1
|
Li W, Jiang H, Hu L, Shen T, Chen Q. The Role of Gli1 + Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment. J Oral Rehabil 2025. [PMID: 39794930 DOI: 10.1111/joor.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This review summarises the role of Gli1+ (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases. DESIGN The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Gli1+ mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle. They can be applied to the treatment of pulp and periodontal diseases, temporomandibular joint osteoarthritis and other diseases. CONCLUSIONS Gli1+ mesenchymal stem cells are crucial for the development and repair of craniofacial tissue.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Longshuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tianjiao Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Zheng X, Huang H, Zhou Z, Guo W, Yang G, Chen Z, Chen D, Chen Y, Yuan G. Axin1 regulates tooth root development by inhibiting AKT1-mTORC1 activation and Shh translation in Hertwig's epithelial root sheath. Development 2024; 151:dev202899. [PMID: 39344774 DOI: 10.1242/dev.202899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Hertwig's epithelial root sheath (HERS) interacts with dental apical mesenchyme and guides development of the tooth root, which is integral to the function of the whole tooth. However, the key genes in HERS essential for root development are understudied. Here, we show that Axin1, a scaffold protein that negatively regulates canonical Wnt signaling, is strongly expressed in the HERS. Axin1 ablation in the HERS of mice leads to defective root development, but in a manner independent of canonical Wnt signaling. Further studies reveal that Axin1 in the HERS negatively regulates the AKT1-mTORC1 pathway through binding to AKT1, leading to inhibition of ribosomal biogenesis and mRNA translation. Sonic hedgehog (Shh) protein, a morphogen essential for root development, is over-synthesized by upregulated mTORC1 activity upon Axin1 inactivation. Importantly, either haploinsufficiency of the mTORC1 subunit Rptor or pharmacological inhibition of Shh signaling can rescue the root defects in Axin1 mutant mice. Collectively, our data suggest that, independently of canonical Wnt signaling, Axin1 controls ribosomal biogenesis and selective mRNA translation programs via AKT1-mTORC1 signaling during tooth root development.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Hongcan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weihua Guo
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan 610041, China
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 610041, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| |
Collapse
|
3
|
Cui Y, Li C, Wang H, Li L, Xie J, Zhou X, Zhang H, Sun J. Hemicentin-1 is an essential extracellular matrix component during tooth root formation by promoting mesenchymal cells differentiation. Front Cell Dev Biol 2024; 12:1435241. [PMID: 39050894 PMCID: PMC11266140 DOI: 10.3389/fcell.2024.1435241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Root dentin formation is an important process in tooth development. We tried to identify potential genes that regulate root dentin formation which could be potentially used for the regeneration and repair of defective or damaged dental roots. Methods: Tissues harvested from the labial and lingual sides of mouse incisors were used for microarray analysis. Gene ontology (GO) analysis of differentially expressed genes indicated the critical role of extracellular matrix in the discrepancy of dentin formation between root and crown, for which hemicentin-1 (Hmcn1) was selected as the target gene. Single-cell RNA sequencing analysis the expression pattern of Hmcn1 at different developmental stages in mouse molars. The spatiotemporal expression of HMCN1 in mouse incisors and molars was detected by immunohistochemical staining. The functions of HMCN1 in human dental pulp cells, including proliferation, differentiation and migration, were examined in vitro by CCK8 assay, BrdU assay, wound-healing assay, ALP staining and alizarin red staining, respectively. Results: It was showed that HMCN1 expression was more pronounced in papilla-pulp on the root than crown side in mouse incisors and molars. In vitro experiments presented inhibited dentinogenesis and migration after HMCN1-knockdown in human dental pulp cells, while there was no significant difference in proliferation between the HMCN1-knockdown group and control group. Discussion: These results indicated that HMCN1 plays an important role in dentinogenesis and migration of pulp cells, contributing to root dentin formation.
Collapse
Affiliation(s)
- Yujia Cui
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology and National Clinical Research Center for Oral Diseases and Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyang Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hai Zhang
- School of Dentistry, University of Washington, Seattle, WA, United States
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Jeong JK, Kim TH, Choi H, Cho ES. Impaired breakdown of Herwig's epithelial root sheath disturbs tooth root development. Dev Dyn 2024; 253:423-434. [PMID: 37850829 DOI: 10.1002/dvdy.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Wnt/β-catenin signaling plays a variety of roles in both the dental epithelium and mesenchyme at most stages of tooth development. In this study, we verified the roles of Hertwig's epithelial root sheath (HERS) breakdown in tooth root development. This breakdown results in formation of epithelial cell rests of Malassez (ERM). RESULTS Following induction of β-catenin stabilization in the epithelium of developing tooth at the moment of HERS breakdown, HERS failed to break down for ERM formation. HERS with stabilized β-catenin was altered into a multicellular layer enveloping elongated root dentin with higher expression of junctional proteins such as Zo-1 and E-cadherin. Importantly, this impairment of HERS breakdown led to arrest of further root elongation. In addition, the portion of root dentin enveloped by the undissociated HERS remained in a hypomineralized state. The odontoblasts showed ectopically higher expression of pyrophosphate regulators including Ank and Npp1, whereas Tnap expression was unchanged. CONCLUSIONS Our data suggest that Wnt/β-catenin signaling is decreased in HERS for ERM formation during root development. Furthermore, ERM formation is important for further elongation and dentin mineralization of the tooth roots. These findings may provide new insight to understand the contribution of ERM to root formation.
Collapse
Affiliation(s)
- Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| |
Collapse
|
6
|
Song L, Golman M, Abraham AC, Zelzer E, Thomopoulos S. A role for TGFβ signaling in Gli1+ tendon and enthesis cells. FASEB J 2024; 38:e23568. [PMID: 38522021 PMCID: PMC10962263 DOI: 10.1096/fj.202301452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
The development of musculoskeletal tissues such as tendon, enthesis, and bone relies on proliferation and differentiation of mesenchymal progenitor cells. Gli1+ cells have been described as putative stem cells in several tissues and are presumed to play critical roles in tissue formation and maintenance. For example, the enthesis, a fibrocartilage tissue that connects tendon to bone, is mineralized postnatally by a pool of Gli1+ progenitor cells. These cells are regulated by hedgehog signaling, but it is unclear if TGFβ signaling, necessary for tenogenesis, also plays a role in their behavior. To examine the role of TGFβ signaling in Gli1+ cell function, the receptor for TGFβ, TbR2, was deleted in Gli1-lineage cells in mice at P5. Decreased TGFβ signaling in these cells led to defects in tendon enthesis formation by P56, including defective bone morphometry underlying the enthesis and decreased mechanical properties. Immunohistochemical staining of these Gli1+ cells showed that loss of TGFβ signaling reduced proliferation and increased apoptosis. In vitro experiments using Gli1+ cells isolated from mouse tail tendons demonstrated that TGFβ controls cell proliferation and differentiation through canonical and non-canonical pathways and that TGFβ directly controls the tendon transcription factor scleraxis by binding to its distant enhancer. These results have implications in the development of treatments for tendon and enthesis pathologies.
