1
|
Lee HMT, Lim HY, He H, Lau CY, Zheng C. MBL-1/Muscleblind regulates neuronal differentiation and controls the splicing of a terminal selector in Caenorhabditis elegans. PLoS Genet 2024; 20:e1011276. [PMID: 39423233 PMCID: PMC11524483 DOI: 10.1371/journal.pgen.1011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
The muscleblind family of mRNA splicing regulators is conserved across species and regulates the development of muscles and the nervous system. However, how Muscleblind proteins regulate neuronal fate specification and neurite morphogenesis at the single-neuron level is not well understood. In this study, we found that the C. elegans Muscleblind/MBL-1 promotes axonal growth in the touch receptor neurons (TRNs) by regulating microtubule stability and polarity. Transcriptomic analysis identified dozens of MBL-1-controlled splicing events in genes related to neuronal differentiation or microtubule functions. Among the MBL-1 targets, the LIM-domain transcription factor mec-3 is the terminal selector for the TRN fate and induces the expression of many TRN terminal differentiation genes. MBL-1 promotes the splicing of the mec-3 long isoform, which is essential for TRN fate specification, and inhibits the short isoforms that have much weaker activities in activating downstream genes. MBL-1 promotes mec-3 splicing through three "YGCU(U/G)Y" motifs located in or downstream of the included exon, which is similar to the mechanisms used by mammalian Muscleblind and suggests a deeply conserved context-dependency of the splicing regulation. Interestingly, the expression of mbl-1 in the TRNs is dependent on the mec-3 long isoform, indicating a positive feedback loop between the splicing regulator and the terminal selector. Finally, through a forward genetic screen, we found that MBL-1 promotes neurite growth partly by inhibiting the DLK-1/p38 MAPK pathway. In summary, our study provides mechanistic understanding of the role of Muscleblind in regulating cell fate specification and neuronal morphogenesis.
Collapse
Affiliation(s)
- Ho Ming Terence Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Hui Yuan Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Haoming He
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Babayev M, Silveyra P. Role of circular RNAs in lung cancer. Front Genet 2024; 15:1346119. [PMID: 38501058 PMCID: PMC10944888 DOI: 10.3389/fgene.2024.1346119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Lung cancer remains a global public health concern with significant research focus on developing better diagnosis/prognosis biomarkers and therapeutical targets. Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that covalently closed and have ubiquitous expression. These molecules have been implicated in a variety of disease mechanisms, including lung cancer, as they exhibit oncogenic or tumor suppressor characteristics. Recent research has shown an important role that circRNAs play at different stages of lung cancer, particularly in lung adenocarcinoma. In this review, we summarize the latest research on circRNAs and their roles within lung cancer diagnosis, as well as on disease mechanisms. We also discuss the knowledge gaps on these topics and possible future research directions.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, Bloomington, IN, United States
| |
Collapse
|
3
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Xiao C, M’Angale PG, Wang S, Lemieux A, Thomson T. Identifying new players in structural synaptic plasticity through dArc1 interrogation. iScience 2023; 26:108048. [PMID: 37876812 PMCID: PMC10590816 DOI: 10.1016/j.isci.2023.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The formation, expansion, and pruning of synapses, known as structural synaptic plasticity, is needed for learning and memory, and perturbation of plasticity is associated with many neurological disorders and diseases. Previously, we observed that the Drosophila homolog of Activity-regulated cytoskeleton-associated protein (dArc1), forms a capsid-like structure, associates with its own mRNA, and is transported across synapses. We demonstrated that this transfer is needed for structural synaptic plasticity. To identify mRNAs that are modified by dArc1 in presynaptic neuron and postsynaptic muscle, we disrupted the expression of dArc1 and performed genomic analysis with deep sequencing. We found that dArc1 affects the expression of genes involved in metabolism, phagocytosis, and RNA-splicing. Through immunoprecipitation we also identified potential mRNA cargos of dArc1 capsids. This study suggests that dArc1 acts as a master regulator of plasticity by affecting several distinct and highly conserved cellular processes.
Collapse
Affiliation(s)
- Cong Xiao
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - P. Githure M’Angale
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shuhao Wang
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Adrienne Lemieux
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Pamudurti NR, Patop IL, Krishnamoorthy A, Bartok O, Maya R, Lerner N, Ashwall-Fluss R, Konakondla JVV, Beatus T, Kadener S. circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep 2022; 39:110740. [PMID: 35476987 PMCID: PMC9352392 DOI: 10.1016/j.celrep.2022.110740] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/11/2022] [Accepted: 04/05/2022] [Indexed: 11/03/2022] Open
Abstract
Muscleblind (mbl) is an essential muscle and neuronal splicing regulator. Mbl hosts multiple circular RNAs (circRNAs), including circMbl, which is conserved from flies to humans. Here, we show that mbl-derived circRNAs are key regulators of MBL by cis- and trans-acting mechanisms. By generating fly lines to specifically modulate the levels of all mbl RNA isoforms, including circMbl, we demonstrate that the two major mbl protein isoforms, MBL-O/P and MBL-C, buffer their own levels by producing different types of circRNA isoforms in the eye and fly brain, respectively. Moreover, we show that circMbl has unique functions in trans, as knockdown of circMbl results in specific morphological and physiological phenotypes. In addition, depletion of MBL-C or circMbl results in opposite behavioral phenotypes, showing that they also regulate each other in trans. Together, our results illuminate key aspects of mbl regulation and uncover cis and trans functions of circMbl in vivo.
Collapse
Affiliation(s)
| | | | | | - Osnat Bartok
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roni Maya
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Noam Lerner
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reut Ashwall-Fluss
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Tsevi Beatus
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, MA 02454, USA; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
6
|
Krishnamoorthy A, Kadener S. Using Drosophila to uncover molecular and physiological functions of circRNAs. Methods 2021; 196:74-84. [PMID: 33901645 PMCID: PMC8542058 DOI: 10.1016/j.ymeth.2021.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed RNA molecules generated by backsplicing. circRNAs are expressed in a tissue-specific manner, accumulate with age in neural tissues, and are highly stable. In many cases, circRNAs are generated at the expense of a linear transcript as back-splicing competes with linear splicing. Some circRNAs regulate gene expression in cis, and some circRNAs can be translated into protein. The advent of deep sequencing and new bioinformatic tools has allowed detection of thousands of circRNAs in eukaryotes. Studying the functions of circRNAs is done using a combination of molecular and genetic methods. The unique genetic tools that can be used in studies of Drosophila melanogaster are ideal for deciphering the functions of circRNAs in vivo. These tools include the GAL4-UAS system, which can be used to manipulate the levels of circRNAs with exquisite temporal and spatial control, and genetic interaction screening, which could be used to identify pathways regulated by circRNAs. Research performed in Drosophila has revealed circRNAs production mechanisms, details of their translation, and their physiological functions. Due to their short lifecycle and the existence of excellent neurodegeneration models, Drosophila can also be used to study the role of circRNAs in aging and age-related disorders. Here, we review molecular and genetic tools and methods for detecting, manipulating, and studying circRNAs in Drosophila.
