1
|
Champroux A, Tang Y, Dickson DA, Meng A, Harrington A, Liaw L, Marzi M, Nicassio F, Schlaeger TM, Feig LA. Transmission of reduced levels of miR-34/449 from sperm to preimplantation embryos is a key step in the transgenerational epigenetic inheritance of the effects of paternal chronic social instability stress. Epigenetics 2024; 19:2346694. [PMID: 38739481 PMCID: PMC11093028 DOI: 10.1080/15592294.2024.2346694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.
Collapse
Affiliation(s)
- Alexandre Champroux
- Development, Molecular & Chemical Biology/Medical, Tufts University, Boston, MA, USA
| | - Yang Tang
- Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA
| | - David A. Dickson
- Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Alice Meng
- Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Anne Harrington
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Lucy Liaw
- Center for Genomic Studies, Instituto Italiano di Tecnologia Institution, Milan, Italy
| | - Matteo Marzi
- Center for Genomic Studies, Instituto Italiano di Tecnologia Institution, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Studies, Instituto Italiano di Tecnologia Institution, Milan, Italy
| | | | - Larry A. Feig
- Development, Molecular & Chemical Biology/Medical, Tufts University, Boston, MA, USA
- Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03594-7. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
3
|
Champroux A, Sadat-Shirazi M, Chen X, Hacker J, Yang Y, Feig LA. Astrocyte-Derived Exosomes Regulate Sperm miR-34c Levels to Mediate the Transgenerational Effects of Paternal Chronic Social Instability Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.21.537854. [PMID: 37786715 PMCID: PMC10541588 DOI: 10.1101/2023.04.21.537854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content that induce stress-specific phenotypes in their offspring. But how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring. Here we describe evidence that a strocyte-derived exos omes ( A-Exos ) carrying miR-34c mediate how CSI stress has this transgenerational effect on sperm. We found that CSI stress decreases miR-34c carried by A-Exos in the prefrontal cortex and amygdala, as well as in the blood of males. Importantly, miR-34c A-Exos levels are also reduced in these tissues in their F1 male offspring, who despite not being exposed to stress exhibit reduced sperm miR-34c levels and transmit the same stress-associated traits to their male and female offspring. Furthermore, restoring A-Exos miR-34c content in the blood of CSI-stressed males by intravenous injection of miR-34c-containing A-Exos restores miR-34c levels in their sperm. These findings reveal an unexpected role for A-Exos in maintaining sperm miR-34c levels by a process that when suppressed by CSI stress mediates this example of transgenerational epigenetic inheritance.
Collapse
|
4
|
Pinto S, Pereira SC, Rocha A, Barros A, Alves MG, Oliveira PF. Sperm-borne miR-34c-5p and miR-191-3p as markers for sperm motility and embryo developmental competence. Andrology 2024. [PMID: 39044679 DOI: 10.1111/andr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Sperm-borne microRNAs play a pivotal role in influencing essential cellular processes during fertilization, impacting the quality of embryo development. Dysregulated microRNA profiles have been associated with compromised embryonic development and increased incidences of pregnancy loss. OBJECTIVE This study aimed to investigate the potential associations between the abundance of miR-34c-5p and miR-191-3p in human spermatozoa with sperm quality, as well as with embryo quality and metabolic performance during in vitro development. MATERIALS AND METHODS Thirteen couples who underwent a total of 13 cycles participated in this study. The sperm quality was assessed using conventional methods following World Health Organization guidelines. Quantitative polymerase chain reaction was employed to measure microRNA abundance in spermatozoa. Embryos were categorized as good, lagging, or bad based on morphokinetic evaluation. Evaluation of embryo metabolic performance involved tracking changes in specific metabolites within the cultured media using nuclear magnetic resonance spectroscopy. Statistical analysis was conducted to explore the correlation between microRNA abundance in human spermatozoa and all other collected data. RESULTS Our findings revealed a negative correlation between the abundance of miR-34c-5p (but not miR-191-3p) and total sperm motility, potentially mediated by the modulation of key signaling pathways. Additionally, higher levels of miR-34c-5p in spermatozoa were strongly associated with the consumption or release of key metabolites by developing embryos, particularly those linked with lipid and glucose metabolism, suggesting enhanced metabolic performance, while miR-191-3p was mostly associated with glucose consumption. Concurrently, only miR-34c-5p content in spermatozoa correlated with higher embryo quality. DISCUSSION AND CONCLUSION This study provides evidence suggesting that the abundance of miR-34c-5p in spermatozoa is correlated not only with total sperm motility but also with markers of embryo developmental competence, highlighting the potential significance of this sperm microRNA content as a biomarker in assisted reproduction.
Collapse
Affiliation(s)
- Soraia Pinto
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Sara C Pereira
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - António Rocha
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Ing NH, Konganti K, Ghaffar N, Johnson CD, Forrest DW, Love CC, Varner DD. Specific microRNAs in stallion spermatozoa are potential biomarkers of high functionality. Reprod Domest Anim 2024; 59:e14674. [PMID: 39005151 DOI: 10.1111/rda.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Males of some species, from horses to humans, require medical help for subfertility problems. There is an urgent need for novel molecular assays that reflect spermatozoal function. In the last 25 years, studies examined RNAs in spermatozoa as a window into gene expression during their development and, more recently, for their functions in early embryo development. In clinics, more dense spermatozoa are isolated by density gradient centrifugation before use in artificial insemination to increase pregnancy rates. The objectives of the current study were to discover and quantify the microRNAs in stallion spermatozoa and identify those with differential expression levels in more dense versus less dense spermatozoa. First, spermatozoa from seven stallions were separated into more dense and less dense populations by density gradient centrifugation. Next, small RNAs were sequenced from each of the 14 RNA samples. We identified 287 different mature microRNAs within the 11,824,720 total mature miRNA reads from stallion spermatozoa. The most prevalent was miR-10a/b-5p. The less dense spermatozoa had fewer mature microRNAs and more microRNA precursor sequences than more dense spermatozoa, perhaps indicating that less dense spermatozoa are less mature. Two of the most prevalent microRNAs in more dense stallion spermatozoa were predicted to target mRNAs that encode proteins that accelerate mRNA decay. Nine microRNAs were more highly expressed in more dense spermatozoa. Three of those microRNAs were predicted to target mRNAs that encode proteins involved in protein decay. Both mRNA and protein decay are very active in late spermiogenesis but not in mature spermatozoa. The identified microRNAs may be part of the mechanism to shut down those processes. The microRNAs with greater expression in more dense spermatozoa may be useful biomarkers for spermatozoa with greater functional capabilities.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Noushin Ghaffar
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M University, College Station, Texas, USA
| | - David W Forrest
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Charles C Love
- Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
7
|
Hitit M, Kaya A, Memili E. Sperm long non-coding RNAs as markers for ram fertility. Front Vet Sci 2024; 11:1337939. [PMID: 38799722 PMCID: PMC11117017 DOI: 10.3389/fvets.2024.1337939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
It is critical in sheep farming to accurately estimate ram fertility for maintaining reproductive effectiveness and for production profitability. However, there is currently a lack of reliable biomarkers to estimate semen quality and ram fertility, which is hindering advances in animal science and technology. The objective of this study was to uncover long non-coding RNAs (lncRNAs) in sperm from rams with distinct fertility phenotypes. Mature rams were allocated into two groups: high and low fertility (HF; n = 31; 94.5 ± 2.8%, LF; n = 25; 83.1 ± 5.73%; P = 0.028) according to the pregnancy rates sired by the rams (average pregnancy rate; 89.4 ± 7.2%). Total RNAs were isolated from sperm of the highest- and lowest-fertility rams (n = 4, pregnancy rate; 99.2 ± 1.6%, and 73.6 ± 4.4%, respectively) followed by next-generation sequencing of the transcripts. We uncovered 11,209 lncRNAs from the sperm of rams with HF and LF. In comparison to each other, there were 93 differentially expressed (DE) lncRNAs in sperm from the two distinct fertility phenotypes. Of these, 141 mRNAs were upregulated and 134 were downregulated between HF and LF, respectively. Genes commonly enriched for 9 + 2 motile cilium and sperm flagellum were ABHD2, AK1, CABS1, ROPN1, SEPTIN2, SLIRP, and TEKT3. Moreover, CABS1, CCDC39, CFAP97D1, ROPN1, SLIRP, TEKT3, and TTC12 were commonly enriched in flagellated sperm motility and sperm motility. Differentially expressed mRNAs were enriched in the top 16 KEGG pathways. Targets of the differentially expressed lncRNAs elucidate functions in cis and trans manner using the genetic context of the lncRNA locus, and lncRNA sequences revealed 471 mRNAs targets of 10 lncRNAs. This study illustrates the existence of potential lncRNA biomarkers that can be implemented in analyzing the quality of ram sperm and determining the sperm fertility and is used in breeding soundness exams for precision livestock farming to ensure food security on a global scale.
