1
|
Kato T, Nakatsuka R, Zhang R, Uemura Y, Yamashita H, Matsuoka Y, Shirouzu Y, Fujioka T, Hattori F, Ogata H, Sakashita A, Honda H, Hitomi H. The role of glial cells missing 2 in induced pluripotent stem cell parathyroid differentiation. Tissue Cell 2025; 92:102634. [PMID: 39615229 DOI: 10.1016/j.tice.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Glial cells missing 2 (GCM2) has been identified as an essential factor for parathyroid differentiation, and GCM2 silencing in parathyroid cells decreases calcium-sensing receptor (CaSR) expression. However, the role of GCM2 in parathyroid differentiation from induced pluripotent stem cells (iPSCs) is unclear. Here, we investigated the role of GCM2 in parathyroid differentiation from iPSCs using the Tet-On 3 G system. We confirmed that iPS cells transfected with GCM2/TRE3G and pCMV-Tet3G vectors express GCM2 in a doxycycline-dependent manner. Though parathyroid glands derive from the endoderm and differentiate via the third pharyngeal arch (PPE), overexpression of GCM2 in iPSCs significantly abolished the suppression of OCT4 and SOX2, suggesting inhibition of endodermal differentiation. GCM2 overexpression at the stage of differentiation into the third PPE also increased the expression levels of CaSR and parathyroid hormone, and increased the number of CaSR+/EpCAM+ cells. These results suggest that GCM2 regulates parathyroid differentiation after endoderm differentiation rather than at an earlier stage.
Collapse
Affiliation(s)
- Tadashi Kato
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan; Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Ryusuke Nakatsuka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan; Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Osaka, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hiromi Yamashita
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Yasumasa Shirouzu
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Tatsuya Fujioka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Fumiyuki Hattori
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Akiko Sakashita
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirofumi Hitomi
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
2
|
Larionova D, Huysseune A. Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (Oryzias latipes) supports the importance of pouch-cleft contacts in pharyngeal tooth initiation. Dev Dyn 2024; 253:1094-1105. [PMID: 38940489 DOI: 10.1002/dvdy.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Previous studies have claimed that pharyngeal teeth in medaka (Oryzias latipes) are induced independent of retinoic acid (RA) signaling, unlike in zebrafish (Danio rerio). In zebrafish, pharyngeal tooth formation depends on a proper physical contact between the embryonic endodermal pouch anterior to the site of tooth formation, and the adjacent ectodermal cleft, an RA-dependent process. Here, we test the hypothesis that a proper pouch-cleft contact is required for pharyngeal tooth formation in embryonic medaka, as it is in zebrafish. We used 4-[diethylamino]benzaldehyde (DEAB) to pharmacologically inhibit RA production, and thus pouch-cleft contacts, in experiments strictly controlled in time, and analyzed these using high-resolution imaging. RESULTS Pharyngeal teeth in medaka were present only when the corresponding anterior pouch had reached the ectoderm (i.e., a physical pouch-cleft contact established), similar to the situation in zebrafish. Oral teeth were present even when the treatment started approximately 4 days before normal oral tooth appearance. CONCLUSIONS RA dependency for pharyngeal tooth formation is not different between zebrafish and medaka. We propose that the differential response to DEAB of oral versus pharyngeal teeth in medaka could be ascribed to the distinct germ layer origin of the epithelia involved in tooth formation in these two regions.
Collapse
Affiliation(s)
- D Larionova
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - A Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Dumas CE, Rousset C, De Bono C, Cortés C, Jullian E, Lescroart F, Zaffran S, Adachi N, Kelly RG. Retinoic acid signalling regulates branchiomeric neck muscle development at the head/trunk interface. Development 2024; 151:dev202905. [PMID: 39082789 DOI: 10.1242/dev.202905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024]
Abstract
Skeletal muscles of the head and trunk originate in distinct lineages with divergent regulatory programmes converging on activation of myogenic determination factors. Branchiomeric head and neck muscles share a common origin with cardiac progenitor cells in cardiopharyngeal mesoderm (CPM). The retinoic acid (RA) signalling pathway is required during a defined early time window for normal deployment of cells from posterior CPM to the heart. Here, we show that blocking RA signalling in the early mouse embryo also results in selective loss of the trapezius neck muscle, without affecting other skeletal muscles. RA signalling is required for robust expression of myogenic determination factors in posterior CPM and subsequent expansion of the trapezius primordium. Lineage-specific activation of a dominant-negative RA receptor reveals that trapezius development is not regulated by direct RA signalling to myogenic progenitor cells in CPM, or through neural crest cells, but indirectly through the somitic lineage, closely apposed with posterior CPM in the early embryo. These findings suggest that trapezius development is dependent on precise spatiotemporal interactions between cranial and somitic mesoderm at the head/trunk interface.
Collapse
Affiliation(s)
- Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Célia Rousset
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Claudio Cortés
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Estelle Jullian
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Stéphane Zaffran
- Aix-Marseille Université, INSERM, MMG U1251, 13005 Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| |
Collapse
|
4
|
Cipriano A, Colantoni A, Calicchio A, Fiorentino J, Gomes D, Moqri M, Parker A, Rasouli S, Caldwell M, Briganti F, Roncarolo MG, Baldini A, Weinacht KG, Tartaglia GG, Sebastiano V. Transcriptional and epigenetic characterization of a new in vitro platform to model the formation of human pharyngeal endoderm. Genome Biol 2024; 25:211. [PMID: 39118163 PMCID: PMC11312149 DOI: 10.1186/s13059-024-03354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. RESULTS Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. CONCLUSIONS By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Alessandro Calicchio
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan Fiorentino
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Danielle Gomes
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Mahdi Moqri
- Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Matthew Caldwell
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Francesca Briganti
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Maria Grazia Roncarolo
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, USA
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotech., University Federico II, 80131, Naples, Italy
| | - Katja G Weinacht
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy.
