1
|
Mu Q, Ha A, Santos AJM, Lo YH, van Unen V, Miao Y, Tomaske M, Guzman VK, Alwahabi S, Yuan JJ, Deng L, Li L, Garcia KC, Kuo CJ. FZD5 controls intestinal crypt homeostasis and colonic Wnt surrogate agonist response. Dev Cell 2024:S1534-5807(24)00662-2. [PMID: 39579768 DOI: 10.1016/j.devcel.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/16/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
The rapidly regenerating intestinal epithelium requires crypt intestinal stem cells (ISCs). Wnt/β-catenin signaling maintains crypt homeostasis and Lgr5+ ISCs, and WNT ligands bind Frizzled receptors (FZD1-10). Identifying specific FZD(s) essential for intestinal homeostasis has been elusive; however, bioengineered antagonists blocking Wnt binding to FZD5 and FZD8 deplete the gut epithelium in vivo, highlighting potential roles. Here, an epithelial-specific Fzd5 knockout (KO) elicited lethal pan-intestinal crypt and villus loss, whereas an Lgr5+ ISC-specific Fzd5 KO depleted Lgr5+ ISCs via premature differentiation and repressed Wnt target genes. Fzd5-null phenotypes were rescued by constitutive β-catenin activation in vivo and in both mouse and human enteroids. KO of Fzd5, not Fzd8, in enteroids ablated responsiveness to dual-specificity FZD5/FZD8-selective Wnt surrogate agonists, which ameliorated DSS-induced colitis in wild-type and Fzd8 KO mice. Overall, FZD5 is a dominant and essential regulator of crypt homeostasis, Lgr5+ ISCs, and intestinal response to Wnt surrogate agonists, with implications for therapeutic mucosal repair.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Ha
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antonio J M Santos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vincent van Unen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica K Guzman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jenny J Yuan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Wei B, Ren P, Qin W, Wang D, Wang Y, Chang Y, Wang Y, Xue C, Tang Q. Sulfated fucans from algae Saccharina japonica promotes intestinal stem cell-mediated intestinal development in juvenile mouse by modulating the gut microbiota. Int J Biol Macromol 2024; 281:136207. [PMID: 39362431 DOI: 10.1016/j.ijbiomac.2024.136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Intestinal development has a crucial role in the absorption of nutrients and the ability to resist infections in the early stages of life. This study utilized a 3-week-old C57BL/6 mice model to evaluate the beneficial impacts of sulfated fucans from Saccharina japonica (SJ-FUC) on the growth and development of the intestines. SJ-FUC enhanced the dimensions of the intestine, specifically the length, height of villi, and depth of the crypts. Additionally, it raised the mRNA expression of ZO-1 and Occludin, hence enhancing the structural integrity of the intestinal epithelium. SJ-FUC significantly increased mRNA expression of Lyz1, Muc2, and Math1, which resulted in the promotion of intestinal epithelial development. Furthermore, SJ-FUC augmented the mRNA levels of the ISC markers (Lgr5, Olfm4, and Ascl2). Our further research uncovered that SJ-FUC has a positive impact on the growth of beneficial bacteria, such as Akkermansia, Dubosiella, and Lactobacillus, which in turn promotes epithelial development of the intestine. In summary, our research indicates that SJ-FUC has a beneficial impact on the growth of the intestines in young mice. This is achieved by enhancing the stemness of intestinal stem cells (ISCs) and promoting the formation of the intestinal epithelium through the regulation of gut bacteria.
Collapse
Affiliation(s)
- Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wanting Qin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Dehua Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yinfeng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Angelis N, Baulies A, Hubl F, Kucharska A, Kelly G, Llorian M, Boeing S, Li VSW. Loss of ARID3A perturbs intestinal epithelial proliferation-differentiation ratio and regeneration. J Exp Med 2024; 221:e20232279. [PMID: 39150450 PMCID: PMC11329776 DOI: 10.1084/jem.20232279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/08/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Intestinal stem cells at the crypt divide and give rise to progenitor cells that proliferate and differentiate into various mature cell types in the transit-amplifying (TA) zone. Here, we showed that the transcription factor ARID3A regulates intestinal epithelial cell proliferation and differentiation at the TA progenitors. ARID3A forms an expression gradient from the villus tip to the upper crypt mediated by TGF-β and WNT. Intestinal-specific deletion of Arid3a reduces crypt proliferation, predominantly in TA cells. Bulk and single-cell transcriptomic analysis shows increased enterocyte and reduced secretory differentiation in the Arid3a cKO intestine, accompanied by enriched upper-villus gene signatures of both cell lineages. We find that the enhanced epithelial differentiation in the Arid3a-deficient intestine is caused by increased binding and transcription of HNF1 and HNF4. Finally, we show that loss of Arid3a impairs irradiation-induced regeneration with sustained cell death and reprogramming. Our findings imply that Arid3a functions to fine-tune the proliferation-differentiation dynamics at the TA progenitors, which are essential for injury-induced regeneration.