Collapse
Affiliation(s)
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
7
|
Voss DM, Sloan A, Spina R, Ames HM, Bar EE. The Alternative Splicing Factor, MBNL1, Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-Induced Stemness. Cancer Res 2020; 80:4681-4692. [PMID: 32928918 DOI: 10.1158/0008-5472.can-20-1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
Muscleblind-like proteins (MBNL) belong to a family of tissue-specific regulators of RNA metabolism that control premessenger RNA splicing. Inactivation of MBNL causes an adult-to-fetal alternative splicing transition, resulting in the development of myotonic dystrophy. We have previously shown that the aggressive brain cancer, glioblastoma (GBM), maintains stem-like features (glioma stem cell, GSC) through hypoxia-induced responses. Accordingly, we hypothesize here that hypoxia-induced responses in GBM might also include MBNL-based alternative splicing to promote tumor progression. When cultured in hypoxia condition, GSCs rapidly exported muscleblind-like-1 (MBNL1) out of the nucleus, resulting in significant inhibition of MBNL1 activity. Notably, hypoxia-regulated inhibition of MBNL1 also resulted in evidence of adult-to-fetal alternative splicing transitions. Forced expression of a constitutively active isoform of MBNL1 inhibited GSC self-renewal and tumor initiation in orthotopic transplantation models. Induced expression of MBNL1 in established orthotopic tumors dramatically inhibited tumor progression, resulting in significantly prolonged survival. This study reveals that MBNL1 plays an essential role in GBM stemness and tumor progression, where hypoxic responses within the tumor inhibit MBNL1 activity, promoting stem-like phenotypes and tumor growth. Reversing these effects on MBNL1 may therefore, yield potent tumor suppressor activities, uncovering new therapeutic opportunities to counter this disease. SIGNIFICANCE: This study describes an unexpected mechanism by which RNA-binding protein, MBNL1, activity is inhibited in hypoxia by a simple isoform switch to regulate glioma stem cell self-renewal, tumorigenicity, and progression.
Collapse
Affiliation(s)
- Dillon M Voss
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anthony Sloan
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Raffaella Spina
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather M Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
9
|
Ghasemi H, Sabati Z, Ghaedi H, Salehi Z, Alipoor B. Circular RNAs in β-cell function and type 2 diabetes-related complications: a potential diagnostic and therapeutic approach. Mol Biol Rep 2019; 46:5631-5643. [PMID: 31302804 DOI: 10.1007/s11033-019-04937-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Recent investigations have indicated that altered expression of non-coding RNAs (ncRNAs) could be associated with human diseases such as type 2 diabetes (T2D). Circular RNAs (circRNAs) are a new discovered class of ncRNAs with unique structural characteristics that involved in several molecular and cellular functions. Exploring of the circulating circRNAs as a reliable non-invasive biomarker for monitoring and diagnosing of human diseases has grown significantly. However, the molecular functions and clinical relevance of circRNAs are not yet well clarified in T2D. Accordingly, in this review, the involvement of circRNAs in the β-cell function and T2D-related complications is highlighted. The study also shed light on the possibility of using circRNAs as a biomarker for T2D diagnosis.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zaker Salehi
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
10
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Tang L, Zhao P, Kong D. Muscleblind‑like 1 destabilizes Snail mRNA and suppresses the metastasis of colorectal cancer cells via the Snail/E‑cadherin axis. Int J Oncol 2019; 54:955-965. [PMID: 30664186 PMCID: PMC6365040 DOI: 10.3892/ijo.2019.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) play a fundamental role in the recurrence and metastasis of colorectal cancer (CRC). In this study, we identified muscleblind-like 1 (MBNL1), an RBP implicated in developmental control, as a robust suppressor of CRC cell metastasis in vitro. By using a scratch assay coupled with time-lapse live cell imaging, our findings revealed that the knockdown of MBNL1 induced epithelial-to-mesenchymal transition (EMT)-like morphological changes in the HCT-116 cells, accompanied by an enhanced cell motility, and by the downregulation of E-cadherin and the upregulation of Snail expression. By contrast, the ectopic overexpression of MBNL1 suppressed EMT, characterized by the upregulation of E-cadherin and the downregulation of Snail expression. Mechanistically, Snail rather than E-cadherin, was identified as a direct downstream target gene of MBNL1. The ectopic the overexpression of MBNL1 markedly enhanced the recruitment of Snail transcripts to processing bodies (P-bodies), leading to the increased degradation of Snail mRNA and consequent translational silencing. Furthermore, the effect of MBNL1 on CRC cell migration was confirmed in additional CRC cell lines. SW480 and HT-29 cells exhibited similar changes in migratory capacity and the expression of Snail/E-cadherin to those observed in HCT-116 cells. On the whole, this study demonstrates that MBNL1 destabilizes Snail transcripts and, in turn, suppresses the EMT of CRC cells through the Snail/E-cadherin axis in vitro. Therefore, this EMT-related MBNL1/Snail/E-cadherin axis may prove to be a novel therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Liang Tang
- Department of Colorectal Cancer, Cancer Hospital of Tianjin Medical University, Key Laboratory of Cancer Prevention and Therapy, and National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Peng Zhao
- Department of Colorectal Cancer, Cancer Hospital of Tianjin Medical University, Key Laboratory of Cancer Prevention and Therapy, and National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Dalu Kong
- Department of Colorectal Cancer, Cancer Hospital of Tianjin Medical University, Key Laboratory of Cancer Prevention and Therapy, and National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
12
|
Li JSS, Millard SS. Deterministic splicing of Dscam2 is regulated by Muscleblind. SCIENCE ADVANCES 2019; 5:eaav1678. [PMID: 30746474 PMCID: PMC6357765 DOI: 10.1126/sciadv.aav1678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Alternative splicing increases the proteome diversity crucial for establishing the complex circuitry between trillions of neurons. To provide individual cells with different repertoires of protein isoforms, however, this process must be regulated. Previously, we found that the mutually exclusive alternative splicing of Drosophila Dscam2 produces two isoforms (A and B) with unique binding properties. This splicing event is cell type specific, and the transmembrane proteins that it generates are crucial for the development of axons, dendrites, and synapses. Here, we show that Muscleblind (Mbl) controls Dscam2 alternative splicing. Mbl represses isoform A and promotes the selection of isoform B. Mbl mutants exhibit phenotypes also observed in flies engineered to express a single Dscam2 isoform. Consistent with this, mbl expression is cell type specific and correlates with the splicing of isoform B. Our study demonstrates how the regulated expression of a splicing factor is sufficient to provide neurons with unique protein isoforms crucial for development.
Collapse
|
13
|
Zhang F, Bodycombe NE, Haskell KM, Sun YL, Wang ET, Morris CA, Jones LH, Wood LD, Pletcher MT. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Hum Mol Genet 2018; 26:3056-3068. [PMID: 28535287 PMCID: PMC5886090 DOI: 10.1093/hmg/ddx190] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy Type 1 (DM1) is a rare genetic disease caused by the expansion of CTG trinucleotide repeats ((CTG)exp) in the 3' untranslated region of the DMPK gene. The repeat transcripts sequester the RNA binding protein Muscleblind-like protein 1 (MBNL1) and hamper its normal function in pre-mRNA splicing. Overexpressing exogenous MBNL1 in the DM1 mouse model has been shown to rescue the splicing defects and reverse myotonia. Although a viable therapeutic strategy, pharmacological modulators of MBNL1 expression have not been identified. Here, we engineered a ZsGreen tag into the endogenous MBNL1 locus in HeLa cells and established a flow cytometry-based screening system to identify compounds that increase MBNL1 level. The initial screen of small molecule compound libraries identified more than thirty hits that increased MBNL1 expression greater than double the baseline levels. Further characterization of two hits revealed that the small molecule HDAC inhibitors, ISOX and vorinostat, increased MBNL1 expression in DM1 patient-derived fibroblasts and partially rescued the splicing defect caused by (CUG)exp repeats in these cells. These findings demonstrate the feasibility of this flow-based cytometry screen to identify both small molecule compounds and druggable targets for MBNL1 upregulation.