Collapse
Affiliation(s)
- Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Türkiye
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Abdullah Kaya
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Erdogan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
8
|
Hamilton M, Russell S, Swanson GM, Krawetz SA, Menezes K, Moskovtsev SI, Librach C. A comprehensive analysis of spermatozoal RNA elements in idiopathic infertile males undergoing fertility treatment. Sci Rep 2024; 14:10316. [PMID: 38705876 PMCID: PMC11070429 DOI: 10.1038/s41598-024-60586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.
Collapse
Affiliation(s)
| | | | - Grace M Swanson
- Department of Obstetrics and Gynecology, Center for Molecular Medicine & Genetics, C.S. Mott Center, Wayne State University School of Medicine, Detroit, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Center for Molecular Medicine & Genetics, C.S. Mott Center, Wayne State University School of Medicine, Detroit, USA
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
9
|
Mehta P, Singh R. Small RNAs: an ideal choice as sperm quality biomarkers. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1329760. [PMID: 38406667 PMCID: PMC10884189 DOI: 10.3389/frph.2024.1329760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Spermatozoa were classically known as vehicles for the delivery of the paternal genome to the oocyte. However, in 1962, spermatozoa were discovered to carry significant amounts of RNA in them, which raised questions about the significance of these molecules in such a highly specialized cell. Scientific research in the last six decades has investigated the biological significance of sperm RNAs by various means. Irrespective of what sperm RNAs do, their presence in spermatozoa has attracted attention for their exploitation as biomarkers of fertility. Research in this direction started in the year 2000 and is still underway. A major hurdle in this research is the definition of the standard human sperm RNAome. Only a few normozoospermic samples have been analyzed to define the normal sperm RNAome. In this article, we provide a perspective on the suitability of sperm RNAs as biomarkers of fertility and the importance of defining the normal sperm RNAome before we can succeed in identifying RNA-based biomarkers of sperm quality and fertility. The identification of sperm RNA biomarkers of fertility can be exploited for quality screening of donor sperm samples, explain infertility in idiopathic cases, and RNA therapeutics for the treatment of male infertility.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Schall PZ, Latham KE. Predictive modeling of oocyte maternal mRNA features for five mammalian species reveals potential shared and species-restricted regulators during maturation. Physiol Genomics 2024; 56:9-31. [PMID: 37842744 PMCID: PMC11281819 DOI: 10.1152/physiolgenomics.00048.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Oocyte maturation is accompanied by changes in abundances of thousands of mRNAs, many degraded and many preferentially stabilized. mRNA stability can be regulated by diverse features including GC content, codon bias, and motifs within the 3'-untranslated region (UTR) interacting with RNA binding proteins (RBPs) and miRNAs. Many studies have identified factors participating in mRNA splicing, bulk mRNA storage, and translational recruitment in mammalian oocytes, but the roles of potentially hundreds of expressed factors, how they regulate cohorts of thousands of mRNAs, and to what extent their functions are conserved across species has not been determined. We performed an extensive in silico cross-species analysis of features associated with mRNAs of different stability classes during oocyte maturation (stable, moderately degraded, and highly degraded) for five mammalian species. Using publicly available RNA sequencing data for germinal vesicle (GV) and MII oocyte transcriptomes, we determined that 3'-UTR length and synonymous codon usage are positively associated with stability, while greater GC content is negatively associated with stability. By applying machine learning and feature selection strategies, we identified RBPs and miRNAs that are predictive of mRNA stability, including some across multiple species and others more species-restricted. The results provide new insight into the mechanisms regulating maternal mRNA stabilization or degradation.NEW & NOTEWORTHY Conservation across species of mRNA features regulating maternal mRNA stability during mammalian oocyte maturation was analyzed. 3'-Untranslated region length and synonymous codon usage are positively associated with stability, while GC content is negatively associated. Just three RNA binding protein motifs were predicted to regulate mRNA stability across all five species examined, but associated pathways and functions are shared, indicating oocytes of different species arrive at comparable physiological destinations via different routes.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, United States
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
11
|
Lockhart KN, Fallon LC, Ortega MS. Paternal determinants of early embryo development. Reprod Fertil Dev 2023; 36:43-50. [PMID: 38064190 DOI: 10.1071/rd23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Existing research has primarily focused on investigating the impacts of the maternal environment, female fertility phenotype, and genetics on pregnancy loss in dairy cattle. Recently, attention has been directed toward understanding the role the sire has on embryo quality and viability. Studies have shown there is a paternal influence on early pregnancy loss, but the specific mechanisms impacting pregnancy establishment and maintenance remain unclear. Despite clear differences that sires have on pregnancy outcomes, there is a lack of evidence regarding specifically how sires influence pregnancy. Sperm characteristics, such as motility, concentration, and morphology, have been extensively studied, but further research is needed to understand what makes one sire more or less fertile than another sire and how this affects pregnancy. To effectively address pregnancy loss, a deeper understanding of the processes involved from fertilisation to blastocyst formation is essential, particularly for understanding early pregnancy loss.
Collapse
Affiliation(s)
- Kelsey N Lockhart
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lindsey C Fallon
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Li D, Huang S, Chai Y, Zhao R, Gong J, Zhang QC, Ou G, Wen W. A paternal protein facilitates sperm RNA delivery to regulate zygotic development. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2342-2353. [PMID: 37160652 DOI: 10.1007/s11427-022-2332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/19/2023] [Indexed: 05/11/2023]
Abstract
Sperm contributes essential paternal factors, including the paternal genome, centrosome, and oocyte-activation signals, to sexual reproduction. However, it remains unresolved how sperm contributes its RNA molecules to regulate early embryonic development. Here, we show that the Caenorhabditis elegans paternal protein SPE-11 assembles into granules during meiotic divisions of spermatogenesis and later matures into a perinuclear structure where sperm RNAs localize. We reconstitute an SPE-11 liquid-phase scaffold in vitro and find that SPE-11 condensates incorporate the nematode RNA, which, in turn, promotes SPE-11 phase separation. Loss of SPE-11 does not affect sperm motility or fertilization but causes pleiotropic development defects in early embryos, and spe-11 mutant males reduce mRNA levels of genes crucial for an oocyte-to-embryo transition or embryonic development. These results reveal that SPE-11 undergoes phase separation and associates with sperm RNAs that are delivered to oocytes during fertilization, providing insights into how a paternal protein regulates early embryonic development.
Collapse
Affiliation(s)
- Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Gong
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China.