Collapse
Affiliation(s)
- Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
| | - Mikhail Golman
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|
7
|
Pei F, Ma L, Guo T, Zhang M, Jing J, Wen Q, Feng J, Lei J, He J, Janečková E, Ho TV, Chen JF, Chai Y. Sensory nerve regulates progenitor cells via FGF-SHH axis in tooth root morphogenesis. Development 2024; 151:dev202043. [PMID: 38108472 PMCID: PMC10820866 DOI: 10.1242/dev.202043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Arai Y, English JD, Ono N, Ono W. Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients. Orthod Craniofac Res 2023; 26 Suppl 1:29-38. [PMID: 36714970 PMCID: PMC10864015 DOI: 10.1111/ocr.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.
Collapse
Affiliation(s)
- Yuki Arai
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
9
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Li L, Liu P, Lv X, Yu T, Jin X, Wang R, Xie X, Wang Q, Liu Y, Saiyin W. Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice. J Orofac Orthop 2023; 84:349-361. [PMID: 35316352 DOI: 10.1007/s00056-022-00386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/16/2022] [Indexed: 10/18/2022]
Abstract
Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20cfl/fl (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.
Collapse
Affiliation(s)
- Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xuechao Lv
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Tianliang Yu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xingai Jin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Rui Wang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Qingshan Wang
- Department of Vascular Surgery, The Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang, 150036, Harbin, Heilongjiang, China
| | - Yingqun Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Cobo I, Paliwal S, Bodas C, Felipe I, Melià-Alomà J, Torres A, Martínez-Villarreal J, Malumbres M, García F, Millán I, Del Pozo N, Park JC, MacDonald RJ, Muñoz J, Méndez R, Real FX. NFIC regulates ribosomal biology and ER stress in pancreatic acinar cells and restrains PDAC initiation. Nat Commun 2023; 14:3761. [PMID: 37353485 PMCID: PMC10290102 DOI: 10.1038/s41467-023-39291-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Pancreatic acinar cells rely on PTF1 and other transcription factors to deploy their transcriptional program. We identify NFIC as a NR5A2 interactor and regulator of acinar differentiation. NFIC binding sites are enriched in NR5A2 ChIP-Sequencing peaks. Nfic knockout mice have a smaller, histologically normal, pancreas with reduced acinar gene expression. NFIC binds and regulates the promoters of acinar genes and those involved in RNA/protein metabolism, and Nfic knockout pancreata show defective ribosomal RNA maturation. NFIC dampens the endoplasmic reticulum stress program through binding to gene promoters and is required for resolution of Tunicamycin-mediated stress. NFIC is down-regulated during caerulein pancreatitis and is required for recovery after damage. Normal human pancreata with low levels of NFIC transcripts display reduced expression of genes down-regulated in Nfic knockout mice. NFIC expression is down-regulated in mouse and human pancreatic ductal adenocarcinoma. Consistently, Nfic knockout mice develop a higher number of mutant Kras-driven pre-neoplastic lesions.
Collapse
Affiliation(s)
- Isidoro Cobo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Sumit Paliwal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Cristina Bodas
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Júlia Melià-Alomà
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ariadna Torres
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Marina Malumbres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fernando García
- Proteomics Unit, Spanish National Cancer Research Centre-CNIO, ProteoRed-Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Millán
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ray J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre-CNIO, ProteoRed-Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
13
|
Lin X, Li Q, Hu L, Jiang C, Wang S, Wu X. Apical Papilla Regulates Dental Follicle Fate via the OGN-Hh Pathway. J Dent Res 2023; 102:431-439. [PMID: 36515316 DOI: 10.1177/00220345221138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Root apical complex, including Hertwig's epithelial root sheath, apical papilla, and dental follicle (DF), is the germinal center of root development, wherein the DF constantly develops into periodontal tissue. However, whether DF development is regulated by the adjacent apical papilla remains largely unknown. In this study, we employed a transwell coculture system and found that stem cells from the apical papilla (SCAPs) inhibit the differentiation and maintain the stemness of dental follicle stem cells (DFSCs). Meanwhile, partial SCAP differentiation markers were upregulated after DFSC coculture. High-throughput RNA sequencing revealed that the Hedgehog (Hh) pathway was significantly downregulated in DFSCs cocultured with SCAPs. Upregulation or downregulation of the Hh pathway can respectively activate or inhibit the multidirectional differentiation of DFSCs. Osteoglycin (OGN) (previously known as mimecan) is highly expressed in the dental papilla, similarly to Hh pathway factors. By secreting OGN, SCAP regulated the stemness and multidirectional differentiation of DFSCs via the OGN-Hh pathway. Finally, Ogn-/- mice were established using the CRISPR/Cas9 system. We found that the root length growth rate was accelerated during root development from PN0 to PN30 in Ogn-/- mice. Moreover, the hard tissues (including dentin and cementum) of the root in Ogn-/- mice were thicker than those in wild-type mice. These phenotypes were likely due to Hh pathway activation and the increased cell proliferation and differentiation in both the apical papilla and DF. The current work elucidates the molecular regulation of early periodontal tissue development, providing a theoretical basis for future research on tooth root biology and periodontal tissue regeneration.
Collapse
Affiliation(s)
- X Lin
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Q Li
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - L Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - S Wang
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - X Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Lav R, Krivanek J, Anthwal N, Tucker AS. Wnt signaling from Gli1-expressing apical stem/progenitor cells is essential for the coordination of tooth root development. Stem Cell Reports 2023; 18:1015-1029. [PMID: 36931279 PMCID: PMC10147554 DOI: 10.1016/j.stemcr.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Stem cell regulation plays a crucial role during development and homeostasis. Here, an essential source of Wnts from Gli1+ stem/progenitor cells was identified in the murine molar. Loss of Wnt production in Gli1+ apical stem/progenitor cells led to loss of Axin2 at the root apex, mis-regulation of SOX9, loss of BMP and Hh signaling, and truncation of root development. In the absence of Wnt signals, the root epithelium lost its integrity and epithelial identity. This phenotype could be partially mimicked by loss of Sox9 in the Gli1 population. Stabilization of Wnt signaling in the apical papilla led to rapid unordered differentiation of hard tissues and fragmentation of the epithelial root sheath. Wnt signaling from Gli1+ stem/progenitor cells, therefore, orchestrates root development, coordinating mesenchymal and epithelial interactions via SOX9 to regulate stem/progenitor cell expansion and differentiation. Our results demonstrate that disparate stem/progenitor cell populations are unified in their fundamental signaling interactions.