Collapse
Affiliation(s)
| | - Nicole E Bodycombe
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | - Keith M Haskell
- Pharmacokinetics, Dynamics and Metabolism - New Chemical Entities, Worldwide Research and Development, Pfizer, CT 06340, USA
| | | | - Eric T Wang
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA
| | | | - Lyn H Jones
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
14
|
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA that are present in wide variety of cells in various tissue types across species. They are non-polyadenylated, single-stranded, covalently closed RNAs. CircRNAs are more stable than other RNAs due to lack of 5' or 3' end leading to resistance to exonuclease digestion. The length of circRNAs varies from 1 to 5 exons with retention of introns in mature circRNAs with ~25% frequency. They are primarily found in the cytosol within the cell although the mechanism of their nuclear export remains elusive. However, there is a subpopulation of circRNAs that remain in the nucleus and regulate RNA-Pol-II-mediated transcription. Bioinformatic approaches mining RNA sequencing data enabled genome-wide identification of circRNAs. In mammalian genome over 20% of the expressed genes in cells and tissues can produce these transcripts. Owing to their abundance, stability, and diverse expression profile, circRNAs likely play a pivotal role in regulatory pathways controlling lineage determination, cell differentiation, and function of various cell types. Yet, the impact of circRNA-mediated regulation on various cell transcriptome remains largely unknown. In this chapter, we will review the regulatory effects of circRNAs in the transcription of their own or other genes. Also, we will discuss the association of circRNAs with miRNAs and RNA-binding proteins (RBPs), with special reference to Drosophila circMbl and their role as an "mRNA trap," which might play a role in its regulatory potential transcriptionally or posttranscriptionally.
Collapse
|
15
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
16
|
Abstract
Just a few years ago, it had been assumed that the dominant RNA isoforms produced from eukaryotic genes were variants of messenger RNA, functioning as intermediates in gene expression. In early 2012, however, a surprising discovery was made: circular RNA (circRNA) was shown to be a transcriptional product in thousands of human and mouse genes and in hundreds of cases constituted the dominant RNA isoform. Subsequent studies revealed that the expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across the eukaryotic tree of life. These features suggest important functions for these molecules. Here, we describe major advances in the field of circRNA biology, focusing on the regulation of and functional roles played by these molecules.
Collapse
Affiliation(s)
- Steven P Barrett
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Park S, Phukan PD, Zeeb M, Martinez-Yamout MA, Dyson HJ, Wright PE. Structural Basis for Interaction of the Tandem Zinc Finger Domains of Human Muscleblind with Cognate RNA from Human Cardiac Troponin T. Biochemistry 2017; 56:4154-4168. [PMID: 28718627 PMCID: PMC5560242 DOI: 10.1021/acs.biochem.7b00484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The human muscleblind-like
proteins (MBNL) regulate tissue-specific
splicing by targeting cardiac troponin T and other pre-mRNAs; aberrant
targeting of CUG and CCUG repeat expansions frequently accompanies
the neuromuscular disease myotonic dystrophy. We show, using biolayer
interferometry (Octet) and NMR spectroscopy, that the zinc finger
domains of MBNL isoform 1 (MBNL1) are necessary and sufficient for
binding CGCU sequences within the pre-mRNA of human cardiac troponin
T. Protein constructs containing zinc fingers 1 and 2 (zf12) and zinc
fingers 3 and 4 (zf34) of MBNL1 each fold into a compact globular
tandem zinc finger structure that participates in RNA binding. NMR
spectra show that the stoichiometry of the interaction between zf12
or zf34 and the CGCU sequence is 1:1, and that the RNA is single-stranded
in the complex. The individual zinc fingers within zf12 or zf34 are
nonequivalent: the primary RNA binding surface is formed in each pair
by the second zinc finger (zf2 or zf4), which interacts with the CGCU
RNA sequence. The NMR structure of the complex between zf12 and a
15-base RNA of sequence 95GUCUCGCUUUUCCCC109, containing a single
CGCU element, shows the single-stranded RNA wrapped around zf2 and
extending to bind to the C-terminal helix. Bases C101, U102, and U103
make well-defined and highly ordered contacts with the protein, whereas
neighboring bases are less well-ordered in the complex. Binding of
the MBNL zinc fingers to cardiac troponin T pre-mRNA is specific and
relatively simple, unlike the complex multiple dimer–trimer
stoichiometries postulated in some previous studies.
Collapse
Affiliation(s)
- Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Priti Deka Phukan
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Markus Zeeb
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Yenigun VB, Sirito M, Amcheslavky A, Czernuszewicz T, Colonques-Bellmunt J, García-Alcover I, Wojciechowska M, Bolduc C, Chen Z, López Castel A, Krahe R, Bergmann A. (CCUG) n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis. Dis Model Mech 2017. [PMID: 28623239 PMCID: PMC5560059 DOI: 10.1242/dmm.026179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions – (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP. Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106). Expression of noncoding (CCUG)106, but not (CCUG)16, in muscle and retinal cells led to the formation of ribonuclear foci and mis-splicing of genes implicated in DM pathology. Mis-splicing could be rescued by co-expression of human MBNL1, but not by CUGBP1 (CELF1) complementation. Flies with (CCUG)106 displayed strong disruption of external eye morphology and of the underlying retina. Furthermore, expression of (CCUG)106 in developing retinae caused a strong apoptotic response. Inhibition of apoptosis rescued the retinal disruption in (CCUG)106 flies. Finally, we tested two chemical compounds that have shown therapeutic potential in DM1 models. Whereas treatment of (CCUG)106 flies with pentamidine had no effect, treatment with a PKR inhibitor blocked both the formation of RNA foci and apoptosis in retinae of (CCUG)106 flies. Our data indicate that expression of expanded (CCUG)DM2 repeats is toxic, causing inappropriate cell death in affected fly eyes. Our Drosophila DM2 model might provide a convenient tool for in vivo drug screening. Summary: A Drosophila model of myotonic dystrophy type 2 (DM2) recapitulates several features of the human disease, identifies apoptosis as a contributing factor to DM2, and is likely to provide a convenient tool for drug screening.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA
| | - Mario Sirito
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alla Amcheslavky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tomek Czernuszewicz
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Marzena Wojciechowska
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clare Bolduc
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Chen
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ralf Krahe
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Graduate Programs in Human & Molecular Genetics, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, Texas, USA
| | - Andreas Bergmann
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
19
|
Dorot O, Steller H, Segal D, Horowitz M. Past1 Modulates Drosophila Eye Development. PLoS One 2017; 12:e0169639. [PMID: 28060904 PMCID: PMC5218476 DOI: 10.1371/journal.pone.0169639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
Endocytosis is a multi-step process involving a large number of proteins, both general factors, such as clathrin and adaptor protein complexes, and unique proteins, which modulate specialized endocytic processes, like the EHD proteins. EHDs are a family of Eps15 Homology Domain containing proteins that consists of four mammalian homologs, one C. elegans, one Drosophila melanogaster and two plants orthologs. These membrane-associated proteins are involved in different steps of endocytic trafficking pathways. We have previously shown that the Drosophila EHD ortholog, PAST1, associates predominantly with the plasma membrane. Mutations in Past1 result in defects in endocytosis, male sterility, temperature sensitivity and premature death of the flies. Also, Past1 genetically interacts with Notch. In the present study, we investigated the role of PAST1 in the developing fly eye. In mutant flies lacking PAST1, abnormal differentiation of photoreceptors R1, R6 and R7 was evident, with partial penetrance. Likewise, five cone cells were present instead of four. Expression of transgenic PAST1 resulted in a dominant negative effect, with a phenotype similar to that of the deletion mutant, and appearance of additional inter-ommatidial pigment cells. Our results strongly suggest a role for PAST1 in differentiation of photoreceptors R1/R6/R7 and cone cells of the fly ommatidia.
