1
|
Hossain MMN, Hu NW, Kazempour A, Murfee WL, Balogh P. Hemodynamic Characteristics of a Tortuous Microvessel Using High-Fidelity Red Blood Cell Resolved Simulations. Microcirculation 2024; 31:e12875. [PMID: 38989907 PMCID: PMC11471383 DOI: 10.1111/micc.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three-dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near-wall cell-free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel. METHODS RBC-resolved simulations were performed using an immersed boundary method-based 3D fluid dynamics solver. A representative tortuous microvessel was selected from a stimulated angiogenic network obtained from imaging of the rat mesentery and digitally reconstructed for the simulations. The representative microvessel was a venule with a diameter of approximately 20 μm. The model assumes a constant diameter along the vessel length and does not consider variations due to endothelial cell shapes or the endothelial surface layer. RESULTS Microvessel tortuosity was observed to increase blood apparent viscosity compared to a straight tube by up to 26%. WSS spatial variations in high curvature regions reached 23.6 dyne/cm2 over the vessel cross-section. The magnitudes of WSS and CFL thickness variations due to tortuosity were strongly influenced by shear rate and negligibly influenced by tube hematocrit levels. CONCLUSIONS New findings from this work reveal unique tortuosity-dependent hemodynamic characteristics over a range of conditions. The results provide new thought-provoking information to better understand the contribution of tortuous vessels in physiological and pathological processes and help improve reduced-order models.
Collapse
Affiliation(s)
- Mir Md Nasim Hossain
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Ali Kazempour
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Peter Balogh
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
2
|
Hu NW, Lomel BM, Rice EW, Hossain MMN, Sarntinoranont M, Secomb TW, Murfee WL, Balogh P. Estimation of shear stress heterogeneity along capillary segments in angiogenic rat mesenteric microvascular networks. Microcirculation 2023; 30:e12830. [PMID: 37688531 DOI: 10.1111/micc.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Fluid shear stress is thought to be a regulator of endothelial cell behavior during angiogenesis. The link, however, requires an understanding of stress values at the capillary level in angiogenic microvascular networks. Critical questions remain. What are the stresses? Do capillaries experience similar stress magnitudes? Can variations explain vessel-specific behavior? The objective of this study was to estimate segment-specific shear stresses in angiogenic networks. METHODS Images of angiogenic networks characterized by increased vascular density were obtained from rat mesenteric tissues stimulated by compound 48/80-induced mast cell degranulation. Vessels were identified by perfusion of a 40 kDa fixable dextran prior to harvesting and immunolabeling for PECAM. Using a network flow-based segment model with physiologically relevant parameters, stresses were computed per vessel for regions across multiple networks. RESULTS Stresses ranged from 0.003 to 2328.1 dyne/cm2 and varied dramatically at the capillary level. For all regions, the maximum segmental shear stresses were for capillary segments. Stresses along proximal capillaries branching from arteriole inlets were increased compared to stresses along capillaries in more distal regions. CONCLUSIONS The results highlight the variability of shear stresses along angiogenic capillaries and motivate new discussions on how endothelial cells may respond in vivo to segment-specific microenvironment during angiogenesis.
Collapse
Affiliation(s)
- Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Florida, Gainesville, USA
| | - Banks M Lomel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Florida, Gainesville, USA
| | - Elijah W Rice
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Florida, Gainesville, USA
| | - Mir Md Nasim Hossain
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, New Jersey, Newark, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Florida, Gainesville, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Arizona, Tucson, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Florida, Gainesville, USA
| | - Peter Balogh
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, New Jersey, Newark, USA
| |
Collapse
|
3
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
4
|
Dey M, Kim MH, Dogan M, Nagamine M, Kozhaya L, Celik N, Unutmaz D, Ozbolat IT. Chemotherapeutics and CAR-T Cell-Based Immunotherapeutics Screening on a 3D Bioprinted Vascularized Breast Tumor Model. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2203966. [PMID: 38938621 PMCID: PMC11209929 DOI: 10.1002/adfm.202203966] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/29/2024]
Abstract
Despite substantial advancements in development of cancer treatments, lack of standardized and physiologically-relevant in vitro testing platforms limit the early screening of anticancer agents. A major barrier is the complex interplay between the tumor microenvironment and immune response. To tackle this, a dynamic-flow based 3D bioprinted multi-scale vascularized breast tumor model, responding to chemo and immunotherapeutics is developed. Heterotypic tumors are precisely bioprinted at pre-defined distances from a perfused vasculature, exhibit tumor angiogenesis and cancer cell invasion into the perfused vasculature. Bioprinted tumors treated with varying dosages of doxorubicin for 72 h portray a dose-dependent drug response behavior. More importantly, a cell based immune therapy approach is explored by perfusing HER2-targeting chimeric antigen receptor (CAR) modified CD8+ T cells for 24 or 72 h. Extensive CAR-T cell recruitment to the endothelium, substantial T cell activation and infiltration to the tumor site, resulted in up to ≈70% reduction in tumor volumes. The presented platform paves the way for a robust, precisely fabricated, and physiologically-relevant tumor model for future translation of anti-cancer therapies to personalized medicine.