Collapse
Affiliation(s)
- Rupali Lav
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
15
|
Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X, Chen Q. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther 2022; 13:486. [PMID: 36175952 PMCID: PMC9524038 DOI: 10.1186/s13287-022-03140-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Dental follicles are necessary for tooth eruption, surround the enamel organ and dental papilla, and regulate both the formation and resorption of alveolar bone. Dental follicle progenitor cells (DFPCs), which are stem cells found in dental follicles, differentiate into different kinds of cells that are necessary for tooth formation and eruption. Runt‐related transcription factor 2 (Runx2) is a transcription factor that is essential for osteoblasts and osteoclasts differentiation, as well as bone remodeling. Mutation of Runx2 causing cleidocranial dysplasia negatively affects osteogenesis and the osteoclastic ability of dental follicles, resulting in tooth eruption difficulties. Among a variety of cells and molecules, Nel-like molecule type 1 (Nell-1) plays an important role in neural crest-derived tissues and is strongly expressed in dental follicles. Nell-1 was originally identified in pathologically fused and fusing sutures of patients with unilateral coronal synostosis, and it plays indispensable roles in bone remodeling, including roles in osteoblast differentiation, bone formation and regeneration, craniofacial skeleton development, and the differentiation of many kinds of stem cells. Runx2 was proven to directly target the Nell-1 gene and regulate its expression. These studies suggested that Runx2/Nell-1 axis may play an important role in the process of tooth eruption by affecting DFPCs. Studies on short and long regulatory noncoding RNAs have revealed the complexity of RNA-mediated regulation of gene expression at the posttranscriptional level. This ceRNA network participates in the regulation of Runx2 and Nell-1 gene expression in a complex way. However, non-study indicated the potential connection between Runx2 and Nell-1, and further researches are still needed.
Collapse
Affiliation(s)
- Li Zeng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hong He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Mingjie Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xinyi Gong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yaya Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
16
|
Nagata M, English JD, Ono N, Ono W. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022; 60:e23495. [PMID: 35916433 PMCID: PMC9492631 DOI: 10.1002/dvg.23495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
17
|
Shalehin N, Seki Y, Takebe H, Fujii S, Mizoguchi T, Nakamura H, Yoshiba N, Yoshiba K, Iijima M, Shimo T, Irie K, Hosoya A. Gli1 +-PDL Cells Contribute to Alveolar Bone Homeostasis and Regeneration. J Dent Res 2022; 101:1537-1543. [PMID: 35786034 DOI: 10.1177/00220345221106921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament (PDL) contains mesenchymal stem cells (MSCs) that can differentiate into osteoblasts, cementoblasts, and fibroblasts. Nevertheless, the distribution and characteristics of these cells remain uncertain. Gli1, an essential hedgehog signaling transcription factor, functions in undifferentiated cells during embryogenesis. Therefore, in the present study, the differentiation ability of Gli1+ cells was examined using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. In 4-wk-old iGli1/Tomato mice, Gli1/Tomato+ cells were only slightly detected in the PDL, around endomucin-expressing blood vessels. These cells had proliferated over time, localizing in the PDL as well as on the bone and cementum surfaces at day 28. However, in 8-wk-old iGli1/Tomato mice, Gli1/Tomato+ cells were quiescent, as most cells were not immunoreactive for Ki-67. These cells in 8-wk-old mice exhibited high colony-forming unit fibroblast activity and were capable of osteogenic, chondrogenic, and adipogenic differentiation in vitro. In addition, after transplantation of teeth of iGli1/Tomato mice into the hypodermis of wild-type mice, Tomato fluorescence indicating the progeny of Gli1+ cells was detected in the osteoblasts and osteocytes of the regenerated bone. These results demonstrate that Gli1+ cells in the PDL were MSCs and could contribute to the alveolar bone regeneration.
Collapse
Affiliation(s)
- N Shalehin
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Y Seki
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Division of Orthodontics and Dentofacial Orthopedics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - H Takebe
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - S Fujii
- Division of Oral Surgery, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Mizoguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - H Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - N Yoshiba
- Division of Cariology, Department of Oral Health Science, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Iijima
- Division of Orthodontics and Dentofacial Orthopedics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Shimo
- Division of Oral Surgery, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - K Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - A Hosoya
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
18
|
Lei J, Chen S, Jing J, Guo T, Feng J, Ho T, Chai Y. Inhibiting Hh Signaling in Gli1 + Osteogenic Progenitors Alleviates TMJOA. J Dent Res 2022; 101:664-674. [PMID: 35045740 PMCID: PMC9124909 DOI: 10.1177/00220345211059079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
The increased prevalence of temporomandibular joint osteoarthritis (TMJOA) in children and adolescents has drawn considerable attention as it may interfere with mandibular condyle growth, resulting in dento-maxillofacial deformities. However, treatments for osteoarthritis have been ineffective at restoring the damaged bone and cartilage structures due to poor understanding of the underlying degenerative mechanism. In this study, we demonstrate that Gli1+ cells residing in the subchondral bone contribute to bone formation and homeostasis in the mandibular condyle, identifying them as osteogenic progenitors in vivo. Furthermore, we show that, in a TMJOA mouse model, derivatives of Gli1+ cells undergo excessive expansion along with increased but uneven distribution of osteogenic differentiation in the subchondral bone, which leads to abnormal subchondral bone remodeling via Hedgehog (Hh) signaling activation and to the development of TMJOA. The selective pharmacological inhibition and specific genetic inhibition of Hh signaling in Gli1+ osteogenic progenitors result in improved subchondral bone microstructure, attenuated local immune inflammatory response in the subchondral bone, and reduced degeneration of the articular cartilage, providing in vivo functional evidence that targeting Hh signaling in Gli1+ osteogenic progenitors can modulate bone homeostasis in osteoarthritis and provide a potential approach for treating TMJOA.
