1
|
Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol 2022; 5:1084. [PMID: 36224302 PMCID: PMC9556750 DOI: 10.1038/s42003-022-04056-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Atherogenesis involves an interplay of inflammation, tissue remodeling and cellular transdifferentiation (CTD), making it especially difficult to precisely delineate its pathophysiology. Here we use single-cell RNA sequencing and systems-biology approaches to analyze the transcriptional profiles of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in calcified atherosclerotic core (AC) plaques and patient-matched proximal adjacent (PA) portions of carotid artery tissue from patients undergoing carotid endarterectomy. Our results reveal an anatomic distinction whereby PA cells express inflammatory mediators, while cells expressing matrix-secreting genes occupy a majority of the AC region. Systems biology analysis indicates that inflammation in PA ECs and VSMCs may be driven by TNFa signaling. Furthermore, we identify POSTN, SPP1 and IBSP in AC VSMCs, and ITLN1, SCX and S100A4 in AC ECs as possible candidate drivers of CTD in the atherosclerotic core. These results establish an anatomic framework for atherogenesis which forms the basis for exploration of a site-specific strategy for disruption of disease progression. Single-cell RNA sequencing and systems biology are used to profile the human vascular cell populations in calcified atherosclerotic core plaques from carotid endarterectomy samples, showing an anatomic distinction between gene expression of inflammatory versus matrix-secreting factors.
Collapse
|
2
|
Comparison of Gene Expression Patterns in Articular Cartilage and Xiphoid Cartilage. Biochem Genet 2021; 60:676-706. [PMID: 34410558 DOI: 10.1007/s10528-021-10127-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Cartilage is a resilient and smooth connective tissue that is found throughout the body. Among the three major types of cartilage, namely hyaline cartilage, elastic cartilage, and fibrocartilage, hyaline cartilage is the most widespread type of cartilage predominantly located in the joint surfaces (articular cartilage, AC). It remains a huge challenge for orthopedic surgeons to deal with AC damage since it has limited capacity for self-repair. Xiphoid cartilage (XC) is a vestigial cartilage located in the distal end of the sternum. XC-derived chondrocytes exhibit strong chondrogenic differentiation capacity. Thus, XC could become a potential donor site of chondrocytes for cartilage repair and regeneration. However, the underlying gene expression patterns between AC and XC are still largely unknown. In the present study, we used state-of-the-art RNA-seq technology combined with validation method to investigate the gene expression patterns between AC and XC, and identified a series of differentially expressed genes (DEGs) involved in chondrocyte commitment and differentiation including growth factors, transcription factors, and extracellular matrices. We demonstrated that the majority of significantly up-regulated DEGs (XC vs. AC) in XC were involved in regulating cartilage regeneration and repair, whereas the majority of significantly up-regulated DEGs (XC vs. AC) in AC were involved in regulating chondrocyte differentiation and maturation. This study has increased our knowledge of transcriptional networks in hyaline cartilage and elastic cartilage. It also supports the use of XC-derived chondrocytes as a potential cell resource for cartilage regeneration and repair.
Collapse
|
3
|
Li Y, Wu T, Liu S. Identification and Distinction of Tenocytes and Tendon-Derived Stem Cells. Front Cell Dev Biol 2021; 9:629515. [PMID: 33937230 PMCID: PMC8085586 DOI: 10.3389/fcell.2021.629515] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Restoring the normal structure and function of injured tendons is one of the biggest challenges in orthopedics and sports medicine department. The discovery of tendon-derived stem cells (TDSCs) provides a novel perspective to treat tendon injuries, which is expected to be an ideal seed cell to promote tendon repair and regeneration. Because of the lack of specific markers, the identification of tenocytes and TDSCs has not been conclusive in the in vitro study of tendons. In addition, the morphology of tendon derived cells is similar, and the comparison and identification of tenocytes and TDSCs are insufficient, which causes some obstacles to the in vitro study of tendon. In this review, the characteristics of tenocytes and TDSCs are summarized and compared based on some existing research results (mainly in terms of biomarkers), and a potential marker selection for identification is suggested. It is of profound significance to further explore the mechanism of biomarkers in vivo and to find more specific markers.
Collapse
Affiliation(s)
- Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Wu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Izumi S, Otsuru S, Adachi N, Akabudike N, Enomoto-Iwamoto M. Control of glucose metabolism is important in tenogenic differentiation of progenitors derived from human injured tendons. PLoS One 2019; 14:e0213912. [PMID: 30883580 PMCID: PMC6422258 DOI: 10.1371/journal.pone.0213912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Glucose metabolism is altered in injured and healing tendons. However, the mechanism by which the glucose metabolism is involved in the pathogenesis of tendon healing process remains unclear. Injured tendons do not completely heal, and often induce fibrous scar and chondroid lesion. Because previous studies have shown that tendon progenitors play roles in tendon repair, we asked whether connective tissue progenitors appearing in injured tendons alter glucose metabolism during tendon healing process. We isolated connective tissue progenitors from the human injured tendons, obtained at the time of primary surgical repair of rupture or laceration. We first characterized the change in glucose metabolism by metabolomics analysis using [1,2-13C]-glucose using the cells isolated from the lacerated flexor tendon. The flux of glucose to the glycolysis pathway was increased in the connective tissue progenitors when they proceeded toward tenogenic and chondrogenic differentiation. The influx of glucose to the tricarboxylic acid (TCA) cycle and biosynthesis of amino acids from the intermediates of the TCA cycle were strongly stimulated toward chondrogenic differentiation. When we treated the cultures with 2-deoxy-D-glucose (2DG), an inhibitor of glycolysis, 2DG inhibited chondrogenesis as characterized by accumulation of mucopolysaccharides and expression of AGGRECAN. Interestingly, 2DG strongly stimulated expression of tenogenic transcription factor genes, SCLERAXIS and MOHAWK under both chondrogenic and tenogenic differentiation conditions. The findings suggest that control of glucose metabolism is beneficial for tenogenic differentiation of connective tissue progenitors.
Collapse
Affiliation(s)
- Soutarou Izumi
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- Department of Orthopaedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Ngozi Akabudike
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- * E-mail: (MEI); (NA)
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- * E-mail: (MEI); (NA)
| |
Collapse
|
5
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci Rep 2018; 8:3155. [PMID: 29453333 PMCID: PMC5816641 DOI: 10.1038/s41598-018-21194-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Tenomodulin (Tnmd) is a type II transmembrane glycoprotein predominantly expressed in tendons and ligaments. We found that scleraxis (Scx), a member of the Twist-family of basic helix-loop-helix transcription factors, is a transcriptional activator of Tnmd expression in tenocytes. During embryonic development, Scx expression preceded that of Tnmd. Tnmd expression was nearly absent in tendons and ligaments of Scx-deficient mice generated by transcription activator-like effector nucleases-mediated gene disruption. Tnmd mRNA levels were dramatically decreased during serial passages of rat tenocytes. Scx silencing by small interfering RNA significantly suppressed endogenous Tnmd mRNA levels in tenocytes. Mouse Tnmd contains five E-box sites in the ~1-kb 5′-flanking region. A 174-base pair genomic fragment containing a TATA box drives transcription in tenocytes. Enhancer activity was increased in the upstream region (−1030 to −295) of Tnmd in tenocytes, but not in NIH3T3 and C3H10T1/2 cells. Preferential binding of both Scx and Twist1 as a heterodimer with E12 or E47 to CAGATG or CATCTG and transactivation of the 5′-flanking region were confirmed by electrophoresis mobility shift and dual luciferase assays, respectively. Scx directly transactivates Tnmd via these E-boxes to positively regulate tenocyte differentiation and maturation.
