1
|
Jordan VA, Gordon-Bennett PSC. BILATERAL SPONTANEOUS VITREOUS BASE DETACHMENT IN A FEMALE PATIENT WITH NEUROFIBROMATOSIS TYPE 1. Retin Cases Brief Rep 2023; 17:266-268. [PMID: 37094297 DOI: 10.1097/icb.0000000000001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE We describe a unique case of bilateral spontaneous vitreous base detachment in a female patient with neurofibromatosis Type 1 and no known history of ocular injury. This serves to add further to the medical literature. DISCUSSION Vitreous base detachments usually occur after significant ocular trauma. There is only one other published case of this occurring spontaneously also in a female patient with neurofibromatosis Type 1. CONCLUSION This suggests a rare association between neurofibromatosis Type 1 and spontaneous detachment of the vitreous base.
Collapse
Affiliation(s)
- Valence A Jordan
- University of the West Indies, Mona; and
- University Hospitals Sussex, Western Sussex Hospitals NHS Foundation Trust, Chichester, United Kingdom
| | - Patel S C Gordon-Bennett
- University Hospitals Sussex, Western Sussex Hospitals NHS Foundation Trust, Chichester, United Kingdom
| |
Collapse
|
2
|
Tenascin C in the Tumor-Nerve Microenvironment Enhances Perineural Invasion and Correlates With Locoregional Recurrence in Pancreatic Ductal Adenocarcinoma. Pancreas 2020; 49:442-454. [PMID: 32132519 DOI: 10.1097/mpa.0000000000001506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Perineural invasion is common in pancreatic ductal adenocarcinoma (PDAC) and worsens the postoperative prognosis. Tenascin C (TNC), an extracellular matrix glycoprotein, modulates tumor progression. We evaluated the functional roles of TNC, especially in perineural invasion of PDAC. METHODS We examined immunohistochemical TNC expression in 78 resected PDAC specimens. The relationships between TNC expression and clinicopathological features were retrospectively analyzed. Interactions between cancer cells and nerves with TNC supplementation were investigated using an in vitro coculture model with PDAC cell line and mouse dorsal root ganglion (DRG). RESULTS Tenascin C expression was predominant in perineural sites at the invasive tumor front. High perineural TNC expression in 30 patients (38%) was associated with perineural invasion, pathological T stage ≥3, and postoperative locoregional recurrence. High TNC expression was independently associated with postoperative, poor recurrence-free survival by multivariate analysis. In the in vitro coculture model, a TNC-rich matrix enhanced both PDAC cell colony extensions toward nerves and DRG axonal outgrowth toward cancer cell colonies, whereas TNC did not affect axonal outgrowth or cancer cell proliferation in separately cultured DRG and PDAC cells. CONCLUSIONS Strong perineural TNC expression indicated poor prognosis with locoregional recurrence. The neurotropism of TNC-induced PDAC suggests that TNC is a potential PDAC therapeutic target.
Collapse
|
3
|
Reprogramming Captures the Genetic and Tumorigenic Properties of Neurofibromatosis Type 1 Plexiform Neurofibromas. Stem Cell Reports 2019; 12:411-426. [PMID: 30713041 PMCID: PMC6373434 DOI: 10.1016/j.stemcr.2019.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disease caused by mutations in the NF1 tumor suppressor gene. Plexiform neurofibromas (PNFs) are benign Schwann cell (SC) tumors of the peripheral nerve sheath that develop through NF1 inactivation and can progress toward a malignant soft tissue sarcoma. There is a lack of non-perishable model systems to investigate PNF development. We reprogrammed PNF-derived NF1(-/-) cells, descendants from the tumor originating cell. These NF1(-/-)-induced pluripotent stem cells (iPSCs) captured the genomic status of PNFs and were able to differentiate toward neural crest stem cells and further to SCs. iPSC-derived NF1(-/-) SCs exhibited a continuous high proliferation rate, poor myelination ability, and a tendency to form 3D spheres that expressed the same markers as their PNF-derived primary SC counterparts. They represent a valuable model to study and treat PNFs. PNF-derived iPSC lines were banked for making them available.