Collapse
Affiliation(s)
- Madhuri Dey
- Department of Chemistry, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Myoung Hwan Kim
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA
| | - Mikail Dogan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Momoka Nagamine
- Department of Chemistry, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nazmiye Celik
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA; Cancer Institute, Penn State University, Hershey, PA 17033, USA; Neurosurgery Department, Penn State University, Hershey, PA 17033, USA; Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
5
|
Zhang S, Kan EL, Kamm RD. Integrating functional vasculature into organoid culture: A biomechanical perspective. APL Bioeng 2022; 6:030401. [DOI: 10.1063/5.0097967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Ellen L. Kan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
6
|
Wang Y, Keshavarz M, Barhouse P, Smith Q. Strategies for Regenerative Vascular Tissue Engineering. Adv Biol (Weinh) 2022; 7:e2200050. [PMID: 35751461 DOI: 10.1002/adbi.202200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Vascularization remains one of the key challenges in creating functional tissue-engineered constructs for therapeutic applications. This review aims to provide a developmental lens on the necessity of blood vessels in defining tissue function while exploring stem cells as a suitable source for vascular tissue engineering applications. The intersections of stem cell biology, material science, and engineering are explored as potential solutions for directing vascular assembly.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Mozhgan Keshavarz
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Patrick Barhouse
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
7
|
Maung Ye SS, Kim JK, Carretero NT, Phng LK. High-Throughput Imaging of Blood Flow Reveals Developmental Changes in Distribution Patterns of Hemodynamic Quantities in Developing Zebrafish. Front Physiol 2022; 13:881929. [PMID: 35795647 PMCID: PMC9251365 DOI: 10.3389/fphys.2022.881929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces from blood flow and pressure (hemodynamic forces) contribute to the formation and shaping of the blood vascular network during embryonic development. Previous studies have demonstrated that hemodynamic forces regulate signaling and gene expression in endothelial cells that line the inner surface of vascular tubes, thereby modifying their cellular state and behavior. Given its important role in vascular development, we still know very little about the quantitative aspects of hemodynamics that endothelial cells experience due to the difficulty in measuring forces in vivo. In this study, we sought to determine the magnitude of wall shear stress (WSS) exerted on ECs by blood flow in different vessel types and how it evolves during development. Utilizing the zebrafish as a vertebrate model system, we have established a semi-automated high-throughput fluorescent imaging system to capture the flow of red blood cells in an entire zebrafish between 2- and 6-day post-fertilization (dpf). This system is capable of imaging up to 50 zebrafish at a time. A semi-automated analysis method was developed to calculate WSS in zebrafish trunk vessels. This was achieved by measuring red blood cell flow using particle tracking velocimetry analysis, generating a custom-made script to measure lumen diameter, and measuring local tube hematocrit levels to calculate the effective blood viscosity at each developmental stage. With this methodology, we were able to determine WSS magnitude in different vessels at different stages of embryonic and larvae growth and identified developmental changes in WSS, with absolute levels of peak WSS in all vessel types falling to levels below 0.3 Pa at 6 dpf. Additionally, we discovered that zebrafish display an anterior-to-posterior trend in WSS at each developmental stage.
Collapse
Affiliation(s)
- Swe Soe Maung Ye
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Jung Kyung Kim
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- School of Mechanical Engineering, Kookmin University, Seoul, South Korea
| | - Nuria Taberner Carretero
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- *Correspondence: Li-Kun Phng,
| |
Collapse
|
8
|
Yuge S, Nishiyama K, Arima Y, Hanada Y, Oguri-Nakamura E, Hanada S, Ishii T, Wakayama Y, Hasegawa U, Tsujita K, Yokokawa R, Miura T, Itoh T, Tsujita K, Mochizuki N, Fukuhara S. Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nat Commun 2022; 13:2594. [PMID: 35551172 PMCID: PMC9098626 DOI: 10.1038/s41467-022-30197-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is regulated in coordinated fashion by chemical and mechanical cues acting on endothelial cells (ECs). However, the mechanobiological mechanisms of angiogenesis remain unknown. Herein, we demonstrate a crucial role of blood flow-driven intraluminal pressure (IP) in regulating wound angiogenesis. During wound angiogenesis, blood flow-driven IP loading inhibits elongation of injured blood vessels located at sites upstream from blood flow, while downstream injured vessels actively elongate. In downstream injured vessels, F-BAR proteins, TOCA1 and CIP4, localize at leading edge of ECs to promote N-WASP-dependent Arp2/3 complex-mediated actin polymerization and front-rear polarization for vessel elongation. In contrast, IP loading expands upstream injured vessels and stretches ECs, preventing leading edge localization of TOCA1 and CIP4 to inhibit directed EC migration and vessel elongation. These data indicate that the TOCA family of F-BAR proteins are key actin regulatory proteins required for directed EC migration and sense mechanical cell stretching to regulate wound angiogenesis. Chemical and mechanical cues coordinately regulate angiogenesis. Here, the authors show that blood flow-driven intraluminal pressure regulates wound angiogenesis. Findings indicate that TOCA family of F-BAR proteins act as actin regulators required for endothelial cell migration and sense mechanical cell stretching to regulate wound angiogenesis.