Collapse
Affiliation(s)
- Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Florian Hubl
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Anna Kucharska
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute , London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute , London, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute , London, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
4
|
Erkert L, Gamez-Belmonte R, Kabisch M, Schödel L, Patankar JV, Gonzalez-Acera M, Mahapatro M, Bao LL, Plattner C, Kühl AA, Shen J, Serneels L, De Strooper B, Neurath MF, Wirtz S, Becker C. Alzheimer's disease-related presenilins are key to intestinal epithelial cell function and gut immune homoeostasis. Gut 2024; 73:1618-1631. [PMID: 38684238 DOI: 10.1136/gutjnl-2023-331622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Li-Li Bao
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute@UCL, University College London, London, UK
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
5
|
Herath M, Speer AL. Bioengineering of Intestinal Grafts. Gastroenterol Clin North Am 2024; 53:461-472. [PMID: 39068007 PMCID: PMC11284275 DOI: 10.1016/j.gtc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal failure manifests as an impaired capacity of the intestine to sufficiently absorb vital nutrients and electrolytes essential for growth and well-being in pediatric and adult populations. Although parenteral nutrition remains the mainstay therapeutic approach, the pursuit of a definitive and curative strategy, such as regenerative medicine, is imperative. Substantial advancements in the field of engineered intestinal tissues present a promising avenue for addressing intestinal failure; nevertheless, extensive research is still necessary for effective translation from experimental benchwork to clinical bedside applications.
Collapse
Affiliation(s)
- Madushani Herath
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA
| | - Allison L Speer
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Faizo NL. The intestinal stem cell as a target: A review. Medicine (Baltimore) 2024; 103:e39456. [PMID: 39183418 PMCID: PMC11346866 DOI: 10.1097/md.0000000000039456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human intestinal epithelium handles several events that may affect health. It is composed of villi and crypts, which contain different types of cells. Each cell type plays an essential role in intestinal functions, including absorption, defense, self-renewal, and regeneration. Intestinal stem cells (ISCs), located at the base of intestinal crypts, play an important role in intestinal homeostasis and renewal. Any disruption in intestinal homeostasis, in which ISCs alter their function, may result in tumor growth. As Wnt and Notch signaling pathways are essential for ISCs homeostasis and for maintaining self-renewal, any defects in these pathways could increase the risk of developing colorectal cancer (CRC). Lgr5+ cells have been identified as intestinal stem cells expressing a leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), which is involved in the regulation of Wnt signaling. Several studies have reported upregulated expression of LGR5 in CRC. Hence, in this review, we discuss the relationship between LGR5, Wnt signaling, and Notch signaling and the development of CRC, as well as recent therapeutic strategies targeting LGR5, cancer stem cells (CSCs), and the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Zhou P, Hu M, Li Q, Yang G. Both intrinsic and microenvironmental factors contribute to the regulation of stem cell quiescence. J Cell Physiol 2024; 239:e31325. [PMID: 38860372 DOI: 10.1002/jcp.31325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Precise regulation of stem cell quiescence is essential for tissue development and homeostasis. Therefore, its aberrant regulation is intimately correlated with various human diseases. However, the detailed mechanisms of stem cell quiescence and its specific role in the pathogenesis of various diseases remain to be determined. Recent studies have revealed that the intrinsic and microenvironmental factors are the potential candidates responsible for the orderly switch between the dormant and activated states of stem cells. In addition, defects in signaling pathways related to internal and external factors of stem cells might contribute to the initiation and development of diseases by altering the dormancy of stem cells. In this review, we focus on the mechanisms underlying stem cell quiescence, especially the involvement of intrinsic and microenvironmental factors. In addition, we discuss the relationship between the anomalies of stem cell quiescence and related diseases, hopefully providing therapeutic insights for developing novel treatments.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Mingzheng Hu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
9
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
10
|
Chemerinski A, Garcia de Paredes J, Blackledge K, Douglas NC, Morelli SS. Mechanisms of endometrial aging: lessons from natural conceptions and assisted reproductive technology cycles. Front Physiol 2024; 15:1332946. [PMID: 38482194 PMCID: PMC10933110 DOI: 10.3389/fphys.2024.1332946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 01/02/2025] Open
Abstract
Until recently, the study of age-related decline in fertility has focused primarily on the ovary; depletion of the finite pool of oocytes and increases in meiotic errors leading to oocyte aneuploidy are well-established mechanisms by which fertility declines with advancing age. Comparatively little is known about the impact of age on endometrial function. The endometrium is a complex tissue comprised of many cell types, including epithelial, stromal, vascular, immune and stem cells. The capacity of this tissue for rapid, cyclic regeneration is unique to this tissue, undergoing repeated cycles of growth and shedding (in the absence of an embryo) in response to ovarian hormones. Furthermore, the endometrium has been shown to be capable of supporting pregnancies beyond the established boundaries of the reproductive lifespan. Despite its longevity, molecular studies have established age-related changes in individual cell populations within the endometrium. Human clinical studies have attempted to isolate the effect of aging on the endometrium by analyzing pregnancies conceived with euploid, high quality embryos. In this review, we explore the existing literature on endometrial aging and its impact on pregnancy outcomes. We begin with an overview of the principles of endometrial physiology and function. We then explore the mechanisms behind endometrial aging in its individual cellular compartments. Finally, we highlight lessons about endometrial aging gleaned from rodent and human clinical studies and propose opportunities for future study to better understand the contribution of the endometrium to age-related decline in fertility.