- Center for Human Technology, Fondazione Istituto Italiano Di Tecnologia (IIT), 16152, Genoa, Italy.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Nakata T, Li C, Mayassi T, Lin H, Ghosh K, Segerstolpe Å, Diamond EL, Herbst P, Biancalani T, Gaddam S, Parkar S, Lu Z, Jaiswal A, Li B, Creasey EA, Lefkovith A, Daly MJ, Graham DB, Xavier RJ. Genetic vulnerability to Crohn's disease reveals a spatially resolved epithelial restitution program. Sci Transl Med 2023; 15:eadg5252. [PMID: 37878672 PMCID: PMC10798370 DOI: 10.1126/scitranslmed.adg5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Effective tissue repair requires coordinated intercellular communication to sense damage, remodel the tissue, and restore function. Here, we dissected the healing response in the intestinal mucosa by mapping intercellular communication at single-cell resolution and integrating with spatial transcriptomics. We demonstrated that a risk variant for Crohn's disease, hepatocyte growth factor activator (HGFAC) Arg509His (R509H), disrupted a damage-sensing pathway connecting the coagulation cascade to growth factors that drive the differentiation of wound-associated epithelial (WAE) cells and production of a localized retinoic acid (RA) gradient to promote fibroblast-mediated tissue remodeling. Specifically, we showed that HGFAC R509H was activated by thrombin protease activity but exhibited impaired proteolytic activation of the growth factor macrophage-stimulating protein (MSP). In Hgfac R509H mice, reduced MSP activation in response to wounding of the colon resulted in impaired WAE cell induction and delayed healing. Through integration of single-cell transcriptomics and spatial transcriptomics, we demonstrated that WAE cells generated RA in a spatially restricted region of the wound site and that mucosal fibroblasts responded to this signal by producing extracellular matrix and growth factors. We further dissected this WAE cell-fibroblast signaling circuit in vitro using a genetically tractable organoid coculture model. Collectively, these studies exploited a genetic perturbation associated with human disease to disrupt a fundamental biological process and then reconstructed a spatially resolved mechanistic model of tissue healing.
Collapse
Affiliation(s)
- Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chenhao Li
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toufic Mayassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helen Lin
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Koushik Ghosh
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emma L. Diamond
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | - Ziqing Lu
- Genentech, South San Francisco, CA 94080, USA
| | - Alok Jaiswal
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bihua Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J. Daly
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Kearns NA, Lobo M, Genga RMJ, Abramowitz RG, Parsi KM, Min J, Kernfeld EM, Huey JD, Kady J, Hennessy E, Brehm MA, Ziller MJ, Maehr R. Generation and molecular characterization of human pluripotent stem cell-derived pharyngeal foregut endoderm. Dev Cell 2023; 58:1801-1818.e15. [PMID: 37751684 PMCID: PMC10637111 DOI: 10.1016/j.devcel.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Approaches to study human pharyngeal foregut endoderm-a developmental intermediate that is linked to various human syndromes involving pharynx development and organogenesis of tissues such as thymus, parathyroid, and thyroid-have been hampered by scarcity of tissue access and cellular models. We present an efficient stepwise differentiation method to generate human pharyngeal foregut endoderm from pluripotent stem cells. We determine dose and temporal requirements of signaling pathway engagement for optimized differentiation and characterize the differentiation products on cellular and integrated molecular level. We present a computational classification tool, "CellMatch," and transcriptomic classification of differentiation products on an integrated mouse scRNA-seq developmental roadmap confirms cellular maturation. Integrated transcriptomic and chromatin analyses infer differentiation stage-specific gene regulatory networks. Our work provides the method and integrated multiomic resource for the investigation of disease-relevant loci and gene regulatory networks and their role in developmental defects affecting the pharyngeal endoderm and its derivatives.
Collapse
Affiliation(s)
- Nicola A Kearns
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Macrina Lobo
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan M J Genga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan G Abramowitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Krishna M Parsi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiang Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Eric M Kernfeld
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jack D Huey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jamie Kady
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erica Hennessy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, Münster, Germany
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Teletin M, Mark M, Wendling O, Vernet N, Féret B, Klopfenstein M, Herault Y, Ghyselinck NB. Timeline of Developmental Defects Generated upon Genetic Inhibition of the Retinoic Acid Receptor Signaling Pathway. Biomedicines 2023; 11:biomedicines11010198. [PMID: 36672706 PMCID: PMC9856201 DOI: 10.3390/biomedicines11010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
It has been established for almost 30 years that the retinoic acid receptor (RAR) signalling pathway plays essential roles in the morphogenesis of a large variety of organs and systems. Here, we used a temporally controlled genetic ablation procedure to precisely determine the time windows requiring RAR functions. Our results indicate that from E8.5 to E9.5, RAR functions are critical for the axial rotation of the embryo, the appearance of the sinus venosus, the modelling of blood vessels, and the formation of forelimb buds, lung buds, dorsal pancreatic bud, lens, and otocyst. They also reveal that E9.5 to E10.5 spans a critical developmental period during which the RARs are required for trachea formation, lung branching morphogenesis, patterning of great arteries derived from aortic arches, closure of the optic fissure, and growth of inner ear structures and of facial processes. Comparing the phenotypes of mutants lacking the 3 RARs with that of mutants deprived of all-trans retinoic acid (ATRA) synthesising enzymes establishes that cardiac looping is the earliest known morphogenetic event requiring a functional ATRA-activated RAR signalling pathway.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), F-67000 Strasbourg, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), F-67000 Strasbourg, France
- Institut Clinique de la Souris (ICS), Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France
- Correspondence:
| | - Olivia Wendling
- Institut Clinique de la Souris (ICS), Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| | - Muriel Klopfenstein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| | - Yann Herault
- Institut Clinique de la Souris (ICS), Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Norbert B. Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| |
Collapse
|
8
|
Guertin TM, Palaria A, Mager J, Sandell LL, Trainor PA, Tremblay KD. Deciphering the role of retinoic acid in hepatic patterning and induction in the mouse. Dev Biol 2022; 491:31-42. [PMID: 36028102 PMCID: PMC11651638 DOI: 10.1016/j.ydbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
Retinoic acid (RA), a metabolite of vitamin A, is a small molecule and morphogen that is required for embryonic development. While normal RA signals are required for hepatic development in a variety of vertebrates, a role for RA during mammalian hepatic specification has yet to be defined. To examine the requirement for RA in murine liver induction, we performed whole embryo culture with the small molecule RA inhibitor, BMS493, to attenuate RA signaling immediately prior to hepatic induction and through liver bud formation. BMS493 treated embryos demonstrated a significant loss of hepatic specification that was confined to the prospective dorsal anterior liver bud. Examination of RA attenuated embryos demonstrates that while the liver bud displays normal expression of foregut endoderm markers and the hepato-pancreatobiliary domain marker, PROX1, the dorsal/anterior liver bud excludes the critical hepatic marker, HNF4α, indicating that RA signals are required for dorsal/anterior hepatic induction. These results were confirmed and extended by careful examination of Rdh10<sup>trex/trex</sup> embryos, which carry a genetic perturbation in RA synthesis. At E9.5 Rdh10<sup>trex/trex</sup> embryos display a similar yet more significant loss of the anterior/dorsal liver bud. Notably the anterior/dorsal liver bud loss correlates with the known dorsal-ventral gradient of the RA synthesis enzyme, Aldh1a2. In addition to altered hepatic specification, the mesoderm surrounding the liver bud is disorganized in RA abrogated embryos. Analysis of E10.5 Rdh10<sup>trex/trex</sup> embryos reveals small livers that appear to lack the dorsal/caudal lobes. Finally, addition of exogenous RA prior to hepatic induction results in a liver bud that has failed to thicken and is largely unspecified. Taken together our ex vivo and in vivo evidence demonstrate that the generation of normal RA gradients is required for hepatic patterning, specification, and growth.