Collapse
Affiliation(s)
- Shinya Yuge
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan. .,Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan.
| | - Yuichiro Arima
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasuyuki Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiology, Graduate School of Medicine, Nagoya University, Nagoya City, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
9
|
Tsaryk R, Yucel N, Leonard EV, Diaz N, Bondareva O, Odenthal-Schnittler M, Arany Z, Vaquerizas JM, Schnittler H, Siekmann AF. Shear stress switches the association of endothelial enhancers from ETV/ETS to KLF transcription factor binding sites. Sci Rep 2022; 12:4795. [PMID: 35314737 PMCID: PMC8938417 DOI: 10.1038/s41598-022-08645-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.
Collapse
Affiliation(s)
- Roman Tsaryk
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nora Yucel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Elvin V Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Noelia Diaz
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Olga Bondareva
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| | - Maria Odenthal-Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Institute of Neuropathology, Westfälische Wilhelms-Universität Münster, Pottkamp 2, 48149, Münster, Germany
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Hans Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Institute of Neuropathology, Westfälische Wilhelms-Universität Münster, Pottkamp 2, 48149, Münster, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Abstract
The kidney is a highly complex organ in the human body. Although creating an in vitro model of the human kidney is challenging, tremendous advances have been made in recent years. Kidney organoids are in vitro kidney models that are generated from stem cells in three-dimensional (3D) cultures. They exhibit remarkable degree of similarities with the native tissue in terms of cell type, morphology, and function. The establishment of 3D kidney organoids facilitates a mechanistic study of cell communications, and these organoids can be used for drug screening, disease modeling, and regenerative medicine applications. This review discusses the cellular complexity during in vitro kidney generation. We intend to highlight recent progress in kidney organoids and the applications of these relatively new technologies.
Collapse
|
11
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
12
|
The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics. PLoS Genet 2021; 17:e1009690. [PMID: 34319989 PMCID: PMC8318303 DOI: 10.1371/journal.pgen.1009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have focused on capillary pruning in various organs and species. However, the way in which large-diameter vessels are pruned remains unclear. Here we show that pruning of the zebrafish caudal vein (CV) from ventral capillaries of the CV plexus in different transgenic embryos is driven by endothelial cell (EC) rearrangement, which involves EC nucleus migration, junction remodeling, and actin cytoskeleton remodeling. Further observation reveals a growing difference in blood flow velocity between the two vessels in CV pruning in zebrafish embryos. With this model, we identify the critical role of Kruppel-like factor 6a (klf6a) in CV pruning. Disruption of klf6a functioning impairs CV pruning in zebrafish. klf6a is required for EC nucleus migration, junction remodeling, and actin cytoskeleton dynamics in zebrafish embryos. Moreover, actin-related protein transgelin 2 (tagln2) is a direct downstream target of klf6a in CV pruning in zebrafish embryos. Together these results demonstrate that the klf6a-tagln2 axis regulates CV pruning by promoting EC rearrangement. Vascular remodeling is critical for vascular physiology and pathology. The primitive vascular plexus formed by angiogenesis, subsequently undergoes extensive vascular remodeling to establish a functionally and hierarchically branched network of blood vessels. Vascular remodeling mainly consists of vessel pruning and fusion. Endothelial cell rearrangement plays an essential role in vessel pruning, which involves endothelial cell migration and polarity. Dysfunction of flow-induced vascular remodeling will cause arteriovenous malformation and impair reperfusion of ischemia stroke. In this study, we show that the large-diameter vessel of the caudal vein is pruned from ventral capillaries of the caudal vein plexus in zebrafish embryos. With this model, we observe a growing difference in blood flow velocity between two branches in vessel pruning. We identify that the klf6a-tagln2 axis regulates CV pruning by promoting endothelial cell rearrangement and junction remodeling. Our results suggest that the caudal vein formation is an ideal model for screening the potential genes involved in vascular remodeling-related disease.