Collapse
Affiliation(s)
- J. Lei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - S. Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J. Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - T. Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J. Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - T.V. Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y. Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, Hovorakova M, Mina M, Krivanek J. The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium. J Bone Miner Res 2022; 37:323-339. [PMID: 34783080 PMCID: PMC9300090 DOI: 10.1002/jbmr.4471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena Kolouskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Prochazka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez-Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jozef Kaiser
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Pavel Pořízka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Gao S, Ge LH, Zhao YM, Li P, Li YY, Zhao W. Hsa-miRNA-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting NFIC. Int Endod J 2021; 55:263-274. [PMID: 34807471 DOI: 10.1111/iej.13666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
AIM To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yu-Ming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Pei Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Yin Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
22
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
24
|
Xu C, Xie X, Zhao L, Wu Y, Wang J. The critical role of nuclear factor I-C in tooth development. Oral Dis 2021; 28:2093-2099. [PMID: 34637578 DOI: 10.1111/odi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Nuclear factor I-C (NFIC) plays a critical role in regulating epithelial-mesenchymal crosstalk during tooth development. However, it remains largely unknown about how NFIC functions in dentin and enamel formation. In the present review, we aim to summarize the most recent discoveries in the field and gain a better understanding of the roles NFIC performs during tooth formation. SUBJECTS AND METHODS Nfic-/- mice exhibit human dentin dysplasia type I (DDI)-like phenotypes signified by enlarged pulp chambers, the presence of short-root anomaly, and failure of odontoblast differentiation. Although loss of NFIC has little effect on molar crown morphology, researchers have detected aberrant microstructures of enamel in the incisors. Recently, accumulating evidence has further uncovered the novel function of NFIC in the process of enamel and dentin formation. RESULTS During epithelial-mesenchyme crosstalk, the expression of NFIC is under the control of SHH-PTCH-SMO-GLI1 pathway. NFIC is closely involved in odontoblast lineage cells proliferation and differentiation, and the maintenance of NFIC protein level in cytoplasm is negatively regulated by TGF-β signaling pathway. In addition, NFIC has mild effect on ameloblast differentiation, enamel mineralization and cementum formation. CONCLUSIONS NFIC plays an important role in tooth development and is required for the formation of dentin, enamel as well as cementum.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Mu H, Liu X, Geng S, Su D, Chang H, Li L, Jin H, Wang X, Li Y, Zhang B, Xie X. Epithelial Bone Morphogenic Protein 2 and 4 Are Indispensable for Tooth Development. Front Physiol 2021; 12:660644. [PMID: 34483952 PMCID: PMC8415269 DOI: 10.3389/fphys.2021.660644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
The Bmp2 and Bmp4 expressed in root mesenchyme were essential for the patterning and cellular differentiation of tooth root. The role of the epithelium-derived Bmps in tooth root development, however, had not been reported. In this study, we found that the double abrogation of Bmp2 and Bmp4 from mouse epithelium caused short root anomaly (SRA). The K14-cre;Bmp2f/f;Bmp4f/f mice exhibited a persistent Hertwig’s Epithelial Root Sheath (HERS) with the reduced cell death, and the down-regulated BMP-Smad4 and Erk signaling pathways. Moreover, the Shh expression in the HERS, the Shh-Gli1 signaling, and Nfic expression in the root mesenchyme of the K14-cre;Bmp2f/f;Bmp4f/f mice were also decreased, indicating a disrupted epithelium- mesenchyme interaction between HERS and root mesenchyme. Such disruption suppressed the Osx and Dspp expression in the root mesenchyme, indicating an impairment on the differentiation and maturation of root odontoblasts. The impaired differentiation and maturation of root odontoblasts could be rescued partially by transgenic Dspp. Therefore, although required in a low dosage and with a functional redundancy, the epithelial Bmp2 and Bmp4 were indispensable for the HERS degeneration, as well as the differentiation and maturation of root mesenchyme.
Collapse
Affiliation(s)
- Haibin Mu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuoshuo Geng
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dian Su
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heran Chang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaohua Xie
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Ide Y, Nakahara T, Fukada T, Nasu M. Local Irradiation of Mouse Tooth Germ Gives Insight into the Direct Effects of Irradiation on Root Development. Radiat Res 2021; 196:602-610. [PMID: 34388821 DOI: 10.1667/rade-20-00081.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2021] [Indexed: 11/03/2022]
Abstract
To elucidate the mechanism underlying the failure of root formation after irradiation, we established a method of local irradiation of the molar tooth germ and demonstrated that radiation directly affected dental root development. In the current study, to locally irradiate the lower first molars of 5-day-old C57BL/6J mice, we used lead glass containing a hole as a collimator. We confirmed that our local irradiation method targeted only the tooth germ. The irradiated root was immature in terms of apical growth, and dentin formation was irregular along the outside of the root apices. Moreover, calcified tissue apically surrounded Hertwig's epithelial root sheath, which disappeared abnormally early. This method using a local irradiation experimental model will facilitate research into radiation-induced disorders of dental root formation.
Collapse
Affiliation(s)
- Yoshiaki Ide
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo.,Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Tetsuya Fukada
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Masanori Nasu
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry at Tokyo
| |
Collapse
|
27
|
Chetty M, Roomaney IA, Beighton P. Taurodontism in dental genetics. BDJ Open 2021; 7:25. [PMID: 34244468 PMCID: PMC8270984 DOI: 10.1038/s41405-021-00081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Taurodontism is a dental anomaly defined by enlargement of the pulp chamber of multirooted teeth with apical displacement of the pulp floor and bifurcation of the roots. Taurodontism can be an isolated trait or part of a syndrome. A study was conducted to document the dental and craniofacial aspects of genetic thin bone disorders in South Africa. Sixty-four individuals with Osteogenesis imperfecta (OI), one individual with Pyle disease and one with Torg-Winchester syndrome respectively, were assessed clinically, radiographically and at a molecular level. Ten patients with OI XI and those with Pyle disease and Torg-Winchester syndrome had taurodontism. Taurodontism has been identified in several genetic disorders necessitating cognizance of the possible existence and implications of this characteristic when managing patients in the dental environment. Further studies should be directed toward identifying the incidence, etiology, and molecular pathways leading to taurodontism and its relationship to genetic syndromes.