Collapse
Affiliation(s)
- Orly Dorot
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Hermann Steller
- Howard Hughes Medical Institute, Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
20
|
Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila. Sci Rep 2016; 6:36230. [PMID: 27805016 PMCID: PMC5090246 DOI: 10.1038/srep36230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3′ untranslated region (3′ UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-coding CUG trinucleotide repeats throughout the musculature. Enhanced muscleblind expression resulted in significant rescue of pathological phenotypes, including reversal of several mis-splicing events and reduced muscle atrophy in DM1 adult flies. Rescued flies had improved muscle function in climbing and flight assays, and had longer lifespan compared to disease controls. These studies provide proof of concept for a similar potentially therapeutic approach to DM1 in humans.
Collapse
|
21
|
Oddo JC, Saxena T, McConnell OL, Berglund JA, Wang ET. Conservation of context-dependent splicing activity in distant Muscleblind homologs. Nucleic Acids Res 2016; 44:8352-62. [PMID: 27557707 PMCID: PMC5041496 DOI: 10.1093/nar/gkw735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Muscleblind (MBL) protein family is a deeply conserved family of RNA binding proteins that regulate alternative splicing, alternative polyadenylation, RNA stability and RNA localization. Their inactivation due to sequestration by expanded CUG repeats causes symptoms in the neuromuscular disease myotonic dystrophy. MBL zinc fingers are the most highly conserved portion of these proteins, and directly interact with RNA. We identified putative MBL homologs in Ciona intestinalis and Trichoplax adhaerens, and investigated their ability, as well as that of MBL homologs from human/mouse, fly and worm, to regulate alternative splicing. We found that all homologs can regulate alternative splicing in mouse cells, with some regulating over 100 events. The cis-elements through which each homolog exerts its splicing activities are likely to be highly similar to mammalian Muscleblind-like proteins (MBNLs), as suggested by motif analyses and the ability of expanded CUG repeats to inactivate homolog-mediated splicing. While regulation of specific target exons by MBL/MBNL has not been broadly conserved across these species, genes enriched for MBL/MBNL binding sites in their introns may play roles in cell adhesion, ion transport and axon guidance, among other biological pathways, suggesting a specific, conserved role for these proteins across a broad range of metazoan species.
Collapse
Affiliation(s)
- Julia C Oddo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanvi Saxena
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ona L McConnell
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - J Andrew Berglund
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA Department of Chemistry and Biochemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eric T Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Fish L, Pencheva N, Goodarzi H, Tran H, Yoshida M, Tavazoie SF. Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts. Genes Dev 2016; 30:386-98. [PMID: 26883358 PMCID: PMC4762424 DOI: 10.1101/gad.270645.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Post-transcriptional deregulation is a defining feature of metastatic cancer. While many microRNAs have been implicated as regulators of metastatic progression, less is known about the roles and mechanisms of RNA-binding proteins in this process. We identified muscleblind-like 1 (MBNL1), a gene implicated in myotonic dystrophy, as a robust suppressor of multiorgan breast cancer metastasis. MBNL1 binds the 3' untranslated regions (UTRs) of DBNL (drebrin-like protein) and TACC1 (transforming acidic coiled-coil containing protein 1)-two genes that we implicate as metastasis suppressors. By enhancing the stability of these genes' transcripts, MBNL1 suppresses cell invasiveness. Consistent with these findings, elevated MBNL1 expression in human breast tumors is associated with reduced metastatic relapse likelihood. Our findings delineate a post-transcriptional network that governs breast cancer metastasis through RNA-binding protein-mediated transcript stabilization.
Collapse
Affiliation(s)
- Lisa Fish
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Nora Pencheva
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Hien Tran
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Mitsukuni Yoshida
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
23
|
Salzman J. Circular RNA Expression: Its Potential Regulation and Function. Trends Genet 2016; 32:309-316. [PMID: 27050930 DOI: 10.1016/j.tig.2016.03.002] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function.
Collapse
Affiliation(s)
- Julia Salzman
- Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Roles for RNA-binding proteins in development and disease. Brain Res 2016; 1647:1-8. [PMID: 26972534 DOI: 10.1016/j.brainres.2016.02.050] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
RNA-binding protein activities are highly regulated through protein levels, intracellular localization, and post-translation modifications. During development, mRNA processing of specific gene sets is regulated through manipulation of functional RNA-binding protein activities. The impact of altered RNA-binding protein activities also affects human diseases in which there are either a gain-of-function or loss-of-function causes pathogenesis. We will discuss RNA-binding proteins and their normal developmental RNA metabolism and contrast how their function is disrupted in disease. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
|
25
|
Zhang BW, Cai HF, Wei XF, Sun JJ, Lan XY, Lei CZ, Lin FP, Qi XL, Plath M, Chen H. miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL. Int J Mol Sci 2016; 17:ijms17020182. [PMID: 26840300 PMCID: PMC4783916 DOI: 10.3390/ijms17020182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/26/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Han-Fang Cai
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xue-Feng Wei
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia-Jie Sun
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chu-Zhao Lei
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Feng-Peng Lin
- Department of Animal Husbandry, Bureau of Biyang County of Henan province, Biyang 463700, Henan, China.
| | - Xing-Lei Qi
- Department of Animal Husbandry, Bureau of Biyang County of Henan province, Biyang 463700, Henan, China.
| | - Martin Plath
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hong Chen
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
27
|
Sharifnia P, Jin Y. Regulatory roles of RNA binding proteins in the nervous system of C. elegans. Front Mol Neurosci 2015; 7:100. [PMID: 25628531 PMCID: PMC4290612 DOI: 10.3389/fnmol.2014.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022] Open
Abstract
Neurons have evolved to employ many factors involved in the regulation of RNA processing due to their complex cellular compartments. RNA binding proteins (RBPs) are key regulators in transcription, translation, and RNA degradation. Increasing studies have shown that regulatory RNA processing is critical for the establishment, functionality, and maintenance of neural circuits. Recent advances in high-throughput transcriptomics have rapidly expanded our knowledge of the landscape of RNA regulation, but also raised the challenge for mechanistic dissection of the specific roles of RBPs in complex tissues such as the nervous system. The C. elegans genome encodes many RBPs conserved throughout evolution. The rich analytic tools in molecular genetics and simple neural anatomy of C. elegans offer advantages to define functions of genes in vivo at the level of a single cell. Notably, the discovery of microRNAs has had transformative effects to the understanding of neuronal development, circuit plasticity, and neurological diseases. Here we review recent studies unraveling diverse roles of RBPs in the development, function, and plasticity of C. elegans nervous system. We first summarize the general technologies for studying RBPs in C. elegans. We then focus on the roles of several RBPs that control gene- and cell-type specific production of neuronal transcripts.