Collapse
|
13
|
Campinho P, Lamperti P, Boselli F, Vilfan A, Vermot J. Blood Flow Limits Endothelial Cell Extrusion in the Zebrafish Dorsal Aorta. Cell Rep 2021; 31:107505. [PMID: 32294443 DOI: 10.1016/j.celrep.2020.03.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Blood flow modulates endothelial cell (EC) response during angiogenesis. Shear stress is known to control gene expression related to the endothelial-mesenchymal transition and endothelial-hematopoietic transition. However, the impact of blood flow on the cellular processes associated with EC extrusion is less well understood. To address this question, we dynamically record EC movements and use 3D quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories in the zebrafish dorsal aorta. We find that ECs spread toward the cell extrusion area following the tissue deformation direction dictated by flow-derived mechanical forces. Cell extrusion increases when blood flow is impaired. Similarly, the mechanosensor polycystic kidney disease 2 (pkd2) limits cell extrusion, suggesting that ECs actively sense mechanical forces in the process. These findings identify pkd2 and flow as critical regulators of EC extrusion and suggest that mechanical forces coordinate this process by maintaining ECs within the endothelium.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Paola Lamperti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Francesco Boselli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
14
|
Zhao P, Liu X, Zhang X, Wang L, Su H, Wang L, He N, Zhang D, Li Z, Kang H, Sun A, Chen Z, Zhou L, Wang M, Zhang Y, Deng X, Fan Y. Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model. LAB ON A CHIP 2021; 21:421-434. [PMID: 33351007 DOI: 10.1039/d0lc00493f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endothelial cells (ECs) in vivo are subjected to three forms of shear stress induced by luminal blood flow, transendothelial flow and interstitial flow simultaneously. It is controversial that shear stress, especially the component induced by luminal flow, was thought to inhibit the initialization of angiogenesis and trigger arteriogenesis. Here, we combined microfabrication techniques and delicate numerical simulations to reconstruct the initial physiological microenvironment of neovascularization in vitro, where ECs experience high luminal shear stress, physiological transendothelial flow and various vascular endothelial growth factor (VEGF) distributions simultaneously. With the biomimetic microfluidic model, cell alignment and endothelial sprouting assays were carried out. We found that luminal shear stress inhibits endothelial sprouting and tubule formation in a dose-dependent manner. Although a high concentration of VEGF increases EC sprouting, neither a positive nor a negative VEGF gradient additionally affects the degree of sprouting, and luminal shear stress significantly attenuates neovascularization even in the presence of VEGF. Heparinase was used to selectively degrade the heparan sulfate proteoglycan (HSPG) coating on ECs and messenger RNA profiles in ECs were analyzed. It turned out that HSPGs could act as a mechanosensor to sense the change of fluid shear stress, modulate multiple EC gene expressions, and hence affect neovascularization. In summary, distraction from the stabilized state, such as decreased luminal shear stress, increased VEGF and the destructed mechanotransduction of HSPGs would induce the initiation of neovascularization. Our study highlights the key role of the magnitude and forms of shear stress in neovascularization.
Collapse
Affiliation(s)
- Ping Zhao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhan K, Bai L, Hu Q. Selective induction of sprouting and intussusception is associated with the concentration distributions of oxygen and hypoxia-induced VEGF. Microvasc Res 2020; 132:104041. [DOI: 10.1016/j.mvr.2020.104041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
|
16
|
Tabibian A, Ghaffari S, Vargas DA, Van Oosterwyck H, Jones EAV. Simulating flow induced migration in vascular remodelling. PLoS Comput Biol 2020; 16:e1007874. [PMID: 32822340 PMCID: PMC7478591 DOI: 10.1371/journal.pcbi.1007874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/08/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Shear stress induces directed endothelial cell (EC) migration in blood vessels leading to vessel diameter increase and induction of vascular maturation. Other factors, such as EC elongation and interaction between ECs and non-vascular areas are also important. Computational models have previously been used to study collective cell migration. These models can be used to predict EC migration and its effect on vascular remodelling during embryogenesis. We combined live time-lapse imaging of the remodelling vasculature of the quail embryo yolk sac with flow quantification using a combination of micro-Particle Image Velocimetry and computational fluid dynamics. We then used the flow and remodelling data to inform a model of EC migration during remodelling. To obtain the relation between shear stress and velocity in vitro for EC cells, we developed a flow chamber to assess how confluent sheets of ECs migrate in response to shear stress. Using these data as an input, we developed a multiphase, self-propelled particles (SPP) model where individual agents are driven to migrate based on the level of shear stress while maintaining appropriate spatial relationship to nearby agents. These agents elongate, interact with each other, and with avascular agents at each time-step of the model. We compared predicted vascular shape to real vascular shape after 4 hours from our time-lapse movies and performed sensitivity analysis on the various model parameters. Our model shows that shear stress has the largest effect on the remodelling process. Importantly, however, elongation played an especially important part in remodelling. This model provides a powerful tool to study the input of different biological processes on remodelling. Shear stress is known to play a leading role in endothelial cell (EC) migration and hence, vascular remodelling. Vascular remodelling is, however, more complicated than only EC migration. To achieve a better understanding of this process, we developed a computational model in which, shear stress mediated EC migration has the leading role and other factors, such as avascular regions and EC elongation, are also accounted for. We have tested this model for different vessel shapes during remodelling and could study the role that each of these factors play in remodelling. This model gives us the possibility of addition of other factors such as biochemical signals and angiogenesis which will help us in the study of vascular remodelling in both development and disease.