Collapse
Affiliation(s)
- Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa.
| | - Imaan A Roomaney
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
| | - Peter Beighton
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Function of Dental Follicle Progenitor/Stem Cells and Their Potential in Regenerative Medicine: From Mechanisms to Applications. Biomolecules 2021; 11:biom11070997. [PMID: 34356621 PMCID: PMC8301812 DOI: 10.3390/biom11070997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
Dental follicle progenitor/stem cells (DFPCs) are a group of dental mesenchyme stem cells that lie in the dental follicle and play a critical role in tooth development and maintaining function. Originating from neural crest, DFPCs harbor a multipotential differentiation capacity. More importantly, they have superiorities, including the easy accessibility and abundant sources, active self-renewal ability and noncontroversial sources compared with other stem cells, making them an attractive candidate in the field of tissue engineering. Recent advances highlight the excellent properties of DFPCs in regeneration of orofacial tissues, including alveolar bone repair, periodontium regeneration and bio-root complex formation. Furthermore, they play a unique role in maintaining a favorable microenvironment for stem cells, immunomodulation and nervous related tissue regeneration. This review is intended to summarize the current knowledge of DFPCs, including their stem cell properties, physiological functions and clinical application potential. A deep understanding of DFPCs can thus inspire novel perspectives in regenerative medicine in the future.
Collapse
|
29
|
Mizukoshi M, Kaku M, Thant L, Kitami K, Arai M, Saito I, Uoshima K. In vivo cell proliferation analysis and cell-tracing reveal the global cellular dynamics of periodontal ligament cells under mechanical-loading. Sci Rep 2021; 11:9813. [PMID: 33963224 PMCID: PMC8105403 DOI: 10.1038/s41598-021-89156-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal ligament (PDL) is a uniquely differentiated tissue that anchors the tooth to the alveolar bone socket and plays key roles in oral function. PDL cells can respond rapidly to mechanical stimuli, resulting in accelerated tissue remodeling. Cell proliferation is an initial event in tissue remodeling and participates in maintaining the cell supply; therefore, analyzing cell-proliferative activity might provide a comprehensive view of cellular dynamics at the tissue level. In this study, we investigated proliferating cells in mouse molar PDL during orthodontic tooth movement (OTM)-induced tissue remodeling. Our results demonstrated that the mechanical stimuli evoked a dynamic change in the proliferative-cell profile at the entire PDL. Additionally, cell-tracing analysis revealed that the proliferated cells underwent further division and subsequently contributed to tissue remodeling. Moreover, OTM-induced proliferating cells expressed various molecular markers that most likely arise from a wide range of cell types, indicating the lineage plasticity of PDL cells in vivo. Although further studies are required, these findings partially elucidated the global views of the cell trajectory in mouse molar PDL under mechanical-loading conditions, which is vital for understanding the cellular dynamics of the PDL and beneficial for dental treatment in humans.
Collapse
Affiliation(s)
- Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
30
|
Driesen RB, Gervois P, Vangansewinkel T, Lambrichts I. Unraveling the Role of the Apical Papilla During Dental Root Maturation. Front Cell Dev Biol 2021; 9:665600. [PMID: 34026757 PMCID: PMC8134663 DOI: 10.3389/fcell.2021.665600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The apical papilla is a stem cell rich tissue located at the base of the developing dental root and is responsible for the progressive elongation and maturation of the root. The multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic differentiation and are thus an attractive stem cell source for stem cell-based therapies. Currently, only few studies are dedicated to determining the role of the apical papilla in dental root development. In this review, we will focus on the architecture of the apical papilla and describe the specific SCAP signaling pathways involved in root maturation. Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue and determine their micro-environmental interaction. Understanding the mechanism of postnatal dental root growth could further aid in developing novel strategies in dental root regeneration.
Collapse
Affiliation(s)
- Ronald B Driesen
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Pascal Gervois
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Tim Vangansewinkel
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| |
Collapse
|
31
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
32
|
Du J, Jing J, Yuan Y, Feng J, Han X, Chen S, Li X, Peng W, Xu J, Ho TV, Jiang X, Chai Y. Arid1a-Plagl1-Hh signaling is indispensable for differentiation-associated cell cycle arrest of tooth root progenitors. Cell Rep 2021; 35:108964. [PMID: 33826897 PMCID: PMC8132592 DOI: 10.1016/j.celrep.2021.108964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiang Li
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
33
|
Jiang S, Sheng R, Qi X, Wang J, Guo Y, Yuan Q. USP34 regulates tooth root morphogenesis by stabilizing NFIC. Int J Oral Sci 2021; 13:7. [PMID: 33686052 PMCID: PMC7940473 DOI: 10.1038/s41368-021-00114-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth root morphogenesis involves two biological processes, root elongation and dentinogenesis, which are guaranteed by downgrowth of Hertwig's epithelial root sheath (HERS) and normal odontoblast differentiation. Ubiquitin-dependent protein degradation has been reported to precisely regulate various physiological processes, while its role in tooth development is still elusive. Here we show ubiquitin-specific protease 34 (USP34) plays a pivotal role in root formation. Deletion of Usp34 in dental mesenchymal cells leads to short root anomaly, characterized by truncated roots and thin root dentin. The USP34-deficient dental pulp cells (DPCs) exhibit decreased odontogenic differentiation with downregulation of nuclear factor I/C (NFIC). Overexpression of NFIC partially restores the impaired odontogenic potential of DPCs. These findings indicate that USP34-dependent deubiquitination is critical for root morphogenesis by stabilizing NFIC.
Collapse
Affiliation(s)
- Shuang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, Feng JQ, Zhao Z, Wu Y, Wang J. The vital role of Gli1 + mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol 2021; 236:6077-6089. [PMID: 33533019 DOI: 10.1002/jcp.30310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
He J, Jing J, Feng J, Han X, Yuan Y, Guo T, Pei F, Ma Y, Cho C, Ho TV, Chai Y. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet 2021; 17:e1009320. [PMID: 33596195 PMCID: PMC7920342 DOI: 10.1371/journal.pgen.1009320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.