Collapse
|
7
|
Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci Rep 2017; 7:45010. [PMID: 28327634 PMCID: PMC5361204 DOI: 10.1038/srep45010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed persistently in tendons/ligaments, but transiently in entheseal cartilage. In this study, we generated a novel ScxCre knock-in (KI) allele, by in-frame replacement of most of Scx exon 1 with Cre recombinase (Cre), to drive Cre expression using Scx promoter and to inactivate the endogenous Scx. Reflecting the intensity and duration of endogenous expression, Cre-mediated excision occurs in tendinous and ligamentous tissues persistently expressing Scx. Expression of tenomodulin, a marker of mature tenocytes and ligamentocytes, was almost absent in tendons and ligaments of ScxCre/Cre KI mice lacking Scx to indicate defective maturation. In homozygotes, the transiently Scx-expressing entheseal regions such as the rib cage, patella cartilage, and calcaneus were small and defective and cartilaginous tuberosity was missing. Decreased Sox9 expression and phosphorylation of Smad1/5 and Smad3 were also observed in the developing entheseal cartilage, patella, and deltoid tuberosity of ScxCre/Cre KI mice. These results highlighted the functional importance of both transient and persistent expression domains of Scx for proper integration of the musculoskeletal components.
Collapse
|
8
|
Leong DJ, Sun HB. Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci 2016; 1383:88-96. [DOI: 10.1111/nyas.13262] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel J. Leong
- Departments of Orthopaedic Surgery and Radiation Oncology; Albert Einstein College of Medicine; Bronx New York
| | - Hui B. Sun
- Departments of Orthopaedic Surgery and Radiation Oncology; Albert Einstein College of Medicine; Bronx New York
| |
Collapse
|
9
|
Gruffat H, Marchione R, Manet E. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol 2016; 7:869. [PMID: 27375590 PMCID: PMC4893493 DOI: 10.3389/fmicb.2016.00869] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.
Collapse
Affiliation(s)
- Henri Gruffat
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Roberta Marchione
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Evelyne Manet
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| |
Collapse
|
10
|
McLellan AS, Langlands K, Kealey T. Exhaustive identification of human class II basic helix-loop-helix proteins by virtual library screening. Mech Dev 2016; 119 Suppl 1:S285-91. [PMID: 14516699 DOI: 10.1016/s0925-4773(03)00130-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular proliferation, specification and differentiation in developing tissues are tightly coordinated by groups of transcription factors in response to extrinsic and intrinsic signals. Furthermore, renewable pools of stem cells in adult tissues are subject to similar regulation. Basic helix-loop-helix (bHLH) proteins are a group of transcription factors that exert such a determinative influence on a variety of developmental pathways from C. elegans to humans, and we wished to exclusively identify novel members from within the whole human bHLH family. We have, therefore, developed an 'empirical custom fingerprint', to define the class II bHLH domain and exclusively identify these proteins in silico. We have identified nine previously uncharacterised human class II proteins, four of which were novel, by interrogating conceptual translations of the GenBank HTGS database. RT-PCR and mammalian 2-hybrid analysis of a subset of the factors demonstrated that they were indeed expressed, and were able to interact with an appropriate binding partner in vitro. Thus, we are now approaching an almost complete listing of human class II bHLH factors.
Collapse
Affiliation(s)
- Andrew S McLellan
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, UK.
| | | | | |
Collapse
|
11
|
Lincoln J. The cardiac matrix revolution: Post-translational modification of Scleraxis. J Mol Cell Cardiol 2016; 93:106-7. [PMID: 26964702 DOI: 10.1016/j.yjmcc.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Joy Lincoln
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Passamaneck YJ, Hejnol A, Martindale MQ. Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa. EvoDevo 2015; 6:10. [PMID: 25897375 PMCID: PMC4404124 DOI: 10.1186/s13227-015-0004-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Brachiopods undergo radial cleavage, which is distinct from the stereotyped development of closely related spiralian taxa. The mesoderm has been inferred to derive from the archenteron walls following gastrulation, and the primary mesoderm derivative in the larva is a complex musculature. To investigate the specification and differentiation of the mesoderm in the articulate brachiopod Terebratalia transversa, we have identified orthologs of genes involved in mesoderm development in other taxa and investigated their spatial and temporal expression during the embryonic and larval development of T. transversa. Results Orthologs of 17 developmental regulatory genes with roles in the development of the mesoderm in other bilaterian animals were found to be expressed in the developing mesoderm of T. transversa. Five genes, Tt.twist, Tt.GATA456, Tt.dachshund, Tt.mPrx, and Tt.NK1, were found to have expression throughout the archenteron wall at the radial gastrula stage, shortly after the initiation of gastrulation. Three additional genes, Tt.Pax1/9, Tt.MyoD, and Tt.Six1/2, showed expression at this stage in only a portion of the archenteron wall. Tt.eya, Tt.FoxC, Tt.FoxF, Tt.Mox, Tt.paraxis, Tt.Limpet, and Tt.Mef2 all showed initial mesodermal expression during later gastrula or early larval stages. At the late larval stage, Tt.dachshund, Tt.Limpet, and Tt.Mef2 showed expression in nearly all mesoderm cells, while all other genes were localized to specific regions of the mesoderm. Tt.FoxD and Tt.noggin both showed expression in the ventral mesoderm at the larval stages, with gastrula expression patterns in the archenteron roof and blastopore lip, respectively. Conclusions Expression analyses support conserved roles for developmental regulators in the specification and differentiation of the mesoderm during the development of T. transversa. Expression of multiple mesodermal factors in the archenteron wall during gastrulation supports previous morphological observations that this region gives rise to larval mesoderm. Localized expression domains during gastrulation and larval development evidence early regionalization of the mesoderm and provide a basis for hypotheses regarding the molecular regulation underlying the complex system of musculature observed in the larva. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813 USA ; The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| |
Collapse
|
13
|
Tan C, Lui PPY, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One 2014; 9:e97453. [PMID: 24831949 PMCID: PMC4022525 DOI: 10.1371/journal.pone.0097453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
We hypothesized that the transplantation of Scx-transduced tendon-derived stem cells (TDSCs) promoted better tendon repair compared to the transplantation of mock-transduced cells. This study thus aimed to investigate the effect of Scx transduction on the expression of lineage markers in TDSCs and the effect of the resulting cell line in the promotion of tendon repair. Rat non-GFP or GFP-TDSCs were transduced with Scx or empty lentiviral vector (Mock) and selected by blasticidin. The mRNA expressions of Scx and different lineage markers were examined by qRT-PCR. The effect of the transplantation of GFP-TDSC-Scx on tendon repair was then tested in a rat unilateral patellar tendon window injury model. The transplantation of GFP-TDSC-Mock and scaffold-only served as controls. At week 2, 4 and 8 post-transplantation, the repaired patellar tendon was harvested for ex vivo fluorescent imaging, vivaCT imaging, histology, immunohistochemistry and biomechanical test. GFP-TDSC-Scx consistently showed higher expressions of most of tendon- and cartilage- related markers compared to the GFP-TDSC-Mock. However, the effect of Scx transduction on the expressions of bone-related markers was inconclusive. The transplanted GFP-TDSCs could be detected in the window wound at week 2 but not at week 4. Ectopic mineralization was detected in some samples at week 8 but there was no difference among different groups. The GFP-TDSC-Scx group only statistically significantly improved tendon repair histologically and biomechanically compared to the Scaffold-only group and the GFP-TDSC-Mock group at the early stage of tendon repair. There was significant higher expression of collagen type I in the window wound in the GFP-TDSC-Scx group compared to the other two groups at week 2. The transplantation of GFP-TDSC-Scx promoted healing at the early stage of tendon repair in a rat patellar tendon window injury model.