Collapse
Affiliation(s)
- Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | | | | | | |
Collapse
|
11
|
Lun J, Guo J, Yu M, Zhang H, Fang J. Circular RNAs in inflammatory bowel disease. Front Immunol 2023; 14:1307985. [PMID: 38187401 PMCID: PMC10771839 DOI: 10.3389/fimmu.2023.1307985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a term encompassing a few chronic inflammatory disorders that leads to damage of the intestinal tract. Although much progress has been made in understanding the pathology of IBD, the precise pathogenesis is not completely understood. Circular RNAs (circRNAs) are single-stranded, covalently closed, endogenous molecules in eukaryotes with a variety of biological functions. CircRNAs have been shown to have regulatory effects in many diseases, such as cancer, cardiovascular disease, and neurological disorders. CircRNAs have also been found to play important roles in IBD, and although they are not sufficiently investigated in the context of IBD, a few circRNAs have been identified as potential biomarkers for the diagnosis and prognosis of IBD and as potential therapeutic targets for IBD. Herein, we survey recent progress in understanding the functions and roles of circRNAs in IBD and discuss their potential clinical applications.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
12
|
Creff J, Nowosad A, Prel A, Pizzoccaro A, Aguirrebengoa M, Duquesnes N, Callot C, Jungas T, Dozier C, Besson A. p57 Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Rep 2023; 42:112659. [PMID: 37327110 DOI: 10.1016/j.celrep.2023.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Collapse
Affiliation(s)
- Justine Creff
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Prel
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Pizzoccaro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Duquesnes
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Caroline Callot
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
13
|
Kuo HC, Daniel AR, Driver LM, Lee CL, Kirsch DG. Histological assessment of intestinal injury by ionizing radiation. Methods Cell Biol 2023; 180:147-175. [PMID: 37890927 PMCID: PMC10755726 DOI: 10.1016/bs.mcb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Given the potential risk of radiological terrorism and disasters, it is essential to develop plans to prepare for such events. In these hazardous scenarios, radiation-induced gastrointestinal (GI) syndrome is one of the many manifestations that may happen after the organism is exposed to a lethal dose of ionizing radiation. Therefore, it is critical to better understand how the intestinal tissues initiate and orchestrate regeneration following severe radiation injury. In this chapter, we aimed to provide several key considerations for researchers who utilize histological assessment to study radiation-induced intestinal injury. Rigor and reproducibility are critical in experimental design and can be achieved by maintaining proper radiation administration, maintaining consistency in sample collection, and selecting and using appropriate controls. We also provided technical details of histological preparation of the intestines with tips on dissecting, cleaning, fixing, and preserving. Step-by-step descriptions of both bundling and Swiss rolling are provided with discussion on how to choose between the two approaches. In the following section, we detailed several histological assessment methods and then provided suggestions on how to use histological assessment to study cellular dynamics in the small intestines. Finally, we touched on some non-histological assessments. We hope that the information provided in this chapter will contribute to the research society of radiation-induced intestinal injury with an ultimate goal of promoting the development of radiation countermeasures against the GI acute radiation syndrome.
Collapse
Affiliation(s)
- Hsuan-Cheng Kuo
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Lucy M Driver
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States; Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - David G Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
14
|
Liu L, Zhang L, Li C, Qiu Z, Kuang T, Wu Z, Deng W. Effects of hormones on intestinal stem cells. Stem Cell Res Ther 2023; 14:105. [PMID: 37101229 PMCID: PMC10134583 DOI: 10.1186/s13287-023-03336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
The maintenance of intestinal renewal and repair mainly depends on intestinal stem cells (ISCs), which can also contribute to the growth of intestinal tumours. Hormones, which are vital signalling agents in the body, have various effects on the growth and replacement of intestinal stem cells. This review summarises recent progress in the identification of hormones associated with intestinal stem cells. Several hormones, including thyroid hormone, glucagon-like peptide-2, androgens, insulin, leptin, growth hormone, corticotropin-releasing hormone and progastrin, promote the development of intestinal stem cells. However, somatostatin and melatonin are two hormones that prevent the proliferation of intestinal stem cells. Therefore, new therapeutic targets for the diagnosis and treatment of intestinal illnesses can be identified by examining the impact of hormones on intestinal stem cells.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Liu Y, Liu Z, Hu L, He L, Yang L, Qin Z, Xie Y, Peng X, Dai L. Function of stem cells in radiation-induced damage. Int J Radiat Biol 2023; 99:1483-1494. [PMID: 36912588 DOI: 10.1080/09553002.2023.2188935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE The aim of this review is to discuss previous studies on the function of stem cells in radiation-induced damage, and the factors affecting these processes, in the hope of improving our understanding of the different stem cells and the communication networks surrounding them. This is essential for the development of effective stem cell-based therapies to regenerate or replace normal tissues damaged by radiation. CONCLUSION In salivary glands, senescence-associated cytokines and inflammation-associated cells have a greater effect on stem cells. In the intestinal glands, Paneth cells strongly affect stem cell-mediated tissue regeneration after radiation treatment. In the pancreas, β-cells as well as protein C receptor positive (Procr) cells are expected to be key cells in the treatment of diabetes. In the bone marrow, a variety of cytokines such as CXC-chemokine ligand 12 (CXCL12) and stem cell factor (SCF), contribute to the functional recovery of hematopoietic stem cells after irradiation.