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Crasta DN, Nair R, Kumari S, Dutta R, Adiga SK, Zhao Y, Kannan N, Kalthur G. Haploid Parthenogenetic Embryos Exhibit Unique Stress Response to pH, Osmotic and Oxidative Stress. Reprod Sci 2023; 30:2137-2151. [PMID: 36690917 PMCID: PMC10310621 DOI: 10.1007/s43032-023-01166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Preimplantation-stage embryos are susceptible to various types of stress when cultured in vitro. Parthenogenetic embryos that lack spermatozoa contribution exhibit aberrant developmental dynamics due to their uniparental origin. Herein, we assessed whether the absence of paternal genome affects the susceptibility of the embryos to pH, osmotic and oxidative stress. Haploid parthenogenetic embryos (HPE) (activated oocytes with 1 pronucleus and 2 polar bodies) were generated by incubating cumulus oocyte complexes of Swiss albino mice with 10 mM strontium chloride for 3 h. Normally fertilized embryos (NFE) (fertilized oocytes with 2 pronuclei and 2 polar bodies) were derived using in vitro fertilization. At 2-cell stage, both HPE and NFE were exposed to various stressors including pH (6.8 to 8.2), osmotic (isotonic, hypotonic, and hypertonic), and peroxidatic oxidative (H2O2, 25 µM) stress. Endoplasmic reticulum stress response, mitochondrial membrane potential, and the rate of blastocyst development were assessed. HPE were susceptible to alteration in the pH that was well tolerated by NFE. Similarly, HPE displayed remarkable difference in sensitivity to hypertonic stress and oxidative stress compared to NFE. The results clearly indicate that the oocytes that develop into embryos in the absence of paternal contribution are more vulnerable to environmental stressors, further highlighting the importance of spermatozoa contribution and/or the ploidy status in mitigating these stressors and towards healthy early embryo development.
Collapse
Affiliation(s)
- Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ramya Nair
- Manipal Center for Biotherapeutic Research, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yulian Zhao
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Clinical Core Laboratory Services, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
14
|
Sgueglia G, Longobardi S, Valerio D, Campitiello MR, Colacurci N, Di Pietro C, Battaglia R, D'Hooghe T, Altucci L, Dell'Aversana C. The impact of epigenetic landscape on ovarian cells in infertile older women undergoing IVF procedures. Clin Epigenetics 2023; 15:76. [PMID: 37143127 PMCID: PMC10161563 DOI: 10.1186/s13148-023-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.
Collapse
Affiliation(s)
- Giulia Sgueglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy
| | | | - Domenico Valerio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Nicola Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- BIOGEM, Ariano Irpino, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| |
Collapse
|
15
|
Cui L, Fang L, Zhuang L, Shi B, Lin CP, Ye Y. Sperm-borne microRNA-34c regulates maternal mRNA degradation and preimplantation embryonic development in mice. Reprod Biol Endocrinol 2023; 21:40. [PMID: 37101140 PMCID: PMC10131327 DOI: 10.1186/s12958-023-01089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Studies have shown that sperm-borne microRNAs (miRNAs) are involved in mammalian preimplantation embryonic development. In humans, spermatozoan miR-34c levels are correlated with in vitro fertilization outcomes, such as embryo quality and the clinical pregnancy and live birth rates. In rabbits and cows, miR-34c improves the developmental competence of embryos generated by somatic cell nuclear transfer. However, the mechanisms underlying the regulation of embryonic development by miR-34c remain unknown. METHODS Female C57BL/6 mice (6-8 weeks old) were superovulated, and pronucleated zygotes were collected and microinjected with an miR-34c inhibitor or a negative-control RNA. The embryonic development of the microinjected zygotes was evaluated, and the messenger RNA (mRNA) expression profiles of the embryos at the two-cell, four-cell and blastocyst stages (five embryos per group) were determined by RNA sequencing analysis. Gene expression levels were verified by reverse transcription-quantitative polymerase chain reaction. Cluster analysis and heat map visualization were performed to detect differentially expressed mRNAs. Pathway and process enrichment analyses were performed using ontology resources. Differentially expressed mRNAs were systematically analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database to determine their biological functions. RESULTS Embryonic developmental potential was significantly reduced in zygotes microinjected with the miR-34c inhibitor compared with those microinjected with a negative-control RNA. Two-cell stage embryos microinjected with an miR-34c inhibitor presented altered transcriptomic profiles, with upregulated expression of maternal miR-34c target mRNAs and classical maternal mRNAs. Differentially expressed transcripts were mainly of genes associated with lipid metabolism and cellular membrane function at the two-cell stage, with cell-cycle phase transition and energy metabolism at the four-cell stage; and with vesicle organization, lipid biosynthetic process and endomembrane system organization at the blastocyst stage. We also showed that genes related to preimplantation embryonic development, including Alkbh4, Sp1, Mapk14, Sin3a, Sdc1 and Laptm4b, were significantly downregulated after microinjection of an miR-34c inhibitor. CONCLUSIONS Sperm-borne miR-34c may regulate preimplantation embryonic development by affecting multiple biological processes, such as maternal mRNA degradation, cellular metabolism, cell proliferation and blastocyst implantation. Our data demonstrate the importance of sperm-derived miRNAs in the development of preimplantation embryos.
Collapse
Affiliation(s)
- Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Li Fang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lili Zhuang
- Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200041, China
| | - Biwei Shi
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
16
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
17
|
Casciaro C, Hamada H, Kostaki A, Matthews SG. Glucocorticoid exposure modifies the miRNA profile of sperm in the guinea pig: Implications for intergenerational transmission. FASEB J 2023; 37:e22879. [PMID: 36928999 DOI: 10.1096/fj.202201784r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Approximately 1%-3% of the adult population are treated with synthetic glucocorticoids (sGCs) for a variety of conditions. Studies have demonstrated that adversities experienced by males prior to conception may lead to abnormal neuroendocrine function and behaviors in offspring and that epigenetic factors including microRNA (miRNA) within sperm may be responsible for driving these effects. However, it remains unclear where in the epididymis sperm miRNA changes are occurring. Here, we hypothesized that sGC exposure will alter the miRNA profile of sperm in the epididymis in a region-specific manner. Adult male guinea pigs were exposed to regular drinking water (Ctrl) or water with the sGC dexamethasone (Dex; 3mg/kg) (n = 6/group) every other day for 48 days. Sperms were collected from epididymal seminal fluid in the caput and cauda regions of the epididymis and total RNA was extracted. miRNAs were assessed by miRNA 4.0 microarray; data were processed by TAC 4.0.1 and R. miRNA analysis revealed one miRNA in the caput that was significantly decreased by Dex in sperm. In the cauda, 31 miRNAs were reduced in sperm following Dex-exposure. The findings of this study demonstrate that Dex-exposure influences miRNA profile of sperm in the cauda but not the caput of the epididymis. This suggests that glucocorticoids target the epididymis to modify sperm miRNA and do not modify the miRNA content during spermiation in the testes.
Collapse
Affiliation(s)
- Christopher Casciaro
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hirotaka Hamada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alisa Kostaki
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Wu X, He X, Liu Q, Li H. The developmental miR-17-92 cluster and the Sfmbt2 miRNA cluster cannot rescue the abnormal embryonic development generated using obstructive epididymal environment-producing sperm in C57BL/6 J mice. Reprod Biol Endocrinol 2022; 20:164. [PMID: 36451157 PMCID: PMC9710060 DOI: 10.1186/s12958-022-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sperm, during epididymal transit, acquires microRNAs(miRNAs), which are crucial for embryonic development. However, whether sperm miRNAs influenced by an obstructive epididymal environment affect embryonic development remains unknown. METHOD The sham operation and vasectomy were performed in C57BL/6 J mice to create the control group (CON) and the obstructive epididymal environment group(OEE) group, respectively. The morphology of the testis and epididymis was observed using hematoxylin and eosin staining (HE staining) to establish the OEE mice model. The sperm quality test, intracytoplasmic sperm injection (ICSI), and epididymosomes fusion were employed to observe the effect of the obstructive epididymal environment on sperm and resultant embryonic development. The alteration of the sperm small RNA (sRNA) profile was analyzed by sRNA sequencing. RT-qPCR and DNA methylation were applied to observe the effect of obstructive epididymis on the expression of sperm miRNAs. The miRNAs microinjection was used to explore the impacts of sperm miRNAs on embryonic development. RESULTS We confirmed postoperative 8-week mice as the OEE mice model by examining the morphology of the testis and epididymis. In the OEE group, we observed that sperm quality degraded and the development potential of embryos was reduced, which can be saved by the normal epididymal environment. The sperm sRNA sequencing revealed that the expression of the developmental miR-17-92 cluster and the Sfmbt2 miRNA cluster was downregulated in the OEE group. The expression of these two miRNA clusters in epididymis was also downregulated and regulated by DNA methylation. However, the downregulation of either the miR-17-92 cluster or the Sfmbt2 miRNA cluster in normal zygotes did not impair embryonic development. CONCLUSION The obstructive epididymal environment influences sperm quality and resultant embryonic development, as well as the abundance of the developmental miR-17-92 cluster and the Sfmbt2 miRNA cluster in sperm, but these miRNA clusters are not the cause of abnormal embryonic development. It implies that epididymis is important in early embryonic development and may play a potential role in sperm epigenome.
