cell biological mechanisms underlying the reprogramming process.
Collapse
Affiliation(s)
- Nesrin Sharif
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics and Genome Stability, Mainz, Germany
| | - Filippo Calzolari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, Mainz, Germany.
- Institute of Psychiatry, Psychology, and Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
16
|
Vigo T, Voulgari-Kokota A, Errede M, Girolamo F, Ortolan J, Mariani MC, Ferrara G, Virgintino D, Buffo A, Kerlero de Rosbo N, Uccelli A. Mesenchymal stem cells instruct a beneficial phenotype in reactive astrocytes. Glia 2020; 69:1204-1215. [PMID: 33381863 DOI: 10.1002/glia.23958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Transplanted mesenchymal stromal/stem cells (MSC) ameliorate the clinical course of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), reducing inflammation and demyelination. These effects are mediated by instructive cross-talk between MSC and immune and neural cells. Astroglial reaction to injury is a prominent feature of both EAE and MS. Astrocytes constitute a relevant target to control disease onset and progression and, based on their potential to acquire stem cell properties in situ, to foster recovery in the post-acute phase of pathology. We have assessed how MSC impact astrocytes in vitro and ex vivo in EAE. Expression of astroglial factors implicated in EAE pathogenesis was quantified by real-time PCR in astrocytes co-cultured with MSC or isolated from EAE cerebral cortex; astrocyte morphology and expression of activation markers were analyzed by confocal microscopy. The acquisition of neural stem cell properties by astrocytes was evaluated by neurosphere assay. Our study shows that MSC prevented astrogliosis, reduced mRNA expression of inflammatory cytokines that sustain immune cell infiltration in EAE, as well as protein expression of endothelin-1, an astrocyte-derived factor that inhibits remyelination and contributes to neurodegeneration and disease progression in MS. Moreover, our data reveal that MSC promoted the acquisition of progenitor traits by astrocytes. These data indicate that MSC attenuate detrimental features of reactive astroglia and, based on the reacquisition of stem cell properties, also suggest that astrocytes may be empowered in their protective and reparative actions by MSC.
Collapse
Affiliation(s)
- Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Androniki Voulgari-Kokota
- Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari 'Aldo Moro', School of Medicine, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari 'Aldo Moro', School of Medicine, Bari, Italy
| | - Jasmin Ortolan
- Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | | | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari 'Aldo Moro', School of Medicine, Bari, Italy
| | - Annalisa Buffo
- Dipartimento di Neuroscienze Rita Levi Montalcini Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Adorjan I, Sun B, Feher V, Tyler T, Veres D, Chance SA, Szele FG. Evidence for Decreased Density of Calretinin-Immunopositive Neurons in the Caudate Nucleus in Patients With Schizophrenia. Front Neuroanat 2020; 14:581685. [PMID: 33281566 PMCID: PMC7691639 DOI: 10.3389/fnana.2020.581685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia (SCH) and autism spectrum disorder (ASD) share several common aetiological and symptomatic features suggesting they may be included in a common spectrum. For example, recent results suggest that excitatory/inhibitory imbalance is relevant in the etiology of SCH and ASD. Numerous studies have investigated this imbalance in regions like the ventromedial and dorsolateral prefrontal cortex (DLPFC). However, relatively little is known about neuroanatomical changes that could reduce inhibition in subcortical structures, such as the caudate nucleus (CN), in neuropsychiatric disorders. We recently showed a significant decrease in calretinin-immunopositive (CR-ip) interneuronal density in the CN of patients with ASD without significant change in the density of neuropeptide Y-immunopositive (NPY-ip) neurons. These subtypes together constitute more than 50% of caudate interneurons and are likely necessary for maintaining excitatory/inhibitory balance. Consequently, and since SCH and ASD share characteristic features, here we tested the hypothesis, that the density of CR-ip neurons in the CN is decreased in patients with SCH. We used immunohistochemistry and qPCR for CR and NPY in six patients with schizophrenia and six control subjects. As expected, small, medium and large CR-ip interneurons were detected in the CN. We found a 38% decrease in the density of all CR-ip interneurons (P < 0.01) that was driven by the loss of the small CR-ip interneurons (P < 0.01) in patients with SCH. The densities of the large CR-ip and of the NPY-ip interneurons were not significantly altered. The lower density detected could have been due to inflammation-induced degeneration. However, the state of microglial activation assessed by quantification of ionized calcium-binding adapter molecule 1 (Iba1)- and transmembrane protein 119 (TMEM119)-immunopositive cells showed no significant difference between patients with SCH and controls. Our results warrant further studies focussing on the role of CR-ip neurons and on the striatum being a possible hub for information selection and regulation of associative cortical fields whose function have been altered in SCH.
Collapse
Affiliation(s)
- Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences, London, United Kingdom
| | - Virginia Feher
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Daniel Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Steven A Chance
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Manickam N, Radhakrishnan RK, Vergil Andrews JF, Selvaraj DB, Kandasamy M. Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington's disease: Possibilities for neural-glial transition in the brain. Life Sci 2020; 263:118569. [PMID: 33049278 DOI: 10.1016/j.lfs.2020.118569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant pathogenic condition that causes progressive degeneration of GABAergic neurons in the brain. The abnormal expansion of the CAG repeats in the exon 1 of the Huntingtin gene (HTT gene) has been associated with the onset and progression of movement disorders, psychiatric disturbance and cognitive decline in HD. Microglial activation and reactive astrogliosis have been recognized as the key pathogenic cellular events in the brains of HD subjects. Besides, HD has been characterized by induced quiescence of neural stem cells (NSCs), reactive neuroblastosis and reduced survival of newborn neurons in the brain. Strikingly, the expression of the mutant HTT gene has been reported to induce the cell cycle re-entry of neurons in HD brains. However, the underlying basis for the induction of cell cycle in neurons and the fate of dedifferentiating neurons in the pathological brain remain largely unknown. Thus, this review article revisits the reports on the regulation of key signaling pathways responsible for altered cell cycle events in diseased brains, with special reference to HD and postulates the occurrence of reactive neuroblastosis as a consequential cellular event of dedifferentiation of neurons. Meanwhile, a substantial number of studies indicate that many neuropathogenic events are associated with the expression of potential glial cell markers by neuroblasts. Taken together, this article represents a hypothesis that transdifferentiation of neurons into glial cells might be highly possible through the transient generation of reactive neuroblasts in the brain upon certain pathological conditions.