Collapse
Affiliation(s)
- Yingtong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lianlian Yang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zijian Qin
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuping Xie
- Department of Oncology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
17
|
Auger NA, Medina-Feliciano JG, Quispe-Parra DJ, Colón-Marrero S, Ortiz-Zuazaga H, García-Arrarás JE. Characterization and Expression of Holothurian Wnt Signaling Genes during Adult Intestinal Organogenesis. Genes (Basel) 2023; 14:309. [PMID: 36833237 PMCID: PMC9957329 DOI: 10.3390/genes14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Wnt signaling has been shown to play multiple roles in regenerative processes, one of the most widely studied of which is the regeneration of the intestinal luminal epithelia. Most studies in this area have focused on self-renewal of the luminal stem cells; however, Wnt signaling may also have more dynamic functions, such as facilitating intestinal organogenesis. To explore this possibility, we employed the sea cucumber Holothuria glaberrima that can regenerate a full intestine over the course of 21 days after evisceration. We collected RNA-seq data from various intestinal tissues and regeneration stages and used these data to define the Wnt genes present in H. glaberrima and the differential gene expression (DGE) patterns during the regenerative process. Twelve Wnt genes were found, and their presence was confirmed in the draft genome of H. glaberrima. The expressions of additional Wnt-associated genes, such as Frizzled and Disheveled, as well as genes from the Wnt/β-catenin and Wnt/Planar Cell Polarity (PCP) pathways, were also analyzed. DGE showed unique distributions of Wnt in early- and late-stage intestinal regenerates, consistent with the Wnt/β-catenin pathway being upregulated during early-stages and the Wnt/PCP pathway being upregulated during late-stages. Our results demonstrate the diversity of Wnt signaling during intestinal regeneration, highlighting possible roles in adult organogenesis.
Collapse
Affiliation(s)
- Noah A. Auger
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | | | - David J. Quispe-Parra
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Stephanie Colón-Marrero
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| |
Collapse
|
18
|
Chemotherapy suppresses SHH gene expression via a specific enhancer. J Genet Genomics 2023; 50:27-37. [PMID: 35998878 DOI: 10.1016/j.jgg.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (SHH) signaling is a key regulator of embryonic development and tissue homeostasis that is involved in gastrointestinal (GI) cancer progression. Regulation of SHH gene expression is a paradigm of long-range enhancer function. Using the classical chemotherapy drug 5-fluorouracil (5FU) as an example, here we show that SHH gene expression is suppressed by chemotherapy. SHH is downstream of immediate early genes (IEGs), including Early growth response 1 (Egr1). A specific 139 kb upstream enhancer is responsible for its down-regulation. Knocking down EGR1 expression or blocking its binding to this enhancer renders SHH unresponsive to chemotherapy. We further demonstrate that down-regulation of SHH expression does not depend on 5FU's impact on nucleotide metabolism or DNA damage; rather, a sustained oxidative stress response mediates this rapid suppression. This enhancer is present in a wide range of tumors and normal tissues, thus providing a target for cancer chemotherapy and its adverse effects on normal tissues. We propose that SHH is a stress-responsive gene downstream of IEGs, and that traditional chemotherapy targets a specific enhancer to suppress its expression.
Collapse
|
19
|
Meran L, Tullie L, Eaton S, De Coppi P, Li VSW. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds. Nat Protoc 2023; 18:108-135. [PMID: 36261633 DOI: 10.1038/s41596-022-00751-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 01/14/2023]
Abstract
Tissue engineering is an interdisciplinary field that combines stem cells and matrices to form functional constructs that can be used to repair damaged tissues or regenerate whole organs. Tissue stem cells can be expanded and functionally differentiated to form 'mini-organs' resembling native tissue architecture and function. The choice of the scaffold is also pivotal to successful tissue reconstruction. Scaffolds may be broadly classified into synthetic or biological depending upon the purpose of the engineered organ. Bioengineered intestinal grafts represent a potential source of transplantable tissue for patients with intestinal failure, a condition resulting from extensive anatomical and functional loss of small intestine and therefore digestive and absorptive capacity. Prior strategies in intestinal bioengineering have predominantly used either murine or pluripotent cells and synthetic or decellularized rodent scaffolds, thus limiting their translation. Microscale models of human intestinal epithelium on shaped hydrogels and synthetic scaffolds are more physiological, but their regenerative potential is limited by scale. Here we present a protocol for bioengineering human intestinal grafts using patient-derived materials in a bioreactor culture system. This includes the isolation, expansion and biobanking of patient-derived intestinal organoids and fibroblasts, the generation of decellularized human intestinal scaffolds from native human tissue and providing a system for recellularization to form transplantable grafts. The duration of this protocol is 12 weeks, and it can be completed by scientists with prior experience of organoid culture. The resulting engineered mucosal grafts comprise physiological intestinal epithelium, matrix and surrounding niche, offering a valuable tool for both regenerative medicine and the study of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Laween Meran
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
- Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Cosovanu C, Resch P, Jordan S, Lehmann A, Ralser M, Farztdinov V, Spranger J, Mülleder M, Brachs S, Neumann C. Intestinal epithelial c-Maf expression determines enterocyte differentiation and nutrient uptake in mice. J Exp Med 2022; 219:213479. [PMID: 36121416 PMCID: PMC9486084 DOI: 10.1084/jem.20220233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022] Open
Abstract
The primary function of the small intestine (SI) is to absorb nutrients to maintain whole-body energy homeostasis. Enterocytes are the major epithelial cell type facilitating nutrient sensing and uptake. However, the molecular regulators governing enterocytes have remained undefined. Here, we identify c-Maf as an enterocyte-specific transcription factor within the SI epithelium. c-Maf expression was determined by opposing Noggin/BMP signals and overlapped with the zonated enrichment of nutrient transporters in the mid-villus region. Functionally, enterocytes required c-Maf to appropriately differentiate along the villus axis. Specifically, gene programs controlling carbohydrate and protein absorption were c-Maf-dependent. Consequently, epithelial cell-specific c-Maf deletion resulted in impaired enterocyte maturation and nutrient uptake, including defects in the adaptation to different nutrient availability. Concomitantly, intraepithelial lymphocytes were less abundant, while commensal epithelial cell-attaching SFB overgrew in a c-Maf-deficient environment, highlighting the close interdependence between the intestinal epithelium, immune system, and microbiota. Collectively, our data identified c-Maf as a key regulator of SI enterocyte differentiation and function, essential for nutrient, immune, and microbial homeostasis.