Collapse
Affiliation(s)
- Taylor M Guertin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Amrita Palaria
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
9
|
Asrar H, Tucker AS. Endothelial cells during craniofacial development: Populating and patterning the head. Front Bioeng Biotechnol 2022; 10:962040. [PMID: 36105604 PMCID: PMC9465086 DOI: 10.3389/fbioe.2022.962040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Major organs and tissues require close association with the vasculature during development and for later function. Blood vessels are essential for efficient gas exchange and for providing metabolic sustenance to individual cells, with endothelial cells forming the basic unit of this complex vascular framework. Recent research has revealed novel roles for endothelial cells in mediating tissue morphogenesis and differentiation during development, providing an instructive role to shape the tissues as they form. This highlights the importance of providing a vasculature when constructing tissues and organs for tissue engineering. Studies in various organ systems have identified important signalling pathways crucial for regulating the cross talk between endothelial cells and their environment. This review will focus on the origin and migration of craniofacial endothelial cells and how these cells influence the development of craniofacial tissues. For this we will look at research on the interaction with the cranial neural crest, and individual organs such as the salivary glands, teeth, and jaw. Additionally, we will investigate the methods used to understand and manipulate endothelial networks during the development of craniofacial tissues, highlighting recent advances in this area.
Collapse
|
10
|
Provin N, Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front Immunol 2022; 13:930963. [PMID: 35844523 PMCID: PMC9277542 DOI: 10.3389/fimmu.2022.930963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The thymus is a primary lymphoid organ essential for the induction of central immune tolerance. Maturing T cells undergo several steps of expansion and selection mediated by thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in genes that regulate TEC development or their ability to select non auto-reactive thymocytes results in a defective immune balance, and consequently in a general autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence of curative treatments. The last decade has seen remarkable progress in both gene editing and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination of these two approaches has paved the way to the generation of genetically corrected thymic organoids and their use to control thymic genetic pathologies affecting self-tolerance. Here we review the recent advances in differentiation of iPSc into TECs and the ability of the latter to support a proper and efficient maturation of thymocytes into functional and non-autoreactive T cells. A special focus is given on thymus organogenesis and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on the generated TECs, and on perspectives for therapeutic strategies in APECED based on patient-derived iPSc corrected for AIRE gene mutations.
Collapse
|
11
|
Funato N. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J Dev Biol 2022; 10:jdb10020018. [PMID: 35645294 PMCID: PMC9149807 DOI: 10.3390/jdb10020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 22q11.2 deletion is one of the most common genetic microdeletions, affecting approximately 1 in 4000 live births in humans. A 1.5 to 2.5 Mb hemizygous deletion of chromosome 22q11.2 causes DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). DGS/VCFS are associated with prevalent cardiac malformations, thymic and parathyroid hypoplasia, and craniofacial defects. Patients with DGS/VCFS manifest craniofacial anomalies involving the cranium, cranial base, jaws, pharyngeal muscles, ear-nose-throat, palate, teeth, and cervical spine. Most craniofacial phenotypes of DGS/VCFS are caused by proximal 1.5 Mb microdeletions, resulting in a hemizygosity of coding genes, microRNAs, and long noncoding RNAs. TBX1, located on chromosome 22q11.21, encodes a T-box transcription factor and is a candidate gene for DGS/VCFS. TBX1 regulates the fate of progenitor cells in the cranial and pharyngeal apparatus during embryogenesis. Tbx1-null mice exhibit the most clinical features of DGS/VCFS, including craniofacial phenotypes. Despite the frequency of DGS/VCFS, there has been a limited review of the craniofacial phenotypes of DGC/VCFS. This review focuses on these phenotypes and summarizes the current understanding of the genetic factors that impact DGS/VCFS-related phenotypes. We also review DGS/VCFS mouse models that have been designed to better understand the pathogenic processes of DGS/VCFS.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Advanced Therapeutic Sciences, Medical and Dental Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
12
|
Abu-Bonsrah KD, Newgreen DF, Dottori M. Development of Functional Thyroid C Cell-like Cells from Human Pluripotent Cells in 2D and in 3D Scaffolds. Cells 2021; 10:cells10112897. [PMID: 34831120 PMCID: PMC8616516 DOI: 10.3390/cells10112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Medullary thyroid carcinoma contributes to about 3–4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening.
Collapse
Affiliation(s)
- Kwaku Dad Abu-Bonsrah
- The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| | - Donald F. Newgreen
- The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| | - Mirella Dottori
- Department of Biomedical Engineering, Department of Anatomy and Neurosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Illawarra Health and Medical Research Institute, School of Medicine, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| |
Collapse
|
13
|
Mark M, Teletin M, Wendling O, Vonesch JL, Féret B, Hérault Y, Ghyselinck NB. Pathogenesis of Anorectal Malformations in Retinoic Acid Receptor Knockout Mice Studied by HREM. Biomedicines 2021; 9:742. [PMID: 34203310 PMCID: PMC8301324 DOI: 10.3390/biomedicines9070742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Anorectal malformations (ARMs) are relatively common congenital abnormalities, but their pathogenesis is poorly understood. Previous gene knockout studies indicated that the signalling pathway mediated by the retinoic acid receptors (RAR) is instrumental to the formation of the anorectal canal and of various urogenital structures. Here, we show that simultaneous ablation of the three RARs in the mouse embryo results in a spectrum of malformations of the pelvic organs in which anorectal and urinary bladder ageneses are consistently associated. We found that these ageneses could be accounted for by defects in the processes of growth and migration of the cloaca, the embryonic structure from which the anorectal canal and urinary bladder originate. We further show that these defects are preceded by a failure of the lateral shift of the umbilical arteries and propose vascular abnormalities as a possible cause of ARM. Through the comparisons of these phenotypes with those of other mutant mice and of human patients, we would like to suggest that morphological data may provide a solid base to test molecular as well as clinical hypotheses.
Collapse
Affiliation(s)
- Manuel Mark
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), 67300 Schiltigheim, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marius Teletin
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), 67300 Schiltigheim, France
| | - Olivia Wendling
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Jean-Luc Vonesch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
| | - Betty Féret
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
| | - Yann Hérault
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Norbert B. Ghyselinck
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
| |
Collapse
|
14
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
15
|
Goliusova DV, Klementieva NV, Panova AV, Mokrysheva NG, Kiselev SL. The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542103008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Mao A, Zhang M, Li L, Liu J, Ning G, Cao Y, Wang Q. Pharyngeal pouches provide a niche microenvironment for arch artery progenitor specification. Development 2021; 148:dev.192658. [PMID: 33334861 PMCID: PMC7847271 DOI: 10.1242/dev.192658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022]
Abstract
The paired pharyngeal arch arteries (PAAs) are transient blood vessels connecting the heart with the dorsal aorta during embryogenesis. Although PAA malformations often occur along with pharyngeal pouch defects, the functional interaction between these adjacent tissues remains largely unclear. Here, we report that pharyngeal pouches are essential for PAA progenitor specification in zebrafish embryos. We reveal that the segmentation of pharyngeal pouches coincides spatiotemporally with the emergence of PAA progenitor clusters. These pouches physically associate with pharyngeal mesoderm in discrete regions and provide a niche microenvironment for PAA progenitor commitment by expressing BMP proteins. Specifically, pouch-derived BMP2a and BMP5 are the primary niche cues responsible for activating the BMP/Smad pathway in pharyngeal mesoderm, thereby promoting progenitor specification. In addition, BMP2a and BMP5 play an inductive function in the expression of the cloche gene npas4l in PAA progenitors. cloche mutants exhibit a striking failure to specify PAA progenitors and display ectopic expression of head muscle markers in the pharyngeal mesoderm. Therefore, our results support a crucial role for pharyngeal pouches in establishing a progenitor niche for PAA morphogenesis via BMP2a/5 expression.