Collapse
Affiliation(s)
- Chunlai Tan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Mei Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Chen X, Yin Z, Chen JL, Liu HH, Shen WL, Fang Z, Zhu T, Ji J, Ouyang HW, Zou XH. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Eng Part A 2014; 20:1583-92. [PMID: 24328506 DOI: 10.1089/ten.tea.2012.0656] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM Despite our previous study that demonstrates that human embryonic stem cells (hESCs) can be used as seed cells for tendon tissue engineering after stepwise induction, suboptimal tendon regeneration implies that a new strategy needs to be developed for tendon repair. We investigated whether overexpression of the tendon-specific transcription factor scleraxis (SCX) in hESC-derived mesenchymal stem cells (hESC-MSCs) together with knitted silk-collagen sponge scaffold could promote tendon regeneration. METHODS AND RESULTS hESCs were initially differentiated into MSCs and then engineered with scleraxis (SCX+hESC-MSCs). Engineered tendons were constructed with SCX+hESC-MSCs and a knitted silk-collagen sponge scaffold and then mechanical stress was applied. SCX elevated tendon gene expression in hESC-MSCs and concomitantly attenuated their adipogenic and chondrogenic potential. Mechanical stress further augmented the expression of tendon-specific genes in SCX+hESC-MSC-engineered tendon. Moreover, in vivo mechanical stimulation promoted the alignment of cells and increased the diameter of collagen fibers after ectopic transplantation. In the in vivo tendon repair model, the SCX+hESC-MSC-engineered tendon enhanced the regeneration process as shown by histological scores and superior mechanical performance compared with control cells, especially at early stages. CONCLUSION Our study offers new evidence concerning the roles of SCX in tendon differentiation and regeneration. We demonstrated a novel strategy of combining hESCs, genetic engineering, and tissue-engineering principles for tendon regeneration, which are important for the future application of hESCs and silk scaffolds for tendon repair.
Collapse
Affiliation(s)
- Xiao Chen
- 1 Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University , Hangzhou, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mann ZF, Chang W, Lee KY, King KA, Kelley MW. Expression and function of scleraxis in the developing auditory system. PLoS One 2013; 8:e75521. [PMID: 24058692 PMCID: PMC3772897 DOI: 10.1371/journal.pone.0075521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023] Open
Abstract
A study of genes expressed in the developing inner ear identified the bHLH transcription factor Scleraxis (Scx) in the developing cochlea. Previous work has demonstrated an essential role for Scx in the differentiation and development of tendons, ligaments and cells of chondrogenic lineage. Expression in the cochlea has been shown previously, however the functional role for Scx in the cochlea is unknown. Using a Scx-GFP reporter mouse line we examined the spatial and temporal patterns of Scx expression in the developing cochlea between embryonic day 13.5 and postnatal day 25. Embryonically, Scx is expressed broadly throughout the cochlear duct and surrounding mesenchyme and at postnatal ages becomes restricted to the inner hair cells and the interdental cells of the spiral limbus. Deletion of Scx results in hearing impairment indicated by elevated auditory brainstem response (ABR) thresholds and diminished distortion product otoacoustic emission (DPOAE) amplitudes, across a range of frequencies. No changes in either gross cochlear morphology or expression of the Scx target genes Col2A, Bmp4 or Sox9 were observed in Scx(-/-) mutants, suggesting that the auditory defects observed in these animals may be a result of unidentified Scx-dependent processes within the cochlea.
Collapse
Affiliation(s)
- Zoe F. Mann
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | - Weise Chang
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States of America
| | - Kyu Yup Lee
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Rockville, Maryland, United States of America
| | - Kelly A. King
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Sritanaudomchai H, Kitiyanant Y, Tong-ngam P, Thonabulsombat C, White KL, Kusamran T. Enhanced chondrogenesis through specific growth factors in a buffalo embryonic stem cell model. Cell Biol Int 2013; 37:1246-58. [PMID: 23852953 DOI: 10.1002/cbin.10153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/08/2013] [Indexed: 11/10/2022]
Abstract
Chondrogenic differentiation of embryonic stem cells (ESCs) via embryoid bodies (EBs) is an established model to investigate chondrogenesis signaling pathways and molecular mechanisms in vitro. Our aim has been to improve upon the number of differentiated cells needed for the in vitro development of functional cartilage. Chondrogenic differentiation of buffalo ESCs was modulated by bone morphogenetic protein 2 (BMP-2), fibroblast growth factor 10 (FGF-10), transforming growth factor-beta1 (TGF-β1 ) individually and their combination. ESCs differentiation into chondrocytes was characterized by the appearance of Alcian blue-stained nodules and the expression of cartilage-associated genes (RT-PCR) and protein (immunocytochemistry). BMP-2 or FGF-10 treatment enhanced chondrogenic differentiation, whereas TGF-β1 treatment inhibited buffalo ESC-derived chondrogenesis. The combination of BMP-2 and FGF-10 was the most effective treatment. This treatment resulted in a higher number of Alcian blue-positive nodules by 15.2-fold, expression of the mesenchymal cell marker scleraxis gene by 3.25-fold, and the cartilage matrix protein collagen II gene and protein 1.9- and 7-fold, respectively, compared to the untreated control group. Chondrogenesis was also recapitulated from mesenchymal and chondrogenic progenitor cells, resulting in the establishment of mature chondrocytes. Thus, buffalo ESCs can be successfully triggered in vitro to differentiate into chondrocyte-like cells by specific growth factors, which may provide a novel in vitro model for further investigation of the regulatory mechanism(s) involved.
Collapse
Affiliation(s)
- Hathaitip Sritanaudomchai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
17
|
Barsby T, Guest D. Transforming growth factor beta3 promotes tendon differentiation of equine embryo-derived stem cells. Tissue Eng Part A 2013; 19:2156-65. [PMID: 23611525 DOI: 10.1089/ten.tea.2012.0372] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tendon injuries occur frequently in horses and have a poor capacity to regenerate, which leads to high re-injury rates. Equine embryo-derived stem cells (ESCs) survive in high numbers in the injured horse tendon and we hypothesized that they differentiate into tenocytes in vivo. Immunocytochemistry revealed that in the injured horse tendon ESCs express the tendon progenitor marker scleraxis and that there is a local upregulation of the transforming growth factor-β (TGF-β) at the injury site. The aim of this study was to determine if TGF-β signaling was able to drive tenocyte differentiation by ESCs. Exposure of differentiating ESCs to TGF-β in vitro produced an upregulation of scleraxis at the gene and protein level with the greatest effect being produced in the presence of TGF-β3. TGF-β3 treatment of differentiating ESCs also promotes a significant upregulation of other tendon-associated genes and proteins suggesting it can promote ESC differentiation into tenocytes. Our results demonstrate that equine ESCs can differentiate into a therapeutically relevant cell type and that TGF-β driven differentiation of ESCs may provide a model to study tendon development and better understand the transcriptional networks that are involved in equine tendon cell differentiation from the early embryonic stages.
Collapse
Affiliation(s)
- Tom Barsby
- Centre for Preventive Medicine, Animal Health Trust, Suffolk, United Kingdom
| | | |
Collapse
|
18
|
Davies O, Lin CY, Radzisheuskaya A, Zhou X, Taube J, Blin G, Waterhouse A, Smith A, Lowell S. Tcf15 primes pluripotent cells for differentiation. Cell Rep 2013; 3:472-84. [PMID: 23395635 PMCID: PMC3607254 DOI: 10.1016/j.celrep.2013.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 02/02/2023] Open
Abstract
The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state.
Collapse
Affiliation(s)
- Owen R. Davies
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aliaksandra Radzisheuskaya
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Xinzhi Zhou
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jessica Taube
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anna Waterhouse
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK,Corresponding author
| |
Collapse
|
19
|
Low Frequency Pulsed Electromagnetic Field Affects Proliferation, Tissue-Specific Gene Expression, and Cytokines Release of Human Tendon Cells. Cell Biochem Biophys 2013; 66:697-708. [DOI: 10.1007/s12013-013-9514-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Chen X, Yin Z, Chen JL, Shen WL, Liu HH, Tang QM, Fang Z, Lu LR, Ji J, Ouyang HW. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes. Sci Rep 2012; 2:977. [PMID: 23243495 PMCID: PMC3522101 DOI: 10.1038/srep00977] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
As tendon stem/progenitor cells were reported to be rare in tendon tissues, tendons as vulnerable targets of sports injury possess poor self-repair capability. Human ESCs (hESCs) represent a promising approach to tendon regeneration. But their teno-lineage differentiation strategy has yet to be defined. Here, we report that force combined with the tendon-specific transcription factor scleraxis synergistically promoted commitment of hESCs to tenocyte for functional tissue regeneration. Force and scleraxis can independently induce tendon differentiation. However, force alone concomitantly activated osteogenesis, while scleraxis alone was not sufficient to commit, but augment tendon differentiation. Scleraxis synergistically augmented the efficacy of force on teno-lineage differentiation and inhibited the osteo-lineage differentiation by antagonized BMP signaling cascade. The findings not only demonstrated a novel strategy of directing hESC differentiation to tenocyte for functional tendon regeneration, but also offered insights into understanding the network of force, scleraxis and bmp2 controlling tendon-lineage differentiation.