Collapse
Affiliation(s)
- Catalina Cosovanu
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Resch
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Jordan
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Lehmann
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK
| | - Vadim Farztdinov
- Core Facility - High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility - High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Christian Neumann
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Choo J, Glisovic N, Matic Vignjevic D. Gut homeostasis at a glance. J Cell Sci 2022; 135:281168. [DOI: 10.1242/jcs.260248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT
The intestine, a rapidly self-renewing organ, is part of the gastrointestinal system. Its major roles are to absorb food-derived nutrients and water, process waste and act as a barrier against potentially harmful substances. Here, we will give a brief overview of the primary functions of the intestine, its structure and the luminal gradients along its length. We will discuss the dynamics of the intestinal epithelium, its turnover, and the maintenance of homeostasis. Finally, we will focus on the characteristics and functions of intestinal mesenchymal and immune cells. In this Cell Science at a Glance article and the accompanying poster, we aim to present the most recent information about gut cell biology and physiology, providing a resource for further exploration.
Collapse
Affiliation(s)
- Jieun Choo
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | - Neda Glisovic
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | | |
Collapse
|
22
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|
23
|
Ribosome impairment regulates intestinal stem cell identity via ZAKɑ activation. Nat Commun 2022; 13:4492. [PMID: 35918345 PMCID: PMC9345940 DOI: 10.1038/s41467-022-32220-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The small intestine is a rapidly proliferating organ that is maintained by a small population of Lgr5-expressing intestinal stem cells (ISCs). However, several Lgr5-negative ISC populations have been identified, and this remarkable plasticity allows the intestine to rapidly respond to both the local environment and to damage. However, the mediators of such plasticity are still largely unknown. Using intestinal organoids and mouse models, we show that upon ribosome impairment (driven by Rptor deletion, amino acid starvation, or low dose cyclohexamide treatment) ISCs gain an Lgr5-negative, fetal-like identity. This is accompanied by a rewiring of metabolism. Our findings suggest that the ribosome can act as a sensor of nutrient availability, allowing ISCs to respond to the local nutrient environment. Mechanistically, we show that this phenotype requires the activation of ZAKɑ, which in turn activates YAP, via SRC. Together, our data reveals a central role for ribosome dynamics in intestinal stem cells, and identify the activation of ZAKɑ as a critical mediator of stem cell identity. Intestinal stem cells are responsible for replenishing cells within the high-turnover intestinal epithelium. Here they show that ribosome dynamics affect intestinal stem cell identity through a mechanism that is triggered by changes in nutrient availability.
Collapse
|
24
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Shah K, Maradana MR, Joaquina Delàs M, Metidji A, Graelmann F, Llorian M, Chakravarty P, Li Y, Tolaini M, Shapiro M, Kelly G, Cheshire C, Bhurta D, Bharate SB, Stockinger B. Cell-intrinsic Aryl Hydrocarbon Receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat Commun 2022; 13:1827. [PMID: 35383166 PMCID: PMC8983642 DOI: 10.1038/s41467-022-29098-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is an environmental sensor that integrates microbial and dietary cues to influence physiological processes within the intestinal microenvironment, protecting against colitis and colitis-associated colorectal cancer development. Rapid tissue regeneration upon injury is important for the reinstatement of barrier integrity and its dysregulation promotes malignant transformation. Here we show that AHR is important for the termination of the regenerative response and the reacquisition of mature epithelial cell identity post injury in vivo and in organoid cultures in vitro. Using an integrative multi-omics approach in colon organoids, we show that AHR is required for timely termination of the regenerative response through direct regulation of transcription factors involved in epithelial cell differentiation as well as restriction of chromatin accessibility to regeneration-associated Yap/Tead transcriptional targets. Safeguarding a regulated regenerative response places AHR at a pivotal position in the delicate balance between controlled regeneration and malignant transformation. Rapid intestinal regeneration after injury is critical to maintain barrier integrity and homeostasis, but must be tightly controlled to prevent tumorigenesis. Here they show that the aryl hydrocarbon receptor is required to terminate the regenerative response after wound healing.
