1
|
Schall PZ, Meadows JRS, Ramos-Almodovar F, Kidd JM. Characterization of Nuclear Mitochondrial Insertions in Canine Genome Assemblies. Genes (Basel) 2024; 15:1318. [PMID: 39457442 PMCID: PMC11507379 DOI: 10.3390/genes15101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The presence of mitochondrial sequences in the nuclear genome (Numts) confounds analyses of mitochondrial sequence variation, and is a potential source of false positives in disease studies. To improve the analysis of mitochondrial variation in canines, we completed a systematic assessment of Numt content across genome assemblies, canine populations and the carnivore lineage. RESULTS Centering our analysis on the UU_Cfam_GSD_1.0/canFam4/Mischka assembly, a commonly used reference in dog genetic variation studies, we found a total of 321 Numts located throughout the nuclear genome and encompassing the entire sequence of the mitochondria. A comparison with 14 canine genome assemblies identified 63 Numts with presence-absence dimorphism among dogs, wolves, and a coyote. Furthermore, a subset of Numts were maintained across carnivore evolutionary time (arctic fox, polar bear, cat), with eight sequences likely more than 10 million years old, and shared with the domestic cat. On a population level, using structural variant data from the Dog10K Consortium for 1879 dogs and wolves, we identified 11 Numts that are absent in at least one sample, as well as 53 Numts that are absent from the Mischka assembly. CONCLUSIONS We highlight scenarios where the presence of Numts is a potentially confounding factor and provide an annotation of these sequences in canine genome assemblies. This resource will aid the identification and interpretation of polymorphisms in both somatic and germline mitochondrial studies in canines.
Collapse
Affiliation(s)
- Peter Z. Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden;
- SciLifeLab, Uppsala University, 75132 Uppsala, Sweden
| | - Fabian Ramos-Almodovar
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Funk MW, Kidd JM. A Variant-Centric Analysis of Allele Sharing in Dogs and Wolves. Genes (Basel) 2024; 15:1168. [PMID: 39336759 PMCID: PMC11431226 DOI: 10.3390/genes15091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Canines are an important model system for genetics and evolution. Recent advances in sequencing technologies have enabled the creation of large databases of genetic variation in canines, but analyses of allele sharing among canine groups have been limited. We applied GeoVar, an approach originally developed to study the sharing of single nucleotide polymorphisms across human populations, to assess the sharing of genetic variation among groups of wolves, village dogs, and breed dogs. Our analysis shows that wolves differ from each other at an average of approximately 2.3 million sites while dogs from the same breed differ at nearly 1 million sites. We found that 22% of the variants are common across wolves, village dogs, and breed dogs, that ~16% of variable sites are common across breed dogs, and that nearly half of the differences between two dogs of different breeds are due to sites that are common in all clades. These analyses represent a succinct summary of allele sharing across canines and illustrate the effects of canine history on the apportionment of genetic variation.
Collapse
Affiliation(s)
- Matthew W. Funk
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jeffrey M. Kidd
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Yuan H, Mancuso CA, Johnson K, Braasch I, Krishnan A. Computational strategies for cross-species knowledge transfer and translational biomedicine. ARXIV 2024:arXiv:2408.08503v1. [PMID: 39184546 PMCID: PMC11343225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Research organisms provide invaluable insights into human biology and diseases, serving as essential tools for functional experiments, disease modeling, and drug testing. However, evolutionary divergence between humans and research organisms hinders effective knowledge transfer across species. Here, we review state-of-the-art methods for computationally transferring knowledge across species, primarily focusing on methods that utilize transcriptome data and/or molecular networks. We introduce the term "agnology" to describe the functional equivalence of molecular components regardless of evolutionary origin, as this concept is becoming pervasive in integrative data-driven models where the role of evolutionary origin can become unclear. Our review addresses four key areas of information and knowledge transfer across species: (1) transferring disease and gene annotation knowledge, (2) identifying agnologous molecular components, (3) inferring equivalent perturbed genes or gene sets, and (4) identifying agnologous cell types. We conclude with an outlook on future directions and several key challenges that remain in cross-species knowledge transfer.