Collapse
Affiliation(s)
- Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India.
| |
Collapse
|
19
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
20
|
Zamboni M, Llorens-Bobadilla E, Magnusson JP, Frisén J. A Widespread Neurogenic Potential of Neocortical Astrocytes Is Induced by Injury. Cell Stem Cell 2020; 27:605-617.e5. [PMID: 32758425 PMCID: PMC7534841 DOI: 10.1016/j.stem.2020.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/02/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Parenchymal astrocytes have emerged as a potential reservoir for new neurons in non-neurogenic brain regions. It is currently unclear how astrocyte neurogenesis is controlled molecularly. Here we show that Notch signaling-deficient astrocytes can generate new neurons after injury. Using single-cell RNA sequencing, we found that, when Notch signaling is blocked, astrocytes transition to a neural stem cell-like state. However, only after injury do a few of these primed astrocytes unfold a neurogenic program, including a self-amplifying progenitor-like state. Further, reconstruction of the trajectories of individual cells allowed us to uncouple astrocyte neurogenesis from reactive gliosis, which occur along independent branches. Finally, we show that cortical neurogenesis molecularly recapitulates canonical subventricular zone neurogenesis with remarkable fidelity. Our study supports a widespread potential of parenchymal astrocytes to function as dormant neural stem cells.
Collapse
Affiliation(s)
- Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Jens Peter Magnusson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
21
|
Magnusson JP, Zamboni M, Santopolo G, Mold JE, Barrientos-Somarribas M, Talavera-Lopez C, Andersson B, Frisén J. Activation of a neural stem cell transcriptional program in parenchymal astrocytes. eLife 2020; 9:e59733. [PMID: 32744501 PMCID: PMC7440914 DOI: 10.7554/elife.59733] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Adult neural stem cells, located in discrete brain regions, generate new neurons throughout life. These stem cells are specialized astrocytes, but astrocytes in other brain regions do not generate neurons under physiological conditions. After stroke, however, striatal astrocytes undergo neurogenesis in mice, triggered by decreased Notch signaling. We used single-cell RNA sequencing to characterize neurogenesis by Notch-depleted striatal astrocytes in vivo. Striatal astrocytes were located upstream of neural stem cells in the neuronal lineage. As astrocytes initiated neurogenesis, they became transcriptionally very similar to subventricular zone stem cells, progressing through a near-identical neurogenic program. Surprisingly, in the non-neurogenic cortex, Notch-depleted astrocytes also initiated neurogenesis. Yet, these cortical astrocytes, and many striatal ones, stalled before entering transit-amplifying divisions. Infusion of epidermal growth factor enabled stalled striatal astrocytes to resume neurogenesis. We conclude that parenchymal astrocytes are latent neural stem cells and that targeted interventions can guide them through their neuronal differentiation.
Collapse
Affiliation(s)
- Jens P Magnusson
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Giuseppe Santopolo
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| |
Collapse
|
22
|
The Emerging Role of Extracellular Vesicles in the Glioma Microenvironment: Biogenesis and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12071964. [PMID: 32707733 PMCID: PMC7409063 DOI: 10.3390/cancers12071964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are a diverse group of brain tumors comprised of malignant cells ('tumor' cells) and non-malignant 'normal' cells, including neural (neurons, glia), inflammatory (microglia, macrophage) and vascular cells. Tumor heterogeneity arises in part because, within the glioma mass, both 'tumor' and 'normal' cells secrete factors that form a unique microenvironment to influence tumor progression. Extracellular vesicles (EVs) are critical mediators of intercellular communication between immediate cellular neighbors and distantly located cells in healthy tissues/organs and in tumors, including gliomas. EVs mediate cell-cell signaling as carriers of nucleic acid, lipid and protein cargo, and their content is unique to cell types and physiological states. EVs secreted by non-malignant neural cells have important physiological roles in the healthy brain, which can be altered or co-opted to promote tumor progression and metastasis, acting in combination with glioma-secreted EVs. The cell-type specificity of EV content means that 'vesiculome' data can potentially be used to trace the cell of origin. EVs may also serve as biomarkers to be exploited for disease diagnosis and to assess therapeutic progress. In this review, we discuss how EVs mediate intercellular communication in glioma, and their potential role as biomarkers and readouts of a therapeutic response.
Collapse
|
23
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
24
|
Arzate DM, Covarrubias L. Adult Neurogenesis in the Context of Brain Repair and Functional Relevance. Stem Cells Dev 2020; 29:544-554. [PMID: 31910108 DOI: 10.1089/scd.2019.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urodeles and some fishes possess a remarkable capacity to regenerate their limbs/fins, a property that correlates with their additional ability to regenerate large areas of the brain and/or produce a variety of new neurons during adulthood. In contrast, neurogenesis in adult mammals is apparently restricted to two main regions, the subventricular zone of lateral ventricles and the subgranular zone of the hippocampus. There, astrocyte-like neural stem cells (NSCs) reside and derive into new neurons. Although it is becoming apparent that other brain regions carry out neurogenesis, in many cases, its functional significance is controversial, particularly, because very few putative NSCs capable of deriving into new neurons have been found. Hence, is renewal of certain neurons a requirement for a healthy brain? Are there specific physiological conditions that stimulate neurogenesis in a particular region? Does the complexity of the brain demand reduced neurogenesis? In this study, we review the production of new neurons in the vertebrate adult brain in the context of a possible functional relevance. In addition, we consider the intrinsic properties of potential cellular sources of new neurons, as well as the contribution of the milieu surrounding them to estimate the reparative capacity of the brain upon injury or a neurodegenerative condition. The conclusion of this review should bring into debate the potential and convenience of promoting neuronal regeneration in the adult human brain.