Collapse
Affiliation(s)
| | | | | | - Amina Metidji
- Department of Oncology, St Jude Children's Hospital, Memphis, TN, USA
| | - Frederike Graelmann
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | | | | | | | | | - Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | |
Collapse
|
27
|
Pandey U, Aich P. Postnatal intestinal mucosa and gut microbial composition develop hand in hand: A mouse study. Biomed J 2022; 46:100519. [PMID: 35306225 DOI: 10.1016/j.bj.2022.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND During the early postnatal life, gut microbiota development experiences dynamic changes in their structural and functional composition. The postnatal period is the critical window to develop a host defense mechanism. The maturation of intestinal mucosal barrier integrity is one of the essential defense mechanisms to prevent the entry of pathogens. However, the co-development of intestinal microbial colonization, formation of barrier integrity, and intestinal epithelial cell layer is not entirely understood. METHODS We studied the gut microbial composition and diversity using 16S rRNA marker gene-based sequencing in mice to understand postnatal age-dependent association kinetics between gut microbial and intestinal development. Next, we assessed the intestinal development by in vivo gut permeability assay, mRNA gene expression of different tight junction proteins and intestinal epithelial cell markers, goblet cells population, villus length, and cecal IgA quantification. RESULTS Our results showed a significant shift in gut microbial structural and functional composition from postnatal day 14 onwards with early life Proteobacteria abundance. Relative abundance of Verrucomicrobia was maximum at postnatal day 14 and showed a gradual decrease over time. We also observed an age-dependent biphasic pattern in barrier integrity improvement and differentiation of intestinal epithelial cells (IECs). A significant improvement in barrier integrity between days 1 and 7 showed the host factor contribution, while that beyond day 14 revealed an association with changes in microbiota composition. Our temporal correlation analysis associated Bacteroidetes phylum with the mucosal barrier formation during postnatal development. CONCLUSIONS The present study revealed the importance and interplay of host factors and the microbiome in gut development and intestinal mucosal homeostasis.
Collapse
|
28
|
Chewing the Fat with Microbes: Lipid Crosstalk in the Gut. Nutrients 2022; 14:nu14030573. [PMID: 35276931 PMCID: PMC8840455 DOI: 10.3390/nu14030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
It is becoming increasingly important for any project aimed at understanding the effects of diet on human health, to also consider the combined effect of the trillions of microbes within the gut which modify and are modified by dietary nutrients. A healthy microbiome is diverse and contributes to host health, partly via the production and subsequent host absorption of secondary metabolites. Many of the beneficial bacteria in the gut rely on specific nutrients, such as dietary fiber, to survive and thrive. In the absence of those nutrients, the relative proportion of good commensal bacteria dwindles while communities of opportunistic, and potentially pathogenic, bacteria expand. Therefore, it is unsurprising that both diet and the gut microbiome have been associated with numerous human diseases. Inflammatory bowel diseases and colorectal cancer are associated with the presence of certain pathogenic bacteria and risk increases with consumption of a Western diet, which is typically high in fat, protein, and refined carbohydrates, but low in plant-based fibers. Indeed, despite increased screening and better care, colorectal cancer is still the 2nd leading cause of cancer death in the US and is the 3rd most diagnosed cancer among US men and women. Rates are rising worldwide as diets are becoming more westernized, alongside rising rates of metabolic diseases like obesity and diabetes. Understanding how a modern diet influences the microbiota and how subsequent microbial alterations effect human health will become essential in guiding personalized nutrition and healthcare in the future. Herein, we will summarize some of the latest advances in understanding of the three-way interaction between the human host, the gut microbiome, and the specific class of dietary nutrients, lipids.
Collapse
|
29
|
Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep 2022; 42:BSR20212510. [PMID: 34908111 PMCID: PMC8738868 DOI: 10.1042/bsr20212510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, microRNA (miRNA) sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNA-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.
Collapse
Affiliation(s)
- Hui-Juan Lu
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei 438000, China
| | - Cun-Jian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Daping Zhang
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fenggang Yu
- Institute of Life Science, Yinfeng Biological Group, Jinan 250000, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| |
Collapse
|
30
|
Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proc Natl Acad Sci U S A 2021; 118:e2112814118. [PMID: 34732579 PMCID: PMC8609316 DOI: 10.1073/pnas.2112814118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.