Collapse
Affiliation(s)
- Xunwei Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaomei He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
19
|
Hamilton M, Russell S, Menezes K, Moskovtsev SI, Librach C. Assessing spermatozoal small ribonucleic acids and their relationship to blastocyst development in idiopathic infertile males. Sci Rep 2022; 12:20010. [PMID: 36411317 PMCID: PMC9678953 DOI: 10.1038/s41598-022-24568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Clinical testing strategies for diagnosing male factor infertility are limited. A deeper analysis of spermatozoa-derived factors could potentially diagnose some cases of 'unexplained infertility'. Spermatozoa carry a rich and dynamic profile of small RNAs, which have demonstrated potential developmental importance and association with fertility status. We used next-generation sequencing to correlate sperm small RNA profiles of normozoospermic males (n = 54) with differing blastocyst development rates, when using young donor oocytes. While ribosomal RNAs accounted for the highest number of sequencing reads, transfer RNA fragments of tRNAGly/GCC and tRNAVal-CAC were the most abundant sequences across all sperm samples. A total of 324 small RNAs were differentially expressed between samples with high (n = 18) and low (n = 14) blastocyst rates (p-adj < 0.05). Ninety three miRNAs were differentially expressed between these groups (p-adj < 0.05). Differentially expressed transfer RNA fragments included: 5'-tRF-Asp-GTC; 5'-tRF-Phe-GAA; and 3'-tRF-Ser-GCA. Differentially expressed miRNAs included: let-7f-2-5p; miR-4755-3p; and miR-92a-3p. This study provides the foundation on which to validate a clinical panel of fertility-related sperm small RNAs, as well as to pursue potential mechanisms through which they alter blastocyst development.
Collapse
Affiliation(s)
| | | | - Karen Menezes
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada
| | - Sergey I. Moskovtsev
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Clifford Librach
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, Toronto, ON Canada
| |
Collapse
|
20
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
22
|
Liu M, Liu P, Chang Y, Xu B, Wang N, Qin L, Zheng J, Liu Y, Wu L, Yan H. Genome-wide DNA methylation profiles and small noncoding RNA signatures in sperm with a high DNA fragmentation index. J Assist Reprod Genet 2022; 39:2255-2274. [PMID: 36190595 PMCID: PMC9596664 DOI: 10.1007/s10815-022-02618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A growing number of studies have reported that sperm DNA fragmentation (SDF) is associated with male infertility. However, no studies have compared genome-wide DNA methylation profiles and sncRNA signatures between sperm with high and low sperm DNA fragmentation indices (DFIs). METHODS Whole-genome bisulfite sequencing (WGBS) was performed on sperm samples from a weak group (DFI ≥ 30%, n = 6) and normal group (DFI ≤ 15%, n = 7). Small noncoding RNA (sncRNA) deep sequencing was conducted for sperm samples from the weak (DFI ≥ 30%, n = 13) and normal (DFI ≤ 15%, n = 17) groups. RESULTS A total of 4939 differentially methylated regions (DMRs) were identified in the weak group sperm samples relative to normal group sperm samples, with 2072 (41.95%) of them located in promoter regions. The percentages of hypermethylated DMRs were higher than those of hypomethylated DMRs in all seven examined gene annotation groups. Hypermethylated DMRs were significantly enriched in terms associated with neurons and microtubules. Compared with the normal group, the global DNA methylation level of the weak group sperm showed a downward trend, with lower correlation for methylation in the weak group sperm; therefore, the chromosomes of high-DFI sperm may be loose. On average, 40.5% of sncRNAs were annotated as rsRNAs, 19.3% as tsRNAs, 10.4% as yRNAs, and 7.1% as miRNAs. A total of 27 miRNAs, 151 tsRNAs, and 70 rsRNAs were differentially expressed between the two groups of sperm samples. Finally, 7 sncRNAs were identified as candidate sperm quality biomarkers, and the target genes of the differentially expressed miRNAs are involved in nervous system development. CONCLUSION Our findings suggest that genome-wide DNA methylation profiles and sncRNA signatures are significantly altered in high-DFI sperm. Our study provides potential biomarkers for sperm quality.
Collapse
Affiliation(s)
- Minghua Liu
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peiru Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nengzhuang Wang
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lina Qin
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jufen Zheng
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Hongli Yan
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
23
|
sncRNAs in Epididymosomes: The Contribution to Embryonic Development and Offspring Health. Int J Mol Sci 2022; 23:ijms231810851. [PMID: 36142765 PMCID: PMC9501405 DOI: 10.3390/ijms231810851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Much progress has been made in determining that paternal environmental exposures can remodel their spermatozoa small noncoding RNAs (sncRANs) and, in turn, affect the phenotypes of their offspring. Studies have shown that changes in the spermatozoa sncRNAs profile occur during passing through the epididymis. Due to the absence of transcription and translation in the epididymis, spermatozoa remodel their sncRNAs profile through communication with the epididymal microenvironment. Since epididymosomes contribute to the process of spermatozoa maturation by mediating the crosstalk between the epididymis and the passing spermatozoa, they are considered to be the leading candidate to mediate these changes. Previous studies and reviews on the role of epididymal transfer proteins in sperm maturation and function are myriad. This review focuses on the role and mechanisms of epididymosome-mediated transfer of sncRNAs cargoes onembryonic development and offspring health.
Collapse
|
24
|
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function. Animals (Basel) 2022; 12:ani12182360. [PMID: 36139221 PMCID: PMC9495167 DOI: 10.3390/ani12182360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize target genes based on predicted biological processes. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥5 magnitudes). Interestingly, expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further in silico analysis revealed categorized genes may have a plausible association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies. Abstract Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies.