Collapse
|
25
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
27
|
Liu MH, Li W, Zheng JJ, Xu YG, He Q, Chen G. Differential neuronal reprogramming induced by NeuroD1 from astrocytes in grey matter versus white matter. Neural Regen Res 2020; 15:342-351. [PMID: 31552908 PMCID: PMC6905344 DOI: 10.4103/1673-5374.265185] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A new technology called in vivo glia-to-neuron conversion has emerged in recent years as a promising next generation therapy for neural regeneration and repair. This is achieved through reprogramming endogenous glial cells into neurons in the central nervous system through ectopically expressing neural transcriptional factors in glial cells. Previous studies have been focusing on glial cells in the grey matter such as the cortex and striatum, but whether glial cells in the white matter can be reprogrammed or not is unknown. To address this fundamental question, we express NeuroD1 in the astrocytes of both grey matter (cortex and striatum) and white matter (corpus callosum) to investigate the conversion efficiency, neuronal subtypes, and electrophysiological features of the converted neurons. We discover that NeuroD1 can efficiently reprogram the astrocytes in the grey matter into functional neurons, but the astrocytes in the white matter are much resistant to neuronal reprogramming. The converted neurons from cortical and striatal astrocytes are composed of both glutamatergic and GABAergic neurons, capable of firing action potentials and having spontaneous synaptic activities. In contrast, the few astrocyte-converted neurons in the white matter are rather immature with rare synaptic events. These results provide novel insights into the differential reprogramming capability between the astrocytes in the grey matter versus the white matter, and highlight the impact of regional astrocytes as well as microenvironment on the outcome of glia-to-neuron conversion. Since human brain has large volume of white matter, this study will provide important guidance for future development of in vivo glia-to-neuron conversion technology into potential clinical therapies. Experimental protocols in this study were approved by the Laboratory Animal Ethics Committee of Jinan University (approval No. IACUC-20180321-03) on March 21, 2018.
Collapse
Affiliation(s)
- Min-Hui Liu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Wen Li
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Jia-Jun Zheng
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Yu-Ge Xu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Qing He
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China; Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Szychowski KA, Gmiński J. Specific role of N-methyl-D-aspartate (NMDA) receptor in elastin-derived VGVAPG peptide-dependent calcium homeostasis in mouse cortical astrocytes in vitro. Sci Rep 2019; 9:20165. [PMID: 31882909 PMCID: PMC6934688 DOI: 10.1038/s41598-019-56781-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Under physiological and pathological conditions, elastin is degraded to produce elastin-derived peptides (EDPs). EDPs are detected in the healthy human brain, and its concentration significantly increases after ischemic stroke. Both elastin and EDPs contains replications of the soluble VGVAPG hexapeptide, which has a broad range of biological activities. Effects of VGVAPG action are mainly mediated by elastin-binding protein (EBP), which is alternatively spliced, enzymatically inactive form of the GLB1 gene. This study was conducted to elucidate the activation and role of the N-methyl-D-aspartate receptor (NMDAR) in elastin-derived VGVAPG peptide-dependent calcium homeostasis in mouse cortical astrocytes in vitro. Cells were exposed to 10 nM VGVAPG peptide and co-treated with MK-801, nifedipine, verapamil, or Src kinase inhibitor I. After cell stimulation, we measured Ca2+ level, ROS production, and mRNA expression. Moreover, the Glb1 and NMDAR subunits (GluN1, GluN2A, and GluN2B) siRNA gene knockdown were applied. We found the VGVAPG peptide causes Ca2+ influx through the NMDA receptor in mouse astrocytes in vitro. Silencing of the Glb1, GluN1, GluN2A, and GluN2B gene prevented VGVAPG peptide-induced increase in Ca2+. Nifedipine does not completely reduce VGVAPG peptide-activated ROS production, whereas MK-801, verapamil, and Src inhibitor reduce VGVAPG peptide-activated Ca2+ influx and ROS production. These data suggest the role of Src kinase signal transduction from EBP to NMDAR. Moreover, the VGVAPG peptide affects the expression of NMDA receptor subunits.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Jan Gmiński
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| |
Collapse
|
29
|
Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019; 104:834-848. [DOI: 10.1016/j.neuron.2019.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
|
30
|
Cheng X, Yeung PKK, Zhong K, Zilundu PLM, Zhou L, Chung SK. Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation 2019; 16:227. [PMID: 31733648 PMCID: PMC6858703 DOI: 10.1186/s12974-019-1597-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is synthesized and upregulated in astrocytes under stroke. We previously demonstrated that transgenic mice over-expressing astrocytic ET-1 (GET-1) displayed more severe neurological deficits characterized by a larger infarct after transient middle cerebral artery occlusion (tMCAO). ET-1 is a known vasoconstrictor, mitogenic, and a survival factor. However, it is unclear whether the observed severe brain damage in GET-1 mice post stroke is due to ET-1 dysregulation of neurogenesis by altering the stem cell niche. Methods Non-transgenic (Ntg) and GET-1 mice were subjected to tMCAO with 1 h occlusion followed by long-term reperfusion (from day 1 to day 28). Neurological function was assessed using a four-point scale method. Infarct area and volume were determined by 2,3,5-triphenyltetra-zolium chloride staining. Neural stem cell (NSC) proliferation and migration in subventricular zone (SVZ) were evaluated by immunofluorescence double labeling of bromodeoxyuridine (BrdU), Ki67 and Sox2, Nestin, and Doublecortin (DCX). NSC differentiation in SVZ was evaluated using the following immunofluorescence double immunostaining: BrdU and neuron-specific nuclear protein (NeuN), BrdU and glial fibrillary acidic protein (GFAP). Phospho-Stat3 (p-Stat3) expression detected by Western-blot and immunofluorescence staining. Results GET-1 mice displayed a more severe neurological deficit and larger infarct area after tMCAO injury. There was a significant increase of BrdU-labeled progenitor cell proliferation, which co-expressed with GFAP, at SVZ in the ipsilateral side of the GET-1 brain at 28 days after tMCAO. p-Stat3 expression was increased in both Ntg and GET-1 mice in the ischemia brain at 7 days after tMCAO. p-Stat3 expression was significantly upregulated in the ipsilateral side in the GET-1 brain than that in the Ntg brain at 7 days after tMCAO. Furthermore, GET-1 mice treated with AG490 (a JAK2/Stat3 inhibitor) sh owed a significant reduction in neurological deficit along with reduced infarct area and dwarfed astrocytic differentiation in the ipsilateral brain after tMCAO. Conclusions The data indicate that astrocytic endothelin-1 overexpression promotes progenitor stem cell proliferation and astr ocytic differentiation via the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, 510120, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China. .,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China. .,Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Patrick K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, HKSAR, China
| | - Ke Zhong
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Sookja K Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China.
