1
|
Guan X, Fan Y, Six R, Van Soom A, Pavani KC, Peelman L. MicroRNAs bta-novel-miR-117, bta-novel-miR-234 and bta-novel-miR-417 have adverse effects on blastocyst formation. Theriogenology 2025; 233:88-99. [PMID: 39613498 DOI: 10.1016/j.theriogenology.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
In a previous study we found that the levels of the novel microRNAs (miRNAs) bta-novel-miR-117 bta-novel-miR-234 and bta-novel-miR-417 (P < 0.001) are significantly up-regulated in extracellular vesicles (EVs) in the culture medium of degenerating embryos compared to blastocysts. Because the functions of these novel miRNAs are still unknown, we investigated their regulatory roles during bovine blastocyst development by adding their mimics and inhibitors to the culture medium. The addition of mimics for bta-novel-miR-117, bta-novel-miR-234 and bta-novel-miR-417 resulted in a decreased blastocyst rate, and supplementation of bta-novel-miR-234 inhibitors increased the cleavage rate significantly (P < 0.001). Low-input transcriptome analysis and RT-qPCR results revealed that bta-novel-miR-117, bta-novel-miR-234 and bta-novel-miR-417 co-target genes such as ANKEF1, HAND2 and SLC2A2, downregulated their expression significantly (P < 0.001). These genes associated with glucose transmembrane transport and plasma membrane raft metabolism play crucial roles in embryonic development. The results suggest that overexpressing of these three novel miRNAs impairs embryonic development, and they might serve as biomarkers to detect failing bovine embryos.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Rani Six
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820, Merelbeke, Belgium; Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium.
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
2
|
Coorens THH, Guillaumet-Adkins A, Kovner R, Linn RL, Roberts VHJ, Sule A, Van Hoose PM. The human and non-human primate developmental GTEx projects. Nature 2025; 637:557-564. [PMID: 39815096 DOI: 10.1038/s41586-024-08244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/17/2024] [Indexed: 01/18/2025]
Abstract
Many human diseases are the result of early developmental defects. As most paediatric diseases and disorders are rare, children are critically underrepresented in research. Functional genomics studies primarily rely on adult tissues and lack critical cell states in specific developmental windows. In parallel, little is known about the conservation of developmental programmes across non-human primate (NHP) species, with implications for human evolution. Here we introduce the developmental Genotype-Tissue Expression (dGTEx) projects, which span humans and NHPs and aim to integrate gene expression, regulation and genetics data across development and species. The dGTEx cohort will consist of 74 tissue sites across 120 human donors from birth to adulthood, and developmentally matched NHP age groups, with additional prenatal and adult animals, with 126 rhesus macaques (Macaca mulatta) and 72 common marmosets (Callithrix jacchus). The data will comprise whole-genome sequencing, extensive bulk, single-cell and spatial gene expression profiles, and chromatin accessibility data across tissues and development. Through community engagement and donor diversity, the human dGTEx study seeks to address disparities in genomic research. Thus, dGTEx will provide a reference human and NHP dataset and tissue bank, enabling research into developmental changes in expression and gene regulation, childhood disorders and the effect of genetic variation on development.
Collapse
Affiliation(s)
| | | | | | - Rebecca L Linn
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Portland, OR, USA
| | - Amrita Sule
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Ahuja S, Zaheer S. Advancements in pathology: Digital transformation, precision medicine, and beyond. J Pathol Inform 2025; 16:100408. [DOI: 10.1016/j.jpi.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
|
4
|
Karami N, Taei A, Eftekhari-Yazdi P, Hassani F. Signaling pathway regulators in preimplantation embryos. J Mol Histol 2024; 56:57. [PMID: 39729177 DOI: 10.1007/s10735-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest. This issue is particularly evident in assisted reproductive technologies, such as in vitro fertilization, where embryonic arrest is frequently observed. A detailed understanding of these pathways enhances insight into the fundamental mechanisms underlying cellular processes and their contributions to embryonic development. The significance of elucidating signaling pathways and their regulatory factors in preimplantation development cannot be overstated. The application of this knowledge in laboratory settings has the potential to support strategies for modeling developmental stages and diseases, drug screening, therapeutic discovery, and reducing embryonic arrest. Furthermore, using various factors, small molecules, and pharmacological agents can enable the development or optimization of culture media for enhanced embryonic viability. While numerous pathways influence preimplantation development, this study examines several critical signaling pathways in this contex.
Collapse
Affiliation(s)
- Narges Karami
- MSc., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
| |
Collapse
|
5
|
Wu G, Wang L, Cao Y, Wang M, Yang C, Zhang J. 4D bioprinting of transformable living constructs with sustained local growth factor presentation for advanced tissue engineering applications. Colloids Surf B Biointerfaces 2024; 248:114484. [PMID: 39740487 DOI: 10.1016/j.colsurfb.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs. We herein developed composite bioinks composed of photocrosslinkable, jammed alginate methacrylate (AlgMA) and gelatin methacrylate (GelMA), incorporating GelMA microspheres loaded with GFs to provide sustained local GF presentation over 50 days for 4D tissue bioprinting. The composite bioink exhibited excellent printability, enabling 3D printing with good accuracy (∼120 %) and fidelity (105 % - 114 %). By incorporating a photoabsorbent to enhance light attenuation, a gradient network along the light propagation pathway was generated, facilitating programmable and controllable 4D shape transformation. This process allowed the fabrication of complex living constructs with defined architectures through morphing. A proof-of-concept study on cartilage regeneration demonstrated the effectiveness of sustained GF presentation in driving tissue development, showing significant glycosaminoglycan production (GAG/DNA 10.3), and substantial upregulation of type II collagen (125.8-fold) and aggrecan (16.4-fold) mRNA expression, thereby eliminating the need for exogenous GF supplementation. This study underscores the transformative potential of integrating dynamic tissue scaffolding with sustained GF delivery, thereby addressing key limitations of traditional tissue engineering approaches and offering new avenues for tissue repair applications.
Collapse
Affiliation(s)
- Guodong Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lin Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuhang Cao
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Manli Wang
- Department of Geriatrics, Changchun Central Hospital, Changchun, Jilin 130051, China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Changchun, Jilin 132013, China
| | - Jian Zhang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
An S, Hou S, Xu F, Yan H, Zhang W, Xiang J, Chen H, Zhang H, Dong L, Sun X, Huo R, Chen Y, Wang X, Yang Y. WDR36 Regulates Trophectoderm Differentiation During Human Preimplantation Embryonic Development Through Glycolytic Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412222. [PMID: 39656902 DOI: 10.1002/advs.202412222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Mammalian pre-implantation development is a complex process involving sophisticated regulatory dynamics. WD repeat domain 36 (WDR36) is known to play a critical role in mouse early embryonic development, but its regulatory function in human embryogenesis is still elusive due to limited access to human embryos. The human pluripotent stem cell-derived blastocyst-like structure, termed a blastoid, offers an alternative means to study human development in a dish. In this study, after verifying that WDR36 inhibition disrupted polarization in mouse early embryos, it is further demonstrated that WDR36 interference can block human blastoid formation, dominantly hindering the trophectoderm lineage commitment. Both transcriptomics and targeted metabolomics analyses revealed that WDR36 interference downregulated glucose metabolism. WDR36 can interact with glycolytic metabolic protein lactate dehydrogenase A (LDHA), thereby positively regulating glycolysis during the late stage of human blastoid formation. Taken together, the study has established a mechanistic connection between WDR36, glucose metabolism, and cell fate determination during early embryonic lineage commitment, which may provide potential insights into novel therapeutic targets for early adverse pregnancy interventions.