Collapse
Affiliation(s)
- Panid Sharifnia
- Division of Biological Sciences, Neurobiology Section, University of CaliforniaSan Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Yishi Jin
- Division of Biological Sciences, Neurobiology Section, University of CaliforniaSan Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of CaliforniaSan Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Yu Z, Goodman LD, Shieh SY, Min M, Teng X, Zhu Y, Bonini NM. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Hum Mol Genet 2014; 24:954-62. [PMID: 25305073 DOI: 10.1093/hmg/ddu507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expanded non-coding RNA repeats of CUG and CCUG are the underlying genetic causes for myotonic dystrophy type 1 (DM1) and type 2 (DM2), respectively. A gain-of-function of these pathogenic repeat expansions is mediated at least in part by their abnormal interactions with RNA-binding proteins such as MBNL1 and resultant loss of activity of these proteins. To study pathogenic mechanisms of CCUG-repeat expansions in an animal model, we created a fly model of DM2 that expresses pure, uninterrupted CCUG-repeat expansions ranging from 16 to 720 repeats in length. We show that this fly model for DM2 recapitulates key features of human DM2 including RNA repeat-induced toxicity, ribonuclear foci formation and changes in alternative splicing. Interestingly, expression of two isoforms of MBNL1, MBNL135 and MBNL140, leads to cleavage and concurrent upregulation of the levels of the RNA-repeat transcripts, with MBNL140 having more significant effects than MBNL135. This property is shared with a fly CUG-repeat expansion model. Our results suggest a novel mechanism for interaction between the pathogenic RNA repeat expansions of myotonic dystrophy and MBNL1.
Collapse
Affiliation(s)
| | - Lindsey D Goodman
- Neurosciences Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | - Nancy M Bonini
- Department of Biology and Neurosciences Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
García-Alcover I, Colonques-Bellmunt J, Garijo R, Tormo JR, Artero R, Álvarez-Abril MC, López Castel A, Pérez-Alonso M. Development of a Drosophila melanogaster spliceosensor system for in vivo high-throughput screening in myotonic dystrophy type 1. Dis Model Mech 2014; 7:1297-306. [PMID: 25239918 PMCID: PMC4213733 DOI: 10.1242/dmm.016592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alternative splicing of pre-mRNAs is an important mechanism that regulates cellular function in higher eukaryotes. A growing number of human genetic diseases involve splicing defects that are directly connected to their pathology. In myotonic dystrophy type 1 (DM1), several clinical manifestations have been proposed to be the consequence of tissue-specific missplicing of numerous genes. These events are triggered by an RNA gain-of-function and resultant deregulation of specific RNA-binding factors, such as the nuclear sequestration of muscleblind-like family factors (MBNL1–MBNL3). Thus, the identification of chemical modulators of splicing events could lead to the development of the first valid therapy for DM1 patients. To this end, we have generated and validated transgenic flies that contain a luciferase-reporter-based system that is coupled to the expression of MBNL1-reliant splicing (spliceosensor flies), to assess events that are deregulated in DM1 patients in a relevant disease tissue. We then developed an innovative 96-well plate screening platform to carry out in vivo high-throughput pharmacological screening (HTS) with the spliceosensor model. After a large-scale evaluation (>16,000 chemical entities), several reliable splicing modulators (hits) were identified. Hit validation steps recognized separate DM1-linked therapeutic traits for some of the hits, which corroborated the feasibility of the approach described herein to reveal promising drug candidates to correct missplicing in DM1. This powerful Drosophila-based screening tool might also be applied in other disease models displaying abnormal alternative splicing, thus offering myriad uses in drug discovery.
Collapse
Affiliation(s)
- Irma García-Alcover
- Valentia BioPharma, Scientific Park of the University of Valencia, Paterna, Valencia 46980, Spain. Department of Genetics, University of Valencia, Burjassot, Valencia 46010, Spain
| | - Jordi Colonques-Bellmunt
- Valentia BioPharma, Scientific Park of the University of Valencia, Paterna, Valencia 46980, Spain
| | - Raquel Garijo
- Valentia BioPharma, Scientific Park of the University of Valencia, Paterna, Valencia 46980, Spain
| | - José R Tormo
- Valentia BioPharma, Scientific Park of the University of Valencia, Paterna, Valencia 46980, Spain
| | - Rubén Artero
- Department of Genetics, University of Valencia, Burjassot, Valencia 46010, Spain. INCLIVA Health Research Institute, Valencia 46010, Spain
| | | | - Arturo López Castel
- Valentia BioPharma, Scientific Park of the University of Valencia, Paterna, Valencia 46980, Spain.
| | - Manuel Pérez-Alonso
- Valentia BioPharma, Scientific Park of the University of Valencia, Paterna, Valencia 46980, Spain. Department of Genetics, University of Valencia, Burjassot, Valencia 46010, Spain. INCLIVA Health Research Institute, Valencia 46010, Spain
| |
Collapse
|
30
|
Cheng AW, Shi J, Wong P, Luo KL, Trepman P, Wang ET, Choi H, Burge CB, Lodish HF. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood 2014; 124:598-610. [PMID: 24869935 PMCID: PMC4110662 DOI: 10.1182/blood-2013-12-542209] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/16/2014] [Indexed: 12/18/2022] Open
Abstract
The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation.
Collapse
Affiliation(s)
- Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA; Computational and Systems Biology Program, and
| | - Jiahai Shi
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Piu Wong
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Katherine L Luo
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Paula Trepman
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Eric T Wang
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Heejo Choi
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA; Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| |
Collapse
|
31
|
Transcriptionally correlated subcellular dynamics of MBNL1 during lens development and their implication for the molecular pathology of myotonic dystrophy type 1. Biochem J 2014; 458:267-80. [PMID: 24354850 DOI: 10.1042/bj20130870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DM1 (myotonic dystrophy type 1) is caused by elongation of a CTG repeat in the DMPK (dystrophia myotonica-protein kinase) gene. mRNA transcripts containing these CUGexp (CUG expansion) repeats form accumulations, or foci, in the nucleus of the cell. The pathogenesis of DM1 is proposed to result from inappropriate patterns of alternative splicing caused by sequestration of the developmentally regulated alternative splicing factor MBNL1 (muscleblind-like 1) by these foci. Since eye lens cataract is a common feature of DM1 we have examined the distribution and dynamics of MBNL1 in lens epithelial cell lines derived from patients with DM1. The results of the present study demonstrate that only a small proportion of nuclear MBNL1 accumulates in CUGexp pre-mRNA foci. MBNL1 is, however, highly mobile and changes localization in response to altered transcription and splicing activity. Moreover, immunolocalization studies in lens sections suggest that a change in MBNL1 distribution is important during lens growth and differentiation. Although these data suggest that the loss of MBNL1 function due to accumulation in foci is an unlikely explanation for DM1 symptoms in the lens, they do demonstrate a strong relationship between the subcellular MBNL1 localization and pathways of cellular differentiation, providing an insight into the sensitivity of the lens to changes in MBNL1 distribution.