| |
Collapse
|
31
|
Pereira M, Birtele M, Rylander Ottosson D. Direct reprogramming into interneurons: potential for brain repair. Cell Mol Life Sci 2019; 76:3953-3967. [PMID: 31250034 PMCID: PMC6785593 DOI: 10.1007/s00018-019-03193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
The brain tissue has only a limited capacity for generating new neurons. Therefore, to treat neurological diseases, there is a need of other cell sources for brain repair. Different sources of cells have been subject of intense research over the years, including cells from primary tissue, stem cell-derived cells and reprogrammed cells. As an alternative, direct reprogramming of resident brain cells into neurons is a recent approach that could provide an attractive method for treating brain injuries or diseases as it uses the patient's own cells for generating novel neurons inside the brain. In vivo reprogramming is still in its early stages but holds great promise as an option for cell therapy. To date, both inhibitory and excitatory neurons have been obtained via in vivo reprogramming, but the precise phenotype or functionality of these cells has not been analysed in detail in most of the studies. Recent data shows that in vivo reprogrammed neurons are able to functionally mature and integrate into the existing brain circuitry, and compose interneuron phenotypes that seem to correlate to their endogenous counterparts. Interneurons are of particular importance as they are essential in physiological brain function and when disturbed lead to several neurological disorders. In this review, we describe a comprehensive overview of the existing studies involving brain repair, including in vivo reprogramming, with a focus on interneurons, along with an overview on current efforts to generate interneurons for cell therapy for a number of neurological diseases.
Collapse
Affiliation(s)
- Maria Pereira
- Department of Experimental Medical Science and Lund Stem Cell Center BMC, Lund University, 22141, Lund, Sweden
| | - Marcella Birtele
- Department of Experimental Medical Science and Lund Stem Cell Center BMC, Lund University, 22141, Lund, Sweden
| | - Daniella Rylander Ottosson
- Department of Experimental Medical Science and Lund Stem Cell Center BMC, Lund University, 22141, Lund, Sweden.
| |
Collapse
|
32
|
Fattorini G, Ripoli C, Cocco S, Spinelli M, Mattera A, Grassi C, Conti F. Glutamate/GABA co-release selectively influences postsynaptic glutamate receptors in mouse cortical neurons. Neuropharmacology 2019; 161:107737. [PMID: 31398382 DOI: 10.1016/j.neuropharm.2019.107737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
Cultured rat cortical neurons co-expressing VGLUT1 and VGAT (mixed synapses) co-release Glu and GABA. Here, mixed synapses were studied in cultured mouse cortical neurons to verify whether in mice mixed synapses co-release Glu and GABA, and to gain insight into how they may influence excitation/inhibition balance. Results showed the existence of synapses and autapses that co-release Glu and GABA in cultured mouse cortical neurons, and the ability of both neurotransmitters to evoke postsynaptic responses mediated by ionotropic receptors. We studied the short-term plasticity of glutamatergic, GABAergic, and mixed responses and we found that the kinetics of mixPSC amplitude depression was similar to that observed in EPSCs, but it was different from that of IPSCs. We found similar presynaptic release characteristics in glutamatergic and mixed synapses. Analysis of postsynaptic features, obtained by measuring AMPAR- and NMDAR-mediated currents, showed that AMPAR-mediated currents were significantly higher in pure glutamatergic than in mixed synapses, whereas NMDAR-mediated currents were not significantly different from those measured in mixed synapses. Overall, our findings demonstrate that glutamatergic and mixed synapses share similar electrophysiological properties. However, co-release of GABA and Glu influences postsynaptic ionotropic glutamatergic receptor subtypes, thus selectively influencing AMPAR-mediated currents. These findings strengthen the view that mixed neurons can play a key role in CNS development and in maintaining the excitation-inhibition balance.
Collapse
Affiliation(s)
- Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, 60026, Ancona, Italy; Center for Neurobiology of Aging, INRCA, IRCCS, Ancona, Italy.
| | - Cristian Ripoli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, 00168, Rome, Italy
| | - Sara Cocco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Andrea Mattera
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, 00168, Rome, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, 60026, Ancona, Italy; Center for Neurobiology of Aging, INRCA, IRCCS, Ancona, Italy
| |
Collapse
|
33
|
Vignoles R, Lentini C, d'Orange M, Heinrich C. Direct Lineage Reprogramming for Brain Repair: Breakthroughs and Challenges. Trends Mol Med 2019; 25:897-914. [PMID: 31371156 DOI: 10.1016/j.molmed.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Injury to the human central nervous system (CNS) is devastating because our adult mammalian brain lacks intrinsic regenerative capacity to replace lost neurons and induce functional recovery. An emerging approach towards brain repair is to instruct fate conversion of brain-resident non-neuronal cells into induced neurons (iNs) by direct lineage reprogramming. Considerable progress has been made in converting various source cell types of mouse and human origin into clinically relevant iNs. Recent achievements using transcriptomics and epigenetics have shed light on the molecular mechanisms underpinning neuronal reprogramming, while the potential capability of iNs in promoting functional recovery in pathological contexts has started to be evaluated. Although future challenges need to be overcome before clinical translation, lineage reprogramming holds promise for effective cell-replacement therapy in regenerative medicine.