Collapse
Affiliation(s)
- Shiyu An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shuyue Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huanyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jinfeng Xiang
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, 210004, China
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, 210004, China
| | - Haoran Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hanwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Lingling Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaobin Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Prenatal Diagnosis of the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
7
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Adler M, Medzhitov R. Recurrent hyper-motif circuits in developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624466. [PMID: 39605580 PMCID: PMC11601646 DOI: 10.1101/2024.11.20.624466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During embryogenesis, homogenous groups of cells self-organize into stereotypic spatial and temporal patterns that make up tissues and organs. These emergent patterns are controlled by transcription factors and secreted signals that regulate cellular fate and behaviors through intracellular regulatory circuits and cell-cell communication circuits. However, the principles of these circuits and how their properties are combined to provide the spatio-temporal properties of tissues remain unclear. Here we develop a framework to explore building-block circuits of developmental programs. We use single-cell gene expression data across developmental stages of the human intestine to infer the key intra- and inter-cellular circuits that control developmental programs. We study how these circuits are joined into higher-level hyper-motif circuits and explore their emergent dynamical properties. This framework uncovers design principles of developmental programs and reveals the rules that allow cells to develop robust and diverse patterns.
Collapse
Affiliation(s)
- Miri Adler
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Ramirez Sierra MA, Sokolowski TR. AI-powered simulation-based inference of a genuinely spatial-stochastic gene regulation model of early mouse embryogenesis. PLoS Comput Biol 2024; 20:e1012473. [PMID: 39541410 PMCID: PMC11614244 DOI: 10.1371/journal.pcbi.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/03/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology, particularly in early mammalian development, where tissue-level differentiation arises from seemingly cell-autonomous mechanisms. In this study, we present a multi-scale, spatial-stochastic simulation framework for mouse embryogenesis, focusing on inner cell mass (ICM) differentiation into epiblast (EPI) and primitive endoderm (PRE) at the blastocyst stage. Our framework models key regulatory and tissue-scale interactions in a biophysically realistic fashion, capturing the inherent stochasticity of intracellular gene expression and intercellular signaling, while efficiently simulating these processes by advancing event-driven simulation techniques. Leveraging the power of Simulation-Based Inference (SBI) through the AI-driven Sequential Neural Posterior Estimation (SNPE) algorithm, we conduct a large-scale Bayesian inferential analysis to identify parameter sets that faithfully reproduce experimentally observed features of ICM specification. Our results reveal mechanistic insights into how the combined action of autocrine and paracrine FGF4 signaling coordinates stochastic gene expression at the cellular scale to achieve robust and reproducible ICM patterning at the tissue scale. We further demonstrate that the ICM exhibits a specific time window of sensitivity to exogenous FGF4, enabling lineage proportions to be adjusted based on timing and dosage, thereby extending current experimental findings and providing quantitative predictions for both mutant and wild-type ICM systems. Notably, FGF4 signaling not only ensures correct EPI-PRE lineage proportions but also enhances ICM resilience to perturbations, reducing fate-proportioning errors by 10-20% compared to a purely cell-autonomous system. Additionally, we uncover a surprising role for variability in intracellular initial conditions, showing that high gene-expression heterogeneity can improve both the accuracy and precision of cell-fate proportioning, which remains robust when fewer than 25% of the ICM population experiences perturbed initial conditions. Our work offers a comprehensive, spatial-stochastic description of the biochemical processes driving ICM differentiation and identifies the necessary conditions for its robust unfolding. It also provides a framework for future exploration of similar spatial-stochastic systems in developmental biology.
Collapse
Affiliation(s)
- Michael Alexander Ramirez Sierra
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
- Faculty of Computer Science and Mathematics, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
11
|
Sun L, Wang Y, Yang M, Xu ZJ, Miao J, Bai Y, Lin T. Delayed Blastocyst Formation Reduces the Quality and Hatching Ability of Porcine Parthenogenetic Blastocysts by Increasing DNA Damage, Decreasing Cell Proliferation, and Altering Transcription Factor Expression Patterns. J Dev Biol 2024; 12:26. [PMID: 39449318 PMCID: PMC11503403 DOI: 10.3390/jdb12040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The purpose of this study was to investigate the influence of blastocyst formation timing on the quality of porcine embryos derived from parthenogenetic activation. Newly formed blastocysts at days 6, 7, and 8 of culture [termed formation 6, 7, and 8 blastocysts (F6, F7, and F8 blastocysts)] were obtained, and a series of parameters related to the quality of blastocysts, including apoptosis incidents, DNA replication, pluripotent factors, and blastocyst hatching capacity, were assessed. Delayed blastocyst formation (F7 and/or F8 blastocysts) led to increased levels of ROS, DNA damage, and apoptosis while decreasing the mitochondrial membrane potential, DNA replication, Oct4 levels, and numbers of Sox2-positive cells. F7 blastocysts showed a significantly reduced hatching rate compared to F6 blastocysts; however, F8 blastocysts were unable to develop to the hatching stage. Collectively, our findings suggest a negative correlation between delayed blastocyst formation and blastocyst quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (L.S.); (Y.W.); (M.Y.); (Z.-J.X.); (J.M.)
| | - Tao Lin
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (L.S.); (Y.W.); (M.Y.); (Z.-J.X.); (J.M.)
| |
Collapse
|
12
|
Rotem O, Schwartz T, Maor R, Tauber Y, Shapiro MT, Meseguer M, Gilboa D, Seidman DS, Zaritsky A. Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization. Nat Commun 2024; 15:7390. [PMID: 39191720 DOI: 10.1038/s41467-024-51136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
The success of deep learning in identifying complex patterns exceeding human intuition comes at the cost of interpretability. Non-linear entanglement of image features makes deep learning a "black box" lacking human meaningful explanations for the models' decision. We present DISCOVER, a generative model designed to discover the underlying visual properties driving image-based classification models. DISCOVER learns disentangled latent representations, where each latent feature encodes a unique classification-driving visual property. This design enables "human-in-the-loop" interpretation by generating disentangled exaggerated counterfactual explanations. We apply DISCOVER to interpret classification of in vitro fertilization embryo morphology quality. We quantitatively and systematically confirm the interpretation of known embryo properties, discover properties without previous explicit measurements, and quantitatively determine and empirically verify the classification decision of specific embryo instances. We show that DISCOVER provides human-interpretable understanding of "black box" classification models, proposes hypotheses to decipher underlying biomedical mechanisms, and provides transparency for the classification of individual predictions.