Collapse
Affiliation(s)
- Xiao Chen
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Rotator cuff repair is a common orthopedic procedure. Despite advances in surgical technique, the rotator cuff tendons often fail to heal after surgery. In recent years, a number of biologic strategies have been developed and tested to augment healing after rotator cuff repair. These strategies include allograft, extracellular matrices (ECMs), platelet rich plasma (PRP), growth factors, stem cells, and gene therapy. This chapter reviews the most current research on biologic augmentation of rotator cuff repair using these methods.
Collapse
Affiliation(s)
- Scott R Montgomery
- Orthopaedic Surgery Education Office, David Geffen School of Medicine at UCLA, Room 76-143 CHS 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
22
|
Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A 2011; 18:598-608. [PMID: 21939397 DOI: 10.1089/ten.tea.2011.0338] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tendon injuries are common clinical problems and are difficult to treat. In particular, the tendon-to-bone insertion site, once damaged, does not regenerate its complex zonal arrangement. A potential treatment for tendon injuries is to replace injured tendons with bioengineered tendons. However, the bioengineering of tendon will require a detailed understanding of the normal development of tendon, which is currently lacking. Here, we use the mouse patellar tendon as a model to describe the spatial and temporal pattern of expression of molecular markers for tendon differentiation from late fetal life to 2 weeks after birth. We found that collagen I, fibromodulin, and tenomodulin were expressed throughout the tendon, whereas tenascin-C, biglycan, and cartilage oligomeric protein were concentrated in the insertion site during this period. We also identified signaling pathways that are activated both throughout the developing tendon, for example, transforming growth factor beta and bone morphogenetic protein, and specifically in the insertion site, for example, hedgehog pathway. Using a mouse line expressing green fluorescent protein in all tenocytes, we also found that tenocyte cell proliferation occurs at highest levels during late fetal life, and declines to very low levels by 2 weeks after birth. These data will allow both the functional analysis of specific signaling pathways in tenocyte development and their application to tissue-engineering studies in vitro.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gulotta LV, Rodeo SA. Emerging ideas: Evaluation of stem cells genetically modified with scleraxis to improve rotator cuff healing. Clin Orthop Relat Res 2011; 469:2977-80. [PMID: 21132407 PMCID: PMC3171546 DOI: 10.1007/s11999-010-1727-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuffs heal with an interposed layer of scar tissue that makes repairs prone to failure. Cell-based biologic therapies have the potential to augment this healing process. Scleraxis (Scx) is a transcription factor that is involved in tendon development during embryogenesis, and may help drive stem cells toward tenocyte differentiation in adults. QUESTIONS/HYPOTHESIS: (1) Overexpression of Scx with adenoviral-mediated gene transfer in stem cells will drive pluripotent stem cells toward tenoblastogenic lineages in vitro; (2) the application of these genetically modified cells will result in improved histologic and biomechanical healing of rotator cuff repairs. METHOD OF STUDY For the first hypothesis, we will determine whether stem cells derived from various sources can differentiate into tenocytes when genetically modified with Scx in vitro. We will assess morphologic features of cells with light microscopy, and gene expression analyses to confirm phenotypes consistent with tenocyte differentiation. For the second hypothesis, we will determine whether these genetically modified cells augment rotator cuff repairs in a rat model based on histology and biomechanical outcomes. SIGNIFICANCE Development of this technology may substantially advance our ability to repair large to massive rotator cuff tears while limiting the rates of anatomic failure.
Collapse
Affiliation(s)
- Lawrence V. Gulotta
- Sports Medicine/Shoulder Service, Hospital for Special Surgery, New York, NY USA ,Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021 USA
| | - Scott A. Rodeo
- Sports Medicine/Shoulder Service, Hospital for Special Surgery, New York, NY USA
| |
Collapse
|
24
|
Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 2011; 39:1282-9. [PMID: 21335341 DOI: 10.1177/0363546510395485] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuffs heal through a scar tissue interface after repair that makes them prone to failure. Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is thought to direct tendon development during embryogenesis. The purpose of this study was to determine if the application of mesenchymal stem cells (MSCs) transduced with adenoviral-mediated scleraxis (Ad-Scx) could improve regeneration of the tendon-bone insertion site in a rat rotator cuff repair model. HYPOTHESIS Bone marrow-derived cells transduced with Scx would improve the structure of the healing tendon-bone interface and result in increased tendon attachment strength. STUDY DESIGN Controlled laboratory study. METHODS Sixty Lewis rats underwent unilateral detachment and repair of the supraspinatus tendon. Thirty animals received MSCs in a fibrin glue carrier, and 30 received Ad-Scx-transduced MSCs. Animals were sacrificed at 2 weeks and 4 weeks and evaluated for the presence of fibrocartilage and collagen fiber organization at the insertion. Biomechanical testing was performed to determine the structural and material properties of the repaired tissue. Statistical analysis was performed with a Wilcoxon rank sum test with significance set at P = .05. RESULTS There were no differences between the Scx and MSC groups in terms of histologic appearance at 2 weeks. However, the Scx group had higher ultimate stress-to-failure (2.6 ± 0.9 vs 1.7 ± 0.3 MPa; P = .03) and stiffness (8.4 ± 2.9 vs 5.0 ± 1.9 N/mm; P = .01) compared with the MSC group. At 4 weeks, the Scx group had more fibrocartilage (728.7 ± 50.4 vs 342.6 ± 217.0 mm(2); P = .04), higher ultimate load to failure (26.7 ± 4.6 vs 20.8 ± 4.4 N; P = .01), higher ultimate stress to failure (4.7 ± 1.3 vs 3.5 ± 1.0 MPa; P < .04), and higher stiffness values (15.3 ± 3.4 vs 9.3 ± 2.2 N/mm; P < .001) as compared with the MSC group. CONCLUSION Mesenchymal stem cells genetically modified with Scx can augment rotator cuff healing at early time points. CLINICAL RELEVANCE Biologic augmentation of acutely injured rotator cuffs with Scx-transduced MSCs may improve rotator cuff tendon healing and reduce the incidence of re-tears. However, further studies are needed to determine if this remains safe and effective in larger models.
Collapse
|
25
|
Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:165-76. [PMID: 21314435 DOI: 10.1089/ten.teb.2010.0662] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang L, Bresee CS, Jiang H, He W, Ren T, Schweitzer R, Brigande JV. Scleraxis is required for differentiation of the stapedius and tensor tympani tendons of the middle ear. J Assoc Res Otolaryngol 2011; 12:407-21. [PMID: 21399989 DOI: 10.1007/s10162-011-0264-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/22/2011] [Indexed: 12/20/2022] Open
Abstract
Scleraxis (Scx) is a basic helix-loop-helix transcription factor expressed in tendon and ligament progenitor cells and the differentiated cells within these connective tissues in the axial and appendicular skeleton. Unexpectedly, we found expression of the Scx transgenic reporter mouse, Scx-GFP, in interdental cells, sensory hair cells, and cochlear supporting cells at embryonic day 18.5 (E18.5). We evaluated Scx-null mice to gain insight into the function of Scx in the inner ear. Paradoxical hearing loss was detected in Scx-nulls, with ~50% of the mutants presenting elevated auditory thresholds. However, Scx-null mice have no obvious, gross alterations in cochlear morphology or cellular patterning. Moreover, we show that the elevated auditory thresholds correlate with middle ear infection. Laser interferometric measurement of sound-induced malleal movements in the infected Scx-nulls demonstrates increased impedance of the middle ear that accounts for the hearing loss observed. The vertebrate middle ear transmits vibrations of the tympanic membrane to the cochlea. The tensor tympani and stapedius muscles insert into the malleus and stapes via distinct tendons and mediate the middle ear muscle reflex that in part protects the inner ear from noise-induced damage. Nothing, however, is known about the development and function of these tendons. Scx is expressed in tendon progenitors at E14.5 and differentiated tenocytes of the stapedius and tensor tympani tendons at E16.5-18.5. Scx-nulls have dramatically shorter stapedius and tensor tympani tendons with altered extracellular matrix consistent with abnormal differentiation in which condensed tendon progenitors are inefficiently incorporated into the elongating tendons. Scx-GFP is the first transgenic reporter that identifies middle ear tendon lineages from the time of their formation through complete tendon maturation. Scx-null is the first genetically defined mouse model for abnormal middle ear tendon differentiation. Scx mouse models will facilitate studies of tendon and muscle formation and function in the middle ear.