Collapse
Affiliation(s)
- Ashkan Tabibian
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, Saint Michael’s Hospital, Toronto, Canada
| | - Diego A. Vargas
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
- * E-mail:
| |
Collapse
|
17
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Yoshino D, Funamoto K, Sato K, Kenry, Sato M, Lim CT. Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling. Commun Biol 2020; 3:152. [PMID: 32242084 PMCID: PMC7118103 DOI: 10.1038/s42003-020-0881-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular tubulogenesis is tightly linked with physiological and pathological events in the living body. Endothelial cells (ECs), which are constantly exposed to hemodynamic forces, play a key role in tubulogenesis. Hydrostatic pressure in particular has been shown to elicit biophysical and biochemical responses leading to EC-mediated tubulogenesis. However, the relationship between tubulogenesis and hydrostatic pressure remains to be elucidated. Here, we propose a specific mechanism through which hydrostatic pressure promotes tubulogenesis. We show that pressure exposure transiently activates the Ras/extracellular signal-regulated kinase (ERK) pathway in ECs, inducing endothelial tubulogenic responses. Water efflux through aquaporin 1 and activation of protein kinase C via specific G protein–coupled receptors are essential to the pressure-induced transient activation of the Ras/ERK pathway. Our approach could provide a basis for elucidating the mechanopathology of tubulogenesis-related diseases and the development of mechanotherapies for improving human health. Yoshino et al. investigate the mechanism by which exposure to pressure promotes endothelial cells to form tubes and find that Aquaporin-mediated water efflux activates the Ras-ERK pathway via PKC and GPCR activation. These findings may be relevant to understand how blood pressure affects vascular tubulogenesis.
Collapse
Affiliation(s)
- Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan. .,Mechanobiology Institute, National University of Singapore, #10-01 T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan. .,Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Kenichi Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan.,Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kakeru Sato
- Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan.,Tokyo Gas Co., Ltd., 1-5-20 Kaigan, Minato-ku, Tokyo, 105-8527, Japan
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Masaaki Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, #10-01 T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, #14-01 MD6, 14 Medical Drive, Singapore, 117599, Singapore.
| |
Collapse
|
21
|
Khoshdel Rad N, Aghdami N, Moghadasali R. Cellular and Molecular Mechanisms of Kidney Development: From the Embryo to the Kidney Organoid. Front Cell Dev Biol 2020; 8:183. [PMID: 32266264 PMCID: PMC7105577 DOI: 10.3389/fcell.2020.00183] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Development of the metanephric kidney is strongly dependent on complex signaling pathways and cell-cell communication between at least four major progenitor cell populations (ureteric bud, nephron, stromal, and endothelial progenitors) in the nephrogenic zone. In recent years, the improvement of human-PSC-derived kidney organoids has opened new avenues of research on kidney development, physiology, and diseases. Moreover, the kidney organoids provide a three-dimensional (3D) in vitro model for the study of cell-cell and cell-matrix interactions in the developing kidney. In vitro re-creation of a higher-order and vascularized kidney with all of its complexity is a challenging issue; however, some progress has been made in the past decade. This review focuses on major signaling pathways and transcription factors that have been identified which coordinate cell fate determination required for kidney development. We discuss how an extensive knowledge of these complex biological mechanisms translated into the dish, thus allowed the establishment of 3D human-PSC-derived kidney organoids.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Stephens CJ, Spector JA, Butcher JT. Biofabrication of thick vascularized neo-pedicle flaps for reconstructive surgery. Transl Res 2019; 211:84-122. [PMID: 31170376 PMCID: PMC6702068 DOI: 10.1016/j.trsl.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Wound chronicity due to intrinsic and extrinsic factors perturbs adequate lesion closure and reestablishment of the protective skin barrier. Immediate and proper care of chronic wounds is necessary for a swift recovery and a reduction of patient vulnerability to infection. Advanced therapies supplemented with standard wound care procedures have been clinically implemented to restore aberrant tissue; however, these treatments are ineffective if local vasculature is too compromised to support minimally-invasive strategies. Autologous "flaps", which are tissues equipped with their own hierarchical vascular supply, can be harvested from one region of the patient and transplanted to the wound where it is reperfused upon microsurgical anastomosis to appropriate recipient vessels. Despite the success of autologous flap transfer, these procedures are extremely invasive, incur obligatory donor-site morbidity, and require sufficient donor-tissue availability, microsurgical expertise, and specialized equipment. 