Collapse
|
4
|
Rosenbaum T, Patrie KM, Ratner N. Neurofibromatosis Type 1: Genetic and Cellular Mechanisms of Peripheral Nerve Tumor Formation. Neuroscientist 2016. [DOI: 10.1177/107385849700300614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is among the most common inherited human diseases. The NF1 protein is a Ras-GTPase activating protein, positioning NF1 in important intracellular signaling pathways. Patients with mutations in the NF1 gene can develop benign peripheral nerve tumors (neurofibromas), learning disabilities, and/or benign optic nerve gliomas, in addition to abnormalities unassociated with the nervous system. The NF1 gene is believed to act as a tumor suppressor. How NF1 mutations relate to benign features of NF1 is the subject of active investigation. Studies using transgenic mice with NF1 mutations and cells derived from these mice have yielded exciting new data, implicating multiple cell types mutant at NF1 and possibly factors in the environment in the pathogenesis of benign neurofibromas. NEUROSCIENTIST 3:412-420, 1997
Collapse
Affiliation(s)
| | - Kevin M. Patrie
- Department of Pediatrics Düsseldorf Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Nancy Ratner
- Department of Pediatrics Düsseldorf Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine Cincinnati, Ohio
| |
Collapse
|
5
|
Zhou Y, He Y, Sharma R, Xing W, Estwick SA, Wu X, Rhodes SD, Xu M, Yang FC. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells. Int J Mol Sci 2015; 16:12345-59. [PMID: 26039236 PMCID: PMC4490447 DOI: 10.3390/ijms160612345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/24/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1+/−) mice. Nf1+/− MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1+/− MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1+/− MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Richa Sharma
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Selina A Estwick
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiaohua Wu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Steven D Rhodes
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mingjiang Xu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Feng-Chun Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Gutiérrez-Rivera A, Iribar H, Tuneu A, Izeta A. Skin-derived precursor cells as an in vitro modelling tool for the study of type 1 neurofibromatosis. Stem Cells Int 2012; 2012:646725. [PMID: 22550514 PMCID: PMC3329859 DOI: 10.1155/2012/646725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/18/2012] [Indexed: 12/17/2022] Open
Abstract
The most characteristic feature of neurofibromatosis type 1 (NF1) is the development of neurofibromas. It has been suggested that these tumors are caused by somatic inactivation of the wild-type NF1 allele, but the cell that originally suffers this mutation remains controversial. Several lines of evidence support the clonal origin of these tumors, and it has been recently suggested that skin-derived precursor cells (SKPs) could be the cell of origin of dermal neurofibromas. Nullizygous (NF1(-/-)) SKPs do give rise to neurofibromas when transplanted to heterozygous mice. Moreover, a nullizygous population of cells that is S100β negative is present in human neurofibromas, and NF1(+/-) multipotent progenitor cells are seemingly recruited to the tumor. This evidence supports the neurofibroma stem cell hypothesis and a putative involvement of SKPs in the aetiopathogenesis of the disease, suggesting that SKPs could become a valuable tool for the in vitro study of NF1.
Collapse
Affiliation(s)
- Araika Gutiérrez-Rivera
- Tissue Engineering Lab, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Haizea Iribar
- Tissue Engineering Lab, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Anna Tuneu
- Department of Dermatology, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering Lab, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| |
Collapse
|
7
|
Lin L, Chen J, Richardson JA, Parada LF. Mice lacking neurofibromin develop gastric hyperplasia. Am J Physiol Gastrointest Liver Physiol 2009; 297:G751-61. [PMID: 19661150 PMCID: PMC2763809 DOI: 10.1152/ajpgi.00007.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal (GI) neoplasms are among many manifestations of the genetic disease neurofibromatosis type 1 (NF1). However, the physiological and pathological functions of the Nf1 gene in the GI system have not been fully studied, possibly because of a lack of mouse models. In this study, we generated conditional knockout mice with Nf1 deficiency in the GI tract. These mice develop gastric epithelial hyperplasia and inflammation together with increased cell proliferation and apoptosis. The gastric phenotypes observed in these mutant mice seem to be the consequence of loss of Nf1 in gastric fibroblasts, resulting in paracrine hyperactivation of the ERK pathway in the gastric epithelium. These mice provide a useful model to study the pathogenesis of GI lesions in a subset of patients with NF1 and to investigate the role of the Nf1 gene in the development of GI neoplasms.