Collapse
Affiliation(s)
- Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Linwei Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Okada K, Takada S. The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development 2020; 147:dev194738. [PMID: 33158927 DOI: 10.1242/dev.194738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
Pharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.
Collapse
Affiliation(s)
- Kazunori Okada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
- Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
18
|
Simsek MF, Özbudak EM. Spatial Fold Change of FGF Signaling Encodes Positional Information for Segmental Determination in Zebrafish. Cell Rep 2019; 24:66-78.e8. [PMID: 29972792 PMCID: PMC6063364 DOI: 10.1016/j.celrep.2018.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Signal gradients encode instructive information for numerous decision-making processes during embryonic development. A striking example of precise, scalable tissue-level patterning is the segmentation of somites—the precursors of the vertebral column—during which the fibroblast growth factor (FGF), Wnt, and retinoic acid (RA) pathways establish spatial gradients. Despite decades of studies proposing roles for all three pathways, the dynamic feature of these gradients that encodes instructive information determining segment sizes remained elusive. We developed a non-elongating tail explant system, integrated quantitative measurements with computational modeling, and tested alternative models to show that positional information is encoded solely by spatial fold change (SFC) in FGF signal output. Neighboring cells measure SFC to accurately position the determination front and thus determine segment size. The SFC model successfully recapitulates results of spatiotemporal perturbation experiments on both explants and intact embryos, and it shows that Wnt signaling acts permissively upstream of FGF signaling and that RA gradient is dispensable. Simsek et al. use an elongation-arrested 3D explant system, integrated with quantitative measurements and computational modeling, to show that positional information for segmentation is encoded solely by spatial fold change (SFC) in FGF signal output. Neighboring cells measure SFC to accurately determine somite segment sizes. Wnt signaling acts permissively upstream of FGF signaling.
Collapse
Affiliation(s)
- M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
19
|
Prenatal and childhood exposures are associated with thymulin concentrations in young adolescent children in rural Nepal. J Dev Orig Health Dis 2019; 11:127-135. [PMID: 31475652 DOI: 10.1017/s2040174419000485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus undergoes a critical period of growth and development early in gestation and, by mid-gestation, immature thymocytes are subject to positive and negative selection. Exposure to undernutrition during these periods may permanently affect phenotype. We measured thymulin concentrations, as a proxy for thymic size and function, in children (n = 290; aged 9-13 years) born to participants in a cluster-randomized trial of maternal vitamin A or β-carotene supplementation in rural Nepal (1994-1997). The geometric mean (95% confidence interval) thymulin concentration was 1.37 ng/ml (1.27, 1.47). A multivariate model of early-life exposures revealed a positive association with gestational age at delivery (β = 0.02; P = 0.05) and higher concentrations among children born to β-carotene-supplemented mothers (β = 0.19; P < 0.05). At ∼9-12 years of age, thymulin was positively associated with all anthropometric measures, with height retained in our multivariate model (β = 0.02; P < 0.001). There was significant seasonal variation: concentrations tended to be lower pre-monsoon (β = -0.13; P = 0.15), during the monsoon (β = -0.22; P = 0.04), and pre-harvest (β = -0.34; P = 0.01), relative to the post-harvest season. All early-life associations, except supplementation, were mediated in part by nutritional status at follow-up. Our findings underscore the known sensitivity of the thymus to nutrition, including potentially lasting effects of early nutritional exposures. The relevance of these findings to later disease risk remains to be explored, particularly given the role of thymulin in the neuroendocrine regulation of inflammation.
Collapse
|
20
|
Hasten E, Morrow BE. Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genet 2019; 15:e1008301. [PMID: 31412026 PMCID: PMC6709926 DOI: 10.1371/journal.pgen.1008301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/26/2019] [Accepted: 07/10/2019] [Indexed: 11/18/2022] Open
Abstract
We investigated whether Tbx1, the gene for 22q11.2 deletion syndrome (22q11.2DS) and Foxi3, both required for segmentation of the pharyngeal apparatus (PA) to individual arches, genetically interact. We found that all Tbx1+/-;Foxi3+/- double heterozygous mouse embryos had thymus and parathyroid gland defects, similar to those in 22q11.2DS patients. We then examined Tbx1 and Foxi3 heterozygous, null as well as conditional Tbx1Cre and Sox172A-iCre/+ null mutant embryos. While Tbx1Cre/+;Foxi3f/f embryos had absent thymus and parathyroid glands, Foxi3-/- and Sox172A-iCre/+;Foxi3f/f endoderm conditional mutant embryos had in addition, interrupted aortic arch type B and retroesophageal origin of the right subclavian artery, which are all features of 22q11.2DS. Tbx1Cre/+;Foxi3f/f embryos had failed invagination of the third pharyngeal pouch with greatly reduced Gcm2 and Foxn1 expression, thereby explaining the absence of thymus and parathyroid glands. Immunofluorescence on tissue sections with E-cadherin and ZO-1 antibodies in wildtype mouse embryos at E8.5-E10.5, revealed that multilayers of epithelial cells form where cells are invaginating as a normal process. We noted that excessive multilayers formed in Foxi3-/-, Sox172A-iCre/+;Foxi3f/f as well as Tbx1 null mutant embryos where invagination should have occurred. Several genes expressed in the PA epithelia were downregulated in both Tbx1 and Foxi3 null mutant embryos including Notch pathway genes Jag1, Hes1, and Hey1, suggesting that they may, along with other genes, act downstream to explain the observed genetic interaction. We found Alcam and Fibronectin extracellular matrix proteins were reduced in expression in Foxi3 null but not Tbx1 null embryos, suggesting that some, but not all of the downstream mechanisms are shared.
Collapse
Affiliation(s)
- Erica Hasten
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
21
|
Friedl RM, Raja S, Metzler MA, Patel ND, Brittian KR, Jones SP, Sandell LL. RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. Dis Model Mech 2019; 12:12/7/dmm039073. [PMID: 31300413 PMCID: PMC6679383 DOI: 10.1242/dmm.039073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero. Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development. Summary: Fetal mouth immobility and defects in pharyngeal patterning underlie cleft palate in retinoid-deficient Rdh10 mutant mouse embryos.