Collapse
|
25
|
Joshi M, Andrabi SW, Yadav RK, Sankhwar SN, Gupta G, Rajender S. Qualitative and quantitative assessment of sperm miRNAs identifies hsa-miR-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p as potential biomarkers of male infertility and sperm quality. Reprod Biol Endocrinol 2022; 20:122. [PMID: 35971175 PMCID: PMC9377062 DOI: 10.1186/s12958-022-00990-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In contrast with the preceding stages of the germ cells, spermatozoa are unusually rich in small non-coding RNAs in comparison to the coding RNAs. These small RNAs may have had an essential role in the process of spermatogenesis or may have critical roles in the post-fertilization development. Sporadic efforts have identified a few differentially expressed miRNAs in infertile individuals, which do not replicate in other studies. METHODS In order to identify miRNAs signatures of infertility or poor sperm quality, we compared miRNA differential expression data across nine datasets, followed by their analysis by real-time PCR in a case-control study. This was followed by the validation of potential biomarkers in yet another set of cases and controls. For this, total RNA was isolated from 161 sperm samples. miRNA expression levels in infertile cases and fertile controls were measured using TaqMan real-time PCR. Meta-analyses of two miRNAs (hsa-miR-9-3p and hsa-miR-122-5p) were performed using Comprehensive Meta-Analysis Software (version 2). All statistical analyses were performed with the help of GraphPad Prism Software (version 8). RESULTS Literature search identified seven miRNAs (hsa-let-7a-5p, hsa-miR-9-3p, hsa-miR-22-5p, has-miR-30b-5p, hsa-miR-103-3p, hsa-miR-122-5p and hsa-miR-335-5p) showing consistent dysregulation in infertility across a minimum of four studies. In the discovery phase, six miRNAs showed strong association with infertility with four (hsa-miR-9-3p, hsa-miR-30b-5p, hsa-miR-103-3p and hsa-miR-122-5p) showing consistent differential regulation across all sub-groups. Receiver operating characteristic (ROC) curve analysis showed that the area under curve of > 0.75 was achieved by three (hsa-mir-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p) miRNAs. In the validation phase, these three miRNAs showed consistent association with infertility (hsa-mir-9-3p, hsa-miR-30b-5p, and hsa-miR-122-5p). Meta-analysis on hsa-miR-122-5p showed its significant quantitative association with infertility [Hedge's g = -2.428, p = 0.001 (Random effects)]. CONCLUSIONS Three miRNAs (hsa-miR-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p) have strong linkage with infertility and a high potential as sperm quality biomarkers.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | | | | | | | - Gopal Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
26
|
Qu P, Cao W, Zhang Y, Qi J, Meng B, Liu S, Zhuang Y, Duan C, Liu E. Sperm-borne proteins improve rabbit cloning efficiency via regulating embryonic cleavage and epigenetics. Proteomics 2022; 22:e2200020. [PMID: 35779011 DOI: 10.1002/pmic.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) shows great application value in the generation of transgenic animals, protection of endangered species, and therapeutic cloning. However, the cloning efficiency is still very low, which greatly restricts its application. Compared to fertilized embryos, cloned embryos lack the sperm proteins, which are considered to play an important role in embryonic development. Here we compared the sperm proteome, with that of donor fibroblasts and oocytes, and identified 342 proteins unique to sperm, with 42 being highly expressed. The 384 proteins were mainly enriched in the categories of post-translational modification and cytoskeletal arrangement. Extracts of soluble sperm or fibroblast proteins were injected into cloned embryos, and the result showed that injection of sperm protein significantly inhibited abnormal embryonic cleavage, significantly decreased the level of trimethylated histone H3Lys9 (H3K9me3) and the apoptotic index, and increased the inner cell mass (ICM)-to-trophectoderm (TE) ratio. More importantly, the sperm proteins also significantly enhanced the birthrate. The results of in vitro and in vivo experiments demonstrate that sperm-derived proteins improve embryo cloning efficiency. Our findings not only provide new insights into ways to overcome low cloning efficiency, but also add to the understanding of sperm protein function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Bin Meng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,The Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Shuangqing Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yanxin Zhuang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Chenjin Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Small Noncoding RNAs Contribute to Sperm Oxidative Stress-Induced Programming of Behavioral and Metabolic Phenotypes in Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6877283. [PMID: 35707281 PMCID: PMC9192199 DOI: 10.1155/2022/6877283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
There is growing evidence that paternal environmental information alters small noncoding RNAs (sncRNAs) in sperm and in turn can induce alterations of metabolic and behavioral phenotypes of the next generation. However, the potential mediators of the effects remain to be elucidated. A great diversity of environmental insults and stresses can convergently induce the elevation of reactive oxygen species (ROS) in sperm; nonetheless, it remains unclear whether ROS mediates the biogenesis of sncRNAs in sperm and participates in the reprogramming of offspring phenotypes. Here, we show that ROS could induce the alteration of sncRNA profiles in sperm, especially for transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs). Zygotic injection of 29-34 nt RNA fractions (predominantly tsRNAs and rsRNAs) from oxidative stress (OS) sperm could induce depressive-like and anxiety-like behaviors in male offspring. Moreover, zygotic injection with synthetic RNAs partially resembled OS sperm-induced depressive-like and anxiety-like behaviors in offspring. Male offspring maintained on a chow diet was found to develop impaired glucose tolerance and hyperactive hepatic gluconeogenesis, accompanied by the upregulation of hepatic gluconeogenic and lipolytic genes. Together, our results have shown that ROS-induced alteration of sncRNA profiles in sperm contributes to the alterations of behavioral and metabolic phenotypes of the offspring.
Collapse
|
28
|
Werry N, Russell SJ, Gillis DJ, Miller S, Hickey K, Larmer S, Lohuis M, Librach C, LaMarre J. Characteristics of miRNAs Present in Bovine Sperm and Associations With Differences in Fertility. Front Endocrinol (Lausanne) 2022; 13:874371. [PMID: 35663333 PMCID: PMC9160602 DOI: 10.3389/fendo.2022.874371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
Small non-coding RNAs have been linked to different phenotypes in bovine sperm, however attempts to identify sperm-borne molecular biomarkers of male fertility have thus far failed to identify a robust profile of expressed miRNAs related to fertility. We hypothesized that some differences in bull fertility may be reflected in the levels of different miRNAs in sperm. To explore such differences in fertility that are not due to differences in visible metrics of sperm quality, we employed Next Generation Sequencing to compare the miRNA populations in Bos taurus sperm from bulls with comparable motility and morphology but varying Sire Conception Rates. We identified the most abundant miRNAs in both populations (miRs -34b-3p; -100-5p; -191-5p; -30d-4p; -21-5p) and evaluated differences in the overall levels and specific patterns of isomiR expression. We also explored correlations between specific pairs of miRNAs in each population and identified 10 distinct pairs of miRNAs that were positively correlated in bulls with higher fertility and negatively correlated in comparatively less fertile individuals. Furthermore, 8 additional miRNA pairs demonstrated the opposite trend; negatively correlated in high fertility animals and positively correlated in less fertile bulls. Finally, we performed pathway analysis to identify potential roles of miRNAs present in bull sperm in the regulation of specific genes that impact spermatogenesis and embryo development. Together, these results present a comprehensive picture of the bovine sperm miRNAome that suggests multiple potential roles in fertility.
Collapse
Affiliation(s)
- Nicholas Werry
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| | | | - Daniel J. Gillis
- School of Computer Science, The University of Guelph, Guelph, ON, Canada
| | | | | | | | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| |
Collapse
|
29
|
Štiavnická M, Chaulot-Talmon A, Perrier JP, Hošek P, Kenny DA, Lonergan P, Kiefer H, Fair S. Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility. BMC Genomics 2022; 23:379. [PMID: 35585482 PMCID: PMC9118845 DOI: 10.1186/s12864-022-08614-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 02/11/2023] Open
Abstract
Background Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artificial insemination with contrasting fertility scores. Results The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of − 6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q-value < 0.001), we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identified 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), which are involved in spermatogenesis and early embryonic development. Conclusion This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially influence embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08614-5.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Aurélie Chaulot-Talmon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Jean-Philippe Perrier
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Petr Hošek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Meath, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Sean Fair
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
30
|
Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep 2022; 12:7503. [PMID: 35525843 PMCID: PMC9079070 DOI: 10.1038/s41598-022-11447-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Procedures for in vitro embryo production in cattle have not been optimized. In the current experiment, we utilized a 3 × 3 factorial design to test whether the proportion of embryos becoming blastocysts in culture and the pregnancy rate after embryo transfer are affected by type of serum in the medium [no serum; 3% (v/v) KnockOut Serum Replacement (SR); 3% (v/v) fetal bovine serum (FBS)] and addition of specific embryokines [vehicle; 10 ng/mL colony stimulating factor 2 (CSF2); 100 ng/mL dickkopf related protein 1 (DKK1)] at day 5 of culture. Embryos were produced using abattoir-derived ovaries and Y-sorted semen from two Angus sires. The percent of putative zygotes and cleaved embryos becoming blastocysts was improved by SR and FBS. Pregnancy rate at day 30 was determined for 1426 Nelore recipients and calving rate for 266 recipients. In the absence of CSF2 or DKK1, pregnancy rates were lower for embryos cultured with SR or FBS. CSF2 and DKK1 reduced pregnancy rate for embryos cultured without serum but had no detrimental effect in the SR or FBS groups. Indeed, CSF2 blocked the negative effect of FBS on pregnancy rate. Data on birth weights were available for 67 bull calves. There were no effects of treatment. The sire used to produce embryos had significant and large effects on development to the blastocyst stage, pregnancy rate at day 30, calving rate and pregnancy loss between day 30 and calving. Results indicate that (1) SR and FBS can improve embryonic development in vitro while also compromising competence of embryos to survive after transfer, (2) actions of CSF2 and DKK1 depend upon other characteristics of the embryo production system, and (3) sire can have a large effect on embryonic development before and after transfer.