Collapse
Affiliation(s)
- Lingyan Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The characteristic cells in tendons and ligaments are called tenocytes, which are responsible for the formation and turnover of the extracellular matrix. They react to external stimuli and facilitate the functional adaptation of the proteoglycan and collagen network to mechanical requirements. Via numerous cellular processes they form a complex communicating network which demonstrates coordinated directional reactions. As is common to all tissues in the human body, tendons are subject to age changes which influence the tenocytes, but additionally the structural organization and hence the function of the extracellular matrix. The function and organization of tendons are also affected by mechanical forces, as well as by various cytokines produced in the tissue and by the application of anti-inflammatory medication.
Collapse
|
28
|
Arao Y, Carpenter K, Hewitt S, Korach KS. Estrogen down-regulation of the Scx gene is mediated by the opposing strand-overlapping gene Bop1. J Biol Chem 2009; 285:4806-14. [PMID: 19996321 DOI: 10.1074/jbc.m109.036681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent genome-wide transcriptome studies suggest the presence of numerous bidirectional overlapping coding gene pairs in mammalian genomes. Various antisense RNAs are reported as non-coding RNAs that regulate the expression of sense RNA. However, it is still unclear whether the expression of bidirectional overlapping coding genes are regulated by the opposite strand gene transcript acting as a non-coding RNA. Bop1 and Scx are a pair of bidirectional overlapping coding genes related to cellular proliferation and differentiation, respectively. Scx gene is localized in the intron 3 region of the Bop1 gene. The expression of these genes is reciprocally regulated by estrogen (E2) in the mouse uterus. In situ hybridization indicated that both genes are expressed in the uterine endometrial epithelial cells and that the antisense RNA of Scx (Bop1 intronic RNA) accumulates as a stable RNA in these cells. The existence of Bop1 intronic RNA was confirmed by reverse transcription-PCR and was increased after E2 treatment, coinciding with a decrease in Scx mRNA. Murine myoblasts expressing doxycycline-inducible endogenous Bop1 gene showed an increase in Bop1 intronic RNA and a simultaneous decrease in Scx mRNA. Murine fibroblasts expressing Scx mRNA from an exogenous Scx mini-gene indicated that the accumulation of Bop1 intronic RNA impairs the Scx gene expression in a trans-acting manner, which resulted in the reduction of the Scx mRNA level. This study demonstrates a novel example of hormone-stimulated intronic non-coding RNA down-regulating the expression of an opposing strand-overlapping coding gene.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
29
|
Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol 2009; 42:148-56. [PMID: 19828133 DOI: 10.1016/j.biocel.2009.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 01/13/2023]
Abstract
During musculoskeletal development, Sry-type HMG box 9 (Sox9) has a crucial role in mesenchymal condensation and chondrogenesis. On the other hand, a tissue-specific basic helix-loop-helix (bHLH) transcription factor Scleraxis (Scx) regulates the differentiation of tendon and ligament progenitors. Whereas these two transcription factors cooperatively participate in the determination of cellular lineages, the precise interaction between Sox9 and Scx remains unclear. We have previously demonstrated that the Sox9-dependent transcription is synergistically activated by several Sox9-associating molecules, such as p300 and Smad3, on chromatin. In this study, we investigated the function of Scx in the Sox9-dependent transcription. The expression of alpha1(II) collagen (Col2a1) gene was stimulated by an appropriate transduction of Sox9 and Scx. Scx and its partner E47, which dimerizes with other bHLH proteins, cooperatively enhanced the Sox9-dependent transcription in luciferase reporter assays. Coactivator p300 synergistically increased the activity of Sox9-regulated reporter gene, which contains promoter and enhancer regions of Col2a1, in the presence of Scx and E47. Immunoprecipitation analyses revealed that Scx and E47 formed a transcriptional complex with Sox9 and p300. Scx/E47 heterodimer also associated with a conserved E-box sequence (CAGGTG) in the Col2a1 promoter on chromatin. These findings suggest that Scx and E47 might modulate the primary chondrogenesis by associating with the Sox9-related transcriptional complex, and by binding to the conserved E-box on Col2a1 promoter.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan.
| | | | | | | | | |
Collapse
|
30
|
Zhang G. An evo-devo view on the origin of the backbone: evolutionary development of the vertebrae. Integr Comp Biol 2009; 49:178-86. [PMID: 21669856 DOI: 10.1093/icb/icp061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vertebral columns are a group of diverse axial structures that define the vertebrates and provide supportive, locomotive, protective, and other important functions. The embryonic origin of the first vertebral element in this subphylum, the lamprey arcualia, has remained a puzzle for more than a century although much developmental and genetic progress has been made. The comparative approach is a very powerful tool for studying vertebrate morphological variation and understanding how the novel structures were generated during evolution. Here, I first briefly describe the vertebral structures and their developmental processes in major taxa, and then analyze the most recently published data on the basal vertebrates. Finally, an ontogenetic and phylogenetic origin is proposed. The lamprey may have already evolved a sclerotome, which gave rise to arcualia ontogenetically; whole genome duplications likely promoted the establishment of sclerotomal core genetic program by gene co-options.
Collapse
Affiliation(s)
- Guangjun Zhang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, E17-336, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Hwang YS, Polak JM, Mantalaris A. In VitroDirect Chondrogenesis of Murine Embryonic Stem Cells by Bypassing Embryoid Body Formation. Stem Cells Dev 2008; 17:971-8. [DOI: 10.1089/scd.2007.0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yu-Shik Hwang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, U.K
| | - Julia M. Polak
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, U.K
| | - Athanasios Mantalaris
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, U.K
| |
Collapse
|
32
|
Abstract
The purpose of the current review is to highlight the structure-function relationship of tendons and related structures to provide an overview for readers whose interest in tendons needs to be underpinned by anatomy. Because of the availability of several recent reviews on tendon development and entheses, the focus of the current work is primarily directed towards what can best be described as the 'tendon proper' or the 'mid-substance' of tendons. The review covers all levels of tendon structure from the molecular to the gross and deals both with the extracellular matrix and with tendon cells. The latter are often called 'tenocytes' and are increasingly recognized as a defined cell population that is functionally and phenotypically distinct from other fibroblast-like cells. This is illustrated by their response to different types of mechanical stress. However, it is not only tendon cells, but tendons as a whole that exhibit distinct structure-function relationships geared to the changing mechanical stresses to which they are subject. This aspect of tendon biology is considered in some detail. Attention is briefly directed to the blood and nerve supply of tendons, for this is an important issue that relates to the intrinsic healing capacity of tendons. Structures closely related to tendons (joint capsules, tendon sheaths, pulleys, retinacula, fat pads and bursae) are also covered and the concept of a 'supertendon' is introduced to describe a collection of tendons in which the function of the whole complex exceeds that of its individual members. Finally, attention is drawn to the important relationship between tendons and fascia, highlighted by Wood Jones in his concept of an 'ectoskeleton' over half a century ago - work that is often forgotten today.