Collapse
Affiliation(s)
- Lu Lin
- 1Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration and
| | - Jian Chen
- 1Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration and
| | - James A. Richardson
- 2Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luis F. Parada
- 1Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration and
| |
Collapse
|
8
|
Abstract
Peripheral nerves consist of 3 layers with differing characteristics: the endoneurium, perineurium, and epineurium. The perineurium represents a continuum with the pia-arachnoid from the central nervous system and extends distally with the sheath of capsular cells of peripheral sensorial organs and propioceptive receptors. It is made of layers of flattened cells surrounded by a basement membrane and collagen fibers, forming concentrically laminated structures around single nerve fascicles. Functionally, the perineurium modulates external stretching forces (that could be potentially harmful for nerve fibers), and along with endoneurial vessels, forms the blood-nerve barrier. Multiple pathologic conditions associated with the perineurium have been described. Perineurial invasion is considered an important prognostic factor in several malignant neoplasms. Perineuriomas are true benign infrequent perineurial cell neoplasms that have been divided in 2 categories: those with intraneural localization and a more common extraneural (soft tissue) group, including sclerosing and reticular variants. Sporadic cases of malignant perineuromas have been reported. Interestingly, neurofibromas and malignant peripheral nerve sheath tumors may also display perineurial cell differentiation. The histologic appearance of perineuriomas may overlap with other soft tissue spindle cell neoplasms. Immunohistochemistry is imperative for the diagnosis, although in certain cases ultrastructural studies may be needed. Typical perineuriomas are positive for epithelial membrane antigen, glucose transporter-1-1, and claudin-1, and negative for S-100 protein and neurofilaments. Perineuriomas have mostly simple karyotypes, with one or few chromosomal rearrangements or numerical changes and it seems that specific cytogenetic aberrations may correlate with perineurioma subtype.
Collapse
|
9
|
Shapira S, Barkan B, Friedman E, Fridman E, Kloog Y, Stein R. The tumor suppressor neurofibromin confers sensitivity to apoptosis by Ras-dependent and Ras-independent pathways. Cell Death Differ 2006; 14:895-906. [PMID: 17096025 DOI: 10.1038/sj.cdd.4402057] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by a high incidence of benign and malignant tumors attributed to loss of function of Nf1, which encodes neurofibromin, a tumor suppressor with Ras-GAP activity. Neurofibromin deficiency typically causes chronic activation of Ras, considered the major contributor to manifestation of NF1. Resistance to radio- and chemotherapy are typical of NF1-associated tumors, but the underlying mechanism is unknown. Here, we investigated interrelationships between neurofibromin expression, Ras activity, and sensitivity to apoptosis. Neurofibromin-deficient mouse embryonic fibroblasts (MEFs) and human NF1 tumor cells were more resistant than neurofibromin-expressing cells to apoptosis. Moreover, Nf1(-/-), Nf1(+/-), and Nf1(+/+) MEFs exhibited gene-dosage-related resistance to apoptosis. Resistance of the Nf1-deficient cells was mediated by two survival pathways: a Ras-dependent pathway, and a Ras-independent pathway promoted by the lack of an NF1-GRD-independent proapoptotic action of neurofibromin. Therefore, besides its Ras-dependent growth inhibition, neurofibromin can exert tumor suppression via a proapoptotic effect.
Collapse
Affiliation(s)
- S Shapira
- Department of Neurobiochemistry, George S Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Thomas SL, Deadwyler GD, Tang J, Stubbs EB, Muir D, Hiatt KK, Clapp DW, De Vries GH. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells. Biochem Biophys Res Commun 2006; 348:971-80. [PMID: 16908010 DOI: 10.1016/j.bbrc.2006.07.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 07/23/2006] [Indexed: 01/07/2023]
Abstract
Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes, a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells.
Collapse
Affiliation(s)
- Stacey L Thomas
- Research Service, Edward Hines Jr. V.A. Hospital, 5th Avenue and Roosevelt Road, Hines, IL 60141, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gottfried ON, Viskochil DH, Fults DW, Couldwell WT. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006; 58:1-16; discussion 1-16. [PMID: 16385324 DOI: 10.1227/01.neu.0000190651.45384.8b] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is a common autosomal dominant disease characterized by complex and multicellular neurofibroma tumors. Significant advances have been made in the research of the cellular, genetic, and molecular biology of NF1. The NF1 gene was identified by positional cloning. The functions of its protein product, neurofibromin, in RAS signaling and in other signal transduction pathways are being elucidated, and the important roles of loss of heterozygosity and haploinsufficiency in tumorigenesis are better understood. The Schwann cell was discovered to be the cell of origin for neurofibromas, but understanding of a more complicated interplay of multiple cell types in tumorigenesis, specifically recruited heterogeneous cell types such as mast cells and fibroblasts, has important implications for surgical therapy of these tumors. This review summarizes the most recent NF1 and neurofibroma literature describing the pathogenesis and treatment of nerve sheath tumors. Understanding the biological underpinnings of tumorigenesis in NF1 has implications for future surgical and medical management of neurofibromas.
