1
|
Andrieu C, Danesin C, Montigny A, Rey M, Baqué K, Bibonne A, Alfandari D, Theveneau E. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. Differentiation 2025:100836. [PMID: 39828493 DOI: 10.1016/j.diff.2025.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Matrix Metalloproteinases (MMPs) are known for their role in matrix remodeling via their catalytic activities in the extracellular space. Interestingly, these enzymes can also play less expected roles in cell survival, polarity and motility via other substrates (e.g. receptors, chemokines), through an intracellular localization (e.g. the nucleus) or via non-catalytic functions. Most of these unconventional functions are yet to be functionally validated in a physiological context. Here, we used the delamination of the cephalic Neural Crest (NC) cells of the chicken embryo, a well described experimental model of epithelial-mesenchymal transition (EMT), to study the in vivo function of MMP14 (a.k.a MT1-MMP). MMP14 is a transmembrane MMP known for its importance in cell invasion and often associated with poor prognosis in cancer. We found that MMP14 is expressed and required for cephalic NC delamination. More specifically, MMP14 is necessary for the downregulation of Cadherin-6B and a co-inhibition of Cadherin-6B and MMP14 expressions is sufficient to restore NC delamination. Cadherin-6B is normally repressed by Snail2. Surprisingly, in MMP14 knockdown this lack of Cadherin-6B repression occurs in the context of a normal expression and nuclear import of Snail2. We further show that MMP14 is not detected in the nucleus and that Snail2 and MMP14 do not physically interact. These data reveals that a yet to be identified MMP14-dependent signaling event is required for the Snail2-dependent repression of Cadherin-6B. In conclusion, this work provides an in vivo example of atypical regulation of Cadherins by an MMP which emphasizes the importance and diversity of non-canonical functions of MMPs.
Collapse
Affiliation(s)
- Cyril Andrieu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Cathy Danesin
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Audrey Montigny
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marie Rey
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Klara Baqué
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anne Bibonne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Dominique Alfandari
- University of Massachusetts Amherst, Dept. of Veterinary and Animal Sciences, Amherst, MA, 01003, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
2
|
Pandey A, Cousin H, Kumar S, Taylor L, Chander A, Coppenrath K, Shaidani NI, Horb M, Alfandari D. ADAM interact with large protein complexes to regulate Histone modification, gene expression and splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608474. [PMID: 39229132 PMCID: PMC11370339 DOI: 10.1101/2024.08.18.608474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cranial neural crest (CNC) cells are key stem cells that contribute to most of the facial structures in vertebrates. ADAM ( A D isintegrin A nd M etalloprotease) proteins are essential for the induction and migration of the CNC. We have shown that Adam13 associates with the transcription factor Arid3a to regulate gene expression. Here we show that Adam13 modulates Histone modifications in the CNC. We show that Arid3a binding to the tfap2α promoter depends on the presence of Adam13. This association promotes the expression of one tfap2α variant expressed in the CNC that uniquely activates the expression of gene critical for CNC migration. We show that both Adam13 and human ADAM9 associate with proteins involved in histone modification and RNA splicing, a function critically affected by the loss of Adam13. We propose that ADAMs may act as extracellular sensors to modulate chromatin availability, leading to changes in gene expression and splicing.
Collapse
|
3
|
Plunder S, Danesin C, Glise B, Ferreira MA, Merino-Aceituno S, Theveneau E. Modelling variability and heterogeneity of EMT scenarios highlights nuclear positioning and protrusions as main drivers of extrusion. Nat Commun 2024; 15:7365. [PMID: 39198505 PMCID: PMC11358417 DOI: 10.1038/s41467-024-51372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a key process in physiological and pathological settings. EMT is often presented as a linear sequence with (i) disassembly of cell-cell junctions, (ii) loss of epithelial polarity and (iii) reorganization of the cytoskeleton leading to basal extrusion from the epithelium. Once out, cells can adopt a migratory phenotype with a front-rear polarity. While this sequence can occur, in vivo observations have challenged it. It is now accepted that multiple EMT scenarios coexist in heterogeneous cell populations. However, the relative importance of each step as well as that of variability and heterogeneity on the efficiency of cell extrusion has not been assessed. Here we used computational modelling to simulate multiple EMT-like scenarios and confronted these data to the EMT of neural crest cells. Overall, our data point to a key role of nuclear positioning and protrusive activity to generate timely basal extrusion.