Collapse
Affiliation(s)
- Oded Rotem
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | - Ron Maor
- AIVF Ltd., Tel Aviv, 69271, Israel
| | | | | | - Marcos Meseguer
- IVI Foundation Instituto de Investigación Sanitaria La FeValencia, Valencia, 46026, Spain
- Department of Reproductive Medicine, IVIRMA Valencia, 46015, Valencia, Spain
| | | | - Daniel S Seidman
- AIVF Ltd., Tel Aviv, 69271, Israel
- The Faculty of Medicine, Tel Aviv University, Tel-Aviv, 69978, Israel
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
13
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Hopwood N. Species Choice and Model Use: Reviving Research on Human Development. JOURNAL OF THE HISTORY OF BIOLOGY 2024; 57:231-279. [PMID: 39075321 PMCID: PMC11341657 DOI: 10.1007/s10739-024-09775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
While model organisms have had many historians, this article places studies of humans, and particularly our development, in the politics of species choice. Human embryos, investigated directly rather than via animal surrogates, have gone through cycles of attention and neglect. In the past 60 years they moved from the sidelines to center stage. Research was resuscitated in anatomy, launched in reproductive biomedicine, molecular genetics, and stem-cell science, and made attractive in developmental biology. I explain this surge of interest in terms of rivalry with models and reliance on them. The greater involvement of medicine in human reproduction, especially through in vitro fertilization, gave access to fresh sources of material that fed critiques of extrapolation from mice and met demands for clinical relevance or "translation." Yet much of the revival depended on models. Supply infrastructures and digital standards, including biobanks and virtual atlases, emulated community resources for model organisms. Novel culture, imaging, molecular, and postgenomic methods were perfected on less precious samples. Toing and froing from the mouse affirmed the necessity of the exemplary mammal and its insufficiency justified inquiries into humans. Another kind of model-organoids and embryo-like structures derived from stem cells-enabled experiments that encouraged the organization of a new field, human developmental biology. Research on humans has competed with and counted on models.
Collapse
Affiliation(s)
- Nick Hopwood
- Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RH, UK.
| |
Collapse
|
15
|
Yaseen I, Rather RA. A Theoretical Exploration of Artificial Intelligence's Impact on Feto-Maternal Health from Conception to Delivery. Int J Womens Health 2024; 16:903-915. [PMID: 38800118 PMCID: PMC11128252 DOI: 10.2147/ijwh.s454127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The implementation of Artificial Intelligence (AI) in healthcare is enhancing diagnostic accuracy in clinical setups. The use of AI in healthcare is steadily increasing with advancing technology, extending beyond disease diagnosis to encompass roles in feto-maternal health. AI harnesses Machine Learning (ML), Natural Language Processing (NLP), Artificial Neural Networks (ANN), and computer vision to analyze data and draw conclusions. Considering maternal health, ML analyzes vast datasets to predict maternal and fetal health outcomes, while NLP interprets medical texts and patient records to assist in diagnosis and treatment decisions. ANN models identify patterns in complex feto-maternal medical data, aiding in risk assessment and intervention planning whereas, computer vision enables the analysis of medical images for early detection of feto-maternal complications. AI facilitates early pregnancy detection, genetic screening, and continuous monitoring of maternal health parameters, providing real-time alerts for deviations, while also playing a crucial role in the early detection of fetal abnormalities through enhanced ultrasound imaging, contributing to informed decision-making. This review investigates into the application of AI, particularly through predictive models, in addressing the monitoring of feto-maternal health. Additionally, it examines potential future directions and challenges associated with these applications.
Collapse
Affiliation(s)
- Ishfaq Yaseen
- Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Riyaz Ahmad Rather
- Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Hossana, Ethiopia
| |
Collapse
|
16
|
Firmin J, Ecker N, Rivet Danon D, Özgüç Ö, Barraud Lange V, Turlier H, Patrat C, Maître JL. Mechanics of human embryo compaction. Nature 2024; 629:646-651. [PMID: 38693259 DOI: 10.1038/s41586-024-07351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
The shaping of human embryos begins with compaction, during which cells come into close contact1,2. Assisted reproductive technology studies indicate that human embryos fail compaction primarily because of defective adhesion3,4. On the basis of our current understanding of animal morphogenesis5,6, other morphogenetic engines, such as cell contractility, could be involved in shaping human embryos. However, the molecular, cellular and physical mechanisms driving human embryo morphogenesis remain uncharacterized. Using micropipette aspiration on human embryos donated to research, we have mapped cell surface tensions during compaction. This shows a fourfold increase of tension at the cell-medium interface whereas cell-cell contacts keep a steady tension. Therefore, increased tension at the cell-medium interface drives human embryo compaction, which is qualitatively similar to compaction in mouse embryos7. Further comparison between human and mouse shows qualitatively similar but quantitively different mechanical strategies, with human embryos being mechanically least efficient. Inhibition of cell contractility and cell-cell adhesion in human embryos shows that, whereas both cellular processes are required for compaction, only contractility controls the surface tensions responsible for compaction. Cell contractility and cell-cell adhesion exhibit distinct mechanical signatures when faulty. Analysing the mechanical signature of naturally failing embryos, we find evidence that non-compacting or partially compacting embryos containing excluded cells have defective contractility. Together, our study shows that an evolutionarily conserved increase in cell contractility is required to generate the forces driving the first morphogenetic movement shaping the human body.
Collapse
Affiliation(s)
- Julie Firmin
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France
- Université de Paris, Paris, France
- Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP centre, FHU Prema, Paris, France
| | - Nicolas Ecker
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, FHU Prema, Paris, France
| | - Diane Rivet Danon
- Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP centre, FHU Prema, Paris, France
| | - Özge Özgüç
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France
| | - Virginie Barraud Lange
- Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP centre, FHU Prema, Paris, France
- Institut Cochin, Université de Paris, CNRS UMR1016, Paris, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, FHU Prema, Paris, France
| | - Catherine Patrat
- Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP centre, FHU Prema, Paris, France
- Institut Cochin, Université de Paris, CNRS UMR1016, Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
17
|
Tomescu LC, Sas I, Sarb S, Cimpean AM. Evaluation of Vasculogenic Factors in the Developing Embryo at Weeks Five and Seven With a Special Focus on CD133 and TIE2 Markers. Cureus 2024; 16:e60353. [PMID: 38756714 PMCID: PMC11096276 DOI: 10.7759/cureus.60353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Human embryo vasculogenesis (blood vessel development starting from endothelial precursors) includes the ability of mesenchymal cells and pluripotent stem cells to differentiate into endothelial cells. Quantification of endothelial progenitor cells is difficult to assess during the early steps of human embryo development due to several factors, especially due to the paucity of human embryo tissue which is usually discarded after early-stage pregnancy abortive methods. CD133 (Promimin-1) is a general marker of progenitor cells, but combined with other endothelial markers such as CD34, it may identify endothelial progenitor cells during embryonic development. CD34 immunohistochemistry was previously performed by our team to identify human embryo capillaries and comparatively assess microvessel density between different human embryonic tissues. TIE2 is an angiopoietin receptor strongly involved in the newly formed blood vessel maturation due to its expression in some mesenchymal precursors for future pericytes. CD34 assesses the presence of endothelial cells but its single use does not evaluate the endothelial progenitor state as CD133 may do nor vessel maturation as TIE2 may do. Data about the dynamics of CD133/TIE2 expression in the early stages of human embryo development are scarce. Hence, in this study, we aimed to comparatively assess the dynamic of CD133+ endothelial precursors and TIE2 expression on five and seven-week-old human embryonic tissues with a special emphasis on their expression on embryonic vascular beds. Methodology CD133 and TIE2 immunohistochemistry was performed on five and seven-week-old human embryonic tissues followed by their quantification using the Qu Path digital image analysis (DIA) automated method. Results CD133 and TIE2 showed divergent patterns of expression during the initial phases of human embryonic development, specifically in the vascular endothelium of tiny capillaries. The expression of CD133 in endothelial cells lining the perfused lumen gradually decreased from five to seven-week-old embryos. It remained expressed with greater intensity in cells located at the tip of the vascular bud that emerged into pre-existing capillaries. TIE2 was much more specific than CD133, being restricted to the level of the vascular endothelium; therefore, it was easier to quantify using digital image analysis. The endothelium of the embryonic aorta was an exception to the divergent expression, as CD133 and TIE2 were consistently co-expressed in the seven-week-old embryo. The Qu Path DIA assessment increased the accuracy of CD133 and TIE2 evaluation, being the first time they were quantified by using automated software and not manually. Conclusions High heterogeneity of CD133 and TIE2 was observed between five and seven-week-old embryonic tissues as well as between different embryonic regions from the same gestational age. The unique finding of CD133/TIE2 co-expression persistence inside aortic endothelium needs further studies to elucidate the role of this co-expression.