Collapse
Affiliation(s)
- Oren N Gottfried
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
12
|
ROSENBAUM THORSTEN, KIM HAESUNA, BOISSY YINGL, LING BO, RATNER NANCY. Neurofibromin, the Neurofibromatosis Type 1 Ras-GAP, Is Required for Appropriate P0Expression and Myelination. Ann N Y Acad Sci 2006; 883:203-214. [DOI: 10.1111/j.1749-6632.1999.tb08583.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Abstract
Antiangiogenesis therapy has become a potentially promising tool to inhibit tumor growth by targeting an essential yet untransformed tissue component. Identifying the factors involved and understanding the mechanisms required for tumor angiogenesis will facilitate efficient and specific targeting. In neurofibromas, tumor growth is facilitated by a genetically and cytologically diverse mixture of cell types, including Schwann cells, fibroblast, mast cells, and neurons where nf-/- Schwann cells are most likely the tumorigenic cell type. The matrix forming nf+/- cells may provide a permissive environment, facilitating tumor development, perhaps by providing landscaping factors such as the angiogenic molecules fibroblast growth factor-2, platelet-derived growth factor, endothelial growth factor, vascular endothelial growth factor, and midkine, which have been detected in neurofibromas. Systemic overexpression of specific factors such as midkine owing to loss of one nf allele might further lower the overall threshold for tumorigenesis and development of a tumor vasculature. Targeting these heparin-binding growth factors might inhibit not only angiogenesis but also proliferation of tumor cells because most of these factors also stimulate proliferation of neurofibroma-derived Schwann cells. We discuss the role of specific secreted molecules for angiogenesis in tumors of neurofibromatosis 1 and possible Approaches for their targeting. Furthermore, results are discussed that demonstrate the efficacy of antiangiogenesis targeting to inhibit growth of neurofibrosarcomas in experimental animal models.
Collapse
Affiliation(s)
- Andreas Kurtz
- Department of Neurosurgery, Massachusets General Hospital, Harvard Medical School, Boston, USA.
| | | |
Collapse
|
14
|
Gutmann DH, Giovannini M. Mouse models of neurofibromatosis 1 and 2. Neoplasia 2002; 4:279-90. [PMID: 12082543 PMCID: PMC1531708 DOI: 10.1038/sj.neo.7900249] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 03/08/2002] [Indexed: 11/08/2022]
Abstract
The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1) are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2) develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
15
|
Lakkis MM, Tennekoon GI. Neurofibromatosis type 1: II. Answers from animal models. J Neurosci Res 2001; 65:191-4. [PMID: 11494353 DOI: 10.1002/jnr.1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
MESH Headings
- Animals
- Brain/abnormalities
- Brain/pathology
- Cell Transformation, Neoplastic/genetics
- Chimera
- Disease Models, Animal
- Drosophila melanogaster/genetics
- Fibroblasts/pathology
- Ganglia, Sympathetic/abnormalities
- Ganglia, Sympathetic/pathology
- Gene Targeting
- Genes, Lethal
- Genes, Neurofibromatosis 1
- Genes, p53
- Genotype
- Gliosis/genetics
- Gliosis/pathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Humans
- Insect Proteins/genetics
- Learning Disabilities/genetics
- Loss of Heterozygosity
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Neoplastic Syndromes, Hereditary/genetics
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neural Crest/pathology
- Neurofibromatosis 1/genetics
- Neurofibromatosis 1/pathology
- Neurofibromin 1
- Phenotype
- Rats
- Schwann Cells/pathology
Collapse
Affiliation(s)
- M M Lakkis
- Department of Neurology, Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| | | |
Collapse
|
16
|
Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 2001; 15:859-76. [PMID: 11297510 PMCID: PMC312666 DOI: 10.1101/gad.862101] [Citation(s) in RCA: 448] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a prevalent genetic disorder that affects growth properties of neural-crest-derived cell populations. In addition, approximately one-half of NF1 patients exhibit learning disabilities. To characterize NF1 function both in vitro and in vivo, we circumvent the embryonic lethality of NF1 null mouse embryos by generating a conditional mutation in the NF1 gene using Cre/loxP technology. Introduction of a Synapsin I promoter driven Cre transgenic mouse strain into the conditional NF1 background has ablated NF1 function in most differentiated neuronal populations. These mice have abnormal development of the cerebral cortex, which suggests that NF1 has an indispensable role in this aspect of CNS development. Furthermore, although they are tumor free, these mice display extensive astrogliosis in the absence of conspicuous neurodegeneration or microgliosis. These results indicate that NF1-deficient neurons are capable of inducing reactive astrogliosis via a non-cell autonomous mechanism.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cerebral Cortex/abnormalities