Collapse
Affiliation(s)
- Thiago F Amaral
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Zoetis, Kalamazoo, MI, 49007, USA
| | | | - Luany Alves Galvao Martinhao
- FIVX Apoyar Biotech LTDA, Juiz de Fora, MG, Brazil
- Biological Science Institute, University of Brasilia, Brasilia, DF, Brazil
| | | | | | | | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
31
|
Esmaeilivand M, Abedelahi A, Hamdi K, Farzadi L, Goharitaban S, Fattahi A, Niknafs B. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers. Reprod Fertil Dev 2022; 34:589-597. [PMID: 35440361 DOI: 10.1071/rd21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
CONTEXT MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Pang WK, Son JH, Ryu DY, Rahman MS, Park YJ, Pang MG. Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows. J Anim Sci Biotechnol 2022; 13:42. [PMID: 35422006 PMCID: PMC9012035 DOI: 10.1186/s40104-022-00689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Sperm quality evaluation is the logical first step in increasing field fertility. Spermatozoa contain cytoplasmic organelles and biomolecules known as sperm-intrinsic factors, which play key roles in sperm maturation, sperm-oocyte fusion, and embryo development. In particular, sperm membrane proteins [e.g., arginine vasopressin receptor 2, beta-actin, prohibitin, and heat shock protein family D member 1 (HSPD1)] and RNA could be used as functional indicators of male fertility. We sought to clarify the effects of differential mRNA expression of selected genes on several fertilisation parameters, including sperm motility, motion kinematics, capacitation, and litter size, in a porcine model. Results Our results demonstrated that HSPD1 expression was significantly correlated with male fertility, as measured by the litter size of inseminated sows. The expression of HSPD1 mRNA was linked to sperm motility and other motion kinematic characteristics. Furthermore, HSPD1 had a 66.7% overall accuracy in detecting male fertility, and the high-litter size group which was selected with the HSPD1 marker had a 1.34 greater litter size than the low-litter size group. Conclusions Our findings indicate that HSPD1 might be a helpful biomarker for superior boar selection for artificial insemination, which could boost field fertility. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00689-0.
Collapse
|
33
|
Lee GS, Conine CC. The Transmission of Intergenerational Epigenetic Information by Sperm microRNAs. EPIGENOMES 2022; 6:12. [PMID: 35466187 PMCID: PMC9036291 DOI: 10.3390/epigenomes6020012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic information is transmitted from one generation to the next, modulating the phenotype of offspring non-genetically in organisms ranging from plants to mammals. For intergenerational non-genetic inheritance to occur, epigenetic information must accumulate in germ cells. The three main carriers of epigenetic information-histone post-translational modifications, DNA modifications, and RNAs-all exhibit dynamic patterns of regulation during germ cell development. For example, histone modifications and DNA methylation are extensively reprogrammed and often eliminated during germ cell maturation and after fertilization during embryogenesis. Consequently, much attention has been given to RNAs, specifically small regulatory RNAs, as carriers of inherited epigenetic information. In this review, we discuss examples in which microRNAs have been implicated as key players in transmitting paternal epigenetic information intergenerationally.
Collapse
Affiliation(s)
- Grace S. Lee
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Colin C. Conine
- Departments of Genetics and Pediatrics—Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Reproduction and Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Yokota S, Takeda K, Oshio S. Spatiotemporal Small Non-coding RNAs Expressed in the Germline as an Early Biomarker of Testicular Toxicity and Transgenerational Effects Caused by Prenatal Exposure to Nanosized Particles. FRONTIERS IN TOXICOLOGY 2022; 3:691070. [PMID: 35295114 PMCID: PMC8915876 DOI: 10.3389/ftox.2021.691070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, an apparent decline in human sperm quality has been observed worldwide. One in every 5.5 couples suffers from infertility, with male reproductive problems contributing to nearly 40% of all infertility cases. Although the reasons for the increasing number of infertility cases are largely unknown, both genetic and environmental factors can be contributing factors. In particular, exposure to chemical substances during mammalian male germ cell development has been linked to an increased risk of infertility in later life owing to defective sperm production, reproductive tract obstruction, inflammation, and sexual disorders. Prenatal exposure to nanomaterials (NMs) is no exception. In animal experiments, maternal exposure to NMs has been reported to affect the reproductive health of male offspring. Male germ cells require multiple epigenetic reprogramming events during their lifespan to acquire reproductive capacity. Given that spermatozoa deliver the paternal genome to oocytes upon fertilization, we hypothesized that maternal exposure to NMs negatively affects male germ cells by altering epigenetic regulation, which may in turn affect embryo development. Small non-coding RNAs (including microRNAs, PIWI-interacting RNAs, tRNA-derived small RNAs, and rRNA-derived small RNAs), which are differentially expressed in mammalian male germ cells in a spatiotemporal manner, could play important regulatory roles in spermatogenesis and embryogenesis. Thus, the evaluation of RNAs responsible for sperm fertility is of great interest in reproductive toxicology and medicine. However, whether the effect of maternal exposure to NMs on spermatogenesis in the offspring (intergenerational effects) really triggers multigenerational effects remains unclear, and infertility biomarkers for evaluating paternal inheritance have not been identified to date. In this review, existing lines of evidence on the effects of prenatal exposure to NMs on male reproduction are summarized. A working hypothesis of the transgenerational effects of sperm-derived epigenomic changes in the F1 generation is presented, in that such maternal exposure could affect early embryonic development followed by deficits in neurodevelopment and male reproduction in the F2 generation.
Collapse
Affiliation(s)
- Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
35
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
36
|
Oliver C, Annacondia ML, Wang Z, Jullien PE, Slotkin RK, Köhler C, Martinez G. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation. THE PLANT CELL 2022; 34:784-801. [PMID: 34755870 PMCID: PMC8824631 DOI: 10.1093/plcell/koab280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Animal and plant microRNAs (miRNAs) are essential for the spatio-temporal regulation of development. Together with this role, plant miRNAs have been proposed to target transposable elements (TEs) and stimulate the production of epigenetically active small interfering RNAs. This activity is evident in the plant male gamete containing structure, the male gametophyte or pollen grain. How the dual role of plant miRNAs, regulating both genes and TEs, is integrated during pollen development and which mRNAs are regulated by miRNAs in this cell type at a genome-wide scale are unknown. Here, we provide a detailed analysis of miRNA dynamics and activity during pollen development in Arabidopsis thaliana using small RNA and degradome parallel analysis of RNA end high-throughput sequencing. Furthermore, we uncover miRNAs loaded into the two main active Argonaute (AGO) proteins in the uninuclear and mature pollen grain, AGO1 and AGO5. Our results indicate that the developmental progression from microspore to mature pollen grain is characterized by a transition from miRNAs targeting developmental genes to miRNAs regulating TE activity.