Collapse
Affiliation(s)
| | - Ioan Sas
- Obstetrics and Gynecology, Victor Babeş University of Medicine and Pharmacy, Timișoara, ROU
| | - Simona Sarb
- Microscopic Morphology/Histology, Victor Babeş University of Medicine and Pharmacy, Timișoara, ROU
| | - Anca Maria Cimpean
- Microscopic Morphology/Histology, Victor Babeş University of Medicine and Pharmacy, Timișoara, ROU
| |
Collapse
|
18
|
Jabri A, Khan J, Taftafa B, Alsharif M, Mhannayeh A, Chinnappan R, Alzhrani A, Kazmi S, Mir MS, Alsaud AW, Yaqinuddin A, Assiri AM, AlKattan K, Vashist YK, Broering DC, Mir TA. Bioengineered Organoids Offer New Possibilities for Liver Cancer Studies: A Review of Key Milestones and Challenges. Bioengineering (Basel) 2024; 11:346. [PMID: 38671768 PMCID: PMC11048289 DOI: 10.3390/bioengineering11040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for pathophysiology and drug screening studies. Fortunately, an exciting new development for generating liver models in recent years has been the advent of organoid technology. Organoid models hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture of primary liver cancers and maintain the molecular and functional variations of the native tissue counterparts during long-term culture in vitro. This review provides a comprehensive overview and discussion of the establishment and application of liver organoid models in vitro. Bioengineering strategies used to construct organoid models are also discussed. In addition, the clinical potential and other relevant applications of liver organoid models in different functional states are explored. In the end, this review discusses current limitations and future prospects to encourage further development.
Collapse
Affiliation(s)
- Abdullah Jabri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Jibran Khan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Bader Taftafa
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdulaziz Mhannayeh
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
| | - Shadab Kazmi
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Pathology and laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Aljohara Waleed Alsaud
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yogesh K. Vashist
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
19
|
Giri A, Kar S. Interlinked bi-stable switches govern the cell fate commitment of embryonic stem cells. FEBS Lett 2024; 598:915-934. [PMID: 38408774 DOI: 10.1002/1873-3468.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady-state expression patterns of two key transcription factors-Oct4 and Nanog. How dynamically such kind of steady-state expressions are maintained remains elusive. Herein, we demonstrate that steady-state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom-like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self-renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Collapse
Affiliation(s)
- Amitava Giri
- Department of Chemistry, IIT Bombay, Powai, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, India
| |
Collapse
|
20
|
De Santis R, Rice E, Croft G, Yang M, Rosado-Olivieri EA, Brivanlou AH. The emergence of human gastrulation upon in vitro attachment. Stem Cell Reports 2024; 19:41-53. [PMID: 38101401 PMCID: PMC10828709 DOI: 10.1016/j.stemcr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eleni Rice
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Min Yang
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Edwin A Rosado-Olivieri
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Salimi A, Jamali Z. Teratogenic Effects of Drugs on Primary Lymphocytes Assessed by Flow Cytometry. Methods Mol Biol 2024; 2753:231-249. [PMID: 38285342 DOI: 10.1007/978-1-0716-3625-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Peripheral blood lymphocytes as primary cells can be isolated from human, animal, fetus, and placenta. These cells are an excellent cellular model for the assessment of cytotoxicity, genotoxicity, oxidative stress, and mitochondrial and lysosomal dysfunction induced by drug and chemicals. Moreover, peripheral blood lymphocytes are an easily available source of primary cells appropriate for basic research and in cellular studies regarding teratogenic, genotoxic, and cytotoxic effect of drugs and chemicals. Most drugs and other chemicals that produce birth defects, known as teratogenic agents, produce reactive oxygen species (ROS) formation and mitochondrial and lysosomal dysfunction. It seems that there is an important mechanistic link between oxidative stress, mitochondrial damages, lysosomal integrity, and teratogenic drug-induced birth defects. One of the most sensitive periods in the embryo is transition from an important developmental event to another such as transition from proliferation to differentiation. Mitochondria, lysosomes, and cellular ROS have an important role in proliferative, differentiative, and apoptotic activities during the development. Therefore, disruption of the function of mitochondria, lysosomes, oxidative stress, and redox imbalance leads to cellular dysfunctions and subsequently poor developmental outcomes in the fetus. In this chapter, we will focus on evaluation of mitochondrial/lysosomal functions and estimation of ROS formation using flow cytometry methods in isolated lymphocytes and their isolated mitochondria.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
22
|
Wu H, Wang Y, Wang H. Generation of Human Trophoblast Stem Cell-Dependent Placental In Vitro Models. Methods Mol Biol 2024; 2767:43-52. [PMID: 36515896 DOI: 10.1007/7651_2022_463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Currently, human trophoblast stem cell (hTSC) is considered to be the most promising laboratory model stimulating trophoblast criteria. Our group has established hTSCs allowing differentiation to syncytiotrophoblast (STB) and extravillous trophoblast (EVT). Further, hTSC-based three-dimensional (3D) trophoblast organoid (hTSC-organoid) provides a transformative model for studying human placental development and the interaction between trophoblast and maternal environment. Here, we present a protocol to obtain different types of placental trophoblast cells and trophoblast organoids using hTSCs. The generation of hTSC-organoids takes 6 days. hTSC-organoids permit passaging and can differentiate into EVT lineage.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
23
|
Zormpas E, Queen R, Comber A, Cockell SJ. Mapping the transcriptome: Realizing the full potential of spatial data analysis. Cell 2023; 186:5677-5689. [PMID: 38065099 DOI: 10.1016/j.cell.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023]
Abstract
RNA sequencing in situ allows for whole-transcriptome characterization at high resolution, while retaining spatial information. These data present an analytical challenge for bioinformatics-how to leverage spatial information effectively? Properties of data with a spatial dimension require special handling, which necessitate a different set of statistical and inferential considerations when compared to non-spatial data. The geographical sciences primarily use spatial data and have developed methods to analye them. Here we discuss the challenges associated with spatial analysis and examine how we can take advantage of practice from the geographical sciences to realize the full potential of spatial information in transcriptomic datasets.