Collapse
Affiliation(s)
- Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Niti D Patel
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
22
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Nakajima Y. Retinoic acid signaling in heart development. Genesis 2019; 57:e23300. [PMID: 31021052 DOI: 10.1002/dvg.23300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four-chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart-forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium-secreted insulin-like growth factor, the expression of which is regulated by hepatic mesoderm-derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium-derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
24
|
De Bono C, Thellier C, Bertrand N, Sturny R, Jullian E, Cortes C, Stefanovic S, Zaffran S, Théveniau-Ruissy M, Kelly RG. T-box genes and retinoic acid signaling regulate the segregation of arterial and venous pole progenitor cells in the murine second heart field. Hum Mol Genet 2019; 27:3747-3760. [PMID: 30016433 DOI: 10.1093/hmg/ddy266] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.
Collapse
Affiliation(s)
| | | | | | - Rachel Sturny
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | - Claudio Cortes
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | | | | | - Robert G Kelly
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| |
Collapse
|
25
|
Lindsey SE, Butcher JT, Vignon-Clementel IE. Cohort-based multiscale analysis of hemodynamic-driven growth and remodeling of the embryonic pharyngeal arch arteries. Development 2018; 145:145/20/dev162578. [PMID: 30333235 DOI: 10.1242/dev.162578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/31/2018] [Indexed: 01/16/2023]
Abstract
Growth and remodeling of the primitive pharyngeal arch artery (PAA) network into the extracardiac great vessels is poorly understood but a major source of clinically serious malformations. Undisrupted blood flow is required for normal PAA development, yet specific relationships between hemodynamics and remodeling remain largely unknown. Meeting this challenge is hindered by the common reductionist analysis of morphology to single idealized models, where in fact structural morphology varies substantially. Quantitative technical tools that allow tracking of morphological and hemodynamic changes in a population-based setting are essential to advancing our understanding of morphogenesis. Here, we have developed a methodological pipeline from high-resolution nano-computed tomography imaging and live-imaging flow measurements to multiscale pulsatile computational models. We combine experimental-based computational models of multiple PAAs to quantify hemodynamic forces in the rapidly morphing Hamburger Hamilton (HH) stage HH18, HH24 and HH26 embryos. We identify local morphological variation along the PAAs and their association with specific hemodynamic changes. Population-level mechano-morphogenic variability analysis is a powerful strategy for identifying stage-specific regions of well and poorly tolerated morphological and/or hemodynamic variation that may protect or initiate cardiovascular malformations.
Collapse
Affiliation(s)
- Stephanie E Lindsey
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY 14850, USA
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY 14850, USA
| | - Irene E Vignon-Clementel
- INRIA Centre de recherche de Paris, Paris 75012, France .,Laboratoire Jacques Louis Lions, Sorbonne Universités UPMC, Paris 75005, France
| |
Collapse
|
26
|
Pollock LM, Xie J, Bell BA, Anand-Apte B. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier. FASEB J 2018; 32:5674-5684. [PMID: 29874129 DOI: 10.1096/fj.201701469r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The predominant function of the blood-retinal barrier (BRB) is to maintain retinal homeostasis by regulating the influx and efflux between the blood and retina. Breakdown of the BRB occurs in a number of ocular diseases that result in vision loss. Understanding the molecular and cellular pathways involved in the development and maintenance of the BRB is critical to developing therapeutics for these conditions. To visualize the BRB in vivo, we used the transgenic Tg(l-fabp:DBP-EGFP:flk1:mCherry) zebrafish model that expresses vitamin D binding protein (a member of the albumin gene family) tagged to green fluorescent protein. Retinoic acid (RA) plays a number of important roles in vertebrate development and has been shown to play a protective role during inflammation-induced blood-brain barrier disruption. The role of RA in BRB development and maintenance remains unknown. To disrupt RA signaling, Tg(l-fabp:DBP-EGFP:flk1:mCherry) zebrafish were treated with N, N-diethylaminobenzaldehyde and 4-[(1 E)-2-[5,6-dihydro-5,5-dimethyl-8-(2-phenylethynyl)-2-naphthalenyl]ethenyl]benzoic acid, which are antagonists of retinal dehydrogenase and the RA receptor, respectively. Treatment with either compound resulted in BRB disruption and reduced visual acuity, whereas cotreatment with all- trans RA effectively rescued BRB integrity. Additionally, transgenic overexpression of Cyp26a1, which catalyzes RA degradation, resulted in breakdown of the BRB. Our results demonstrate that RA signaling is critical for maintenance of the BRB and could play a role in diseases such as diabetic macular edema.-Pollock, L. M., Xie, J., Bell, B. A., Anand-Apte, B. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier.
Collapse
Affiliation(s)
- Lana M Pollock
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Xie
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Kameda Y. Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells. Dev Dyn 2017; 246:719-739. [PMID: 28608500 DOI: 10.1002/dvdy.24534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current understanding of the nonmammalian ultimobranchial gland from morphological and molecular perspectives. Ultimobranchial anlage of all animal species develops from the last pharyngeal pouch. The genes involved in the development of pharyngeal pouches are well conserved across vertebrates. The ultimobranchial anlage of nonmammalian vertebrates and monotremes does not merge with the thyroid, remaining as an independent organ throughout adulthood. Although C cells of all animal species secrete calcitonin, the shape, cellular components and location of the ultimobranchial gland vary from species to species. Avian ultimobranchial gland is unique in several phylogenic aspects; the organ is located between the vagus and recurrent laryngeal nerves at the upper thorax and is densely innervated by branches emanating from them. In chick embryos, TuJ1-, HNK-1-, and PGP 9.5-immunoreactive cells that originate from the distal vagal (nodose) ganglion, colonize the ultimobranchial anlage and differentiate into C cells; neuronal cells give rise to C cells. Like C cells of mammals, the cells of fishes, amphibians, reptiles, and also a subset of C cells of birds, appear to be derived from the endodermal epithelium forming ultimobranchial anlage. Thus, the avian ultimobranchial C cells may have dual origins, neural progenitors and endodermal epithelium. Developmental Dynamics 246:719-739, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
28
|
Papillary carcinoma of the thyroid in patients with primary hyperparathyroidism: Is there a link? Med Hypotheses 2017; 103:100-104. [DOI: 10.1016/j.mehy.2017.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 11/23/2022]
|
29
|
Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y. Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 2017; 144:1629-1634. [DOI: 10.1242/dev.144436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 01/10/2023]
Abstract
The pharynx, possessing gill slits and the endostyle, is a characteristic of chordates that is a complex of multiple tissues well organized along the anterior-posterior (AP) axis. Although Hox genes show AP coordinated expression in the pharyngeal endoderm, tissue specific roles of these factors for establishing the regional identities within this tissue is largely unknown. Here, we show that Hox1 is essential for the establishment of AP axial identity of the endostyle, a major structure of the pharyngeal endoderm, in the ascidian Ciona intestinalis. We found that Hox1 knockout causes posterior to anterior transformation of the endostyle identity, and Hox1 represses Otx expression and anterior identity, and vice versa. Furthermore, alteration of the regional identity of the endostyle disrupts the formation of body wall muscles, suggesting that the endodermal axial identity is essential for the coordinated pharyngeal development. Our results reveal an essential role of Hox genes for establishment of the AP regional identity in the pharyngeal endoderm and crosstalk between endoderm and mesoderm for the development of chordate pharynx.