Collapse
Affiliation(s)
- Cecilia Oliver
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Maria Luz Annacondia
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs and Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
| | - Pauline E Jullien
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Biological Sciences, University of Missouri Columbia, Columbia, Missouri 65201, USA
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | |
Collapse
|
37
|
Wang H, Liu J, Gao J, Yan W, Rehan VK. Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Front Endocrinol (Lausanne) 2022; 13:893863. [PMID: 35600600 PMCID: PMC9114732 DOI: 10.3389/fendo.2022.893863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023] Open
Abstract
Perinatal exposure to smoking has been associated with childhood asthma, one of the most common pediatric conditions affecting millions of children globally. Of great interest, this disease phenotype appears heritable as it can persist across multiple generations even in the absence of persistent exposure to smoking in subsequent generations. Although the molecular mechanisms underlying childhood asthma induced by perinatal exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been proposed, which is supported by the data from our earlier analyses on germline DNA methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the potential epigenetic inheritance of childhood asthma induced by perinatal nicotine exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our data revealed that perinatal exposure to nicotine leads to alterations in the profiles of sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARγ agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of F1 male rats to close to placebo control levels.
Collapse
Affiliation(s)
- Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| |
Collapse
|
38
|
Wang Z, Meng N, Wang Y, Zhou T, Li M, Wang S, Chen S, Zheng H, Kong S, Wang H, Yan W. Ablation of the miR-465 Cluster Causes a Skewed Sex Ratio in Mice. Front Endocrinol (Lausanne) 2022; 13:893854. [PMID: 35677715 PMCID: PMC9167928 DOI: 10.3389/fendo.2022.893854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 01/31/2023] Open
Abstract
The X-linked miR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-465 cluster is still largely unknown. This study aims to dissect the role of the miR-465 cluster in murine development. Despite abundant expression in the testis, ablation of the miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed sex ratio biased toward males (60% males) was observed among miR-465 KO mice. Further analyses revealed that the female conceptuses selectively degenerated as early as embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization analyses revealed that the miRNAs encoded by the miR-465 cluster were mainly localized to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered mRNA transcriptome characterized by the dysregulation of numerous critical placental genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed that the miR-465 cluster is required for normal female placental development, and ablation of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to selective degeneration and resorption of the female conceptuses.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nan Meng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan,
| |
Collapse
|
39
|
Cheuquemán C, Maldonado R. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance. Biol Res 2021; 54:41. [PMID: 34930477 PMCID: PMC8686607 DOI: 10.1186/s40659-021-00364-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular fate and gene expression patterns are modulated by different epigenetic factors including non-coding RNAs (ncRNAs) and chromatin organization. Both factors are dynamic throughout male germ cell differentiation on the seminiferous tubule, despite the transcriptional inactivation in the last stages of spermatogenesis. Sperm maturation during the caput-to-cauda transit on the epididymis involves changes in chromatin organization and the soma-to-germ line transference of ncRNAs that are essential to obtain a functional sperm for fertilization and embryo development. Here, the male environment (diseases, drugs, mental stress) is crucial to modulate these epigenetic factors throughout sperm maturation, affecting the corresponding offspring. Paternal transgenerational inheritance has been directly related to sperm epigenetic changes, most of them associated with variations in the ncRNA content and chromatin marks. Our aim is to give an overview about how epigenetics, focused on ncRNAs and chromatin, is pivotal to understand spermatogenesis and sperm maturation, and how the male environment impacts the sperm epigenome modulating the offspring gene expression pattern.
Collapse
Affiliation(s)
- Carolina Cheuquemán
- Núcleo de Ciencias Biológicas, Dirección de Núcleos Transversales, Facultad de estudios Interdisciplinarios, Universidad Mayor, Temuco, Chile
| | - Rodrigo Maldonado
- Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
40
|
Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021; 9:biomedicines9121884. [PMID: 34944700 PMCID: PMC8698561 DOI: 10.3390/biomedicines9121884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction. Advanced technologies have revealed the dynamic expression and diverse functions of sncRNAs during mammalian germ cell development. Mounting evidence indicates sncRNAs in sperm, especially microRNAs (miRNAs) and transfer RNA (tRNA)-derived small RNAs (tsRNAs), are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. Here, we review the critical roles of sncRNAs in mammalian germ cell development. Furthermore, we highlight the functions of sperm-borne sncRNAs in epigenetic inheritance. We also discuss evidence supporting sncRNAs as promising biomarkers for fertility and embryo quality in addition to the present limitations of using sncRNAs for infertility diagnosis and treatment.
Collapse
|
41
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
42
|
Hoek J, Schoenmakers S, van Duijn L, Willemsen SP, van Marion ES, Laven JSE, Baart EB, Steegers-Theunissen RPM. A higher preconceptional paternal body mass index influences fertilization rate and preimplantation embryo development. Andrology 2021; 10:486-494. [PMID: 34779151 PMCID: PMC9299449 DOI: 10.1111/andr.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
Background Obesity is a worldwide problem affecting the health of millions of people throughout the life course. Studies reveal that obesity impairs sperm parameters and epigenetics, potentially influencing embryonic development. Objective To investigate the association between preconceptional paternal body mass index (BMI) and embryo morphokinetics using a time‐lapse incubator and in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcomes. Materials and methods Participants were recruited from a tertiary hospital in this prospective periconceptional cohort study. A total of 211 men were included: 86 with normal weight (BMI < 25.0), 94 overweight (BMI 25–29.9), and 41 obese (BMI ≥ 30). These men were part of a couple that underwent IVF/ICSI treatment with ejaculated sperm after which 757 embryos were cultured in a time‐lapse incubator. The main outcome parameters consisted of fertilization rate, embryo developmental morphokinetics, embryo quality assessed by a time‐lapse prediction algorithm (KIDScore), and live birth rate. Results A higher paternal BMI was associated with faster development of the preimplantation embryo, especially during the first cleavage divisions (t2: −0.11 h (p = 0.05) and t3: −0.19 h (p = 0.01)). Embryo quality using the KIDScore was not altered. The linear regression analysis, after adjustment for confounders (paternal age, ethnicity, smoking, alcohol use, education, total motile sperm count, and maternal age and BMI), showed an inverse association between paternal BMI and fertilization rate (effect estimate: −0.01 (p = 0.002)), but not with the live birth rate. Discussion and conclusion Our data demonstrate that a higher preconceptional paternal BMI is associated with a reduced fertilization rate in IVF/ICSI treatment. Our findings underline the importance of a healthy paternal weight during the preconception period.
Collapse
Affiliation(s)
- Jeffrey Hoek
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Linette van Duijn
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eva S van Marion
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther B Baart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
43
|
Campesi I, Montella A, Seghieri G, Franconi F. The Person's Care Requires a Sex and Gender Approach. J Clin Med 2021; 10:4770. [PMID: 34682891 PMCID: PMC8541070 DOI: 10.3390/jcm10204770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
There is an urgent need to optimize pharmacology therapy with a consideration of high interindividual variability and economic costs. A sex-gender approach (which considers men, women, and people of diverse gender identities) and the assessment of differences in sex and gender promote global health, avoiding systematic errors that generate results with low validity. Care for people should consider the single individual and his or her past and present life experiences, as well as his or her relationship with care providers. Therefore, intersectoral and interdisciplinary studies are urgently required. It is desirable to create teams made up of men and women to meet the needs of both. Finally, it is also necessary to build an alliance among regulatory and ethic authorities, statistics, informatics, the healthcare system and providers, researchers, the pharmaceutical and diagnostic industries, decision makers, and patients to overcome the gender gap in medicine and to take real care of a person in an appropriate manner.