Collapse
Affiliation(s)
- Eleftherios Zormpas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alexis Comber
- School of Geography and Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9NL, UK
| | - Simon J Cockell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
24
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Exploring the role of miRNAs in early chicken embryonic development and their significance. Poult Sci 2023; 102:103105. [PMID: 37852050 PMCID: PMC10587638 DOI: 10.1016/j.psj.2023.103105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.
Collapse
Affiliation(s)
- Liqin Liao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
25
|
Torre D, Francoeur NJ, Kalma Y, Gross Carmel I, Melo BS, Deikus G, Allette K, Flohr R, Fridrikh M, Vlachos K, Madrid K, Shah H, Wang YC, Sridhar SH, Smith ML, Eliyahu E, Azem F, Amir H, Mayshar Y, Marazzi I, Guccione E, Schadt E, Ben-Yosef D, Sebra R. Isoform-resolved transcriptome of the human preimplantation embryo. Nat Commun 2023; 14:6902. [PMID: 37903791 PMCID: PMC10616205 DOI: 10.1038/s41467-023-42558-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.
Collapse
Affiliation(s)
- Denis Torre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Yael Kalma
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Ilana Gross Carmel
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Betsaida S Melo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ron Flohr
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Maya Fridrikh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Foad Azem
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Hadar Amir
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ivan Marazzi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT); Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalit Ben-Yosef
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel.
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel.
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Chiaradia I, Imaz-Rosshandler I, Nilges BS, Boulanger J, Pellegrini L, Das R, Kashikar ND, Lancaster MA. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 2023; 30:1351-1367.e10. [PMID: 37802039 PMCID: PMC10765088 DOI: 10.1016/j.stem.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.
Collapse
Affiliation(s)
- Ilaria Chiaradia
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Benedikt S Nilges
- Resolve Biosciences GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Pellegrini
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Richa Das
- Resolve Biosciences GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | - Nachiket D Kashikar
- Resolve Biosciences GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Kakulavarapu R, Stensen MH, Jahanlu D, Haugen TB, Delbarre E. Altered morphokinetics and differential reproductive outcomes associated with cell exclusion events in human embryos. Reprod Biomed Online 2023; 47:103285. [PMID: 37573752 DOI: 10.1016/j.rbmo.2023.103285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
RESEARCH QUESTION Can embryos harbouring cell exclusion and their reproductive outcomes be classified based on morphokinetic profiles? DESIGN A total of 469 time-lapse videos of embryos transferred between 2013 and 2019 from a single clinic were analysed. Videos were assessed and grouped according to the presence or absence of one or more excluded cells before compaction. Cell division timings, intervals between subsequent cell divisions and dynamic intervals were analysed to determine the morphokinetic profiles of embryos with cell exclusion (CE+), compared with fully compacted embryos without cell exclusion or extrusion (CE-). RESULTS Transfer of CE+ embryos resulted in lower proportions of fetal heartbeat (FHB) and live birth compared with CE- embryos (both, P < 0.001). CE+ embryos were associated with delays in t2 (P = 0.030), t6 (P = 0.018), t7 (P < 0.001), t8 (P = 0.001), tSC (P < 0.001) and tM (P < 0.001). Earlier timings for t3 (P = 0.014) and t5 (P < 0.001) were positively associated with CE+; CE+ embryos indicated prolonged S2, S3, ECC3, cc2 and cc4. Logistic regression analysis revealed that t5, tM, S2 and ECC3 were the strongest predictive indicators of cell exclusion. Timings for S2 and ECC3 were useful in identifying increased odds of FHB when a cell exclusion event was present. CONCLUSION Embryos harbouring cell exclusion indicated altered morphokinetic profiles. Their overall lower reproductive success was associated with two morphokinetic parameters. Morphokinetic profiles could be used as adjunct indicators for reproductive success during cycles producing few, low-quality embryos. This may allow more objective identification of cell exclusion and refinement of embryo ranking procedures before transfer.
Collapse
Affiliation(s)
- Radhika Kakulavarapu
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway..
| | | | - David Jahanlu
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Trine B Haugen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Erwan Delbarre
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway..
| |
Collapse
|
28
|
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, Sakurai M, Wang L, Pinzon-Arteaga CA, Plachta N, Hon GC, Wu J. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023; 186:3776-3792.e16. [PMID: 37478861 DOI: 10.1016/j.cell.2023.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Markham
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James N Hamilton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robin M Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
30
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Dwapanyin GO, Chow DJX, Tan TCY, Dubost NS, Morizet JM, Dunning KR, Dholakia K. Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3327-3342. [PMID: 37497510 PMCID: PMC10368053 DOI: 10.1364/boe.492292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Embryo quality is a crucial factor affecting live birth outcomes. However, an accurate diagnostic for embryo quality remains elusive in the in vitro fertilization clinic. Determining physical parameters of the embryo may offer key information for this purpose. Here, we demonstrate that digital holographic microscopy (DHM) can rapidly and non-invasively assess the refractive index of mouse embryos. Murine embryos were cultured in either low- or high-lipid containing media and digital holograms recorded at various stages of development. The phase of the recorded hologram was numerically retrieved, from which the refractive index of the embryo was calculated. We showed that DHM can detect spatio-temporal changes in refractive index during embryo development that are reflective of its lipid content. As accumulation of intracellular lipid is known to compromise embryo health, DHM may prove beneficial in developing an accurate, non-invasive, multimodal diagnostic.
Collapse
Affiliation(s)
- George O. Dwapanyin
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Darren J. X. Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Tiffany C. Y. Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Nicolas S. Dubost
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Josephine M. Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Kylie R. Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
32
|
Deng Q, Wang S, Huang Z, Lan Q, Lai G, Xu J, Yuan Y, Liu C, Lin X, Feng W, Ma W, Cheng M, Hao S, Duan S, Zheng H, Chen X, Hou Y, Luo Y, Liu L, Liu C. Single-cell chromatin accessibility profiling of cell-state-specific gene regulatory programs during mouse organogenesis. Front Neurosci 2023; 17:1170355. [PMID: 37440917 PMCID: PMC10333525 DOI: 10.3389/fnins.2023.1170355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations.