3D-bioprinting modalities, such as extrusion-based bioprinting, can be used to address the clinical constraints of autologous flap transfer, primarily addressing donor-site morbidity and tissue availability. This advancement in regenerative medicine allows the biofabrication of heterogeneous tissue structures with high shape fidelity and spatial resolution to generate biomimetic constructs with the anatomically-precise geometries of native tissue to ensure tissue-specific function. Yet, meaningful progress toward this clinical application has been limited by the lack of vascularization required to meet the nutrient and oxygen demands of clinically relevant tissue volumes. Thus, various criteria for the fabrication of functional tissues with hierarchical, patent vasculature must be considered when implementing 3D-bioprinting technologies for deep, chronic wounds.
Collapse
Affiliation(s)
- Chelsea J Stephens
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jason A Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Division of Plastic Surgery, Weill Cornell Medical College, New York, New York
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
23
|
Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model. MICROMACHINES 2019; 10:mi10070451. [PMID: 31277456 PMCID: PMC6680389 DOI: 10.3390/mi10070451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.
Collapse
|
24
|
Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. Bioessays 2019; 41:e1800198. [PMID: 30805984 PMCID: PMC6478158 DOI: 10.1002/bies.201800198] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Indexed: 12/13/2022]
Abstract
A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.
Collapse
Affiliation(s)
- Kristy Red-Horse
- Department of Biology, Stanford University, Stanford 94305 California,
| | - Arndt F. Siekmann
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104 Pennsylvania,
| |
Collapse
|
25
|
Caporali A, Bäck M, Daemen MJ, Hoefer IE, Jones EA, Lutgens E, Matter CM, Bochaton-Piallat ML, Siekmann AF, Sluimer JC, Steffens S, Tuñón J, Vindis C, Wentzel JJ, Ylä-Herttuala S, Evans PC. Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology. Cardiovasc Res 2018; 114:1411-1421. [PMID: 30016405 PMCID: PMC6106103 DOI: 10.1093/cvr/cvy184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.
Collapse
Affiliation(s)
- Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and University Hospital Stockholm, Stockholm, Sweden
- INSERM U1116, University of Lorraine, Nancy University Hospital, Nancy, France
| | - Mat J Daemen
- Department of Pathology, Academic Medical Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Imo E Hoefer
- Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, Netherlands
| | | | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003–CiM), University of Muenster, Muenster, Germany
| | - Judith C Sluimer
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Steffens
- Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - José Tuñón
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Cecile Vindis
- INSERM U1048/Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Jolanda J Wentzel
- Department of Cardiology, Biomechanics Laboratory, Erasmus MC, Rotterdam, The Netherlands
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, the INSIGNEO Institute for In Silico Medicine and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
A multi-step transcriptional cascade underlies vascular regeneration in vivo. Sci Rep 2018; 8:5430. [PMID: 29615716 PMCID: PMC5882937 DOI: 10.1038/s41598-018-23653-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
The molecular mechanisms underlying vascular regeneration and repair are largely unknown. To gain insight into this process, we developed a method of intima denudation, characterized the progression of endothelial healing, and performed transcriptome analysis over time. Next-generation RNA sequencing (RNAseq) provided a quantitative and unbiased gene expression profile during in vivo regeneration following denudation injury. Our data indicate that shortly after injury, cells immediately adjacent to the wound mount a robust and rapid response with upregulation of genes like Jun, Fos, Myc, as well as cell adhesion genes. This was quickly followed by a wave of proliferative genes. After completion of endothelial healing a vigorous array of extracellular matrix transcripts were upregulated. Gene ontology enrichment and protein network analysis were used to identify transcriptional profiles over time. Further data mining revealed four distinct stages of regeneration: shock, proliferation, acclimation, and maturation. The transcriptional signature of those stages provides insight into the regenerative machinery responsible for arterial repair under normal physiologic conditions.