Collapse
Affiliation(s)
- Rory Vignoles
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Célia Lentini
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Marie d'Orange
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France.
| |
Collapse
|
34
|
Ghosh HS. Adult Neurogenesis and the Promise of Adult Neural Stem Cells. J Exp Neurosci 2019; 13:1179069519856876. [PMID: 31285654 PMCID: PMC6600486 DOI: 10.1177/1179069519856876] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
The adult brain, even though largely postmitotic, is now known to have dividing
cells that can make both glia and neurons. Of these, the precursor cells that
have the potential to make new neurons in the adult brain have attracted great
attention from researchers, anticipating their therapeutic potential for
neurodegenerative conditions. In this review, I will focus on adult
neurogenesis, from the perspective of the overall neurogenic potential in the
adult brain, current understanding of the ‘adult neural stem cell’, and the
importance of niche as a decisive factor for neurogenesis under
homeostasis and pathologic conditions.
Collapse
Affiliation(s)
- Hiyaa S Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
35
|
Nemirovich-Danchenko NM, Khodanovich MY. New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident? Front Neurosci 2019; 13:588. [PMID: 31275097 PMCID: PMC6591486 DOI: 10.3389/fnins.2019.00588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous potential of adult neurogenesis is of particular interest for the development of new strategies for recovery after stroke and traumatic brain injury. These pathological conditions affect endogenous neurogenesis in two aspects. On the one hand, injury usually initiates the migration of neuronal precursors (NPCs) to the lesion area from the already existing, in physiological conditions, neurogenic niche - the ventricular-subventricular zone (V-SVZ) near the lateral ventricles. On the other hand, recent studies have convincingly demonstrated the local generation of new neurons near lesion areas in different brain locations. The striatum, cortex, and hippocampal CA1 region are considered to be locations of such new neurogenic zones in the damaged brain. This review focuses on the relative contribution of two types of NPCs of different origin, resident population in new neurogenic zones and cells migrating from the lateral ventricles, to post-stroke or post-traumatic enhancement of neurogenesis. The migratory pathways of NPCs have also been considered. In addition, the review highlights the advantages and limitations of different methodological approaches to the definition of NPC location and tracking of new neurons. In general, we suggest that despite the considerable number of studies, we still lack a comprehensive understanding of neurogenesis in the damaged brain. We believe that the advancement of methods for in vivo visualization and longitudinal observation of neurogenesis in the brain could fundamentally change the current situation in this field.
Collapse
Affiliation(s)
| | - Marina Yu. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
36
|
Szychowski KA, Rombel-Bryzek A, Dołhańczuk-Śródka A, Gmiński J. Antiproliferative Effect of Elastin-Derived Peptide VGVAPG on SH-SY5Y Neuroblastoma Cells. Neurotox Res 2019; 36:503-514. [PMID: 31161598 PMCID: PMC6745029 DOI: 10.1007/s12640-019-00040-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Throughout the lifetime of humans, the amount of stem cells and the rate of cell proliferation continue to decrease. Reactive oxygen species (ROS) are one among the many factors that promote stem cell aging. Both a decrease in the level of stem cells and increase in ROS production can lead to the development of different neurodegenerative diseases. This study was conducted to determine how the VGVAPG peptide, liberated from elastin during the aging process and under pathological conditions, affects ROS production and activities of antioxidant enzymes in undifferentiated, proliferating SH-SY5Y cells. SH-SY5Y cells were maintained in Dulbecco's modified Eagle's medium/nutrient mixture F-12 supplemented with 10% heat-inactivated fetal bovine serum (FBS). After treating the SH-SY5Y cells with VGVAPG peptide, we measured ROS production; cell metabolism, proliferation, and expression; and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). We demonstrated that the VGVAPG peptide increases GPx expression and activity, whereas it decreases CAT expression in SH-SY5Y cells. Silencing of the GLB1 gene prevents changes in GPx activity. Despite the fact that the VGVAPG peptide increases GPx expression, it increases the ROS level. Moreover, the VGVAPG peptide decreases SH-SY5Y proliferation, which is prevented by the ROS scavenger N-acetyl-L-cysteine. Our data suggest that ROS production and decreased proliferation of SH-SY5Y cells are the results of excitotoxicity meditated through close unrecognized molecular pathways. More research is needed to elucidate the unknown mechanism of action of VGVAPG peptide in the nervous system.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Agnieszka Rombel-Bryzek
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland
| | | | - Jan Gmiński
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
37
|
Farhoodi R, Lansdell BJ, Kording KP. Quantifying How Staining Methods Bias Measurements of Neuron Morphologies. Front Neuroinform 2019; 13:36. [PMID: 31191283 PMCID: PMC6541099 DOI: 10.3389/fninf.2019.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The process through which neurons are labeled is a key methodological choice in measuring neuron morphology. However, little is known about how this choice may bias measurements. To quantify this bias we compare the extracted morphology of neurons collected from the same rodent species, experimental condition, gender distribution, age distribution, brain region and putative cell type, but obtained with 19 distinct staining methods. We found strong biases on measured features of morphology. These were largest in features related to the coverage of the dendritic tree (e.g., the total dendritic tree length). Understanding measurement biases is crucial for interpreting morphological data.