- Cerebral Cortex/embryology
- Disease Models, Animal
- Ganglia, Spinal/pathology
- Gene Expression Regulation, Developmental
- Genes, Neurofibromatosis 1
- Genes, Reporter
- Genes, Synthetic
- Genetic Vectors/genetics
- Gliosis/metabolism
- Integrases/genetics
- Integrases/physiology
- Lac Operon
- Learning Disabilities/genetics
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Knockout
- Mice, Neurologic Mutants
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurofibromin 1
- Neurons/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins p21(ras)/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- Synapsins/genetics
- Viral Proteins
- p120 GTPase Activating Protein/genetics
- p120 GTPase Activating Protein/physiology
Collapse
Affiliation(s)
- Y Zhu
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Y Zhu
- Center for Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
18
|
Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J Biol Chem 2001; 276:7240-5. [PMID: 11080503 DOI: 10.1074/jbc.m009202200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Ras superfamily of signaling proteins modulate fundamental cellular processes by cycling between an active GTP-bound conformation and an inactive GDP-bound form. Neurofibromin, the protein product of the NF1 tumor suppressor gene, and p120GAP are GTPase-activating proteins (GAPs) for p21(Ras) (Ras) and negatively regulate output by accelerating GTP hydrolysis on Ras. Neurofibromin and p120GAP differ markedly outside of their conserved GAP-related domains (GRDs), and it is therefore unknown if the respective GRDs contribute functional specificity. To address this question, we expressed the GRDs of neurofibromin and p120GAP in primary cells from Nf1 mutant mice in vitro and in vivo. Here we show that expression of neurofibromin GRD, but not the p120GAP GRD, restores normal growth and cytokine signaling in three lineages of primary Nf1-deficient cells that have been implicated in the pathogenesis of neurofibromatosis type 1 (NF1). Furthermore, utilizing a GAP-inactive mutant NF1 GRD identified in a family with NF1, we demonstrate that growth restoration is a function of NF1 GRD GAP activity on p21(Ras). Thus, the GRDs of neurofibromin and p120GAP specify nonoverlapping functions in multiple primary cell types.
Collapse
Affiliation(s)
- K K Hiatt
- Herman B Wells Center for Pediatric Research, Departments of Microbiology/Immunology and Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- K Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
20
|
Sherman LS, Atit R, Rosenbaum T, Cox AD, Ratner N. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 2000; 275:30740-5. [PMID: 10900196 PMCID: PMC3066458 DOI: 10.1074/jbc.m001702200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by multiple neurofibromas, peripheral nerve tumors containing mainly Schwann cells and fibroblasts. The NF1 gene encodes neurofibromin, a tumor suppressor postulated to function in part as a Ras GTPase-activating protein. The roles of different cell types and of elevated Ras-GTP in neurofibroma formation are unclear. To determine which neurofibroma cell type has altered Ras-GTP regulation, we developed an immunocytochemical assay for active, GTP-bound Ras. In NIH 3T3 cells, the assay detected overexpressed, constitutively activated K-, N-, and Ha-Ras and insulin-induced endogenous Ras-GTP. In dissociated neurofibroma cells from NF1 patients, Ras-GTP was elevated in Schwann cells but not fibroblasts. Twelve to 62% of tumor Schwann cells showed elevated Ras-GTP, unexpectedly revealing neurofibroma Schwann cell heterogeneity. Increased basal Ras-GTP did not correlate with increased cell proliferation. Normal human Schwann cells, however, did not demonstrate elevated basal Ras activity. Furthermore, compared with cells from wild type littermates, Ras-GTP was elevated in all mouse Nf1(-/-) Schwann cells but never in Nf1(-/-) mouse fibroblasts. Our results indicate that Ras activity is detectably increased in only some neurofibroma Schwann cells and suggest that neurofibromin is not an essential regulator of Ras activity in fibroblasts.