Collapse
Affiliation(s)
- M Benjamin
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
33
|
Aslan H, Kimelman-Bleich N, Pelled G, Gazit D. Molecular targets for tendon neoformation. J Clin Invest 2008; 118:439-44. [PMID: 18246194 PMCID: PMC2214706 DOI: 10.1172/jci33944] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tendons and ligaments are unique forms of connective tissue that are considered an integral part of the musculoskeletal system. The ultimate function of tendon is to connect muscles to bones and to conduct the forces generated by muscle contraction into movements of the joints, whereas ligaments connect bone to bone and provide joint stabilization. Unfortunately, the almost acellular and collagen I-rich structure of tendons and ligaments makes them very poorly regenerating tissues. Injured tendons and ligaments are considered a major clinical challenge in orthopedic and sports medicine. This Review discusses the several factors that might serve as molecular targets that upon activation can enhance or lead to tendon neoformation.
Collapse
Affiliation(s)
- Hadi Aslan
- Skeletal Biotechnology Laboratory, Hebrew University, Hadassah Medical Campus, Jerusalem, Israel.
International Stem Cell Institute, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nadav Kimelman-Bleich
- Skeletal Biotechnology Laboratory, Hebrew University, Hadassah Medical Campus, Jerusalem, Israel.
International Stem Cell Institute, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gadi Pelled
- Skeletal Biotechnology Laboratory, Hebrew University, Hadassah Medical Campus, Jerusalem, Israel.
International Stem Cell Institute, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dan Gazit
- Skeletal Biotechnology Laboratory, Hebrew University, Hadassah Medical Campus, Jerusalem, Israel.
International Stem Cell Institute, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
34
|
Kappen C, Neubüser A, Balling R, Finnell R. Molecular basis for skeletal variation: insights from developmental genetic studies in mice. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2007; 80:425-50. [PMID: 18157899 PMCID: PMC3938168 DOI: 10.1002/bdrb.20136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Skeletal variations are common in humans, and potentially are caused by genetic as well as environmental factors. We here review molecular principles in skeletal development to develop a knowledge base of possible alterations that could explain variations in skeletal element number, shape or size. Environmental agents that induce variations, such as teratogens, likely interact with the molecular pathways that regulate skeletal development.
Collapse
Affiliation(s)
- C Kappen
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
35
|
Pryce BA, Brent AE, Murchison ND, Tabin CJ, Schweitzer R. Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev Dyn 2007; 236:1677-82. [PMID: 17497702 DOI: 10.1002/dvdy.21179] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Defects in tendon patterning and differentiation are seldom assessed in mouse mutants due to the difficulty in visualizing connective tissue structures. To facilitate tendon analysis, we have generated mouse lines harboring two different transgene reporters, alkaline phosphatase (AP) and green fluorescent protein (GFP), each expressed using regulatory elements derived from the endogenous Scleraxis (Scx) locus. Scx encodes a transcription factor expressed in all developing tendons and ligaments as well as in their progenitors. Both the ScxGFP and ScxAP transgenes are expressed in patterns recapitulating almost entirely the endogenous developmental expression of Scx including very robust expression in the tendons and ligaments. These reporter lines will facilitate isolation of tendon cells and phenotypic analysis of these tissues in a variety of genetic backgrounds.
Collapse
Affiliation(s)
- Brian A Pryce
- Shriners Hospital for Children, Research Division, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
36
|
Popova SN, Lundgren-Akerlund E, Wiig H, Gullberg D. Physiology and pathology of collagen receptors. Acta Physiol (Oxf) 2007; 190:179-87. [PMID: 17581134 DOI: 10.1111/j.1748-1716.2007.01718.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Just before the transition from pre-genomic to the post-genomic era, the two latest members of the mammalian integrin family were identified. These integrins, which were named alpha10beta1 and alpha11beta1, are both collagen receptors and are related. Rather than being twins, they can be regarded as close cousins. They both belong to the subfamily of integrins that contain an I-domain in the alpha subunit. This domain is also the part that endows these integrins with the capacity to bind the GFOGER sequence in collagens. In the current review, we summarize and update the current knowledge about the in vitro and in vivo functions of these integrins.
Collapse
Affiliation(s)
- S N Popova
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
37
|
Abstract
Tendons and ligaments are related connective tissues that join muscle to bone and bone to bone, respectively. Tendon and ligament injuries are widely distributed clinical problems in society and while healing of such disorders can occur, the original biological properties of the tissue do not return to normal. In this review, recent work on tendon and ligament development and the use of growth factors for successful cellular therapy of tendon and ligament disorders are discussed. In addition, anti-inflammatory concepts for the treatment of tendon and ligament injuries and recent developments in stem cell engineering for tendon and ligament tissues are examined. Lastly, gene transfer strategies for therapeutic applications to heal tendon and ligament disorders are reviewed.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Signalling and Gene Regulation, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | |
Collapse
|
38
|
Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 2006; 294:292-302. [PMID: 16643886 DOI: 10.1016/j.ydbio.2006.03.027] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/06/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
The mature heart valves are dynamic structures composed of highly organized cell lineages and extracellular matrices. The discrete architecture of connective tissue within valve leaflets and supporting structures allows the valve to withstand life-long functional demands and changes in hemodynamic forces and load. The dysregulation of ECM organization is a common feature of heart valve disease and can often be linked to genetic defects in matrix protein structure or developmental regulation. Recent studies have identified specific regulatory pathways that are active in the developing valve structures and also control cartilage, tendon, and bone development. This review will focus on the regulatory hierarchies that control normal and abnormal heart valve development in parallel with other connective tissue cell types.
Collapse
Affiliation(s)
- Joy Lincoln
- Division of Molecular Cardiovascular Biology, MLC 7020, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
39
|
Abstract
Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
40
|
Ekuni D, Firth JD, Putnins EE. RNA integrity and in situ RT-PCR in dento-alveolar tissues after microwave accelerated demineralisation. Arch Oral Biol 2005; 51:164-9. [PMID: 16098949 DOI: 10.1016/j.archoralbio.2005.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/13/2005] [Accepted: 06/22/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The structural organization of oral soft tissue and its relationship with highly calcified teeth are difficult to preserve unless tissues are decalcified, paraffin embedded and subsequently sectioned. However, enamel decalcification time and its negative impact on RNA integrity makes it difficult to effectively analyse in situ gene expression. This study examined the impact of microwave-enhanced decalcification on processing time, RNA integrity and detection of in situ mRNA expression in hard and soft tissue for cell type specific markers of Keratinocyte growth factor receptor, Scleraxis and Osteonectin. DESIGN Maxillas and mandibles were obtained from three male Wistar strain rats. Right side tissues were decalcified using a microwave plus 10% EDTA solution (M+) while left side tissues were decalcified in 10% EDTA solution alone (M-). RESULTS Microwave use reduced decalcification time by up to 50% and had no significant impact on morphology, RNA quality and in situ detection of gene expression relative to the M-group. CONCLUSIONS In situ RT-PCR gene expression of microwave decalcified paraffin-embedded oral tissues is an effective technique to localize in situ gene expression while maintaining excellent soft and hard tissue architecture.
Collapse
Affiliation(s)
- Daisuke Ekuni
- Department of Oral Health, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | |
Collapse
|
41
|
Muir T, Sadler-Riggleman I, Skinner MK. Role of the basic helix-loop-helix transcription factor, scleraxis, in the regulation of Sertoli cell function and differentiation. Mol Endocrinol 2005; 19:2164-74. [PMID: 15831523 DOI: 10.1210/me.2004-0473] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sertoli cells are a postmitotic terminally differentiated cell population in the adult testis that form the seminiferous tubules and provide the microenvironment and structural support for developing germ cells. The transcription factors that regulate Sertoli cell differentiation remain to be elucidated. The basic helix-loop-helix transcription factors are involved in the differentiation of a variety of cell lineages during development and are expressed in pubertal Sertoli cells. A yeast-two-hybrid procedure was used to screen a Sertoli cell library from 20-d-old pubertal rats to identify dimerization partners with the ubiquitous E47 basic helix-loop-helix transcription factor. Scleraxis was identified as one of the interacting partners. Among the cell types of the testis, scleraxis expression was found to be specific to Sertoli cells. Analysis of the expression pattern of scleraxis mRNA in developing Sertoli cells revealed an increase in scleraxis message at the onset of puberty. Sertoli cells respond to FSH to promote expression of differentiated gene products such as transferrin that aid in proper development of the germ cells. Analysis of the hormonal regulation of scleraxis expression revealed a 4-fold increase in scleraxis mRNA in response to the presence of FSH or dibutryl cAMP in cultured Sertoli cells. An antisense oligonucleotide procedure and overexpression analysis were used to determine whether scleraxis regulates the expression of Sertoli cell differentiated gene products. An antisense oligonucleotide to scleraxis down-regulated transferrin promoter activity in Sertoli cells. A transient overexpression of scleraxis in Sertoli cells stimulated transferrin and androgen binding protein promoter activities and the expression of a number of differentiated genes. Observations suggest scleraxis functions in a number of adult tissues and is involved in the regulation and maintenance of Sertoli cell function and differentiation. This is one of the first adult and nontendon/chondrocyte-associated functions described for scleraxis.