Collapse
Affiliation(s)
- Roozbeh Farhoodi
- Department of Mathematics, Sharif University of Technology, Tehran, Iran
| | | | - Konrad Paul Kording
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated "Immature" Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? J Clin Med 2019; 8:jcm8050685. [PMID: 31096632 PMCID: PMC6571946 DOI: 10.3390/jcm8050685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Brain plasticity is important for translational purposes since most neurological disorders and brain aging problems remain substantially incurable. In the mammalian nervous system, neurons are mostly not renewed throughout life and cannot be replaced. In humans, the increasing life expectancy explains the increase in brain health problems, also producing heavy social and economic burden. An exception to the “static” brain is represented by stem cell niches leading to the production of new neurons. Such adult neurogenesis is dramatically reduced from fish to mammals, and in large-brained mammals with respect to rodents. Some examples of neurogenesis occurring outside the neurogenic niches have been reported, yet these new neurons actually do not integrate in the mature nervous tissue. Non-newly generated, “immature” neurons (nng-INs) are also present: Prenatally generated cells continuing to express molecules of immaturity (mostly shared with the newly born neurons). Of interest, nng-INs seem to show an inverse phylogenetic trend across mammals, being abundant in higher-order brain regions not served by neurogenesis and providing structural plasticity in rather stable areas. Both newly generated and nng-INs represent a potential reservoir of young cells (a “brain reserve”) that might be exploited for preventing the damage of aging and/or delay the onset/reduce the impact of neurological disorders.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| |
Collapse
|
39
|
Arzate DM, Guerra-Crespo M, Covarrubias L. Induction of typical and atypical neurogenesis in the adult substantia nigra after mouse embryonic stem cells transplantation. Neuroscience 2019; 408:308-326. [PMID: 31034794 DOI: 10.1016/j.neuroscience.2019.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Neurogenesis in the substantia nigra (SN) has been a controversial issue. Here we report that neurogenesis can be induced in the adult rodent SN by transplantation of embryoid body cells (EBCs) derived from mouse embryonic stem cells. The detection of Sox2+ dividing (BrdU+) putative host neural precursor cells (NPCs) between 1 and 6 days post-transplantation (dpt) supported the neurogenic capacity of the adult SN. In agreement with the awakening of NPCs by EBCs, only host cells from implant-bearing SN were able to generate neurosphere-like aggregates in the presence of Egf and Fgf2. Later, at 15 dpt, a significant number of SN Dcx+ neuroblasts were detected. However, a continuous BrdU administration after transplantation showed that only a fraction (about 20-30%) of those host Dcx+ progeny derived from dividing cells and few BrdU+ cells, some of them NeuN+, survived up to 30 dpt. Unexpectedly, 25-30% of Dcx+ or Psa-Ncam+ cells at 15 dpt displayed astrocytic markers such as Gfap and S100b. Using a genetic lineage tracing strategy, we demonstrated that a large proportion of host Dcx+ and/or Tubb3+ neuroblasts originated from Gfap+ cells. Remarkably, new blood vessels formed in association with the neurogenic process that, when precluded, caused a reduction in neuroblast production. Accordingly, two proteins secreted by EBCs, Fgf2 and Vegf, were able to promote the emergence of Dcx+/Psa-Ncam+, Tubb3+ and NeuN+/BrdU+ cells in vivo in the absence of EBCs. We propose that the adult SN is a mostly silent neurogenic niche with the ability to generate new neurons by typical and atypical mechanisms.
Collapse
Affiliation(s)
- Dulce María Arzate
- Instituto de Biotecnología, UNAM. Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Magdalena Guerra-Crespo
- Instituto de Fisiología Celular, UNAM. Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510. Ciudad de México, Mexico
| | - Luis Covarrubias
- Instituto de Biotecnología, UNAM. Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
40
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
41
|
Lv ZM, Zhao RJ, Zhi XS, Huang Y, Chen JY, Song NN, Su CJ, Ding YQ. Expression of DCX and Transcription Factor Profiling in Photothrombosis-Induced Focal Ischemia in Mice. Front Cell Neurosci 2018; 12:455. [PMID: 30524246 PMCID: PMC6262056 DOI: 10.3389/fncel.2018.00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022] Open
Abstract
Adult neurogenesis is present in the dentate gyrus and the subventricular zone in mammalian brain under physiological conditions. Recently, adult neurogenesis has also been reported in other brain regions after brain injury. In this study, we established a focal striatal ischemic model in adult mice via photothrombosis (PT) and investigated how focal ischemia elicits neurogenesis in the striatum. We found that astrocytes and microglia increased in early post-ischemic stage, followed by a 1-week late-onset of doublecortin (DCX) expression in the striatum. The number of DCX-positive neurons reached the peak level at day 7, but they were still observed at day 28 post-ischemia. Moreover, Rbp-J (a key effector of Notch signaling) deletion in astrocytes has been reported to promote the neuron regeneration after brain ischemia, and we provided the change of gene expression profile in the striatum of astrocyte-specific Rbp-J knockout (KO) mice glial fibrillary acidic protein (GFAP-CreER:Rbp-Jfl/fl), which may help to clarify detailed potential mechanisms for the post-ischemic neurogenesis in the striatum.
Collapse
Affiliation(s)
- Zhu-Man Lv
- Department of Basic Medicine, Institute of Neurosciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Rong-Jian Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Xiao-Song Zhi
- Center for Stem Cells and Medicine, Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ning-Ning Song
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Yu-Qiang Ding
- Department of Basic Medicine, Institute of Neurosciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Sassone J, Papadimitriou E, Thomaidou D. Regenerative Approaches in Huntington's Disease: From Mechanistic Insights to Therapeutic Protocols. Front Neurosci 2018; 12:800. [PMID: 30450032 PMCID: PMC6224350 DOI: 10.3389/fnins.2018.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Huntington’s Disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the exon-1 of the IT15 gene encoding the protein Huntingtin. Expression of mutated Huntingtin in humans leads to dysfunction and ultimately degeneration of selected neuronal populations of the striatum and cerebral cortex. Current available HD therapy relies on drugs to treat chorea and control psychiatric symptoms, however, no therapy has been proven to slow down disease progression or prevent disease onset. Thus, although 24 years have passed since HD gene identification, HD remains a relentless progressive disease characterized by cognitive dysfunction and motor disability that leads to death of the majority of patients, on average 10–20 years after its onset. Up to now several molecular pathways have been implicated in the process of neurodegeneration involved in HD and have provided potential therapeutic targets. Based on these data, approaches currently under investigation for HD therapy aim on the one hand at getting insight into the mechanisms of disease progression in a human-based context and on the other hand at silencing mHTT expression by using antisense oligonucleotides. An innovative and still poorly investigated approach is to identify new factors that increase neurogenesis and/or induce reprogramming of endogenous neuroblasts and parenchymal astrocytes to generate new healthy neurons to replace lost ones and/or enforce neuroprotection of pre-existent striatal and cortical neurons. Here, we review studies that use human disease-in-a-dish models to recapitulate HD pathogenesis or are focused on promoting in vivo neurogenesis of endogenous striatal neuroblasts and direct neuronal reprogramming of parenchymal astrocytes, which combined with neuroprotective protocols bear the potential to re-establish brain homeostasis lost in HD.