Collapse
Affiliation(s)
- Larry S. Sherman
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521
| | - Radhika Atit
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521
| | - Thorsten Rosenbaum
- Department of Neuropediatrics, Children’s Hospital, Heinrich-Heine-University, Dusseldorf, Germany
| | - Adrienne D. Cox
- Departments of Radiation Oncology and Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7512
| | - Nancy Ratner
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521
| |
Collapse
|
21
|
Rosenbaum T, Rosenbaum C, Winner U, Müller HW, Lenard HG, Hanemann CO. Long-term culture and characterization of human neurofibroma-derived Schwann cells. J Neurosci Res 2000; 61:524-32. [PMID: 10956422 DOI: 10.1002/1097-4547(20000901)61:5<524::aid-jnr7>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurofibromas are benign tumors arising from the peripheral nerve sheath and are a typical finding in neurofibromatosis type 1 (NF1). Schwann cells are the predominant cell type in neurofibromas and thus are supposed to play a major role in the pathogenesis of these tumors. It is not known, however, if NF1 mutations in Schwann cells result in an altered phenotype that subsequently leads to tumor formation. To characterize the biological properties of neurofibroma-derived Schwann cells we developed cell culture techniques that enabled us to isolate Schwann cells from neurofibromas and grow them in vitro for several weeks without significant fibroblast contamination. Neurofibroma-derived Schwann cells were characterized by altered morphology, heterogeneous growth behavior, and increased expression of the P0 antigen while several other features of normal human Schwann cells were retained. We conclude that neurofibroma-derived Schwann cells exhibit a distinct phenotype in vitro but that the observed abnormalities by themselves are insufficient to explain neurofibroma formation. Application of our improved culture conditions makes neurofibroma-derived Schwann cells readily available for further studies to define their role in tumorigenesis in neurofibromatosis type 1.
Collapse
Affiliation(s)
- T Rosenbaum
- Department of Neuropediatrics, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Parmantier E, Lynn B, Lawson D, Turmaine M, Namini SS, Chakrabarti L, McMahon AP, Jessen KR, Mirsky R. Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron 1999; 23:713-24. [PMID: 10482238 DOI: 10.1016/s0896-6273(01)80030-1] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We show that Schwann cell-derived Desert hedgehog (Dhh) signals the formation of the connective tissue sheath around peripheral nerves. mRNAs for dhh and its receptor patched (ptc) are expressed in Schwann cells and perineural mesenchyme, respectively. In dhh-/- mice, epineurial collagen is reduced, while the perineurium is thin and disorganized, has patchy basal lamina, and fails to express connexin 43. Perineurial tight junctions are abnormal and allow the passage of proteins and neutrophils. In nerve fibroblasts, Dhh upregulates ptc and hedgehog-interacting protein (hip). These experiments reveal a novel developmental signaling pathway between glia and mesenchymal connective tissue and demonstrate its molecular identity in peripheral nerve. They also show that Schwann cell-derived signals can act as important regulators of nerve development.
Collapse
Affiliation(s)
- E Parmantier
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rosenbaum T, Engelbrecht V, Krölls W, van Dorsten FA, Hoehn-Berlage M, Lenard HG. MRI abnormalities in neurofibromatosis type 1 (NF1): a study of men and mice. Brain Dev 1999; 21:268-73. [PMID: 10392751 DOI: 10.1016/s0387-7604(99)00024-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hyperintense lesions on T2-weighted MR images of the brain, predominantly located in the basal ganglia, the brainstem and cerebellum, are a frequent finding in patients with neurofibromatosis type 1. Nature and significance of these lesions are still unknown so that the term 'unidentified bright objects' (UBOs) has been introduced to allow an unbiased description. We analyzed brain MRI scans of 31 children with definite diagnosis of neurofibromatosis type 1 according to the NIH criteria. High-intensity lesions on T2-weighted images were present in 86% of the patients. They did not correlate to other MRI findings such as optic pathway gliomas and were not indicative of intellectual impairment. Additionally, brain MR imaging of Nf1 knockout mice was performed to find out if similar abnormalities are present in this animal model. A total of 9 Nf1 knockout mice was examined on a dedicated animal MRI scanner at 4.7 Tesla but no evidence of high-signal intensity lesions on T2-weighted images was found. Therefore, the Nf1 mouse model seems to be unhelpful in providing further insights into the histological basis of hyperintense MRI abnormalities in NF1 patients.