Collapse
Affiliation(s)
- Keita Yoshida
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Azusa Nakahata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
30
|
Goverse G, Labao-Almeida C, Ferreira M, Molenaar R, Wahlen S, Konijn T, Koning J, Veiga-Fernandes H, Mebius RE. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine. THE JOURNAL OF IMMUNOLOGY 2016; 196:5148-55. [PMID: 27183576 DOI: 10.4049/jimmunol.1501106] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines.
Collapse
Affiliation(s)
- Gera Goverse
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; and
| | - Carlos Labao-Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal
| | - Manuela Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal
| | - Rosalie Molenaar
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; and
| | - Sigrid Wahlen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; and
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; and
| | - Jasper Koning
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; and
| | | | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; and
| |
Collapse
|
31
|
Kameda Y. Cellular and molecular events on the development of mammalian thyroid C cells. Dev Dyn 2016; 245:323-41. [PMID: 26661795 DOI: 10.1002/dvdy.24377] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Thyroid C cells synthesize and secrete calcitonin, a serum calcium-lowering hormone. This review provides our current understanding of mammalian thyroid C cells from the molecular and morphological perspectives. Several transcription factors and signaling molecules involved in the development of C cells have been identified, and genes expressed in the pharyngeal pouch endoderm, neural crest-derived mesenchyme in the pharyngeal arches, and ultimobranchial body play critical roles for the development of C cells. It has been generally accepted, without much-supporting evidence, that mammalian C cells, as well as the avian cells, are derived from the neural crest. However, by fate mapping of neural crest cells in both Wnt1-Cre/R26R and Connexin(Cxn)43-lacZ transgenic mice, we showed that neural crest cells colonize neither the fourth pharyngeal pouch nor the ultimobranchial body. E-cadherin, an epithelial cell marker, is expressed in thyroid C cells and their precursors, the fourth pharyngeal pouch and ultimobranchial body. Furthermore, E-cadherin is colocalized with calcitonin in C cells. Recently, lineage tracing in Sox17-2A-iCre/R26R mice has clarified that the pharyngeal endoderm-derived cells give rise to C cells. Together, these findings indicate that mouse thyroid C cells are endodermal in origin.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
32
|
Okada K, Inohaya K, Mise T, Kudo A, Takada S, Wada H. Reiterative expression of pax1 directs pharyngeal pouch segmentation in medaka (Oryzias latipes). Development 2016; 143:1800-10. [DOI: 10.1242/dev.130039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/21/2016] [Indexed: 12/27/2022]
Abstract
A striking characteristic of vertebrate development is the pharyngeal arches, which are a series of bulges on the lateral surface of the head of vertebrate embryos. Although each pharyngeal arch is segmented by the reiterative formation of endodermal outpocketings called pharyngeal pouches, the molecular network underlying the reiterative pattern remains unclear. Here, we show that pax1 plays critical roles in pouch segmentation in medaka embryos. Importantly, pax1 expression in the endoderm prefigures the location of the next pouch before the cells bud from the epithelium. TALEN-generated pax1 mutants did not form pharyngeal pouches posterior to the second arch. Segmental expression of tbx1 and fgf3, which play critical roles in pouch development, was almost nonexistent in the pharyngeal endoderm of pax1 mutants, with disturbance of the reiterative pattern of pax1 expression. These results suggest that pax1 plays a critical role in generating the primary pattern for segmentation in the pharyngeal endoderm by regulating tbx1 and fgf3 expression. Our findings illustrate the critical roles of pax1 in vertebrate pharyngeal segmentation and provide insights into the evolutionary origin of the deuterostome gill slit.
Collapse
Affiliation(s)
- Kazunori Okada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 111 Tennoudai, Tsukuba, 305-8572, Japan
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Keiji Inohaya
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Takeshi Mise
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 111 Tennoudai, Tsukuba, 305-8572, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
- Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 111 Tennoudai, Tsukuba, 305-8572, Japan
| |
Collapse
|
33
|
LaMantia AS, Moody SA, Maynard TM, Karpinski BA, Zohn IE, Mendelowitz D, Lee NH, Popratiloff A. Hard to swallow: Developmental biological insights into pediatric dysphagia. Dev Biol 2015; 409:329-42. [PMID: 26554723 DOI: 10.1016/j.ydbio.2015.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
Pediatric dysphagia-feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity--is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties that approximate those seen in pediatric dysphagia. Altered hindbrain patterning, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may result from disrupted hindbrain patterning and its impact on peripheral and central neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Sally A Moody
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Thomas M Maynard
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Beverly A Karpinski
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Irene E Zohn
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Center for Neuroscience Research, Children's National Health System, Washington D.C., USA
| | - David Mendelowitz
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Norman H Lee
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Anastas Popratiloff
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
34
|
|
35
|
Isales GM, Hipszer RA, Raftery TD, Chen A, Stapleton HM, Volz DC. Triphenyl phosphate-induced developmental toxicity in zebrafish: potential role of the retinoic acid receptor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:221-30. [PMID: 25725299 PMCID: PMC4373973 DOI: 10.1016/j.aquatox.2015.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) - a high-production volume organophosphate-based flame retardant - results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) - a nuclear receptor that regulates vertebrate heart morphogenesis - in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) - a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) - a major target gene for RA-induced RAR activation in zebrafish - and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans.
Collapse
Affiliation(s)
- Gregory M Isales
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Rachel A Hipszer
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Tara D Raftery
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Albert Chen
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Heather M Stapleton
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David C Volz
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
36
|
Hou J, Wei W, Saund RS, Xiang P, Cunningham TJ, Yi Y, Alder O, Lu DYD, Savory JGA, Krentz NAJ, Montpetit R, Cullum R, Hofs N, Lohnes D, Humphries RK, Yamanaka Y, Duester G, Saijoh Y, Hoodless PA. A regulatory network controls nephrocan expression and midgut patterning. Development 2014; 141:3772-81. [PMID: 25209250 DOI: 10.1242/dev.108274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.