Collapse
|
32
|
Bargiela A, Llamusi B, Cerro-Herreros E, Artero R. Two enhancers control transcription of Drosophila muscleblind in the embryonic somatic musculature and in the central nervous system. PLoS One 2014; 9:e93125. [PMID: 24667536 PMCID: PMC3965525 DOI: 10.1371/journal.pone.0093125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
The phylogenetically conserved family of Muscleblind proteins are RNA-binding factors involved in a variety of gene expression processes including alternative splicing regulation, RNA stability and subcellular localization, and miRNA biogenesis, which typically contribute to cell-type specific differentiation. In humans, sequestration of Muscleblind-like proteins MBNL1 and MBNL2 has been implicated in degenerative disorders, particularly expansion diseases such as myotonic dystrophy type 1 and 2. Drosophila muscleblind was previously shown to be expressed in embryonic somatic and visceral muscle subtypes, and in the central nervous system, and to depend on Mef2 for transcriptional activation. Genomic approaches have pointed out candidate gene promoters and tissue-specific enhancers, but experimental confirmation of their regulatory roles was lacking. In our study, luciferase reporter assays in S2 cells confirmed that regions P1 (515 bp) and P2 (573 bp), involving the beginning of exon 1 and exon 2, respectively, were able to initiate RNA transcription. Similarly, transgenic Drosophila embryos carrying enhancer reporter constructs supported the existence of two regulatory regions which control embryonic expression of muscleblind in the central nerve cord (NE, neural enhancer; 830 bp) and somatic (skeletal) musculature (ME, muscle enhancer; 3.3 kb). Both NE and ME were able to boost expression from the Hsp70 heterologous promoter. In S2 cell assays most of the ME enhancer activation could be further narrowed down to a 1200 bp subregion (ME.3), which contains predicted binding sites for the Mef2 transcription factor. The present study constitutes the first characterization of muscleblind enhancers and will contribute to a deeper understanding of the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Ariadna Bargiela
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Estefanía Cerro-Herreros
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Ruben Artero
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
- * E-mail:
| |
Collapse
|
33
|
Giudice J, Cooper TA. RNA-binding proteins in heart development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:389-429. [PMID: 25201112 DOI: 10.1007/978-1-4939-1221-6_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) are key players of posttranscriptional regulation occurring during normal tissue development. All tissues examined thus far have revealed the importance of RBPs in the regulation of complex networks involved in organ morphogenesis, maturation, and function. They are responsible for controlling tissue-specific gene expression by regulating alternative splicing, mRNA stability, translation, and poly-adenylation. The heart is the first organ form during embryonic development and is also the first to acquire functionality. Numerous remodeling processes take place during late cardiac development since fetal heart first adapts to birth and then undergoes a transition to adult functionality. This physiological remodeling involves transcriptional and posttranscriptional networks that are regulated by RBPs. Disruption of the normal regulatory networks has been shown to cause cardiomyopathy in humans and animal models. Here we review the complexity of late heart development and the current information regarding how RBPs control aspects of postnatal heart development. We also review how activities of RBPs are modulated adding complexity to the regulation of developmental networks.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | |
Collapse
|
34
|
Echeverria GV, Cooper TA. Muscleblind-like 1 activates insulin receptor exon 11 inclusion by enhancing U2AF65 binding and splicing of the upstream intron. Nucleic Acids Res 2013; 42:1893-903. [PMID: 24185704 PMCID: PMC3919616 DOI: 10.1093/nar/gkt1020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5′ splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5′ splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.
Collapse
Affiliation(s)
- Gloria V Echeverria
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Andres SF, Simmons JG, Mah AT, Santoro MA, Van Landeghem L, Lund PK. Insulin receptor isoform switching in intestinal stem cells, progenitors, differentiated lineages and tumors: evidence that IR-B limits proliferation. J Cell Sci 2013; 126:5645-56. [PMID: 24127567 DOI: 10.1242/jcs.132985] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite evidence for the impact of insulin on intestinal epithelial physiology and pathophysiology, the expression patterns, roles, and regulation of insulin receptor (IR) and IR isoforms in the intestinal epithelium are not well characterized. IR-A is thought to mediate the proliferative effects of insulin or insulin growth factors (IGFs) in fetal or cancer cells. IR-B is considered to be the metabolic receptor for insulin in specialized tissues. This study used a novel Sox9-EGFP reporter mouse that permits isolation of intestinal epithelial stem cells (IESCs), progenitors, enteroendocrine cells and differentiated lineages, the Apc(Min/+) mouse model of precancerous adenoma and normal human intestinal and colorectal cancer (CRC) cell lines. We tested the hypothesis that there is differential expression of IR-A or IR-B in stem and tumor cells versus differentiated intestinal epithelial cells (IECs) and that IR-B impacts cell proliferation. Our findings provide evidence that IR-B expression is significantly lower in highly proliferative IESCs and progenitor cells versus post-mitotic, differentiated IECs and in subconfluent and undifferentiated versus differentiated Caco-2 cells. IR-B is also reduced in Apc(Min/+) tumors and highly tumorigenic CRC cells. These differences in IR-B were accompanied by altered levels of mRNAs encoding muscleblind-like 2 (MBNL2), a known regulator of IR alternative splicing. Forced IR-B expression in subconfluent and undifferentiated Caco-2 cells reduced proliferation and increased biomarkers of differentiation. Our findings indicate that the impact of insulin on different cell types in the intestinal epithelium might differ depending on relative IR-B IR-A expression levels and provide new evidence for the roles of IR-B to limit proliferation of CRC cells.
Collapse
Affiliation(s)
- Sarah F Andres
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
37
|
Llamusi B, Bargiela A, Fernandez-Costa JM, Garcia-Lopez A, Klima R, Feiguin F, Artero R. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis Model Mech 2012; 6:184-96. [PMID: 23118342 PMCID: PMC3529350 DOI: 10.1242/dmm.009563] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of 1215 transgenic RNA interference (RNAi) fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43) and BSF (Bicoid stability factor; homolog of human LRPPRC), were of particular interest. These factors modified i(CTG)480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl), were detected in sarcomeric bands. Expression of i(CTG)480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG)480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology.
Collapse
Affiliation(s)
- Beatriz Llamusi
- Translational Genomics Group, Department of Genetics, University of Valencia, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang ET, Cody NAL, Jog S, Biancolella M, Wang TT, Treacy DJ, Luo S, Schroth GP, Housman DE, Reddy S, Lécuyer E, Burge CB. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 2012; 150:710-24. [PMID: 22901804 DOI: 10.1016/j.cell.2012.06.041] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/30/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
The muscleblind-like (Mbnl) family of RNA-binding proteins plays important roles in muscle and eye development and in myotonic dystrophy (DM), in which expanded CUG or CCUG repeats functionally deplete Mbnl proteins. We identified transcriptome-wide functional and biophysical targets of Mbnl proteins in brain, heart, muscle, and myoblasts by using RNA-seq and CLIP-seq approaches. This analysis identified several hundred splicing events whose regulation depended on Mbnl function in a pattern indicating functional interchangeability between Mbnl1 and Mbnl2. A nucleotide resolution RNA map associated repression or activation of exon splicing with Mbnl binding near either 3' splice site or near the downstream 5' splice site, respectively. Transcriptomic analysis of subcellular compartments uncovered a global role for Mbnls in regulating localization of mRNAs in both mouse and Drosophila cells, and Mbnl-dependent translation and protein secretion were observed for a subset of mRNAs with Mbnl-dependent localization. These findings hold several new implications for DM pathogenesis.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Uchida H, Ikeuchi E, Yamasaki T, Ohama T. THE ROLE OF ZINC FINGER PROTEIN IN RNAi INTERFERENCE IN A UNICELLULAR GREEN ALGA CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE). JOURNAL OF PHYCOLOGY 2012; 48:1299-1303. [PMID: 27011288 DOI: 10.1111/j.1529-8817.2012.01214.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 04/06/2012] [Indexed: 06/05/2023]
Abstract
In our previous study, we generated a strain of 19-P (1030) in which artificial RNA interference (RNAi) was induced by transcribing a hairpin RNA of ~780-bp stem. We utilized this RNAi-induced strain to uncover RNAi-related genes. Random insertional mutagenesis was performed to generate tag-mutants that show a RNAi deficient phenotype. The 92-12C is one such tag-mutant, which bears a 14-kb deletion in chromosome 1. Complementation of 92-12C revealed that a protein gene, including a Cys-Cys-Cys-His-type zinc finger motif and an ankyrin repeat motif, is essential for effective RNAi in Chlamydomonas reinhardtii (Dangeard). BLAST analysis revealed that the zinc finger protein is homologous to an mRNA splicing-related protein of other species. Therefore, one of the probable scenarios is that mRNA coding for RNAi-related proteins cannot be properly spliced, which causes RNAi deficiency in the 92-12C tag-mutant.