Collapse
Affiliation(s)
- Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Zijie Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Wen Ma
- BGI-Shenzhen, Shenzhen, China
| | | | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Shanshan Duan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | | | | | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
33
|
Ietto G, Iori V, Gritti M, Inversini D, Costantino A, Izunza Barba S, Jiang ZG, Carcano G, Dalla Gasperina D, Pettinato G. Multicellular Liver Organoids: Generation and Importance of Diverse Specialized Cellular Components. Cells 2023; 12:1429. [PMID: 37408262 PMCID: PMC10217024 DOI: 10.3390/cells12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Over 40,000 patients in the United States are estimated to suffer from end-stage liver disease and acute hepatic failure, for which liver transplantation is the only available therapy. Human primary hepatocytes (HPH) have not been employed as a therapeutic tool due to the difficulty in growing and expanding them in vitro, their sensitivity to cold temperatures, and tendency to dedifferentiate following two-dimensional culture. The differentiation of human-induced pluripotent stem cells (hiPSCs) into liver organoids (LO) has emerged as a potential alternative to orthotropic liver transplantation (OLT). However, several factors limit the efficiency of liver differentiation from hiPSCs, including a low proportion of differentiated cells capable of reaching a mature phenotype, the poor reproducibility of existing differentiation protocols, and insufficient long-term viability in vitro and in vivo. This review will analyze various methodologies being developed to improve hepatic differentiation from hiPSCs into liver organoids, paying particular attention to the use of endothelial cells as supportive cells for their further maturation. Here, we demonstrate why differentiated liver organoids can be used as a research tool for drug testing and disease modeling, or employed as a bridge for liver transplantation following liver failure.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Mattia Gritti
- Department of General Surgery, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Davide Inversini
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - Sofia Izunza Barba
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Infectious Diseases, ASST-Sette Laghi, 21100 Varese, Italy
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
34
|
Hao C, Chu S, Quan X, Zhou T, Shi J, Huang X, Wu G, Tortorella MD, Pei D. Establishing extended pluripotent stem cells from human urine cells. Cell Biosci 2023; 13:88. [PMID: 37194020 DOI: 10.1186/s13578-023-01051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Extended pluripotent stem cells (EPSCs) can contribute to both embryonic and trophectoderm-derived extraembryonic tissues. Therefore, EPSCs have great application significance for both research and industry. However, generating EPSCs from human somatic cells remains inefficient and cumbersome. RESULTS In this study, we established a novel and robust EPSCs culture medium OCM175 with defined and optimized ingredients. Our OCM175 medium contains optimized concentration of L-selenium-methylcysteine as a source of selenium and ROCK inhibitors to maintain the single cell passaging ability of pluripotent stem cells. We also used Matrigel or the combination of laminin 511 and laminin 521(1:1) to bypass the requirement of feeder cells. With OCM175 medium, we successfully converted integration-free iPSCs from easily available human Urine-Derived Cells (hUC-iPSCs) into EPSCs (O-IPSCs). We showed that our O-IPSCs have the ability to form both intra- and extra- embryonic chimerism, and could contribute to the trophoblast ectoderm lineage and three germ layer cell lineages. CONCLUSIONS In conclusion, our novel OCM175 culture medium has defined, optimized ingredients, which enables efficient generation of EPSCs in a feeder free manner. With the robust chimeric and differentiation potential, we believe that this system provides a solid basis to improve the application of EPSCs in regenerative medicine.
Collapse
Affiliation(s)
- Chunfang Hao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilong Chu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Xiongzhi Quan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Junjie Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Xiaofen Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Guangming Wu
- Division of Basic Research, Guangzhou Laboratory, Guangzhou, 510005, China
| | - Micky Daniel Tortorella
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 31003, China.
| |
Collapse
|
35
|
Kou J, Yuan E, Yan G. Association between HIF-1α, BNIP3, and autophagy in the chorionic villi of missed abortion. J Obstet Gynaecol Res 2023. [PMID: 37150840 DOI: 10.1111/jog.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
AIM To investigate the expression of autophagy mediated by the hypoxia-inducible factor 1α (HIF-1α)/BNIP3 signaling pathway in villus tissues of missed abortion and HTR-8/SVneo cells and to elucidate the association of HIF-1α and BNIP3 in autophagy of missed abortion. METHODS Villus tissues from 30 healthy women with induced abortion and 35 patients with missed abortion were collected, and HTR-8/SVneo cells were cultured under hypoxia and transfected with HIF-1α-siRNA. Real-time polymerase chain reaction was utilized to measure the mRNA levels of HIF-1α and BNIP3; Western blotting was performed to determine the protein levels of HIF-1α, BNIP3, LC3 II/I, and Beclin 1 in villus tissues and HTR-8/SVneo cells. Cellular invasion activity was detected by transwell matrigel assay. The level of autophagy was confirmed by transmission electron microscopy of autophagosome formation. RESULTS The mRNA levels of HIF-1α and BNIP3 were significantly lower in the missed abortion villi than in the induced abortion samples. The protein levels of HIF-1α, BNIP3, Beclin 1, and LC3II/I were significantly decreased in villus tissues from missed abortion, and autophagosomes were significantly decreased in villus tissues from missed abortion. Under hypoxia, the mRNA expression of HIF-1α and BNIP3 was inhibited after silencing HIF-1α by RNAi, while the protein expression of HIF-1α, BNIP3, Beclin1, and LC3II/I was significantly downregulated. The number of invading cells was significantly decreased, and autophagosomes were significantly decreased after silencing HIF-1α by RNAi in HTR-8/SVneo cells. CONCLUSIONS Autophagy mediated by the HIF-1α/BNIP3 signaling pathway in villous trophoblast cells may be associated with the progression and development of missed abortion.
Collapse
Affiliation(s)
- Junna Kou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangwei Yan
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Chen ACH, Lee YL, Ruan H, Huang W, Fong SW, Tian S, Lee KC, Wu GM, Tan Y, Wong TCH, Wu J, Zhang W, Cao D, Chow JFC, Liu P, Yeung WSB. Expanded Potential Stem Cells from Human Embryos Have an Open Chromatin Configuration with Enhanced Trophoblast Differentiation Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204797. [PMID: 36775869 PMCID: PMC10104645 DOI: 10.1002/advs.202204797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Human expanded potential stem cells (hEPSC) have been derived from human embryonic stem cells and induced pluripotent stem cells. Here direct derivation of hEPSC from human pre-implantation embryos is reported. Like the reported hEPSC, the embryo-derived hEPSC (hEPSC-em) exhibit a transcriptome similar to morula, comparable differentiation potency, and high genome editing efficiency. Interestingly, the hEPSC-em show a unique H3 lysine-4 trimethylation (H3K4me3) open chromatin conformation; they possess a higher proportion of H3K4me3 bound broad domain (>5 kb) than the reported hEPSC, naive, and primed embryonic stem cells. The open conformation is associated with enhanced trophoblast differentiation potency with increased trophoblast gene expression upon induction of differentiation and success in derivation of trophoblast stem cells with bona fide characteristics. Hippo signaling is specifically enriched in the H3K4me3 broad domains of the hEPSC-. Knockout of the Hippo signaling gene, YAP1 abolishes the ability of the embryo-derived EPSC to form trophoblast stem cells.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Hanzhang Ruan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Wen Huang
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Siyu Tian
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Genie Minju Wu
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Yongqi Tan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Timothy Chun Hin Wong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Jian Wu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Weiyu Zhang
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
| | - Judy Fung Cheung Chow
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Pengtao Liu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongStem Cell and Regenerative Medicine ConsortiumHong KongHong Kong
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| |
Collapse
|
37
|
GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data. Genes (Basel) 2023; 14:genes14020269. [PMID: 36833196 PMCID: PMC9957546 DOI: 10.3390/genes14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.