Collapse
Affiliation(s)
- Jenny Sassone
- Vita-Salute University and San Raffaele Scientific Institute, Milan, Italy
| | | | - Dimitra Thomaidou
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
43
|
La Rosa C, Bonfanti L. Brain Plasticity in Mammals: An Example for the Role of Comparative Medicine in the Neurosciences. Front Vet Sci 2018; 5:274. [PMID: 30443551 PMCID: PMC6221904 DOI: 10.3389/fvets.2018.00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Comparative medicine deals with similarities and differences between veterinary and human medicine. All mammals share most basic cellular and molecular mechanisms, thus justifying murine animal models in a translational perspective; yet “mice are not men,” thus some biases can emerge when complex biological processes are concerned. Brain plasticity is a cutting-edge, expanding topic in the field of Neurosciences with important translational implications, yet, with remarkable differences among mammals, as emerging from comparative studies. In particular, adult neurogenesis (the genesis of new neurons from brain stem cell niches) is a life-long process in laboratory rodents but a vestigial, mostly postnatal remnant in humans and dolphins. Another form of “whole cell” plasticity consisting of a population of “immature” neurons which are generated prenatally but continue to express markers of immaturity during adulthood has gained interest more recently, as a reservoir of young neurons in the adult brain. The distribution of the immature neurons also seems quite heterogeneous among different animal species, being confined within the paleocortex in rodents while extending into neocortex in other mammals. A recent study carried out in sheep, definitely showed that gyrencephalic, large-sized brains do host higher amounts of immature neurons, also involving subcortical, white, and gray matter regions. Hence, “whole cell” plasticity such as adult neurogenesis and immature neurons are biological processes which, as a whole, cannot be studied exclusively in laboratory rodents, but require investigation in comparative medicine, involving large-sized, long-living mammals, in order to gain insights for translational purposes.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Tiwari N, Pataskar A, Péron S, Thakurela S, Sahu SK, Figueres-Oñate M, Marichal N, López-Mascaraque L, Tiwari VK, Berninger B. Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes. Cell Stem Cell 2018; 23:557-571.e8. [PMID: 30290178 PMCID: PMC6179960 DOI: 10.1016/j.stem.2018.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/08/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
A broad molecular framework of how neural stem cells are specified toward astrocyte fate during brain development has proven elusive. Here we perform comprehensive and integrated transcriptomic and epigenomic analyses to delineate gene regulatory programs that drive the developmental trajectory from mouse embryonic stem cells to astrocytes. We report molecularly distinct phases of astrogliogenesis that exhibit stage- and lineage-specific transcriptomic and epigenetic signatures with unique primed and active chromatin regions, thereby revealing regulatory elements and transcriptional programs underlying astrocyte generation and maturation. By searching for transcription factors that function at these elements, we identified NFIA and ATF3 as drivers of astrocyte differentiation from neural precursor cells while RUNX2 promotes astrocyte maturation. These transcription factors facilitate stage-specific gene expression programs by switching the chromatin state of their target regulatory elements from primed to active. Altogether, these findings provide integrated insights into the genetic and epigenetic mechanisms steering the trajectory of astrogliogenesis.
Collapse
Affiliation(s)
- Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | | | - Sophie Péron
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Sudhir Thakurela
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - Nicolás Marichal
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | | | - Vijay K Tiwari
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
45
|
Olloquequi J, Cornejo-Córdova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, Camins A. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. J Psychopharmacol 2018; 32:265-275. [PMID: 29444621 DOI: 10.1177/0269881118754680] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurological and psychiatric disorders are leading contributors to the global disease burden, having a serious impact on the quality of life of both patients and their relatives. Although the molecular events underlying these heterogeneous diseases remain poorly understood, some studies have raised the idea of common mechanisms involved. In excitotoxicity, there is an excessive activation of glutamate receptors by excitatory amino acids, leading to neuronal damage. Thus, the excessive release of glutamate can lead to a dysregulation of Ca2+ homeostasis, triggering the production of free radicals and oxidative stress, mitochondrial dysfunction and eventually cell death. Although there is a consensus in considering excitotoxicity as a hallmark in most neurodegenerative diseases, increasing evidence points to the relevant role of this pathological mechanism in other illnesses affecting the central nervous system. Consequently, antagonists of glutamate receptors are used in current treatments or in clinical trials in both neurological and psychiatric disorders. However, drugs modulating other aspects of the excitotoxic mechanism could be more beneficial. This review discusses how excitotoxicity is involved in the pathogenesis of different neurological and psychiatric disorders and the promising strategies targeting the excitotoxic insult.