Collapse
Affiliation(s)
- Hidenobu Uchida
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, 782-8502, Japan
| | - Eri Ikeuchi
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, 782-8502, Japan
| | - Tomohito Yamasaki
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, 782-8502, Japan
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, 782-8502, Japan
| |
Collapse
|
40
|
Combinatorial mutagenesis of MBNL1 zinc fingers elucidates distinct classes of regulatory events. Mol Cell Biol 2012; 32:4155-67. [PMID: 22890842 DOI: 10.1128/mcb.00274-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA binding protein and alternative splicing factor Muscleblind-like 1 (MBNL1) has been a topic of intense study due to its role in myotonic dystrophy (DM) pathogenesis. MBNL1 contains four zinc finger (ZF) RNA binding domains arranged in two pairs. Through combinatorial mutagenesis of the ZF domains, we demonstrate that the pairs of ZFs have differential affinity for RNA and subsequently differential splicing activities. We evaluated splicing and binding activity for six MBNL1-mediated splicing events and found that the splicing activity profiles for the ZF mutants vary among transcripts. Clustering analysis of splicing profiles revealed that two distinct classes of MBNL1 pre-mRNA substrates exist. For some of the RNA transcripts tested, binding and splicing activity of the ZF mutants correlated. However, for some transcripts it appears that MBNL1 exerts robust splicing activity in the absence of RNA binding. We demonstrate that functionally distinct classes of MBNL1-mediated splicing events exist as defined by requirements for ZF-RNA interactions.
Collapse
|
41
|
Echeverria GV, Cooper TA. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res 2012; 1462:100-11. [PMID: 22405728 PMCID: PMC3372679 DOI: 10.1016/j.brainres.2012.02.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 12/22/2022]
Abstract
Although protein-mediated toxicity in neurological disease has been extensively characterized, RNA-mediated toxicity is an emerging mechanism of pathogenesis. In microsatellite expansion disorders, expansion of repeated sequences in noncoding regions gives rise to RNA that produces a toxic gain of function, while expansions in coding regions can disrupt protein function as well as produce toxic RNA. The toxic RNA typically aggregates into nuclear foci and contributes to disease pathogenesis. In many cases, toxicity of the RNA is caused by the disrupted functions of RNA-binding proteins. We will discuss evidence for RNA-mediated toxicity in microsatellite expansion disorders. Different microsatellite expansion disorders are linked with alterations in the same as well as disease-specific RNA-binding proteins. Recent studies have shown that microsatellite expansions can encode multiple repeat-containing toxic RNAs through bidirectional transcription and protein species through repeat-associated non-ATG translation. We will discuss approaches that have characterized the toxic contributions of these various factors.
Collapse
Affiliation(s)
- Gloria V. Echeverria
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Thomas A. Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
42
|
Lawlor KT, O’Keefe LV, Samaraweera SE, van Eyk CL, Richards RI. Ubiquitous expression of CUG or CAG trinucleotide repeat RNA causes common morphological defects in a Drosophila model of RNA-mediated pathology. PLoS One 2012; 7:e38516. [PMID: 22715390 PMCID: PMC3371033 DOI: 10.1371/journal.pone.0038516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
Expanded DNA repeat sequences are known to cause over 20 diseases, including Huntington's disease, several types of spinocerebellar ataxia and myotonic dystrophy type 1 and 2. A shared genetic basis, and overlapping clinical features for some of these diseases, indicate that common pathways may contribute to pathology. Multiple mechanisms, mediated by both expanded homopolymeric proteins and expanded repeat RNA, have been identified by the use of model systems, that may account for shared pathology. The use of such animal models enables identification of distinct pathways and their 'molecular hallmarks' that can be used to determine the contribution of each pathway in human pathology. Here we characterise a tergite disruption phenotype in adult flies, caused by ubiquitous expression of either untranslated CUG or CAG expanded repeat RNA. Using the tergite phenotype as a quantitative trait we define a new genetic system in which to examine 'hairpin' repeat RNA-mediated cellular perturbation. Further experiments use this system to examine whether pathways involving Muscleblind sequestration or Dicer processing, which have been shown to mediate repeat RNA-mediated pathology in other model systems, contribute to cellular perturbation in this model.
Collapse
Affiliation(s)
- Kynan T. Lawlor
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Louise V. O’Keefe
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saumya E. Samaraweera
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Clare L. van Eyk
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert I. Richards
- Discipline of Genetics, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
43
|
Rao Z, He W, Liu L, Zheng S, Huang L, Feng Q. Identification, expression and target gene analyses of Micrornas in Spodoptera litura. PLoS One 2012; 7:e37730. [PMID: 22662202 PMCID: PMC3360614 DOI: 10.1371/journal.pone.0037730] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/20/2012] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs widely present in animals and plants and involved in post-transcriptional regulation of gene transcripts. In this study we identified and validated 58 miRNAs from an EST dataset of Spodoptera litura based on the computational and experimental analysis of sequence conservation and secondary structure of miRNA by comparing the miRNA sequences in the miRbase. RT-PCR was conducted to examine the expression of these miRNAs and stem-loop RT-PCR assay was performed to examine expression of 11 mature miRNAs (out of the 58 putative miRNA) that showed significant changes in different tissues and stages of the insect development. One hundred twenty eight possible target genes against the 11 miRNAs were predicted by using computational methods. Binding of one miRNA (sli-miR-928b) with the three possible target mRNAs was confirmed by Southern blotting, implying its possible function in regulation of the target genes.
Collapse
Affiliation(s)
- Zhongchen Rao
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
44
|
Drosophila muscleblind codes for proteins with one and two tandem zinc finger motifs. PLoS One 2012; 7:e34248. [PMID: 22479576 PMCID: PMC3315501 DOI: 10.1371/journal.pone.0034248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/24/2012] [Indexed: 12/17/2022] Open
Abstract
Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys(3)-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system.
Collapse
|
45
|
Spilker KA, Wang GJ, Tugizova MS, Shen K. Caenorhabditis elegans Muscleblind homolog mbl-1 functions in neurons to regulate synapse formation. Neural Dev 2012; 7:7. [PMID: 22314215 PMCID: PMC3353867 DOI: 10.1186/1749-8104-7-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/07/2012] [Indexed: 01/08/2023] Open
Abstract
Background The sequestration of Muscleblind splicing regulators results in myotonic dystrophy. Previous work on Muscleblind has largely focused on its roles in muscle development and maintenance due to the skeletal and cardiac muscle degeneration phenotype observed in individuals with the disorder. However, a number of reported nervous system defects suggest that Muscleblind proteins function in other tissues as well. Results We have identified a mutation in the Caenorhabditis elegans homolog of Muscleblind, mbl-1, that is required for proper formation of neuromuscular junction (NMJ) synapses. mbl-1 mutants exhibit selective loss of the most distal NMJ synapses in a C. elegans motorneuron, DA9, visualized using the vesicle-associated protein RAB-3, as well as the active zone proteins SYD-2/liprin-α and UNC-10/Rim. The proximal NMJs appear to have normal pre- and postsynaptic specializations. Surprisingly, expressing a mbl-1 transgene in the presynaptic neuron is sufficient to rescue the synaptic defect, while muscle expression has no effect. Consistent with this result, mbl-1 is also expressed in neurons. Conclusions Based on these results, we conclude that in addition to its functions in muscle, the Muscleblind splice regulators also function in neurons to regulate synapse formation.