Collapse
Affiliation(s)
- Ilaria Campesi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Giuseppe Seghieri
- Department of Epidemiology, Regional Health Agency of Tuscany, 50124 Florence, Italy;
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| |
Collapse
|
44
|
Duffy KA, Bale TL, Epperson CN. Germ Cell Drivers: Transmission of Preconception Stress Across Generations. Front Hum Neurosci 2021; 15:642762. [PMID: 34322003 PMCID: PMC8311293 DOI: 10.3389/fnhum.2021.642762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to stress can accelerate maturation and hasten reproduction. Although potentially adaptive, the trade-off is higher risk for morbidity and mortality. In humans, the intergenerational effects of stress have been demonstrated, but the precise mechanisms are unknown. Strikingly, even if parental stress occurs prior to conception, as adults, their offspring show worse mental and physical health. Emerging evidence primarily from preclinical models suggests that epigenetic programming may encode preconception stress exposures in germ cells, potentially impacting the phenotype of the offspring. In this narrative review, we evaluate the strength of the evidence for this mechanism across animals and humans in both males and females. The strongest evidence comes from studies of male mice, in which paternal preconception stress is associated with a host of phenotypic changes in the offspring and stress-induced changes in the small non-coding RNA content in sperm have been implicated. Two recent studies in men provide evidence that some small non-coding RNAs in sperm are responsive to past and current stress, including some of the same ones identified in mice. Although preliminary evidence suggests that findings from mice may map onto men, the next steps will be (1) considering whether stress type, severity, duration, and developmental timing affect germ cell epigenetic markers, (2) determining whether germ cell epigenetic markers contribute to disease risk in the offspring of stress-exposed parents, and (3) overcoming methodological challenges in order to extend this research to females.
Collapse
Affiliation(s)
- Korrina A. Duffy
- Colorado Center for Women’s Behavioral Health and Wellness, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - Tracy L. Bale
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - C. Neill Epperson
- Colorado Center for Women’s Behavioral Health and Wellness, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, United States
- Helen and Arthur E. Johnson Depression Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
45
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
46
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
47
|
Coticchio G, Pennetta F, Rizzo R, Tarozzi N, Nadalini M, Orlando G, Centonze C, Gioacchini G, Borini A. Embryo morphokinetic score is associated with biomarkers of developmental competence and implantation. J Assist Reprod Genet 2021; 38:1737-1743. [PMID: 33821429 DOI: 10.1007/s10815-021-02162-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To study embryo morphokinetics in relation to release in spent media of molecules with possible roles in development and implantation (miR-20a, miR-30c, and sHLA-G). METHODS Data were obtained from embryos generated in standard IVF and ICSI cycles. The Eeva system was used for embryo assessment, based on early morphokinetic parameters and producing a score (1-5, best-worst) corresponding to higher/medium/lower chances of development to blastocyst. miRNAs - mm miR-20a-5p and miR-30c-5p - and sHLA-G were quantified in 25 μl of spent blastocyst media (SBM) collected before vitrification or transfer. Statistical analyses were performed applying Kolmogorov-Smirnov, Shapiro-Wilk, and Spearman's correlation coefficient tests, where appropriate. RESULTS SBM were collected from a total of 172 viable blastocysts. Their analysis showed that concentration of miR-20a was progressively lower as Eeva score increased and probability of development to blastocyst decreased (P = 0.016). The opposite trend was observed in the case of miR-30c, i.e., concentration was higher as score increased and chances of development to blastocyst decreased (P = 0.004). Analysis of sHLA-G revealed a negative correlation with Eeva score, i.e., levels were progressively lower as Eeva score increased and probability of development to blastocyst decreased (R = - 0.388, N = 141, P = 0.001). CONCLUSION Our data suggest that morphokinetic algorithms that predict development to blastocyst stage, in fact, also identify embryos with molecular and cellular profiles more consistent with developmental functions.
Collapse
Affiliation(s)
- Giovanni Coticchio
- 9.baby Family and Fertility Center, Via Dante, 15, 40125, Bologna, Italy.
| | - Francesca Pennetta
- 9.baby Family and Fertility Center, Via Dante, 15, 40125, Bologna, Italy
- Simple Departmental Operative Unit, Reproductive Pathophysiology, Anastasia Guerriero Hospital, Marcianise, Caserta, Italy
| | - Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Nicoletta Tarozzi
- 9.baby Family and Fertility Center, Via Dante, 15, 40125, Bologna, Italy
| | - Marco Nadalini
- 9.baby Family and Fertility Center, Via Dante, 15, 40125, Bologna, Italy
| | | | | | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Borini
- 9.baby Family and Fertility Center, Via Dante, 15, 40125, Bologna, Italy
| |
Collapse
|
48
|
Li H, Li L, Lin C, Hu M, Liu X, Wang L, Le F, Jin F. Decreased miR-149 expression in sperm is correlated with the quality of early embryonic development in conventional in vitro fertilization. Reprod Toxicol 2021; 101:28-32. [PMID: 33610732 DOI: 10.1016/j.reprotox.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
miRNAs play a critical role in the regulation of highly orchestrated gene expression profiles during spermatogenesis and early human embryonic development. However, there is much less information available on the effects of sperm-borne miRNAs on human embryonic development than on spermatogenesis. This study was designed to assess the relationship between two sperm-borne miRNAs (miR-34c and miR-149) and preimplantation embryo development in conventional in vitro fertilization treatment. A positive correlation was seen between a decreased level of miR-149 and a higher percentage of good-quality embryos on day 3 in conventional in vitro fertilization treatment (P < 0.0001), but no correlation was seen between miR-34c and a higher percentage of good-quality embryos (P = 0.1084). Receiver-operating characteristic curve analysis and logistic regression analysis showed that sperm-borne miR-149 with decreased expression was significantly associated with a high rate of good-quality embryos (area under the curve 0.781) (odds ratio: 0.078, 95 % confidence interval: 0.024-0.259, P < 0.0001). Our results demonstrate that the expression profile of miR-149 with significantly decreased expression could be used as a first indication of early embryonic development and may provide novel insight into the biological background of idiopathic infertile males.
Collapse
Affiliation(s)
- Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanping Lin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhen Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China.
| |
Collapse
|
49
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
50
|
Wang M, Du Y, Gao S, Wang Z, Qu P, Gao Y, Wang J, Liu Z, Zhang J, Zhang Y, Qing S, Wang Y. Sperm-borne miR-202 targets SEPT7 and regulates first cleavage of bovine embryos via cytoskeletal remodeling. Development 2021; 148:dev.189670. [PMID: 33472846 DOI: 10.1242/dev.189670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/08/2021] [Indexed: 01/28/2023]
Abstract
In mammals, sperm-borne regulators can be transferred to oocytes during fertilization and have different effects on the formation of pronuclei, the first cleavage of zygotes, the development of preimplantation embryos and even the metabolism of individuals after birth. The regulatory role of sperm microRNAs (miRNAs) in the development of bovine preimplantation embryos has not been reported in detail. By constructing and screening miRNA expression libraries, we found that miR-202 was highly enriched in bovine sperm. As a target gene of miR-202, co-injection of SEPT7 siRNA can partially reverse the accelerated first cleavage of bovine embryos caused by miR-202 inhibitor. In addition, both a miR-202 mimic and SEPT7 siRNA delayed the first cleavage of somatic cell nuclear transfer (SCNT) embryos, suggesting that miR-202-SEPT7 mediates the delay of first cleavage of bovine embryos. By further exploring the relationship between miR-202/SEPT7, HDAC6 and acetylated α-tubulin during embryonic development, we investigated how sperm-borne miR-202 regulates the first cleavage process of bovine embryos by SEPT7 and demonstrate the potential of sperm-borne miRNAs to improve the efficiency of SCNT.
Collapse
Affiliation(s)
- Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China.,School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin 150000, China
| | - Yue Du
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Song Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Zheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Pengxiang Qu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yang Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Zhengqi Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| |
Collapse
|