Collapse
|
28
|
Akbari E, Spychalski GB, Rangharajan KK, Prakash S, Song JW. Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. LAB ON A CHIP 2018; 18:1084-1093. [PMID: 29488533 PMCID: PMC7337251 DOI: 10.1039/c8lc00130h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endothelial barrier function is known to be regulated by a number of molecular mechanisms; however, the role of biomechanical signals associated with blood flow is comparatively less explored. Biomimetic microfluidic models comprised of vessel analogues that are lined with endothelial cells (ECs) have been developed to help answer several fundamental questions in endothelial mechanobiology. However, previously described microfluidic models have been primarily restricted to single straight or two parallel vessel analogues, which do not model the bifurcating vessel networks typically present in physiology. Therefore, the effects of hemodynamic stresses that arise due to bifurcating vessel geometries on ECs are not well understood. Here, we introduce and characterize a microfluidic model that mimics both the flow conditions and the endothelial/extracellular matrix (ECM) architecture of bifurcating blood vessels to systematically monitor changes in endothelial permeability mediated by the local flow dynamics at specific locations along the bifurcating vessel structure. We show that bifurcated fluid flow (BFF) that arises only at the base of a vessel bifurcation and is characterized by stagnation pressure of ∼38 dyn cm-2 and approximately zero shear stress induces significant decrease in EC permeability compared to the static control condition in a nitric oxide (NO)-dependent manner. Similarly, intravascular laminar shear stress (LSS) (3 dyn cm-2) oriented tangential to ECs located downstream of the vessel bifurcation also causes a significant decrease in permeability compared to the static control condition via the NO pathway. In contrast, co-application of transvascular flow (TVF) (∼1 μm s-1) with BFF and LSS rescues vessel permeability to the level of the static control condition, which suggests that TVF has a competing role against the stabilization effects of BFF and LSS. These findings introduce BFF at the base of vessel bifurcations as an important regulator of vessel permeability and suggest a mechanism by which local flow dynamics control vascular function in vivo.
Collapse
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Scott Laboratory, 201 W. 19th Ave, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
29
|
García-Cardeña G, Slegtenhorst BR. Hemodynamic Control of Endothelial Cell Fates in Development. Annu Rev Cell Dev Biol 2017; 32:633-648. [PMID: 27712101 DOI: 10.1146/annurev-cellbio-100814-125610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. From the onset of blood flow, the embryonic vasculature is continuously exposed to a variety of hemodynamic forces. These biomechanical stimuli are key determinants of vascular cell specification and remodeling and the establishment of vascular homeostasis. In recent years, major advances have been made in our understanding of mechano-activated signaling networks that control both spatiotemporal and structural aspects of vascular development. It has become apparent that a major site for mechanotransduction is situated at the interface of blood and the vessel wall and that this process is controlled by the vascular endothelium. In this review, we discuss the hemodynamic control of endothelial cell fates, focusing on arterial-venous specification, lymphatic development, and the endothelial-to-hematopoietic transition, and present some recent insights into the mechano-activated pathways driving these cell fate decisions in the developing embryo.
Collapse
Affiliation(s)
- Guillermo García-Cardeña
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Bendix R Slegtenhorst
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Surgery, Erasmus MC-University Medical Center, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Weinstein N, Mendoza L, Gitler I, Klapp J. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis. Front Physiol 2017; 8:960. [PMID: 29230182 PMCID: PMC5711888 DOI: 10.3389/fphys.2017.00960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs) covered by one or more layers of mural cells (smooth muscle cells or pericytes). We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.
Collapse
Affiliation(s)
- Nathan Weinstein
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
| | - Luis Mendoza
- CompBioLab, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isidoro Gitler
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Klapp
- ABACUS-Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City, Mexico
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Mexico City, Mexico
| |
Collapse
|
31
|
Park YG, Choi J, Jung HK, Song IK, Shin Y, Park SY, Seol JW. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy. Int J Mol Med 2017; 40:1210-1216. [PMID: 28849193 PMCID: PMC5593466 DOI: 10.3892/ijmm.2017.3108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow-induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR-3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Jawun Choi
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Hye-Kang Jung
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - In Kyu Song
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Yongwhan Shin
- Auckland International College, Auckland 0600, New Zealand
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| |
Collapse
|
32
|
Chong DC, Yu Z, Brighton HE, Bear JE, Bautch VL. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis. Arterioscler Thromb Vasc Biol 2017; 37:1903-1912. [PMID: 28838921 PMCID: PMC5627535 DOI: 10.1161/atvbaha.117.309993] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. Approach and Results— We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. Conclusions— A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention.