Collapse
Affiliation(s)
- Jordi Olloquequi
- 1 Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | | | - Ester Verdaguer
- 3 Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona, Spain.,4 Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,5 Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francesc X Soriano
- 3 Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona, Spain.,5 Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Octavio Binvignat
- 6 Laboratorio de Ciencias Morfológicas, Pontificia Universidad Católica de Valparaíso, Chile
| | - Carme Auladell
- 3 Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona, Spain.,4 Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,5 Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- 4 Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,5 Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,7 Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Spain
| |
Collapse
|
46
|
Harris L, Zalucki O, Clément O, Fraser J, Matuzelski E, Oishi S, Harvey TJ, Burne THJ, Heng JIT, Gronostajski RM, Piper M. Neurogenic differentiation by hippocampal neural stem and progenitor cells is biased by NFIX expression. Development 2018; 145:145/3/dev155689. [DOI: 10.1242/dev.155689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
ABSTRACT
Our understanding of the transcriptional programme underpinning adult hippocampal neurogenesis is incomplete. In mice, under basal conditions, adult hippocampal neural stem cells (AH-NSCs) generate neurons and astrocytes, but not oligodendrocytes. The factors limiting oligodendrocyte production, however, remain unclear. Here, we reveal that the transcription factor NFIX plays a key role in this process. NFIX is expressed by AH-NSCs, and its expression is sharply upregulated in adult hippocampal neuroblasts. Conditional ablation of Nfix from AH-NSCs, coupled with lineage tracing, transcriptomic sequencing and behavioural studies collectively reveal that NFIX is cell-autonomously required for neuroblast maturation and survival. Moreover, a small number of AH-NSCs also develop into oligodendrocytes following Nfix deletion. Remarkably, when Nfix is deleted specifically from intermediate progenitor cells and neuroblasts using a Dcx-creERT2 driver, these cells also display elevated signatures of oligodendrocyte gene expression. Together, these results demonstrate the central role played by NFIX in neuroblasts within the adult hippocampal stem cell neurogenic niche in promoting the maturation and survival of these cells, while concomitantly repressing oligodendrocyte gene expression signatures.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Olivier Clément
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia 6102
| | - James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Elise Matuzelski
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Tracey J. Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia 4072
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia 4076
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia 6102
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
47
|
Connor B. Concise Review: The Use of Stem Cells for Understanding and Treating Huntington's Disease. Stem Cells 2017; 36:146-160. [PMID: 29178352 DOI: 10.1002/stem.2747] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
Abstract
Two decades ago, researchers identified that a CAG expansion mutation in the huntingtin (HTT) gene was involved in the pathogenesis of Huntington's disease (HD). However, since the identification of the HTT gene, there has been no advance in the development of therapeutic strategies to prevent or reduce the progression of HD. With the recent advances in stem cell biology and human cell reprogramming technologies, several novel and exciting pathways have emerged allowing researchers to enhance their understanding of the pathogenesis of HD, to identify and screen potential drug targets, and to explore alternative donor cell sources for cell replacement therapy. This review will discuss the role of compensatory neurogenesis in the HD brain, the use of stem cell-based therapies for HD to replace or prevent cell loss, and the recent advance of cell reprogramming to model and/or treat HD. These new technologies, coupled with advances in genome editing herald a promising new era for HD research with the potential to identify a therapeutic strategy to alleviate this debilitating disorder. Stem Cells 2018;36:146-160.
Collapse
Affiliation(s)
- Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Falk S, Götz M. Glial control of neurogenesis. Curr Opin Neurobiol 2017; 47:188-195. [PMID: 29145015 DOI: 10.1016/j.conb.2017.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022]
Abstract
Glial cells are central components of all neurogenic niches in the embryonic as well as in the adult central nervous system. While neural stem cells (NSCs) themselves exhibit glial features the behavior of NSCs is also strongly influenced by niche glial cells. Recently, studies have begun to uncover a large variety of glial cell-extrinsic as well as intrinsic factors that play crucial roles in the control of NSCs and the regulation of the cellular output from the neurogenic niches. In this review, we focus on mechanisms underlying the formation of adult NSCs by embryonic radial glia cells, discuss the influence of niche glia cells on adult NSCs and examine how the neurogenic potential of glial cells is controlled.
Collapse
Affiliation(s)
- Sven Falk
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg/Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg/Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany.
| |
Collapse
|
49
|
Grade S, Götz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2017; 2:29. [PMID: 29302363 PMCID: PMC5677983 DOI: 10.1038/s41536-017-0033-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
Lifelong neurogenesis and incorporation of newborn neurons into mature neuronal circuits operates in specialized niches of the mammalian brain and serves as role model for neuronal replacement strategies. However, to which extent can the remaining brain parenchyma, which never incorporates new neurons during the adulthood, be as plastic and readily accommodate neurons in networks that suffered neuronal loss due to injury or neurological disease? Which microenvironment is permissive for neuronal replacement and synaptic integration and which cells perform best? Can lost function be restored and how adequate is the participation in the pre-existing circuitry? Could aberrant connections cause malfunction especially in networks dominated by excitatory neurons, such as the cerebral cortex? These questions show how important connectivity and circuitry aspects are for regenerative medicine, which is the focus of this review. We will discuss the impressive advances in neuronal replacement strategies and success from exogenous as well as endogenous cell sources. Both have seen key novel technologies, like the groundbreaking discovery of induced pluripotent stem cells and direct neuronal reprogramming, offering alternatives to the transplantation of fetal neurons, and both herald great expectations. For these to become reality, neuronal circuitry analysis is key now. As our understanding of neuronal circuits increases, neuronal replacement therapy should fulfill those prerequisites in network structure and function, in brain-wide input and output. Now is the time to incorporate neural circuitry research into regenerative medicine if we ever want to truly repair brain injury.
Collapse
Affiliation(s)
- Sofia Grade
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
50
|
The Potential of Targeting Brain Pathology with Ascl1/Mash1. Cells 2017; 6:cells6030026. [PMID: 28832532 PMCID: PMC5617972 DOI: 10.3390/cells6030026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
The proneural factor Achaete-scute complex-like 1 (Ascl1/Mash1) acts as a pioneering transcription factor that initializes neuronal reprogramming. It drives neural progenitors and non-neuronal cells to exit the cell cycle, and promotes neuronal differentiation by activating neuronal target genes, even those that are normally repressed. Importantly, force-expression of Ascl1 was shown to drive proliferative reactive astroglia formed during stroke and glioblastoma stem cells towards neuronal differentiation, and this could potentially diminish CNS damage resulting from their proliferation. As a pro-neural factor, Ascl1 also has the general effect of enhancing neurite growth by damaged or surviving neurons. Here, a hypothesis that brain pathologies associated with traumatic/ischemic injury and malignancy could be targeted with pro-neural factors that drives neuronal differentiation is formulated and explored. Although a good number of caveats exist, exogenous over-expression of Ascl1, alone or in combination with other factors, may be worth further consideration as a therapeutic approach in brain injury and cancer.
Collapse
|