Collapse
Affiliation(s)
- Tera Muir
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | |
Collapse
|
42
|
Hirao A, Aoyama H. Somite development without influence of the surface ectoderm in the chick embryo: the compartments of a somite responsible for distal rib development. Dev Growth Differ 2005; 46:351-62. [PMID: 15367203 DOI: 10.1111/j.1440-169x.2004.00752.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the development of the somite, signals from neighboring tissues have been suggested to play critical roles. We have found that when interaction between the ectoderm and the somite is blocked by inserting a piece of polyethylene terephatalate film between them in 2-day-chicken embryo, one of the derivatives of somite, the distal rib, did not form. We examined somite development after the operation, to know the correlation between somite development and distal rib formation. In the operated embryo, the dermomyotome was medio-laterally shorter than in the normal embryo, and Pax3 and Sim1 expressions that are seen in the lateral part of normal dermomyotomes were not found, suggesting that the lateral part of the dermomyotome was missing. Although the sclerotome appeared to be normal in its histology and Pax1 expression pattern in the operated embryo, we could not detect the expression of either Scleraxis nor gamma-FBP that are expressed in the cells around the boundaries between the adjacent dermomyotomes in normal embryos. Thus, under the influence of surface ectoderm, the lateral part of dermomyotome and/or the mesenchyme around rostral and caudal edges of dermomyotomes are suggested to play an important role in the distal rib development.
Collapse
Affiliation(s)
- Akiko Hirao
- Department of Biology, Graduate School of Science, Osaka University, 1-16, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
43
|
Mittapalli VR, Huang R, Patel K, Christ B, Scaal M. Arthrotome: A specific joint forming compartment in the avian somite. Dev Dyn 2005; 234:48-53. [PMID: 16028274 DOI: 10.1002/dvdy.20502] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Somitocoele cells previously have been shown to form the proximal part of the ribs, the intervertebral discs, and the intervertebral joints (synovial joints). To determine whether the somitocoele cells are necessary for the development of axial skeleton joints, we microsurgically ablated the somitocoele cells in epithelial somites of 2-day-old chick embryos. The operated embryos were analyzed after whole-mount skeletal preparations and in sections. Removal of the somitocoele cells led to two major outcomes: (1) Intervertebral joints failed to develop and resulted in the fusion of the superior articular process and the inferior articular process; (2) Adjacent vertebral bodies fused and lacked the intervertebral disc. These results demonstrate that somitocoele cells specifically give rise to intervertebral joints and discs. Furthermore, these results suggest that neighboring sclerotome cells cannot adapt to form vertebral joints in the absence of the somitocoele compartment. Thus, we provide for the first time experimental evidence for the existence of a joint forming compartment in the somites, which we term the "arthrotome."
Collapse
Affiliation(s)
- Venugopal Rao Mittapalli
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Bonnin MA, Laclef C, Blaise R, Eloy-Trinquet S, Relaix F, Maire P, Duprez D. Six1 is not involved in limb tendon development, but is expressed in limb connective tissue under Shh regulation. Mech Dev 2004; 122:573-85. [PMID: 15804569 DOI: 10.1016/j.mod.2004.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/05/2004] [Accepted: 11/08/2004] [Indexed: 11/17/2022]
Abstract
Mice deficient for the homeobox gene Six1 display defects in limb muscles consistent with the Six1 expression in myogenic cells. In addition to its myogenic expression domain, Six1 has been described as being located in digit tendons and as being associated with connective tissue patterning in mouse limbs. With the aim of determining a possible involvement of Six1 in tendon development, we have carefully characterised the non-myogenic expression domain of the Six1 gene in mouse and chick limbs. In contrast to previous reports, we found that this non-myogenic domain is distinct from tendon primordia and from tendons defined by scleraxis expression. The non-myogenic domain of Six1 expression establishes normally in the absence of muscle, in Pax3-/- mutant limbs. Moreover, the expression of scleraxis is not affected in early Six1-/- mutant limbs. We conclude that the expression of the Six1 gene is not related to tendons and that Six1, at least on its own, is not involved in limb tendon formation in vertebrates. Finally, we found that the posterior domain of Six1 in connective tissue is adjacent to that of the secreted factor Sonic hedgehog and that Sonic hedgehog is necessary and sufficient for Six1 expression in posterior limb regions.
Collapse
Affiliation(s)
- Marie-Ange Bonnin
- Biologie du Développement, CNRS UMR 7622, Université P. et M. Curie, 9 Quai Saint-Bernard, Bât. C, 6(e) E, Case 24, Paris Cedex 05 75252, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Edom-Vovard F, Duprez D. Signals regulating tendon formation during chick embryonic development. Dev Dyn 2004; 229:449-57. [PMID: 14991700 DOI: 10.1002/dvdy.10481] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tendons are collagen-rich structures that link muscle to cartilage. By using quail-chick chimeras, it has been shown that tendon and cartilage cells originate from the same mesodermic compartment, which is distinct from that giving rise to muscle cells. Axial tendons originate from the sclerotomal compartment, and limb tendons originate from the lateral plate, whereas axial and limb muscles derive from dermomyotomes. Despite these different embryologic origins, muscle and tendon morphogenesis occurs in close spatial and temporal association. Facilitated by the distinct embryologic origin of myogenic and tendon cells, surgical studies in the avian embryo have highlighted interactions between tendons and muscles, during embryonic development. However, these interactions seem to differ between axial and limb levels. The molecular mechanisms underlying muscle and tendon interactions have been shown recently to involve different members of the fibroblast growth factor family. This review covers the available data on the early steps of tendon formation in the limb and along the primary axis. The relationship with muscle morphogenesis will be highlighted.
Collapse
|
46
|
Schulze-Tanzil G, Mobasheri A, Clegg PD, Sendzik J, John T, Shakibaei M. Cultivation of human tenocytes in high-density culture. Histochem Cell Biol 2004; 122:219-28. [PMID: 15338228 DOI: 10.1007/s00418-004-0694-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 12/16/2022]
Abstract
Limited supplies of tendon tissue for use in reconstructive surgery require development of phenotypically stable tenocytes cultivated in vitro. Tenocytes in monolayer culture display an unstable phenotype and tend to dedifferentiate, but those in three-dimensional culture may remain phenotypically and functionally differentiated. In this study we established a three-dimensional high-density culture system for cultivation of human tenocytes for tissue engineering. Human tenocytes were expanded in monolayer culture before transfer to high-density culture. The synthesis of major extracellular matrix proteins and the ultrastructural morphology of the three-dimensional cultures were investigated for up to 2 weeks by electron microscopy, immunohistochemistry, immunoblotting and quantitative, real-time PCR. Differentiated tenocytes were able to survive over a period of 14 days in high-density culture. During the culture period tenocytes exhibited a typical tenocyte morphology embedded in an extensive extracellular matrix containing cross-striated collagen type I fibrils and proteoglycans. Moreover, expression of the tendon-specific marker scleraxis underlined the tenocytic identity of these cells. Taken together, we conclude that the three-dimensional high-density cultures may be useful as a new approach for obtaining differentiated tenocytes for autologous tenocyte transplantation to support tendon and ligament healing and to investigate the effect of tendon-affecting agents on tendon in vitro.