Collapse
Affiliation(s)
- Diana C Chong
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - Zhixian Yu
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - Hailey E Brighton
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - James E Bear
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - Victoria L Bautch
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill.
| |
Collapse
|
33
|
Akbari E, Spychalski GB, Song JW. Microfluidic approaches to the study of angiogenesis and the microcirculation. Microcirculation 2017; 24. [DOI: 10.1111/micc.12363] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus OH USA
| | | | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus OH USA
- The Comprehensive Cancer Center The Ohio State University Columbus OH USA
| |
Collapse
|
34
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
35
|
Ghaffari S, Leask RL, Jones EAV. Blood flow can signal during angiogenesis not only through mechanotransduction, but also by affecting growth factor distribution. Angiogenesis 2017; 20:373-384. [DOI: 10.1007/s10456-017-9553-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
|
36
|
Abstract
PURPOSE OF REVIEW The study of cardiac development is critical to inform management strategies for congenital and acquired heart disease. This review serves to highlight some of the advances in this field over the past year. RECENT FINDINGS Three main areas of study are included that have been particularly innovative and progressive. These include more precise gene targeting in animal models of disease and in moving from animal models to human disease, more precise in-vitro models including three-dimensional structuring and inclusion of hemodynamic components, and expanding the concepts of genetic regulation of heart development and disease. SUMMARY Targeted genetics in animal models are able to make use of tissue and time-specific promotors that drive gene expression or knockout with high specificity. In-vitro models can recreate flow patterns in blood vessels and across cardiac valves. Noncoding RNAs, once thought to be of no consequence to gene transcription and translation, prove to be key regulators of genetic function in health and disease.
Collapse
|
37
|
Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 2016; 74:279-292. [PMID: 27506620 PMCID: PMC5219012 DOI: 10.1007/s00018-016-2325-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell-cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell-cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell-cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell-cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.
Collapse
|
38
|
Chappell JC, Cluceru JG, Nesmith JE, Mouillesseaux KP, Bradley VB, Hartland CM, Hashambhoy-Ramsay YL, Walpole J, Peirce SM, Mac Gabhann F, Bautch VL. Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovasc Res 2016; 111:84-93. [PMID: 27142980 DOI: 10.1093/cvr/cvw091] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/03/2016] [Indexed: 01/09/2023] Open
Abstract
AIMS In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. METHODS AND RESULTS Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages-sprout initiation, extension, connection, and stability-that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1(-/-) mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1(-/-) vascular networks, with an overall outcome of reduced numbers of new conduits. CONCLUSIONS These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Roanoke, VA 24014, USA
| | - Julia G Cluceru
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica E Nesmith
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin P Mouillesseaux
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vanessa B Bradley
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Roanoke, VA 24014, USA
| | - Caitlin M Hartland
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, Roanoke, VA 24014, USA
| | - Yasmin L Hashambhoy-Ramsay
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Walpole
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
McCormick ME, Tzima E. Pulling on my heartstrings: mechanotransduction in cardiac development and function. Curr Opin Hematol 2016; 23:235-42. [PMID: 26906028 PMCID: PMC4823169 DOI: 10.1097/moh.0000000000000240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Endothelial cells line the surface of the cardiovascular system and display a large degree of heterogeneity due to developmental origin and location. Despite this heterogeneity, all endothelial cells are exposed to wall shear stress (WSS) imparted by the frictional force of flowing blood, which plays an important role in determining the endothelial cell phenotype. Although the effects of WSS have been greatly studied in vascular endothelial cells, less is known about the role of WSS in regulating cardiac function and cardiac endothelial cells. RECENT FINDINGS Recent advances in genetic and imaging technologies have enabled a more thorough investigation of cardiac hemodynamics. Using developmental models, shear stress sensing by endocardial endothelial cells has been shown to play an integral role in proper cardiac development including morphogenesis and formation of the conduction system. In the adult, less is known about hemodynamics and endocardial endothelial cells, but a clear role for WSS in the development of coronary and valvular disease is increasingly appreciated. SUMMARY Future research will further elucidate a role for WSS in the developing and adult heart, and understanding this dynamic relationship may represent a potential therapeutic target for the treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Margaret E. McCormick
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ellie Tzima
- Division of Cardiovascular Medicine,Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK
| |
Collapse
|
40
|
Makanya AN. Membrane mediated development of the vertebrate blood-gas-barrier. ACTA ACUST UNITED AC 2016; 108:85-97. [PMID: 26991887 DOI: 10.1002/bdrc.21120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 01/24/2023]
Abstract
During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis.
Collapse
Affiliation(s)
- Andrew N Makanya
- Department of Vet Anatomy and Physiology, Riverside Drive, Chiromo Campus, University of , Box 30197-00100, Nairobi
| |
Collapse
|