Collapse
Affiliation(s)
- Kerri A Spilker
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
46
|
CUGBP1 and MBNL1 preferentially bind to 3' UTRs and facilitate mRNA decay. Sci Rep 2012; 2:209. [PMID: 22355723 PMCID: PMC3250574 DOI: 10.1038/srep00209] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022] Open
Abstract
CUGBP1 and MBNL1 are developmentally regulated RNA-binding proteins that are causally associated with myotonic dystrophy type 1. We globally determined the in vivo RNA-binding sites of CUGBP1 and MBNL1. Interestingly, CUGBP1 and MBNL1 are both preferentially bound to 3′ UTRs. Analysis of CUGBP1- and MBNL1-bound 3′ UTRs demonstrated that both factors mediate accelerated mRNA decay and temporal profiles of expression arrays supported this. Role of CUGBP1 on accelerated mRNA decay has been previously reported, but the similar function of MBNL1 has not been reported to date. It is well established that CUGBP1 and MBNL1 regulate alternative splicing. Screening by exon array and validation by RT-PCR revealed position dependence of CUGBP1- and MBNL1-binding sites on the resulting alternative splicing pattern. This study suggests that regulation of CUGBP1 and MBNL1 is essential for accurate control of destabilization of a broad spectrum of mRNAs as well as of alternative splicing events.
Collapse
|
47
|
Lee YCG, Reinhardt JA. Widespread polymorphism in the positions of stop codons in Drosophila melanogaster. Genome Biol Evol 2011; 4:533-49. [PMID: 22051795 PMCID: PMC3342867 DOI: 10.1093/gbe/evr113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2011] [Indexed: 12/19/2022] Open
Abstract
The mechanisms underlying evolutionary changes in protein length are poorly understood. Protein domains are lost and gained between species and must have arisen first as within-species polymorphisms. Here, we use Drosophila melanogaster population genomic data combined with between species divergence information to understand the evolutionary forces that generate and maintain polymorphisms causing changes in protein length in D. melanogaster. Specifically, we looked for protein length variations resulting from premature termination codons (PTCs) and stop codon losses (SCLs). We discovered that 438 genes contained polymorphisms resulting in truncation of the translated region (PTCs) and 119 genes contained polymorphisms predicted to lengthen the translated region (SCLs). Stop codon polymorphisms (SCPs) (especially PTCs) appear to be more deleterious than other polymorphisms, including protein amino acid changes. Genes harboring SCPs are in general less selectively constrained, more narrowly expressed, and enriched for dispensable biological functions. However, we also observed exceptional cases such as genes that have multiple independent SCPs, alleles that are shared between D. melanogaster and Drosophila simulans, and high-frequency alleles that cause extreme changes in gene length. SCPs likely have an important role in the evolution of these genes.
Collapse
Affiliation(s)
- Yuh Chwen G. Lee
- Department of Evolution and Ecology, The University of California at Davis
| | | |
Collapse
|
48
|
Marrone AK, Kucherenko MM, Rishko VM, Shcherbata HR. New dystrophin/dystroglycan interactors control neuron behavior in Drosophila eye. BMC Neurosci 2011; 12:93. [PMID: 21943192 PMCID: PMC3217851 DOI: 10.1186/1471-2202-12-93] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/26/2011] [Indexed: 01/09/2023] Open
Abstract
Background The Dystrophin Glycoprotein Complex (DGC) is a large multi-component complex that is well known for its function in muscle tissue. When the main components of the DGC, Dystrophin (Dys) and Dystroglycan (Dg) are affected cognitive impairment and mental retardation in addition to muscle degeneration can occur. Previously we performed an array of genetic screens using a Drosophila model for muscular dystrophy in order to find novel DGC interactors aiming to elucidate the signaling role(s) in which the complex is involved. Since the function of the DGC in the brain and nervous system has not been fully defined, we have here continued to analyze the DGC modifiers' function in the developing Drosophila brain and eye. Results Given that disruption of Dys and Dg leads to improper photoreceptor axon projections into the lamina and eye neuron elongation defects during development, we have determined the function of previously screened components and their genetic interaction with the DGC in this tissue. Our study first found that mutations in chif, CG34400, Nrk, Lis1, capt and Cam cause improper axon path-finding and loss of SP2353, Grh, Nrk, capt, CG34400, vimar, Lis1 and Cam cause shortened rhabdomere lengths. We determined that Nrk, mbl, capt and Cam genetically interact with Dys and/or Dg in these processes. It is notable that most of the neuronal DGC interacting components encountered are involved in regulation of actin dynamics. Conclusions Our data indicate possible DGC involvement in the process of cytoskeletal remodeling in neurons. The identification of new components that interact with the DGC not only helps to dissect the mechanism of axon guidance and eye neuron differentiation but also provides a great opportunity for understanding the signaling mechanisms by which the cell surface receptor Dg communicates via Dys with the actin cytoskeleton.
Collapse
Affiliation(s)
- April K Marrone
- Max Planck Institute for biophysical chemistry, Research group of Gene Expression and Signaling, Am Fassberg 11, 37077, Goettingen, Germany
| | | | | | | |
Collapse
|
49
|
Michalek JL, Besold AN, Michel SLJ. Cysteine and histidine shuffling: mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function. Dalton Trans 2011; 40:12619-32. [PMID: 21952363 DOI: 10.1039/c1dt11071c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zinc finger proteins utilize zinc for structural purposes: zinc binds to a combination of cysteine and histidine ligands in a tetrahedral coordination geometry facilitating protein folding and function. While much is known about the classical zinc finger proteins, which utilize a Cys(2)His(2) ligand set to coordinate zinc and fold into an anti-parallel beta sheet/alpha helical fold, there are thirteen other families of 'non-classical' zinc finger proteins for which relationships between metal coordination and protein structure/function are less defined. This 'Perspective' article focuses on two classes of these non-classical zinc finger proteins: Cys(3)His type zinc finger proteins and Cys(2)His(2)Cys type zinc finger proteins. These proteins bind zinc in a tetrahedral geometry, like the classical zinc finger proteins, yet they adopt completely different folds and target different oligonucleotides. Our current understanding of the relationships between ligand set, metal ion, fold and function for these non-classical zinc fingers is discussed.
Collapse
Affiliation(s)
- Jamie L Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, USA
| | | | | |
Collapse
|
50
|
Gates DP, Coonrod LA, Berglund JA. Autoregulated splicing of muscleblind-like 1 (MBNL1) Pre-mRNA. J Biol Chem 2011; 286:34224-33. [PMID: 21832083 DOI: 10.1074/jbc.m111.236547] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscleblind-like 1 (MBNL1) is a splicing factor whose improper cellular localization is a central component of myotonic dystrophy. In myotonic dystrophy, the lack of properly localized MBNL1 leads to missplicing of many pre-mRNAs. One of these events is the aberrant inclusion of exon 5 within the MBNL1 pre-mRNA. The region of the MBNL1 gene that includes exon 5 and flanking intronic sequence is highly conserved in vertebrate genomes. The 3'-end of intron 4 is non-canonical in that it contains a predicted branch point that is 141 nucleotides from the 3'-splice site and an AAG 3'-splice site. Using a minigene that includes exon 4, intron 4, exon 5, intron 5, and exon 6 of MBNL1, we showed that MBNL1 regulates inclusion of exon 5. Mapping of the intron 4 branch point confirmed that branching occurs primarily at the predicted distant branch point. Structure probing and footprinting revealed that the highly conserved region between the branch point and 3'-splice site is primarily unstructured and that MBNL1 binds within this region of the pre-mRNA. Deletion of the MBNL1 response element eliminated MBNL1 splicing regulation and led to complete inclusion of exon 5, which is consistent with the suppressive effect of MBNL1 on splicing.
Collapse
Affiliation(s)
- Devika P Gates
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|