Collapse
Affiliation(s)
- T Rosenbaum
- Department of Neuropediatrics, Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Atit RP, Crowe MJ, Greenhalgh DG, Wenstrup RJ, Ratner N. The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol 1999; 112:835-42. [PMID: 10383727 PMCID: PMC2854506 DOI: 10.1046/j.1523-1747.1999.00609.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 patients develop peripheral nerve tumors (neurofibromas) composed mainly of Schwann cells and fibroblasts, in an abundant collagen matrix produced by fibroblasts. Trauma has been proposed to trigger neurofibroma formation. To test if loss of the neurofibromatosis type 1 gene (Nf1) compromises fibroblast function in vivo following trauma, skin wounding was performed in Nf1 knockout mice. The pattern and amount of collagen-rich granulation bed tissue, manufactured by fibroblasts, was grossly abnormal in 60% of Nf1+/- wounds. Nf1 mutant fibroblasts showed cell autonomous abnormalities in collagen deposition in vitro that were not mimicked by Ras activation in fibroblasts, even though some Nf1 effects are mediated through Ras. Nf1+/- skin wound fibroblasts also proliferated past the normal wound maturation phase; this in vivo effect was potentiated by muscle injury. In vitro, Nf1+/- fibroblasts showed higher proliferation in 10% serum than Nf1+/+ fibroblasts. Macrophage-conditioned media or epidermal growth factor potentiated Nf1+/- fibroblast proliferation in vitro, demonstrating abnormal response of mutant fibroblasts to wound cytokines. Thus Nf1 is a key regulator of fibroblast responses to injury, and Nf1 mutation in mouse fibroblasts causes abnormalities characteristic of human neurofibromas.
Collapse
Affiliation(s)
- R P Atit
- Division of Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
25
|
Kaufmann D, Gruener S, Braun F, Stark M, Griesser J, Hoffmeyer S, Bartelt B. EVI2B, a gene lying in an intron of the neurofibromatosis type 1 (NF1) gene, is as the NF1 gene involved in differentiation of melanocytes and keratinocytes and is overexpressed in cells derived from NF1 neurofibromas. DNA Cell Biol 1999; 18:345-56. [PMID: 10360836 DOI: 10.1089/104454999315240] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The EVI2B gene is one of three genes embedded in intron 27b of the neurofibromatosis type 1 (NF1; M. Recklinghausen) gene, which are transcribed in the direction opposite that of the NF1 gene. The function of EVI2B and its relation to NF1 symptoms is unknown. Here, the amounts of NF1 and EVI2B mRNA were investigated in detail in cells involved in NF1 manifestations as café-au-lait macules and neurofibromas. These investigations showed that aside from the NF1 gene, EVI2B is involved in melanocyte and keratinocyte differentiation. Whereas in NF1 melanocytes from café-au-lait macules, EVI2B expression was not altered, in fibroblast-like cells derived from neurofibromas, an increased level of EVI2B mRNA was found. We investigated whether this increase was attributable to an influence of NF1 gene expression on the expression of the EVI2B gene, as suggested by the fact that the EVI2B primary transcript is antisense to the NF1 primary transcript. Investigations of cells derived from patients with different amounts of NF1 pre-mRNA showed no correlation between the amount of NF1 pre-mRNA and the increased level of EVI2B mRNA.