Collapse
|
38
|
Haghverdi L, Ludwig LS. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Reports 2023; 18:13-25. [PMID: 36630900 PMCID: PMC9860164 DOI: 10.1016/j.stemcr.2022.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
The concept of cell fate relates to the future identity of a cell, and its daughters, which is obtained via cell differentiation and division. Understanding, predicting, and manipulating cell fate has been a long-sought goal of developmental and regenerative biology. Recent insights obtained from single-cell genomic and integrative lineage-tracing approaches have further aided to identify molecular features predictive of cell fate. In this perspective, we discuss these approaches with a focus on theoretical concepts and future directions of the field to dissect molecular mechanisms underlying cell fate.
Collapse
Affiliation(s)
- Laleh Haghverdi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| | - Leif S Ludwig
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Li N, Cai Y, Zou M, Zhou J, Zhang L, Zhou L, Xiang W, Cui Y, Li H. CFIm-mediated alternative polyadenylation safeguards the development of mammalian pre-implantation embryos. Stem Cell Reports 2022; 18:81-96. [PMID: 36563685 PMCID: PMC9860127 DOI: 10.1016/j.stemcr.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Alternative polyadenylation (APA) gives rise to transcripts with distinct 3' untranslated regions (3' UTRs), thereby affecting the fate of mRNAs. APA is strongly associated with cell proliferation and differentiation status, and thus likely plays a critical role in the embryo development. However, the pattern of APA in mammalian early embryos is still unknown. Here, we analyzed the 3' UTR lengths in human and mouse pre-implantation embryos using available single cell RNA-seq datasets and explored the underlying mechanism driving the changes. Although human and mouse early embryos displayed distinct patterns of 3' UTR changing, RNA metabolism pathways were involved in both species. The 3' UTR lengths are likely determined by the abundance of the cleavage factor I complex (CFIm) components NUDT21 and CPSF6 in the nucleus. Importantly, depletion of either component resulted in early embryo development arrest and 3' UTR shortening. Collectively, these data highlight an essential role for APA in the development of mammalian early embryos.
Collapse
Affiliation(s)
- Na Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Cai
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zou
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430013, China
| | - Jian Zhou
- Wuhan Jianwen Biological Technology Co. LTD, Wuhan 430205, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yan Cui
- International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China.
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
40
|
Moya-Jódar M, Ullate-Agote A, Barlabé P, Rodríguez-Madoz JR, Abizanda G, Barreda C, Carvajal-Vergara X, Vilas-Zornoza A, Romero JP, Garate L, Agirre X, Coppiello G, Prósper F, Aranguren XL. Revealing cell populations catching the early stages of human embryo development in naive pluripotent stem cell cultures. Stem Cell Reports 2022; 18:64-80. [PMID: 36563688 PMCID: PMC9860119 DOI: 10.1016/j.stemcr.2022.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Naive human pluripotent stem cells (hPSCs) are defined as the in vitro counterpart of the human preimplantation embryo's epiblast and are used as a model system to study developmental processes. In this study, we report the discovery and characterization of distinct cell populations coexisting with epiblast-like cells in 5iLAF naive human induced PSC (hiPSC) cultures. It is noteworthy that these populations closely resemble different cell types of the human embryo at early developmental stages. While epiblast-like cells represent the main cell population, interestingly we detect a cell population with gene and transposable element expression profile closely resembling the totipotent eight-cell (8C)-stage human embryo, and three cell populations analogous to trophectoderm cells at different stages of their maturation process: transition, early, and mature stages. Moreover, we reveal the presence of cells resembling primitive endoderm. Thus, 5iLAF naive hiPSC cultures provide an excellent opportunity to model the earliest events of human embryogenesis, from the 8C stage to the peri-implantation period.
Collapse
Affiliation(s)
- Marta Moya-Jódar
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Asier Ullate-Agote
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Paula Barlabé
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Juan Roberto Rodríguez-Madoz
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Gloria Abizanda
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Carolina Barreda
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Xonia Carvajal-Vergara
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Amaia Vilas-Zornoza
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Juan Pablo Romero
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain,10x Genomics, 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Leire Garate
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Giulia Coppiello
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain; Hematology Department, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| | - Xabier L. Aranguren
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain,Corresponding author
| |
Collapse
|
41
|
Herranz G, Martín‐Belmonte F. Cadherin-mediated adhesion takes control. EMBO J 2022; 41:e112662. [PMID: 36193671 PMCID: PMC9753438 DOI: 10.15252/embj.2022112662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
The formation of a centralised apical membrane initiation site (AMIS) is a key event in epithelial cell polarisation. A recent study by Liang et al demonstrates that AMIS localisation relies on cadherin-mediated cell adhesion.
Collapse
Affiliation(s)
- Gonzalo Herranz
- Program of Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa”, CSIC‐UAMMadridSpain
| | - Fernando Martín‐Belmonte
- Program of Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa”, CSIC‐UAMMadridSpain
| |
Collapse
|
42
|
Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, Gagliano O, Martewicz S, Cui M, Manfredi A, Di Filippo L, Sabatelli P, Squarzoni S, Zorzan I, Betto RM, Martello G, Cacchiarelli D, Luni C, Elvassore N. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell 2022; 29:1703-1717.e7. [PMID: 36459970 DOI: 10.1016/j.stem.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.
Collapse
Affiliation(s)
- Elisa Cesare
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Anna Urciuolo
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Institute of Pediatric Research IRP, Corso Stati Uniti, Padova 35127, Italy; Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Hannah T Stuart
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Erika Torchio
- Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Alessia Gesualdo
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, CB22 3AT Cambridge, UK
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Graziano Martello
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35131, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
43
|
Carleton AE, Duncan MC, Taniguchi K. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst. Semin Cell Dev Biol 2022; 131:117-123. [PMID: 35637065 PMCID: PMC9529837 DOI: 10.1016/j.semcdb.2022.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The formation of a central lumen in the human epiblast is a critical step for development. However, because the lumen forms in the epiblast coincident with implantation, the molecular and cellular events of this early lumenogenesis process cannot be studied in vivo. Recent developments using new model systems have revealed insight into the underpinnings of epiblast formation. To provide an up-to-date comprehensive review of human epiblast lumenogenesis, we highlight recent findings from human and mouse models with an emphasis on new molecular understanding of a newly described apicosome compartment, a novel 'formative' state of pluripotency that coordinates with epiblast polarization, and new evidence about the physical and polarized trafficking mechanisms contributing to lumenogenesis.