Collapse
Affiliation(s)
- Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Cathy Danesin
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Bruno Glise
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marina A Ferreira
- CMUC, Department of Mathematics, University of Coimbra, 3000-413, Coimbra, Portugal
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria.
| | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
4
|
Despin-Guitard E, Rosa VS, Plunder S, Mathiah N, Van Schoor K, Nehme E, Merino-Aceituno S, Egea J, Shahbazi MN, Theveneau E, Migeotte I. Non-apical mitoses contribute to cell delamination during mouse gastrulation. Nat Commun 2024; 15:7364. [PMID: 39198421 PMCID: PMC11358383 DOI: 10.1038/s41467-024-51638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
During the epithelial-mesenchymal transition driving mouse embryo gastrulation, cells divide more frequently at the primitive streak, and half of those divisions happen away from the apical pole. These observations suggest that non-apical mitoses might play a role in cell delamination. We aim to uncover and challenge the molecular determinants of mitosis position in different regions of the epiblast through computational modeling and pharmacological treatments of embryos and stem cell-based epiblast spheroids. Blocking basement membrane degradation at the streak has no impact on the asymmetry in mitosis frequency and position. By contrast, disturbance of the actomyosin cytoskeleton or cell cycle dynamics elicits ectopic non-apical mitosis and shows that the streak region is characterized by local relaxation of the actomyosin cytoskeleton and less stringent regulation of cell division. These factors are essential for normal dynamics at the streak and favor cell delamination from the epiblast.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, UK
| | - Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Navrita Mathiah
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Kristof Van Schoor
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology, Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | | | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium.
| |
Collapse
|
5
|
Ventriglia S, Kalcheim C. From neural tube to spinal cord: The dynamic journey of the dorsal neuroepithelium. Dev Biol 2024; 511:26-38. [PMID: 38580174 DOI: 10.1016/j.ydbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.
Collapse
Affiliation(s)
- Susanna Ventriglia
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| |
Collapse
|
6
|
Acloque H, Yang J, Theveneau E. Epithelial-to-mesenchymal plasticity from development to disease: An introduction to the special issue. Genesis 2024; 62:e23581. [PMID: 38098257 PMCID: PMC11021161 DOI: 10.1002/dvg.23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Epithelial-Mesenchymal Transition (EMT) refers to the ability of cells to switch between epithelial and mesenchymal states, playing critical roles in embryonic development, wound healing, fibrosis, and cancer metastasis. Here, we discuss some examples that challenge the use of specific markers to define EMT, noting that their expression may not always correspond to the expected epithelial or mesenchymal identity. In concordance with recent development in the field, we emphasize the importance of generalizing the use of the term Epithelial-Mesenchymal Plasticity (EMP), to better capture the diverse and context-dependent nature of the bidirectional journey that cells can undertake between the E and M phenotypes. We highlight the usefulness of studying a wide range of physiological EMT scenarios, stress the value of the dynamic of expression of EMP regulators and advocate, whenever possible, for more systematic functional assays to assess cellular states.
Collapse
Affiliation(s)
- Hervé Acloque
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy en Josas, France
| | - Jing Yang
- Department of Pharmacology and of Pediatrics, Moores Cancer Center, University of California San Diego, School of Medicine, La Jolla, California, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Kalev-Altman R, Janssen JN, Ben-Haim N, Levy T, Shitrit-Tovli A, Milgram J, Shahar R, Sela-Donenfeld D, Monsonego-Ornan E. The gelatinases, matrix metalloproteinases 2 and 9, play individual roles in skeleton development. Matrix Biol 2022; 113:100-121. [DOI: 10.1016/j.matbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
|
8
|
Abstract
Neural crest cells (NCCs) are a dynamic, multipotent, vertebrate-specific population of embryonic stem cells. These ectodermally-derived cells contribute to diverse tissue types in developing embryos including craniofacial bone and cartilage, the peripheral and enteric nervous systems and pigment cells, among a host of other cell types. Due to their contribution to a significant number of adult tissue types, the mechanisms that drive their formation, migration and differentiation are highly studied. NCCs have a unique ability to transition from tightly adherent epithelial cells to mesenchymal and migratory cells by altering their polarity, expression of cell-cell adhesion molecules and gaining invasive abilities. In this Review, we discuss classical and emerging factors driving NCC epithelial-to-mesenchymal transition and migration, highlighting the role of signaling and transcription factors, as well as novel modifying factors including chromatin remodelers, small RNAs and post-translational regulators, which control the availability and longevity of major NCC players.