Collapse
Affiliation(s)
- G Schulze-Tanzil
- Campus Benjamin Franklin, Institute of Anatomy, Department of Cell and Neurobiology, Charité Medicine University Berlin, Königin-Luise-Strasse 15, 14195, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Popova SN, Rodriguez-Sánchez B, Lidén A, Betsholtz C, Van Den Bos T, Gullberg D. The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Dev Biol 2004; 270:427-42. [PMID: 15183724 DOI: 10.1016/j.ydbio.2004.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/22/2022]
Abstract
alpha11beta1 constitutes the most recent addition to the integrin family and has been shown to display a binding preference for interstitial collagens found in mesenchymal tissues. We have previously observed that when alpha11beta1 integrin is expressed in cells lacking endogenous collagen receptors, it can mediate PDGF-BB-dependent chemotaxis on collagen I in vitro. To determine in which cells PDGF and alpha11beta1 might cooperate in regulating cell migration in vivo, we studied in detail the expression and distribution of alpha11 integrin chain in mouse embryos and tested the ability of PDGF isoforms to stimulate the alpha11beta1-mediated cell migration of embryonic fibroblasts. Full-length mouse alpha11 cDNA was sequenced and antibodies were raised to deduced alpha11 integrin amino acid sequence. In the embryonic mouse head, alpha11 protein and RNA were localized to ectomesenchymally derived cells. In the periodontal ligament, alpha11beta1 was expressed as the only detectable collagen-binding integrin, and alpha11beta1 is thus a major receptor for cell migration and matrix organization in this cell population. In the remainder of the embryo, the alpha11 chain was expressed in a subset of mesenchymal cells including tendon/ligament fibroblasts, perichondrial cells, and intestinal villi fibroblasts. Most of the alpha11-expressing cells also expressed the alpha2 integrin chain, but no detectable overlap was found with the alpha1 integrin chain. In cells expressing multiple collagen receptors, these might function to promote a more stable cell adhesion and render the cells more resistant to chemotactic stimuli. Wild-type embryonic fibroblasts activated mainly the PDGF beta receptor in response to PDGF-BB and migrated on collagens I, II, III, IV, V, and XI in response to PDGF-BB in vitro, whereas mutant fibroblasts that lacked alpha11beta1 in their collagen receptor repertoire showed a stronger chemotactic response on collagens when stimulated with PDGF-BB. In the cellular context of embryonic fibroblasts, alpha11beta1 is thus anti-migratory. We speculate that the PDGF BB-dependent cell migration of mesenchymal cells is tightly regulated by the collagen receptor repertoire, and disturbances of this repertoire might lead to unregulated cell migration that could affect normal embryonic development and tissue structure.
Collapse
Affiliation(s)
- Svetlana N Popova
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Perez AV, Perrine M, Brainard N, Vogel KG. Scleraxis (Scx) directs lacZ expression in tendon of transgenic mice. Mech Dev 2004; 120:1153-63. [PMID: 14568104 DOI: 10.1016/j.mod.2003.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Scleraxis is a transcription factor expressed during early periods of mouse tendon morphogenesis. We have determined that tendon is first clearly present in mouse limb at embryonic day 14.5 (E14.5) and, by in situ hybridization, that scleraxis is expressed in the mouse tendons at E14.5. We have also investigated the regulatory elements that direct scleraxis gene expression to the limb tendons. DNA constructs were engineered such that the lacZ reporter gene was expressed under the control of portions of scleraxis regulatory regions. Transgenic mice carrying these constructs were made and expression of the construct was monitored by staining for beta-galactosidase activity. A construct containing 7 Kbp of 5' flanking sequence, the intron, both exons and 1.8 Kbp of 3' flanking sequence was expressed in a pattern that closely resembled the endogenous scleraxis gene. Mouse embryos carrying this construct expressed lacZ in their limb flexor and extensor tendons at E14.5. The lacZ stain in tendon was readily distinguished from -muscle using an anti-myosin heavy chain antibody to visualize muscle. Deletion of the intron, exons and 3' flanking region did not affect the pattern of tendon expression in the limbs of E14.5 transgenic mice. Additional constructs which deleted 5' flanking sequences up to -355 bp from the published cDNA sequence, showed limb tendon expression that was similar to the endogenous gene. When an additional 160 bp were deleted so that only approximately 200 bp of 5' flanking region was directing lacZ expression, no beta-galactosidase activity was observed in the tendons.
Collapse
Affiliation(s)
- Ana V Perez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
49
|
Tsai AD, Yeh LCC, Lee JC. Effects of osteogenic protein-1 (OP-1, BMP-7) on gene expression in cultured medial collateral ligament cells. J Cell Biochem 2004; 90:777-91. [PMID: 14587033 DOI: 10.1002/jcb.10666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteogenic protein-1 (OP-1, also called BMP-7), a member of the BMP family and the TGF-beta superfamily, induces formation of new bone and cartilage, but also regulates a wide array of processes. In the present study, the expression of several characteristic biochemical markers of ligaments, such as Six1, Scleraxis, aggrecan, and type I collagen in primary cultures of adult rat medial collateral ligament (MCL) cells was determined. The effects of OP-1 on cell proliferation and on gene expression were subsequently examined. OP-1 stimulated cell proliferation, alkaline phosphatase (AP) activity, and the steady-state mRNA levels of the transcription factor Runx2/Cbfa1 in a dose- and time-dependent manner. The mRNA levels of type I collagen only increased slightly, but the activity of the cloned collagen promoter increased by 2-fold in transiently transfected MCL cells. OP-1 also stimulated aggrecan mRNA expression. The mRNA levels of Six1 and Scleraxis were not detectably altered by OP-1. In control cultures, the steady-state mRNA levels of ActR-I, BMPR-IA, BMPR-IB, and BMPR-II increased as a function of time in culture. The mRNA levels of BMP-1 and -4 increased significantly after 12 days, but those of BMP-2 and -6 did not change. The GDF-1, -3, -5, -6, and -8 mRNA levels in the control cultures also increased as a function of time. OP-1 treatment stimulated mRNA expression of BMPR-IA and BMPR-II, but had little effect on ActR-I and BMPR-IB mRNA expression. OP-1 lowered the BMP-1, -2, and -6 mRNA levels without changing the BMP-4 mRNA level. OP-1 treatment also reduced the mRNA levels of GDFs detected. In summary, the present study demonstrated that OP-1 stimulated cell proliferation and mRNA expression of several biochemical markers in this ligament cell culture model and established the spatial and temporal appearance of several members of the TGF-beta superfamily.
Collapse
Affiliation(s)
- Alicia D Tsai
- Department of Biochemistry (MC7760), The University of Texas Health Science Center, San Antonio, Texas, 78229-3900, USA
| | | | | |
Collapse
|
50
|
Wilson-Rawls J, Rhee JM, Rawls A. Paraxis is a basic helix-loop-helix protein that positively regulates transcription through binding to specific E-box elements. J Biol Chem 2004; 279:37685-92. [PMID: 15226298 DOI: 10.1074/jbc.m401319200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Twist subfamily of basic helix-loop-helix transcription factors are important for the specification of mesodermal derivatives during vertebrate embryogenesis. This subfamily includes both transcriptional activators such as scleraxis, Hand2, and Dermo-1 and repressors such as Twist and Hand1. Paraxis is a member of this subfamily, and it has been shown to regulate morphogenetic events during somitogenesis, including the transition of cells from mesenchyme to epithelium and maintaining anterior/posterior polarity. Mice deficient in paraxis exhibit a caudal truncation of the axial skeleton and fusion of the vertebrae. Considering the developmental importance of paraxis, it is important for future studies to understand the molecular basis of its activity. Here we demonstrate that paraxis can function as a transcriptional activator when it forms a heterodimer with E12. Paraxis is able to bind to a set of E-boxes that overlaps with the closely related scleraxis. Paraxis expression precedes that of scleraxis in the region of the somite fated to form the axial skeleton and tendons and is able to direct transcription from an E-box found in the scleraxis promoter. Further, in the absence of paraxis, Pax-1 is no longer expressed in the somites and presomitic mesoderm. These results suggest that paraxis may regulate early events during chondrogenesis by positively directing transcription of sclerotome-specific genes.
Collapse
|