Collapse
Affiliation(s)
- Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan province, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Fei Pei
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Courtney Cho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
36
|
Sheng R, Wang Y, Wu Y, Wang J, Zhang S, Li Q, Zhang D, Qi X, Xiao Q, Jiang S, Yuan Q. METTL3-Mediated m 6 A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. J Bone Miner Res 2021; 36:412-423. [PMID: 32936965 DOI: 10.1002/jbmr.4180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6 A), as a eukaryotic mRNA modification catalyzed by methyltransferase METTL3, is involved in various processes of development or diseases via regulating RNA metabolism. However, the effect of METTL3-mediated m6 A modification in tooth development has remained elusive. Here we show that METTL3 is prevalently expressed in odontoblasts, dental pulp cells, dental follicle cells, and epithelial cells in Hertwig's epithelial root sheath during tooth root formation. Depletion of METTL3 in human dental pulp cells (hDPCs) impairs proliferation, migration, and odontogenic differentiation. Furthermore, conditional knockout of Mettl3 in Osterix-expressing cells leads to short molar roots and thinner root dentin featured by decreased secretion of pre-dentin matrix and formation of the odontoblast process. Mechanistically, loss of METTL3 cripples the translational efficiency of the key root-forming regulator nuclear factor I-C (NFIC). The odontogenic capacity of METTL3-silenced hDPCs is partially rescued via overexpressing NFIC. Our findings suggest that m6 A methyltransferase METTL3 is crucial for tooth root development, uncovering a novel epigenetic mechanism in tooth root formation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rui Sheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Yang S, Choi H, Kim TH, Jeong JK, Liu Y, Harada H, Cho ES. Cell dynamics in Hertwig's epithelial root sheath are regulated by β-catenin activity during tooth root development. J Cell Physiol 2020; 236:5387-5398. [PMID: 33377198 PMCID: PMC8048837 DOI: 10.1002/jcp.30243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022]
Abstract
β‐catenin, a key mediator of Wnt signaling, plays multiple roles in tooth development. However, the role of β‐catenin in Hertwig's epithelial root sheath (HERS) during root formation remains unclear. In this study, we generated inducible tissue‐specific β‐catenin conditional knockout mice (Ctnnb1i∆shh) to investigate how β‐catenin in HERS affects tooth root development. The inactivation of β‐catenin in HERS led to interrupted root elongation due to premature disruption of HERS. This phenotype was accompanied by reduced cell‐cell adhesion and decreased expression of junctional proteins, as well as increased epithelial‐to‐mesenchymal transition of HERS cells upon β‐catenin depletion. Accordingly, stabilization of β‐catenin in HERS (Catnbi∆shh) led to the formation of unfragmented HERS and resulted in the failure of HERS dissociation, with increased expression of junctional proteins. Our results suggest that fine control of β‐catenin is important for HERS to guide root formation through regulating its structural integrity.
Collapse
Affiliation(s)
- Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| |
Collapse
|
38
|
Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci 2020; 62:299-305. [DOI: 10.1016/j.job.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
39
|
Li C, Duan G, Feng Y. Downregulation of miR-184 facilitates osseous differentiation in periodontal ligament stem cells by modulating nuclear factor I-C. J Dent Sci 2020; 16:668-675. [PMID: 33854717 PMCID: PMC8025194 DOI: 10.1016/j.jds.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/14/2020] [Indexed: 10/26/2022] Open
Abstract
Background/purpose PDLSCs (periodontal ligament stem cells), derived from dental tissues, are candidate cells for regeneration of dental tissues. MiRNAs could regulate osteogenic differentiation and the transformation into osteoblasts. This study was conducted to figure out how miR-184 regulates osteoblastic differentiation in PDLSCs. Materials and methods PDLSCs were isolated from premolars, and the osteoblastic differentiation was validated via Alizarin red staining and determination of ALP (alkaline phosphatase) activity. Expression of osteogenic specific genes were evaluated by western blot, and the expression pattern of miR-184 was determined by qRT-PCR. Target gene of miR-184 was then verified by dual luciferase reporter assay. Results Osteogenic-induced PDLSCs were successfully established with increased mineral deposition, ALP activity and protein expression of RUNX2 (runt-related transcription factor 2), osterix and BSP (bone sialoprotein). MiR-184 was reduced during osteoblastic differentiation of PDLSCs, and over-expression of miR-184 suppressed osteoblastic differentiation, as evidenced by reduction in mineral deposition, ALP activity and protein expression of RUNX2, osterix and BSP. MiR-184 could target NFI-C (nuclear factor I-C), and inhibit NFI-C expression in PDLSCs. NFI-C was enhanced during osteoblastic differentiation of PDLSCs, suggesting negative correlation with miR-184. Forced NFI-C expression promoted osteoblastic differentiation, and counteracted with the suppressive effects of miR-184 on osteoblastic differentiation. Conclusion Downregulation of miR-184 facilitates osteoblastic differentiation in PDLSCs by modulating NFI-C, providing novel therapeutic strategy for regeneration of dental tissues.
Collapse
Affiliation(s)
- Chunying Li
- Department of Stomatology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Guanglin Duan
- Department of Stomatology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yaopu Feng
- Department of Orthodontics, Baoji Stomatological Hospital, Baoji, Shaanxi, China
| |
Collapse
|
40
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Zhang Y, Xiao Q, Wu Z, Xu R, Zou S, Zhou C. AFF4 enhances odontogenic differentiation of human dental pulp cells. Biochem Biophys Res Commun 2020; 525:687-692. [PMID: 32139123 DOI: 10.1016/j.bbrc.2020.02.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
AFF4 is a component of super elongation complex (SECs) and functions as a scaffold protein to bridge the transcription elongation factors. It is associated with leukemia, HIV transcription, and head neck cancer. However, its role in odontogenic differentiation of dental pulp cells (DPCs) is unclear. Here, we show the expression of AFF4 is increased during odontogenesis. Depletion of AFF4 in human DPCs leads to a decrease of alkaline phosphatase (ALP) activity, calcium mineralization and odontogenic-related genes expression. On the contrary, Lentivirus-mediated overexpression of AFF4 induces the odontogenic potential of DPCs. Mechanistically, we found AFF4 regulates the transcription of NFIC, a key factor for tooth root formation. Overexpression of NFIC successfully rescues the restricted differentiation of AFF4-depleted cells. Our data demonstrate that AFF4 serves as a previously unknown regulator of odontogenesis.
Collapse
Affiliation(s)
- Yuning Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
43
|
Expression of NFIA and NFIB within the murine spinal cord. Gene Expr Patterns 2020; 35:119098. [PMID: 32068188 DOI: 10.1016/j.gep.2020.119098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The Nuclear factor I proteins comprise a family of transcription factors that are expressed in many developing and mature cell populations, including within the central nervous system. Within the embryonic mouse spinal cord, NFIA and NFIB are expressed by neural progenitor cells lining the central canal, where they act to promote astrocytic and oligodendrocytic lineage specification. Cells lining the mature spinal cord central canal retain characteristics of neural progenitor cells, but the expression of NFIA and NFIB within the mature spinal cord at a cell-type-specific level remains undefined. Here, we investigated where these two transcription factors are expressed within the adult mouse spinal cord. We reveal that both factors are expressed in similar cohorts of mature cells, including ependymal cells, interneurons and motor neurons. We also show robust and widespread expression of NFIA and NFIB within nestin-expressing cells following injury to the spinal cord. Collectively, these data provide a basis to further define what functional role(s) NFIA and NFIB play within the adult spinal cord.