Collapse
Affiliation(s)
- Amber E. Carleton
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Mara C. Duncan
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan USA,Co-corresponding authors
| | - Kenichiro Taniguchi
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Co-corresponding authors
| |
Collapse
|
44
|
Setiawan AM, Kamarudin TA, Abd Ghafar N. The role of BMP4 in adipose-derived stem cell differentiation: A minireview. Front Cell Dev Biol 2022; 10:1045103. [PMID: 36340030 PMCID: PMC9634734 DOI: 10.3389/fcell.2022.1045103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a member of the transforming growth factor beta (TGF-β) superfamily of cytokines responsible for stem cells’ commitment to differentiation, proliferation, and maturation. To date, various studies have utilized BMP4 as a chemical inducer for in vitro differentiation of human mesenchymal stem cells (MSCs) based on its potential. BMP4 drives in vitro differentiation of ADSC via TGF-β signaling pathway by interactions with BMP receptors leading to the activation of smad-dependent and smad-independent pathways. The BMP4 signaling pathways are regulated by intracellular and extracellular BMP4 antagonists. Extracellular BMP4 antagonist prevents interaction between BMP4 ligand to its receptors, while intracellular BMP4 antagonist shutdowns the smad-dependent pathways through multiple mechanisms. BMP4 proved as one of the popular differentiation factors to induce ADSC differentiation into cell from mesodermal origin. However, addition of all-trans retinoic acid is also needed in trans-differentiation of ADSC into ectodermal lineage cells. Suggesting that both BMP4 and RA signaling pathways may be necessary to be activated for in vitro trans-differentiation of ADSC.
Collapse
Affiliation(s)
- Abdul Malik Setiawan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Anatomy, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Taty Anna Kamarudin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Taty Anna Kamarudin,
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Cacheiro P, Westerberg CH, Mager J, Dickinson ME, Nutter LMJ, Muñoz-Fuentes V, Hsu CW, Van den Veyver IB, Flenniken AM, McKerlie C, Murray SA, Teboul L, Heaney JD, Lloyd KCK, Lanoue L, Braun RE, White JK, Creighton AK, Laurin V, Guo R, Qu D, Wells S, Cleak J, Bunton-Stasyshyn R, Stewart M, Harrisson J, Mason J, Haseli Mashhadi H, Parkinson H, Mallon AM, Smedley D. Mendelian gene identification through mouse embryo viability screening. Genome Med 2022; 14:119. [PMID: 36229886 PMCID: PMC9563108 DOI: 10.1186/s13073-022-01118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lauryl M J Nutter
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Ann M Flenniken
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, The Centre for Phenogenomics, Toronto, Canada
| | - Colin McKerlie
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | | | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | | | | | - Amie K Creighton
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | - Valerie Laurin
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, Canada
| | - Ruolin Guo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, The Centre for Phenogenomics, Toronto, Canada
| | - Dawei Qu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, The Centre for Phenogenomics, Toronto, Canada
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - James Cleak
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | | | - Michelle Stewart
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Jackie Harrisson
- The Mary Lyon Centre, MRC Harwell Institute, Harwell, Oxfordshire, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | | | | | | | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
46
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
47
|
Bouchereau W, Jouneau L, Archilla C, Aksoy I, Moulin A, Daniel N, Peynot N, Calderari S, Joly T, Godet M, Jaszczyszyn Y, Pratlong M, Severac D, Savatier P, Duranthon V, Afanassieff M, Beaujean N. Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development 2022; 149:276385. [DOI: 10.1242/dev.200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.
Collapse
Affiliation(s)
- Wilhelm Bouchereau
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Irène Aksoy
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Anais Moulin
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Thierry Joly
- ISARA-Lyon 4 , F-69007 Lyon , France
- VetAgroSup, UPSP ICE 5 , F-69280 Marcy l'Etoile , France
| | - Murielle Godet
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 6 , 91198 Gif-sur-Yvette , France
| | - Marine Pratlong
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Dany Severac
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Pierre Savatier
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Marielle Afanassieff
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Beaujean
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| |
Collapse
|
48
|
Cui G, Feng S, Yan Y, Wang L, He X, Li X, Duan Y, Chen J, Tang K, Zheng P, Tam PPL, Si W, Jing N, Peng G. Spatial molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo. Cell Rep 2022; 40:111285. [PMID: 36044859 DOI: 10.1016/j.celrep.2022.111285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 12/18/2022] Open
Abstract
During mammalian embryogenesis, spatial regulation of gene expression and cell signaling are functionally coupled with lineage specification, patterning of tissue progenitors, and germ layer morphogenesis. While the mouse model has been instrumental for understanding mammalian development, comparatively little is known about human and non-human primate gastrulation due to the restriction of both technical and ethical issues. Here, we present a spatial and temporal survey of the molecular dynamics of cell types populating the non-human primate embryos during gastrulation. We reconstructed three-dimensional digital models from serial sections of cynomolgus monkey (Macaca fascicularis) gastrulating embryos at 1-day temporal resolution from E17 to E21. Spatial transcriptomics identifies gene expression profiles unique to the germ layers. Cross-species comparison reveals a developmental coordinate of germ layer segregation between mouse and primates, and species-specific transcription programs during gastrulation. These findings offer insights into evolutionarily conserved and divergent processes during mammalian gastrulation.
Collapse
Affiliation(s)
- Guizhong Cui
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China
| | - Su Feng
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Li Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Naihe Jing
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Guangdun Peng
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
49
|
Morphogen-directed cell fate boundaries: slow passage through bifurcation and the role of folded saddles. J Theor Biol 2022; 549:111220. [PMID: 35839857 DOI: 10.1016/j.jtbi.2022.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
One of the fundamental mechanisms in embryogenesis is the process by which cells differentiate and create tissues and structures important for functioning as a multicellular organism. Morphogenesis involves diffusive process of chemical signalling involving morphogens that pre-pattern the tissue. These morphogens influence cell fate through a highly nonlinear process of transcriptional signalling. In this paper, we consider this multiscale process in an idealised model for a growing domain. We focus on intracellular processes that lead to robust differentiation into two cell lineages through interaction of a single morphogen species with a cell fate variable that undergoes a bifurcation from monostability to bistability. In particular, we investigate conditions that result in successful and robust pattern formation into two well-separated domains, as well as conditions where this fails and produces a pinned boundary wave where only one part of the domain grows. We show that successful and unsuccessful patterning scenarios can be characterised in terms of presence or absence of a folded saddle singularity for a system with two slow variables and one fast variable; this models the interaction of slow morphogen diffusion, slow parameter drift through bifurcation and fast transcription dynamics. We illustrate how this approach can successfully model acquisition of three cell fates to produce three-domain "French flag" patterning, as well as for a more realistic model of the cell fate dynamics in terms of two mutually inhibiting transcription factors.
Collapse
|
50
|
The DevTox Germ Layer Reporter Platform: An Assay Adaptation of the Human Pluripotent Stem Cell Test. TOXICS 2022; 10:toxics10070392. [PMID: 35878297 PMCID: PMC9321663 DOI: 10.3390/toxics10070392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development.
Collapse
|