Collapse
Affiliation(s)
- Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Matthew Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
31
|
Lazarova D, Bordonaro M. Multifactorial causation of early onset colorectal cancer. J Cancer 2021; 12:6825-6834. [PMID: 34659571 PMCID: PMC8517991 DOI: 10.7150/jca.63676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
The multiple-hit hypothesis of cancer, including colorectal cancer (CRC), states that neoplastic development requires a sequence of mutations and epigenetic changes in driver genes. We have previously proposed that obesity increases CRC risk by supporting neoplastic development through adipokine-induced signaling, and this proliferative signaling substitutes for specific driver gene mutations. In support of this hypothesis, analyses of The Cancer Genome Atlas (TCGA) mutation data have revealed that obese patients with microsatellite stable CRC exhibit fewer driver gene mutations than CRC patients with normal body mass index. The lower number of driver gene mutations required for cancer development may shorten the neoplastic process and lead to an early onset of CRC. Therefore, obesity could be one factor explaining the rise of CRC incidence among younger individuals (< 50 years of age); furthermore, early onset CRC has been associated with the increasing incidence of metabolic syndrome and obesity in this age group. However, CRC incidence among older individuals (> 50 years of age) is stable or declining, despite the high rates of metabolic syndrome and obesity in this age group. In search for explanations of this phenomenon, we discuss several factors that may contribute to the divergent CRC incidence trends in populations under, and above, the age of 50, despite the rising levels of metabolic syndrome and obesity across all ages. First, older individuals with metabolic dysregulation are more frequently on maintenance medications, such as aspirin, β-blockers, lipid-lowering drugs, ACE inhibitors, metformin, etc., compared to younger individuals. Such treatments may suppress specific adipokine-induced proliferative signaling pathways, and therefore counteract and slow down neoplastic development in medicated overweight/obese individuals. Second, in the past decades, the incidence of infectious diseases accompanied by febrile episodes has been decreasing and the use of antipyretics increasing. Compared to normal cells, neoplastic cells are more sensitive to high body temperature; therefore, the decreased number of febrile episodes in childhood and adolescence may contribute to increased cancer incidence before the age of 50. Third, obesity at younger age may expand the stem cell compartment. An increased number of intestinal stem cells and stem cell divisions translates into a higher probability of sporadic mutations in the stem cells, and therefore, a greater chance of neoplasia. In conclusion, we hypothesize that early onset CRC has multifactorial causation and the proposed associations could be examined through analyses of existing data.
Collapse
Affiliation(s)
| | - Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
32
|
Martin K, Zhang T, Lin TT, Habowski AN, Zhao R, Tsai CF, Chrisler WB, Sontag RL, Orton DJ, Lu YJ, Rodland KD, Yang B, Liu T, Smith RD, Qian WJ, Waterman ML, Wiley HS, Shi T. Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50-1000 Mammalian Cells. J Proteome Res 2021; 20:4452-4461. [PMID: 34351778 PMCID: PMC8945255 DOI: 10.1021/acs.jproteome.1c00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in sample preparation enable label-free mass spectrometry (MS)-based proteome profiling of small numbers of mammalian cells. However, specific devices are often required to downscale sample processing volume from the standard 50-200 μL to sub-μL for effective nanoproteomics, which greatly impedes the implementation of current nanoproteomics methods by the proteomics research community. Herein, we report a facile one-pot nanoproteomics method termed SOPs-MS (surfactant-assisted one-pot sample processing at the standard volume coupled with MS) for convenient robust proteome profiling of 50-1000 mammalian cells. Building upon our recent development of SOPs-MS for label-free single-cell proteomics at a low μL volume, we have systematically evaluated its processing volume at 10-200 μL using 100 human cells. The processing volume of 50 μL that is in the range of volume for standard proteomics sample preparation has been selected for easy sample handling with a benchtop micropipette. SOPs-MS allows for reliable label-free quantification of ∼1200-2700 protein groups from 50 to 1000 MCF10A cells. When applied to small subpopulations of mouse colon crypt cells, SOPs-MS has revealed protein signatures between distinct subpopulation cells with identification of ∼1500-2500 protein groups for each subpopulation. SOPs-MS may pave the way for routine deep proteome profiling of small numbers of cells and low-input samples.
Collapse
Affiliation(s)
| | | | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amber N. Habowski
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California 92697, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan L. Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daniel J. Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yong-Jie Lu
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bin Yang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California 92697, United States
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tujin Shi
- Corresponding Author Tujin Shi – Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Phone: (509) 371-6579;
| |
Collapse
|
33
|
Gebert N, Rahman S, Lewis CA, Ori A, Cheng CW. Identifying Cell-Type-Specific Metabolic Signatures Using Transcriptome and Proteome Analyses. Curr Protoc 2021; 1:e245. [PMID: 34516047 PMCID: PMC8722675 DOI: 10.1002/cpz1.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies in various tissues have revealed a central role of metabolic pathways in regulating adult stem cell function in tissue regeneration and tumor initiation. The unique metabolic dependences or preferences of adult stem cells, therefore, are emerging as a new category of therapeutic target. Recently, advanced methods including high-resolution metabolomics, proteomics, and transcriptomics have been developed to address the growing interest in stem cell metabolism. A practical framework integrating the omics analyses is needed to systematically perform metabolic characterization in a cell-type-specific manner. Here, we leverage recent advances in transcriptomics and proteomics research to identify cell-type-specific metabolic features by reconstructing cell identity using genes and the encoded enzymes involved in major metabolic pathways. We provide protocols for cell isolation, transcriptome and proteome analyses, and metabolite profiling and measurement. The workflow for mapping cell-type-specific metabolic signatures presented here, although initially developed for intestinal crypt cells, can be easily implemented for cell populations in other tissues, and is highly compatible with most public datasets. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Intestinal crypt isolation and cell population purification Basic Protocol 2: Transcriptome analyses for cell-type-specific metabolic gene expression Basic Protocol 3: Proteome analyses for cell-type-specific metabolic enzyme levels Basic Protocol 4: Metabolite profiling and measurement.