Collapse
|
44
|
Omi M, Kulkarni AK, Raichur A, Fox M, Uptergrove A, Zhang H, Mishina Y. BMP-Smad Signaling Regulates Postnatal Crown Dentinogenesis in Mouse Molar. JBMR Plus 2020; 4:e10249. [PMID: 32149267 PMCID: PMC7017888 DOI: 10.1002/jbm4.10249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dentinogenesis, a formation of dentin by odontoblasts, is an essential process during tooth development. Bone morphogenetic proteins (BMPs) are one of the most crucial growth factors that contribute to dentin formation. However, it is still unclear how BMP signaling pathways regulate postnatal crown and root dentinogenesis. BMPs transduce signals through canonical Smad and non-Smad signaling pathways including p38 and ERK signaling pathways. To investigate the roles of Smad and non-Smad signaling pathways in dentinogenesis, we conditionally deleted Bmpr1a, which encodes the type 1A receptor for BMPs, to remove both Smad and non-Smad pathways in Osterix-expressing cells. We also expressed a constitutively activated form of Bmpr1a (caBmpr1a) to increase Smad1/5/9 signaling activity without altered non-Smad activity in odontoblasts. To understand the function of BMP signaling during postnatal dentin formation, Cre activity was induced at the day of birth. Our results showed that loss of BmpR1A in odontoblasts resulted in impaired dentin formation and short molar roots at postnatal day 21. Bmpr1a cKO mice displayed a reduction of dentin matrix production compared to controls associated with increased cell proliferation and reduced Osx and Dspp expression. In contrast, caBmpr1a mutant mice that show increased Smad1/5/9 signaling activity resulted in no overt tooth phenotype. To further dissect the functions of each signaling activity, we generated Bmpr1a cKO mice also expressing caBmpr1a to restore only Smad1/5/9 signaling activity. Restoring Smad activity in the compound mutant mice rescued impaired crown dentin formation in the Bmpr1a cKO mice; however, impaired root dentin formation and short roots were not changed. These results suggest that BMP-Smad signaling in odontoblasts is responsible for crown dentin formation, while non-Smad signaling may play a major role in root dentin formation and elongation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Anagha Raichur
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Mason Fox
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Amber Uptergrove
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| |
Collapse
|
45
|
Yu M, Jiang Z, Wang Y, Xi Y, Yang G. Molecular mechanisms for short root anomaly. Oral Dis 2020; 27:142-150. [PMID: 31883171 DOI: 10.1111/odi.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Short root anomaly (SRA) is a dental disorder that presents an abnormal root morphology with short and blunt dental roots. In this situation, many dental treatments face a difficult challenge, especially orthodontic and prosthodontic treatments. Therefore, an understanding of how SRA develops is urgently needed. Here we describe that the abnormal expression of nuclear factor I C-type (Nfic), osterix (Osx), hedgehog (Hh), bone morphogenetic proteins (BMPs), transforming growth factor-β (TGF-β), Smad, Wnt, β-catenin, and dickkopf-related protein 1 (DKK1) leads to SRA. These factors interact with each other and constitute complicated signaling network in tooth formation. Specifically, BMP signaling inhibits the activity of Wnt/β-catenin directly or by inducing Osx via Runx2-dependent and Runx2-independent pathways. And Osx is a main inhibitor of Wnt/β-catenin signaling. In return, Wnt/β-catenin signaling has an antagonistic action of BMP pathway and a stimulation of Runx2. We highlight the importance of Wnt/β-catenin signaling in the pathological mechanisms. Either suppression or overactivation of this signaling influences the normal odontogenesis. Finally, we list rescue experiments on animal models, which have been reported to restore the interrupted cell differentiation and impaired tooth formation. We hope to find potential treatments for SRA based on these evidences in the future.
Collapse
Affiliation(s)
- Mengjia Yu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhiwei Jiang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yang Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yue Xi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Guoli Yang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
46
|
Yu M, Liu Y, Wang Y, Wong SW, Wu J, Liu H, Feng H, Han D. Epithelial Wnt10a Is Essential for Tooth Root Furcation Morphogenesis. J Dent Res 2020; 99:311-319. [PMID: 31914354 DOI: 10.1177/0022034519897607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
WNT10A (Wingless-type MMTV integration site family, member 10A) plays a crucial role in tooth development, and patients with biallelic WNT10A mutation and mice lacking Wnt10a show taurodontism. However, whether epithelial or mesenchymal WNT10A controls the initiation of the root furcation formation remains unclear, and the functional significance of WNT10A in regulating root morphogenesis has not been clarified. Here, we investigated how Wnt10a affects tooth root development by generating different tissue-specific Wnt10a conditional knockout mice. Wnt10a knockout in the whole tissue (EIIa-Cre;Wnt10aflox/flox) and in dental epithelium (K14-Cre;Wnt10aflox/flox) led to an absence of or apically located root furcation in molars of mice, a phenotype that resembled taurodontism. An RNAscope analysis showed that the dynamic epithelial and mesenchymal Wnt10a expression pattern occurred during root development. Immunofluorescent staining of E-cadherin and EdU revealed decreased epithelial cell proliferation at the cervical region of the molar in K14-Cre;Wnt10aflox/flox mice at postnatal day 0 (PN0), just before the initiation of root morphogenesis. Interestingly, we found increased pulpal mesenchymal cell proliferation in the presumptive root furcating region of the molar in K14-Cre;Wnt10aflox/flox mice at PN4 and PN7. RNA-seq indicated that among the Wnt ligands with high endogenous expression levels in molars, Wnt4 was increased after epithelial knockout of Wnt10a. The RNAscope assay confirmed that the expression of Wnt4 and Axin2 in the dental papilla of the presumptive root furcating region, where dental pulp overgrowth occurred, was increased in K14-Cre;Wnt10aflox/flox molars. Furthermore, after suppression of the elevated Wnt4 level in K14-Cre;Wnt10aflox/flox molars by Wnt4 shRNA adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study provides the first in vivo evidence that epithelial Wnt10a guides root furcation formation and plays a crucial role in controlling the organized proliferation of adjacent mesenchymal cells by regulating proper Wnt4 expression during root furcation morphogenesis.