Collapse
Affiliation(s)
| | - Crystal D. Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
9
|
Ribba AS, Fraboulet S, Sadoul K, Lafanechère L. The Role of LIM Kinases during Development: A Lens to Get a Glimpse of Their Implication in Pathologies. Cells 2022; 11:cells11030403. [PMID: 35159213 PMCID: PMC8834001 DOI: 10.3390/cells11030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
The organization of cell populations within animal tissues is essential for the morphogenesis of organs during development. Cells recognize three-dimensional positions with respect to the whole organism and regulate their cell shape, motility, migration, polarization, growth, differentiation, gene expression and cell death according to extracellular signals. Remodeling of the actin filaments is essential to achieve these cell morphological changes. Cofilin is an important binding protein for these filaments; it increases their elasticity in terms of flexion and torsion and also severs them. The activity of cofilin is spatiotemporally inhibited via phosphorylation by the LIM domain kinases 1 and 2 (LIMK1 and LIMK2). Phylogenetic analysis indicates that the phospho-regulation of cofilin has evolved as a mechanism controlling the reorganization of the actin cytoskeleton during complex multicellular processes, such as those that occur during embryogenesis. In this context, the main objective of this review is to provide an update of the respective role of each of the LIM kinases during embryonic development.
Collapse
|
10
|
Healey RD, Saied EM, Cong X, Karsai G, Gabellier L, Saint-Paul J, Del Nero E, Jeannot S, Drapeau M, Fontanel S, Maurel D, Basu S, Leyrat C, Golebiowski J, Bossis G, Bechara C, Hornemann T, Arenz C, Granier S. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases. Angew Chem Int Ed Engl 2022; 61:e202109967. [PMID: 34668624 DOI: 10.1002/anie.202109967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.
Collapse
Affiliation(s)
- Robert D Healey
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Essa M Saied
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Chemistry Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | | | - Julie Saint-Paul
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Elise Del Nero
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Sylvain Jeannot
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Marion Drapeau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Simon Fontanel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Damien Maurel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | | | - Cherine Bechara
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
- Institut Universitaire de France (IUF), Paris, France
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Christoph Arenz
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Sebastien Granier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| |
Collapse
|
11
|
Healey RD, Saied EM, Cong X, Karsai G, Gabellier L, Saint‐Paul J, Del Nero E, Jeannot S, Drapeau M, Fontanel S, Maurel D, Basu S, Leyrat C, Golebiowski J, Bossis G, Bechara C, Hornemann T, Arenz C, Granier S. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Robert D. Healey
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Essa M. Saied
- Institute for chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
- Chemistry Department Faculty of Science Suez Canal University 41522 Ismailia Egypt
| | - Xiaojing Cong
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Gergely Karsai
- Institute of Clinical Chemistry University Hospital Zurich University of Zurich Zurich 8091 Switzerland
| | | | - Julie Saint‐Paul
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Elise Del Nero
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Sylvain Jeannot
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Marion Drapeau
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Simon Fontanel
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Damien Maurel
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Shibom Basu
- EMBL Grenoble 71 Avenue des Martyrs, CS 90181 38042 Grenoble France
| | - Cedric Leyrat
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Jérôme Golebiowski
- Université Côte d'Azur CNRS Institut de Chimie de Nice UMR7272 Nice 06108 France
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology Daegu 711-873 South Korea
| | | | - Cherine Bechara
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
- Institut Universitaire de France (IUF) Paris France
| | - Thorsten Hornemann
- Institute of Clinical Chemistry University Hospital Zurich University of Zurich Zurich 8091 Switzerland
| | - Christoph Arenz
- Institute for chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | | |
Collapse
|
12
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Romanos M, Allio G, Roussigné M, Combres L, Escalas N, Soula C, Médevielle F, Steventon B, Trescases A, Bénazéraf B. Cell-to-cell heterogeneity in Sox2 and Bra expression guides progenitor motility and destiny. eLife 2021; 10:e66588. [PMID: 34607629 PMCID: PMC8492064 DOI: 10.7554/elife.66588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although cell-to-cell heterogeneity in gene and protein expression within cell populations has been widely documented, we know little about its biological functions. By studying progenitors of the posterior region of bird embryos, we found that expression levels of transcription factors Sox2 and Bra, respectively involved in neural tube (NT) and mesoderm specification, display a high degree of cell-to-cell heterogeneity. By combining forced expression and downregulation approaches with time-lapse imaging, we demonstrate that Sox2-to-Bra ratio guides progenitor's motility and their ability to stay in or exit the progenitor zone to integrate neural or mesodermal tissues. Indeed, high Bra levels confer high motility that pushes cells to join the paraxial mesoderm, while high levels of Sox2 tend to inhibit cell movement forcing cells to integrate the NT. Mathematical modeling captures the importance of cell motility regulation in this process and further suggests that randomness in Sox2/Bra cell-to-cell distribution favors cell rearrangements and tissue shape conservation.