Collapse
Affiliation(s)
- Nadja Gebert
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin-Buch, Germany
| | - Shahadat Rahman
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
34
|
Davies TF, Latif R, Sachidanandam R, Ma R. The Transient Human Thyroid Progenitor Cell: Examining the Thyroid Continuum from Stem Cell to Follicular Cell. Thyroid 2021; 31:1151-1159. [PMID: 33678005 PMCID: PMC8377509 DOI: 10.1089/thy.2020.0930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: The development of the thyroid follicular cell has been well characterized as it progresses from the original stem cell, either embryonic or adult, through a series of transitions to form a differentiated and functional thyroid cell. Summary: In this review, we briefly outline what is known about this transitional process with emphasis on characterizing the thyroid progenitor stem cell by using data obtained from both in vitro and in vivo studies and both mouse and human cells. It is of particular importance to note the influence of independent factors that guide the transcriptional control of the developing thyroid cell as it is subjected to extracellular signals, often working via epigenetic changes, and initiating intrinsic transcriptional changes leading to a functional cell. Conclusion: Thyroid stem cells fall into the category of dispositional stem cells and are greatly influenced by their environment.
Collapse
Affiliation(s)
- Terry F. Davies
- Thyroid Research Unit, Department of Medicine and Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine and Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
| | - Risheng Ma
- Thyroid Research Unit, Department of Medicine and Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, New York, New York, USA
- Address correspondence to: Risheng Ma, MD, PhD, Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and James J. Peters VA Medical Center, Dr. R. Ma, Room 4-23, 1 Gustave L. Levy Place, Box #1055, New York, NY 10029-5674, USA
| |
Collapse
|
35
|
Póvoa V, Rebelo de Almeida C, Maia-Gil M, Sobral D, Domingues M, Martinez-Lopez M, de Almeida Fuzeta M, Silva C, Grosso AR, Fior R. Innate immune evasion revealed in a colorectal zebrafish xenograft model. Nat Commun 2021; 12:1156. [PMID: 33608544 PMCID: PMC7895829 DOI: 10.1038/s41467-021-21421-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer immunoediting is a dynamic process of crosstalk between tumor cells and the immune system. Herein, we explore the fast zebrafish xenograft model to investigate the innate immune contribution to this process. Using multiple breast and colorectal cancer cell lines and zAvatars, we find that some are cleared (regressors) while others engraft (progressors) in zebrafish xenografts. We focus on two human colorectal cancer cells derived from the same patient that show contrasting engraftment/clearance profiles. Using polyclonal xenografts to mimic intra-tumor heterogeneity, we demonstrate that SW620_progressors can block clearance of SW480_regressors. SW480_regressors recruit macrophages and neutrophils more efficiently than SW620_progressors; SW620_progressors however, modulate macrophages towards a pro-tumoral phenotype. Genetic and chemical suppression of myeloid cells indicates that macrophages and neutrophils play a crucial role in clearance. Single-cell-transcriptome analysis shows a fast subclonal selection, with clearance of regressor subclones associated with IFN/Notch signaling and escaper-expanded subclones with enrichment of IL10 pathway. Overall, our work opens the possibility of using zebrafish xenografts as living biomarkers of the tumor microenvironment.
Collapse
Affiliation(s)
- Vanda Póvoa
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Cátia Rebelo de Almeida
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mariana Maia-Gil
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Daniel Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Micaela Domingues
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mayra Martinez-Lopez
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Miguel de Almeida Fuzeta
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Carlos Silva
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana Rita Grosso
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
36
|
Verdile N, Pasquariello R, Brevini TAL, Gandolfi F. The 3D Pattern of the Rainbow Trout ( Oncorhynchus mykiss) Enterocytes and Intestinal Stem Cells. Int J Mol Sci 2020; 21:E9192. [PMID: 33276531 PMCID: PMC7730110 DOI: 10.3390/ijms21239192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
We previously showed that, according to the frequency and distribution of specific cell types, the rainbow trout (RT) intestinal mucosa can be divided in two regions that form a complex nonlinear three-dimensional (3D) pattern and have a different renewal rate. This work had two aims. First, we investigated whether the unusual distribution of cell populations reflects a similar distribution of functional activities. To this end, we determined the protein expression pattern of three well-defined enterocytes functional markers: peptide transporter 1 (PepT1), sodium-glucose/galactose transporter 1 (SGLT-1), and fatty-acid-binding protein 2 (Fabp2). Second, we characterized the structure of RT intestinal stem-cell (ISC) niche and determined whether the different proliferative is accompanied by a different organization and/or extension of the stem-cell population. We studied the expression and localization of well-characterized mammal ISC markers: LGR5, HOPX, SOX9, NOTCH1, DLL1, and WNT3A. Our results indicate that morphological similarity is associated with similar function only between the first portion of the mid-intestine and the apical part of the complex folds in the second portion. Mammal ISC markers are all expressed in RT, but their localization is completely different, suggesting also substantial functional differences. Lastly, higher renewal rates are supported by a more abundant ISC population.
Collapse
Affiliation(s)
- Nicole Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (N.V.); (R.P.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (N.V.); (R.P.)
| | - Tiziana A. L. Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milano, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (N.V.); (R.P.)
| |
Collapse
|