Collapse
Affiliation(s)
- M Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - S W Wong
- Division of Comprehensive Oral Care-Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - H Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - H Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - D Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
47
|
Poorebrahim M, Sadeghi S, Ghanbarian M, Kalhor H, Mehrtash A, Teimoori-Toolabi L. Identification of candidate genes and miRNAs for sensitizing resistant colorectal cancer cells to oxaliplatin and irinotecan. Cancer Chemother Pharmacol 2019; 85:153-171. [PMID: 31781855 DOI: 10.1007/s00280-019-03975-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022]
Abstract
Drug resistance to irinotecan and oxaliplatin, two widely used chemotherapeutic, has become a common problem in cancerous patients. Despite numerous valuable studies, distinct molecular mechanisms involved in the acquisition of resistance to these anti-cancer drugs have remained a challenge. In this study, we studied the possible resistance mechanisms to irinotecan and oxaliplatin in three CRC cell lines (HCT116, HT29, and LoVo) via integration of microarray data with gene regulatory networks. After determination of hub genes, corresponding miRNAs were predicted using several databases and used in construction and subsequent analysis of miRNA-gene networks. Following to preparation of chemo-resistance CRC cells, a standard real-time PCR was conducted for validation of in silico findings. Topological and functional enrichment analyses of the resulted networks introduced several previously reported drug-resistance genes as well as novel biomarkers as hub genes which seem to be crucial in resistance of colon cancer cells to irinotecan and oxaliplatin. Furthermore, results of the functional annotation revealed the essential role of different signaling pathways like metabolic pathways in drug resistance of CRC cell lines to these drugs. A part of in silico findings was also validated in vitro using oxaliplatin-resistant cell lines. While FOXC1 and NFIC were upregulated in cell lines which were resistant to oxaliplatin, silencing FOXC1 decreased the resistance of SW480 cell line to oxaliplatin. In conclusion, our comparative in silico and in vitro study introduces several novel genes and miRNAs as the resistance-mediators which can be used for sensitizing resistant CRC cells to oxaliplatin and irinotecan.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Ghanbarian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amirhosein Mehrtash
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Nagata M, Ono N, Ono W. Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. J Dent Res 2019; 99:133-142. [PMID: 31623502 DOI: 10.1177/0022034519882692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tooth eruption is a unique biological process by which highly mineralized tissues emerge into the outer world, and it occurs concomitantly with tooth root formation. These 2 processes have been considered independent phenomena; however, recent studies support the theory that they are indeed intertwined. Dental mesenchymal progenitor cells in the dental follicle lie at the heart of the coupling of these 2 processes, providing a source for diverse mesenchymal cells that support formation of the highly functional tooth root and the periodontal attachment apparatus, while facilitating formation of osteoclasts. These cells are regulated by autocrine signaling by parathyroid hormone-related protein (PTHrP) and its parathyroid hormone/PTHrP receptor PPR. This PTHrP-PPR signaling appears to crosstalk with other signaling pathways and regulates proper cell fates of mesenchymal progenitor cell populations. Disruption of this autocrine PTHrP-PPR signaling in these cells leads to defective formation of the periodontal attachment apparatus, tooth root malformation, and failure of tooth eruption in molars, which essentially recapitulate primary failure of eruption in humans, a rare genetic disorder exclusively affecting tooth eruption. Diversity and distinct functionality of these mesenchymal progenitor cell populations that regulate tooth eruption and tooth root formation are beginning to be unraveled.
Collapse
Affiliation(s)
- M Nagata
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - N Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Sunohara M, Kamata H, Maeda Y, Miwa Y, Karibe H, Sato I. Distribution of glutamate receptor, ionotropic, kainate 1 and neuropeptide calcitonin gene-related peptide mRNAs during formation of the embryonic and postnatal mouse molar in the maxilla. Ann Anat 2019; 227:151401. [PMID: 31330309 DOI: 10.1016/j.aanat.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is a well-characterized neurotransmitter. Glutamate receptor, ionotropic, kainate 1 (Grik1) has also been demonstrated to generate high-affinity kainate receptors. However, little is known about the roles of CGRP and Grik1 during the developmental formation of teeth. In this study, we endeavoured to analyse the expression and localization of CGRP and Grik1 mRNAs using in situ hybridization on the mouse maxilla during development from the embryonic stage (E18.5) to after birth (P10, P15 and P20). We found that hybridization with an anti-sense probe for CGRP clearly localized in the maxilla at E18.5 in contrast to that of P15 and P20. Hybridization with an anti-sense probe for CGRP was not detected in the dental pulp of molars in the maxilla at P10, which is in contrast to Grik1 mRNA at the same developmental stage. Hybridization with an anti-sense probe for Grik1 mRNA was detected in the basal region of the dental pulp of molars at P10 and P15. Finally, these markers were not detected in molars in the mouse maxilla at P20. The ratio of positive cells for the hybridization signals of Grik1and CGRP in the dental pulp decreased from E18.5 (p<0.001). These features in CGRP and Grik1r mRNAs may indicate roles of function during tooth development between embryonic and postnatal stages with root formation and erupted movements.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hiroaki Kamata
- Division of Pediatric Dentistry, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan; Department of Pediatric Dentistry, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Yuuki Maeda
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan; Division of Anatomy, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hiroyuki Karibe
- Department of Pediatric Dentistry, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
50
|
Murata Y, Kurosaka H, Ohata Y, Aikawa T, Takahata S, Fujii K, Miyashita T, Morita C, Inubushi T, Kubota T, Sakai N, Ozono K, Kogo M, Yamashiro T. A novel PTCH1 mutation in basal cell nevus syndrome with rare craniofacial features. Hum Genome Var 2019; 6:16. [PMID: 30962945 PMCID: PMC6445144 DOI: 10.1038/s41439-019-0047-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/06/2023] Open
Abstract
Basal cell nevus syndrome (BCNS) is a rare, multisystem, autosomal dominant disorder that is characterized by various phenotypes, including multiple basal cell carcinomas of the skin, odontogenic keratocysts of the jaws, and occasionally cleft lip and/or palate. In this report, we describe a 6-year-old Japanese girl with a novel heterozygous nonsense mutation in PTCH1 who exhibited rare craniofacial phenotypes, such as oligodontia and a short-tooth root.
Collapse
Affiliation(s)
- Yuka Murata
- 1Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hiroshi Kurosaka
- 1Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yasuhisa Ohata
- 2The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan.,3Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomonao Aikawa
- 2The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Sosuke Takahata
- 2The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Katsunori Fujii
- 4Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshiyuki Miyashita
- 5Department of Molecular Genetics, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Chisato Morita
- 1Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Toshihiro Inubushi
- 1Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takuo Kubota
- 3Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Sakai
- 3Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.,6Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Ozono
- 3Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mikihiko Kogo
- 2The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takashi Yamashiro
- 1Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|