Collapse
Affiliation(s)
- Juan Hou
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Ranajeet S Saund
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Ping Xiang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yuyin Yi
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Olivia Alder
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Daphne Y D Lu
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Joanne G A Savory
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nicole A J Krentz
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rachel Montpetit
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Nicole Hofs
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - David Lohnes
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Experimental Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, Montreal, Quebec H2W 1S6, Canada
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
37
|
Roselló-Díez A, Arques CG, Delgado I, Giovinazzo G, Torres M. Diffusible signals and epigenetic timing cooperate in late proximo-distal limb patterning. Development 2014; 141:1534-43. [DOI: 10.1242/dev.106831] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing vertebrate limbs initiate proximo-distal patterning by interpreting opposing gradients of diffusible signaling molecules. We report two thresholds of proximo-distal signals in the limb bud: a higher threshold that establishes the upper-arm to forearm transition; and a lower one that positions a later transition from forearm to hand. For this last transition to happen, however, the signal environment seems to be insufficient, and we show that a timing mechanism dependent on histone acetylation status is also necessary. Therefore, as a consequence of the time dependence, the lower signaling threshold remains cryptic until the timing mechanism reveals it. We propose that this timing mechanism prevents the distal transition from happening too early, so that the prospective forearm has enough time to expand and form a properly sized segment. Importantly, the gene expression changes provoked by the first transition further regulate proximo-distal signal distribution, thereby coordinating the positioning of the two thresholds, which ensures robustness. This model is compatible with the most recent genetic analyses and underscores the importance of growth during the time-dependent patterning phase, providing a new mechanistic framework for understanding congenital limb defects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, c/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Carlos G. Arques
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, c/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Irene Delgado
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, c/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Giovanna Giovinazzo
- Unidad de Tecnología de Células Pluripotentes, Centro Nacional de Investigaciones Cardiovasculares, CNIC, c/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, c/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
38
|
Jandzik D, Hawkins MB, Cattell MV, Cerny R, Square TA, Medeiros DM. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Development 2014; 141:629-38. [PMID: 24449839 DOI: 10.1242/dev.097261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.
Collapse
Affiliation(s)
- David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
39
|
Das BC, Thapa P, Karki R, Das S, Mahapatra S, Liu TC, Torregroza I, Wallace DP, Kambhampati S, Van Veldhuizen P, Verma A, Ray SK, Evans T. Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem 2014; 22:673-83. [PMID: 24393720 PMCID: PMC4447240 DOI: 10.1016/j.bmc.2013.11.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
Retinoids comprise a group of compounds each composed of three basic parts: a trimethylated cyclohexene ring that is a bulky hydrophobic group, a conjugated tetraene side chain that functions as a linker unit, and a polar carbon-oxygen functional group. Biochemical conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for normal regulation of a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids regulate various physiological outputs by binding to nuclear receptors called retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which themselves are DNA-binding transcriptional regulators. The functional response of RA and their receptors are modulated by a host of coactivators and corepressors. Retinoids are essential in the development and function of several organ systems; however, deregulated retinoid signaling can contribute to serious diseases. Several natural and synthetic retinoids are in clinical use or undergoing trials for treating specific diseases including cancer. In this review, we provide a broad overview on the importance of retinoids in development and various diseases, highlighting various retinoids in the drug discovery process, ranging all the way from retinoid chemistry to clinical uses and imaging.
Collapse
Affiliation(s)
- Bhaskar C Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| | - Pritam Thapa
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Radha Karki
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sasmita Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sweta Mahapatra
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Darren P Wallace
- The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Suman Kambhampati
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Peter Van Veldhuizen
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
40
|
Simkin JE, Zhang D, Rollo BN, Newgreen DF. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 2013; 8:e64077. [PMID: 23717535 PMCID: PMC3661488 DOI: 10.1371/journal.pone.0064077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/11/2013] [Indexed: 11/23/2022] Open
Abstract
Vagal neural crest cells (VNCCs) arise in the hindbrain, and at (avian) embryonic day (E) 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1–2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC) which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs) in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.
Collapse
Affiliation(s)
- Johanna E. Simkin
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Dongcheng Zhang
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Benjamin N. Rollo
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Donald F. Newgreen
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
- * E-mail:
| |
Collapse
|
41
|
Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek AK, Kelley DR, Shishkin AA, Issner R, Zhang X, Coyne M, Fostel JL, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander ES, Bernstein BE, Meissner A. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 2013; 153:1149-63. [PMID: 23664763 DOI: 10.1016/j.cell.2013.04.037] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/04/2013] [Accepted: 04/16/2013] [Indexed: 01/10/2023]
Abstract
Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.
Collapse
Affiliation(s)
- Casey A Gifford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cunningham TJ, Zhao X, Sandell LL, Evans SM, Trainor PA, Duester G. Antagonism between retinoic acid and fibroblast growth factor signaling during limb development. Cell Rep 2013; 3:1503-11. [PMID: 23623500 DOI: 10.1016/j.celrep.2013.03.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 02/08/2023] Open
Abstract
The vitamin A metabolite retinoic acid (RA) provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits), avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF) signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, using genetic and pharmacological approaches, we demonstrate that limb proximodistal patterning is not RA dependent, thus indicating that RA-FGF antagonism does not occur along the proximodistal axis of the limb. Instead, our studies show that RA-FGF antagonism acts prior to limb budding along the anteroposterior axis of the trunk lateral plate mesoderm to provide a patterning cue that guides formation of the forelimb field. These findings reconcile disparate ideas regarding RA-FGF antagonism and provide insight into how endogenous RA programs the early embryo.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sun L, Luo H, Li H, Zhao Y. Thymic epithelial cell development and differentiation: cellular and molecular regulation. Protein Cell 2013; 4:342-55. [PMID: 23589020 DOI: 10.1007/s13238-013-3014-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
44
|
Sitnik KM, Kotarsky K, White AJ, Jenkinson WE, Anderson G, Agace WW. Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:4801-9. [PMID: 22504647 DOI: 10.4049/jimmunol.1200358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vitamin A metabolite and transcriptional modulator retinoic acid (RA) is recognized as an important regulator of epithelial cell homeostasis in several tissues. Despite the known importance of the epithelial compartment of the thymus in T cell development and selection, the potential role of RA in the regulation of thymic cortical and medullary epithelial cell homeostasis has yet to be addressed. In this study, using fetal thymus organ cultures, we demonstrate that endogenous RA signaling promotes thymic epithelial cell (TEC) cell-cycle exit and restricts TEC cellularity preferentially in the cortical TEC compartment. Combined gene expression, biochemical, and functional analyses identified mesenchymal cells as the major source of RA in the embryonic thymus. In reaggregate culture experiments, thymic mesenchyme was required for RA-dependent regulation of TEC expansion, highlighting the importance of mesenchyme-derived RA in modulating TEC turnover. The RA-generating potential of mesenchymal cells was selectively maintained within a discrete Ly51(int)gp38(+) subset of Ly51(+) mesenchyme in the adult thymus, suggesting a continual role for mesenchymal cell-derived RA in postnatal TEC homeostasis. These findings identify RA signaling as a novel mechanism by which thymic mesenchyme influences TEC development.