Collapse
Affiliation(s)
- D Kaufmann
- Department of Human Genetics, University of Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Tumor suppressor genes have been shown to be necessary for proper maintenance of cell growth control. Inactivation of these genes in the germline of humans is linked to inherited cancer predisposition. Moreover, sporadically arising human tumors often have somatic mutations in tumor suppressor genes. During the past few years, advances in molecular and cellular biology have led to the creation of animal models that have germline mutations of various tumor suppressor genes. Such mice potentially represent important animal models for familial cancer predisposition syndromes, and the study of the tumorigenesis process has been greatly assisted by their development. Such models have also demonstrated the importance of tumor suppressor function in embryonic development. In this review, we describe mice with inactivated germline tumor suppressor genes that are genetically analogous to 10 different inherited cancer syndromes in humans. We describe the variable usefulness of the mutant mice as models for human disease.
Collapse
Affiliation(s)
- S Venkatachalam
- Division of Molecular Virology and Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Smith ME, Jones TA, Hilton D. Vascular endothelial cadherin is expressed by perineurial cells of peripheral nerve. Histopathology 1998; 32:411-3. [PMID: 9639115 DOI: 10.1046/j.1365-2559.1998.00410.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the distribution of vascular endothelial (VE) cadherin in peripheral nerves. METHODS AND RESULTS Using two monoclonal antibodies that detect VE-cadherin (TEA1.31 and 7B4) an immunohistochemical study of VE-cadherin expression in five common peroneal nerve biopsies and five skin specimens containing small peripheal nerves was performed. VE-cadherin was consistently expressed by the perineurium of nerves but not by other nerve elements such as Schwann cells or axons. CONCLUSION This report indicates that VE-cadherin is not. as was previously thought, a specific marker of endothelial cells and further defines the phenotype of the perineurial cell. The established role of VE-cadherin in controlling the permeability of vascular endothelium suggests that this molecule may have a similar role in the perineurium. VE-cadherin may therefore be important in the maintenance of the blood-nerve barrier, the peripheral nerve equivalent of the blood-brain barrier.
Collapse
Affiliation(s)
- M E Smith
- Department of Histopathology, Derriford Hospital, Plymouth, UK
| | | | | |
Collapse
|
28
|
Serra E, Puig S, Otero D, Gaona A, Kruyer H, Ars E, Estivill X, Lázaro C. Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am J Hum Genet 1997; 61:512-9. [PMID: 9326316 PMCID: PMC1715958 DOI: 10.1086/515504] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurofibroma is a benign tumor that arises from small or large nerves. This neoplastic lesion is a common feature of neurofibromatosis type 1 (NF1), one of the most common autosomal dominant disorders. The NF1 gene codes for a protein called "neurofibromin." It possesses a region that shares a high homology with the family of GTPase-activating proteins, which are negative regulators of RAS function and thereby control cell growth and differentiation. The evidence points to the NF1 gene being a tumor-suppressor gene. NF1 patients also have an increased incidence of certain malignant tumors that are believed to follow the "two hit" hypothesis, with one allele constitutionally inactivated and the other somatically mutated. Recently, somatic loss of heterozygosity (LOH) has been described for neurofibromas, and mutations in both copies of the NF1 gene have been reported for a dermal neurofibroma. The aim of our study was the analysis of the NF1 locus in benign neurofibromas in NF1 patients. We performed LOH analysis on 60 neurofibromas belonging to 17 patients, 9 of them with family history of the disease and 8 of them sporadic. We have analyzed five intragenic NF1 markers and six extragenic markers, and we have found LOH in 25% of the neurofibromas (corresponding to 53% of the patients). In addition, we found that in the neurofibromas of patients from familial cases the deletions occurred in the allele that is not transmitted with the disease, indicating that both copies of the NF1 gene were inactivated in these tumors. Therefore, the recent reports mentioned above, together with our findings, strongly support the double inactivation of the NF1 gene in benign neurofibromas.
Collapse
Affiliation(s)
- E Serra
- Servei de Genètica, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Over the past several years, a number of human tumor suppressor genes have been cloned and characterized. Germline mutations in tumor suppressor genes strongly predispose to cancer, and they are also mutated somatically in sporadic forms of the disease. In order to create animal models for the familial cancer syndromes caused by inherited mutations in these genes as well as to determine their role in embryogenesis, the homologues of several members of this class have been mutated in the mouse. The initial characterization of the heterozygous and homozygous phenotypes caused by these mutations has led to important insights into the mechanisms by which tumor suppressor genes participate in normal development and how their loss contributes to tumorigenesis.
Collapse
Affiliation(s)
- T Jacks
- Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge 02139, USA
| |
Collapse
|