Collapse
Affiliation(s)
- Michèle Romanos
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
- Institut de Mathématiques de Toulouse UMR 5219, Université de ToulouseToulouseFrance
| | - Guillaume Allio
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Myriam Roussigné
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Léa Combres
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Nathalie Escalas
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Cathy Soula
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - François Médevielle
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | | | - Ariane Trescases
- Institut de Mathématiques de Toulouse UMR 5219, Université de ToulouseToulouseFrance
| | - Bertrand Bénazéraf
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| |
Collapse
|
14
|
Casey MA, Lusk S, Kwan KM. Build me up optic cup: Intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev Biol 2021; 476:128-136. [PMID: 33811855 PMCID: PMC8848517 DOI: 10.1016/j.ydbio.2021.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
The basic structure of the eye, which is crucial for visual function, is established during the embryonic process of optic cup morphogenesis. Molecular pathways of specification and patterning are integrated with spatially distinct cell and tissue shape changes to generate the eye, with discrete domains and structural features: retina and retinal pigment epithelium enwrap the lens, and the optic fissure occupies the ventral surface of the eye and optic stalk. Interest in the underlying cell biology of eye morphogenesis has led to a growing body of work, combining molecular genetics and imaging to quantify cellular processes such as adhesion and actomyosin activity. These studies reveal that intrinsic machinery and spatiotemporally specific extrinsic inputs collaborate to control dynamics of cell movements and morphologies. Here we consider recent advances in our understanding of eye morphogenesis, with a focus on the mechanics of eye formation throughout vertebrate systems, including insights and potential opportunities using organoids, which may provide a tractable system to test hypotheses from embryonic models.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Anteroposterior elongation of the chicken anterior trunk neural tube is hindered by interaction with its surrounding tissues. Cells Dev 2021; 168:203723. [PMID: 34284169 DOI: 10.1016/j.cdev.2021.203723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
The neural tube is the precursor of the central nervous system. Its early formation and growth are known to be extremely biased along the anteroposterior (AP) axis. Several mechanisms including addition of cells from the tail bud, lateral pressure from surrounding tissues and oriented cell divisions have been proposed to contribute to this biased growth. Here we show that, contrary to what has been found in posterior regions encompassing the tail bud region, the growth of the anterior trunk neural tube is slower along the AP direction than in the other axes. We found that this is due to anchorage of the neural tube to the matrix which favors apicobasal elongation at the expense of AP growth. In addition, as the neural tube develops, we found a moderate slowdown of cell proliferation that could account for the overall reduction of the pace of 3D growth in the same time window. However, as we found no preferred orientation of cell division, changes in cell cycle pace are unlikely to directly contribute to the observed AP-hindered growth of neural tube. Overall, these data indicate that neural tube growth is not intrinsically positively biased along the AP axis. Rather it switches from AP-favored to AP-hindered regimes between the most posterior and anterior trunk neural tube regions.
Collapse
|
16
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
17
|
Fontenas L, Kucenas S. Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. eLife 2021; 10:64267. [PMID: 33554855 PMCID: PMC7886336 DOI: 10.7554/elife.64267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
During development, oligodendrocytes and Schwann cells myelinate central and peripheral nervous system axons, respectively, while motor exit point (MEP) glia are neural tube-derived, peripheral glia that myelinate axonal territory between these populations at MEP transition zones. From which specific neural tube precursors MEP glia are specified, and how they exit the neural tube to migrate onto peripheral motor axons, remain largely unknown. Here, using zebrafish, we found that MEP glia arise from lateral floor plate precursors and require foxd3 to delaminate and exit the spinal cord. Additionally, we show that similar to Schwann cells, MEP glial development depends on axonally derived neuregulin1. Finally, our data demonstrate that overexpressing axonal cues is sufficient to generate additional MEP glia in the spinal cord. Overall, these studies provide new insight into how a novel population of hybrid, peripheral myelinating glia are generated from neural tube precursors and migrate into the periphery.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
18
|
Danesin C, Darche-Gabinaud R, Escalas N, Bouguetoch V, Cochard P, Al Oustah A, Ohayon D, Glise B, Soula C. Sulf2a controls Shh-dependent neural fate specification in the developing spinal cord. Sci Rep 2021; 11:118. [PMID: 33420239 PMCID: PMC7794431 DOI: 10.1038/s41598-020-80455-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specification of ventral progenitors. More specifically, Sulf2a prevents Olig2 progenitors to activate high-threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specification in Shh target cells, provides direct evidence of non-redundant functions of Sulfs in the developing spinal cord.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France.
| | - Romain Darche-Gabinaud
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Nathalie Escalas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Vanessa Bouguetoch
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Philippe Cochard
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Amir Al Oustah
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - David Ohayon
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Bruno Glise
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Cathy Soula
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| |
Collapse
|
19
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1132] [Impact Index Per Article: 226.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|