Collapse
|
45
|
Abstract
Retinoic acid (RA) is a vitamin A-derived, non-peptidic, small lipophilic molecule that acts as ligand for nuclear RA receptors (RARs), converting them from transcriptional repressors to activators. The distribution and levels of RA in embryonic tissues are tightly controlled by regulated synthesis through the action of specific retinol and retinaldehyde dehydrogenases and by degradation via specific cytochrome P450s (CYP26s). Recent studies indicate that RA action involves an interplay between diffusion (morphogen-like) gradients and the establishment of signalling boundaries due to RA metabolism, thereby allowing RA to finely control the differentiation and patterning of various stem/progenitor cell populations. Here, we provide an overview of the RA biosynthesis, degradation and signalling pathways and review the main functions of this molecule during embryogenesis.
Collapse
Affiliation(s)
- Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
| | | |
Collapse
|
46
|
Li P, Pashmforoush M, Sucov HM. Mesodermal retinoic acid signaling regulates endothelial cell coalescence in caudal pharyngeal arch artery vasculogenesis. Dev Biol 2011; 361:116-24. [PMID: 22040871 DOI: 10.1016/j.ydbio.2011.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
Abstract
Disruption of retinoic acid signaling causes a variety of pharyngeal arch artery and great vessel defects, as well as malformations in many other tissues, including those derived from the pharyngeal endoderm. Previous studies implied that arch artery defects in the context of defective RA signaling occur secondary to pharyngeal pouch segmentation defects, although this model has never been experimentally verified. In this study, we examined arch artery morphogenesis during mouse development, and the role of RA in this process. We show in normal embryos that the arch arteries form by vasculogenic differentiation of pharyngeal mesoderm. Using various genetic backgrounds and tissue-specific mutation approaches, we segregate pharyngeal arch artery and pharyngeal pouch defects in RA receptor mutants, and show that RA signal transduction only in pharyngeal mesoderm is required for arch artery formation. RA does not control pharyngeal mesodermal differentiation to endothelium, but instead promotes the aggregation of endothelial cells into nascent vessels. Expression of VE-cadherin was substantially reduced in RAR mutants, and this deficiency may underlie the arch artery defects. The consequences of disrupted mesodermal and endodermal RA signaling were restricted to the 4th and 6th arch arteries and to the 4th pharyngeal pouch, respectively, suggesting that different regulatory mechanisms control the formation of the more anterior arch arteries and pouches.
Collapse
Affiliation(s)
- Peng Li
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
47
|
Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proc Natl Acad Sci U S A 2011; 108:16687-92. [PMID: 21930923 DOI: 10.1073/pnas.1103877108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retinoic acid (RA), an active vitamin A metabolite, is a key signaling molecule in vertebrate embryos. Morphogenetic RA gradients are thought to be set up by tissue-specific actions of retinaldehyde dehydrogenases (RALDHs) and catabolizing enzymes. According to the species, two enzymatic pathways (β-carotene cleavage and retinol oxidation) generate retinaldehyde, the substrate of RALDHs. Placental species depend on maternal retinol transferred to the embryo. The retinol-to-retinaldehyde conversion was thought to be achieved by several redundant enzymes; however, a random mutagenesis screen identified retinol dehydrogenase 10 [Rdh10(Trex) allele; Sandell LL, et al. (2007) Genes Dev 21:1113-1124] as responsible for a homozygous lethal phenotype with features of RA deficiency. We report here the production and characterization of unique murine Rdh10 loss-of-function alleles generated by gene targeting. We show that although Rdh10(-/-) mutants die at an earlier stage than Rdh10(Trex) mutants, their molecular patterning defects do not reflect a complete state of RA deficiency. Furthermore, we were able to correct most developmental abnormalities by administering retinaldehyde to pregnant mothers, thereby obtaining viable Rdh10(-/-) mutants. This demonstrates the rescue of an embryonic lethal phenotype by simple maternal administration of the missing retinoid compound. These results underscore the importance of maternal retinoids in preventing congenital birth defects, and lead to a revised model of the importance of RDH10 and RALDHs in controlling embryonic RA distribution.
Collapse
|
48
|
Abstract
A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.
Collapse
|
49
|
Kuo BR, Erickson CA. Vagal neural crest cell migratory behavior: a transition between the cranial and trunk crest. Dev Dyn 2011; 240:2084-100. [PMID: 22016183 PMCID: PMC4070611 DOI: 10.1002/dvdy.22715] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Migration and differentiation of cranial neural crest cells are largely controlled by environmental cues, whereas pathfinding at the trunk level is dictated by cell-autonomous molecular changes owing to early specification of the premigratory crest. Here, we investigated the migration and patterning of vagal neural crest cells. We show that (1) vagal neural crest cells exhibit some developmental bias, and (2) they take separate pathways to the heart and to the gut. Together these observations suggest that prior specification dictates initial pathway choice. However, when we challenged the vagal neural crest cells with different migratory environments, we observed that the behavior of the anterior vagal neural crest cells (somite-level 1-3) exhibit considerable migratory plasticity, whereas the posterior vagal neural crest cells (somite-level 5-7) are more restricted in their behavior. We conclude that the vagal neural crest is a transitional population that has evolved between the head and the trunk.
Collapse
Affiliation(s)
| | - Carol A. Erickson
- Correspondence to: Carol A. Erickson, Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, , (530) 752-8318
| |
Collapse
|
50
|
Gillis JA, Fritzenwanker JH, Lowe CJ. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc Biol Sci 2011; 279:237-46. [PMID: 21676974 DOI: 10.1098/rspb.2011.0599] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hemichordate worms possess ciliated gills on their trunk, and the homology of these structures with the pharyngeal gill slits of chordates has long been a topic of debate in the fields of evolutionary biology and comparative anatomy. Here, we show conservation of transcription factor expression between the developing pharyngeal gill pores of the hemichordate Saccoglossus kowalevskii and the pharyngeal gill slit precursors (i.e. pharyngeal endodermal outpockets) of vertebrates. Transcription factors that are expressed in the pharyngeal endoderm, ectoderm and mesenchyme of vertebrates are expressed exclusively in the pharyngeal endoderm of S. kowalevskii. The pharyngeal arches and tongue bars of S. kowalevskii lack Tbx1-expressing mesoderm, and are supported solely by an acellular collagenous endoskeleton and by compartments of the trunk coelom. Our findings suggest that hemichordate and vertebrate gills are homologous as simple endodermal outpockets from the foregut, and that much vertebrate pharyngeal complexity arose coincident with the incorporation of cranial paraxial mesoderm and neural crest-derived mesenchyme within pharyngeal arches along the chordate and vertebrate stems, respectively.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|