Collapse
Affiliation(s)
- Hao Yuan
- Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University
| | - Christopher A. Mancuso
- Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus
| | - Kayla Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
| | - Ingo Braasch
- Department of Integrative Biology; Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
| |
Collapse
|
4
|
Wise C, Breen M, Stapleton HM. Canine on the Couch: The New Canary in the Coal Mine for Environmental Health Research. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:517-529. [PMID: 39170948 PMCID: PMC11334179 DOI: 10.1021/envhealth.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 08/23/2024]
Abstract
Human health is intimately connected and tied to the health of our environment and ecosystem, with only a very small fraction of the risk for chronic diseases explained by genetics alone. Companion animals are prone to disease types that are shared with people, including cancers and endocrine disorders, reinforcing the thought that environmental factors contribute to the risks for chronic diseases. These factors include air and water pollution and the built environment. As such, there is increasing interest in pursuing research with companion animals, and specifically dogs, as sentinel species to inform comparative health assessments and identify risk factors for disease. Of the canine diseases for which environmental exposure research has been published, cancers have received the most attention. This review summarizes two main aspects of this comparative approach: (1) cancers that occur in dogs and which are similar to humans and (2) research investigating environmental exposures and health outcomes in dogs. The goal of this review is to highlight the diverse conditions in which pet dogs may provide unique perspectives and advantages to examine relationships between environmental exposures and health outcomes, with an emphasis on chemical pollution and cancer. Furthermore, this review seeks to raise awareness and stimulate discussion around the best practices for the use of companion animals as environmental health sentinels.
Collapse
Affiliation(s)
- Catherine
F. Wise
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke
Cancer Institute, Durham, North Carolina 27710, United States
| | - Matthew Breen
- Department
of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27607, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27607, United States
| | - Heather M. Stapleton
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke
Cancer Institute, Durham, North Carolina 27710, United States
| |
Collapse
|
5
|
Matheson R, Sexton CL, Wise CF, O'Brien J, Keyser AJ, Kauffman M, Dunbar MD, Stapleton HM, Ruple A. Silicone tags as an effective method of monitoring environmental contaminant exposures in a geographically diverse sample of dogs from the Dog Aging Project. Front Vet Sci 2024; 11:1394061. [PMID: 39220770 PMCID: PMC11363705 DOI: 10.3389/fvets.2024.1394061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Companion animals offer a unique opportunity to investigate risk factors and exposures in our shared environment. Passive sampling techniques have proven effective in capturing environmental exposures in dogs and humans. Methods In a pilot study, we deployed silicone monitoring devices (tags) on the collars of a sample of 15 dogs from the Dog Aging Project Pack cohort for a period of 120 h (5 days). We extracted and analyzed the tags via gas chromatography-mass spectrometry for 119 chemical compounds in and around participants' homes. Results Analytes belonging to the following chemical classes were detected: brominated flame retardants (BFRs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and personal care products. The types and amounts of analytes detected varied substantially among participants. Discussion Data from this pilot study indicate that silicone dog tags are an effective means to detect and measure chemical exposure in and around pet dogs' households. Having created a sound methodological infrastructure, we will deploy tags to a geographically diverse and larger sample size of Dog Aging Project participants with a goal of further assessing geographic variation in exposures.
Collapse
Affiliation(s)
- Rylee Matheson
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Courtney L Sexton
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Janice O'Brien
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amber J Keyser
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Mandy Kauffman
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Audrey Ruple
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Shorbaji A, Pushparaj PN, Bakhashab S, Al-Ghafari AB, Al-Rasheed RR, Siraj Mira L, Basabrain MA, Alsulami M, Abu Zeid IM, Naseer MI, Rasool M. Current genetic models for studying congenital heart diseases: Advantages and disadvantages. Bioinformation 2024; 20:415-429. [PMID: 39132229 PMCID: PMC11309114 DOI: 10.6026/973206300200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Congenital heart disease (CHD) encompasses a diverse range of structural and functional anomalies that affect the heart and the major blood vessels. Epidemiological studies have documented a global increase in CHD prevalence, which can be attributed to advancements in diagnostic technologies. Extensive research has identified a plethora of CHD-related genes, providing insights into the biochemical pathways and molecular mechanisms underlying this pathological state. In this review, we discuss the advantages and challenges of various In vitro and in vivo CHD models, including primates, canines, Xenopus frogs, rabbits, chicks, mice, Drosophila, zebrafish, and induced pluripotent stem cells (iPSCs). Primates are closely related to humans but are rare and expensive. Canine models are costly but structurally comparable to humans. Xenopus frogs are advantageous because of their generation of many embryos, ease of genetic modification, and cardiac similarity. Rabbits mimic human physiology but are challenging to genetically control. Chicks are inexpensive and simple to handle; however, cardiac events can vary among humans. Mice differ physiologically, while being evolutionarily close and well-resourced. Drosophila has genes similar to those of humans but different heart structures. Zebrafish have several advantages, including high gene conservation in humans and physiological cardiac similarities but limitations in cross-reactivity with mammalian antibodies, gene duplication, and limited embryonic stem cells for reverse genetic methods. iPSCs have the potential for gene editing, but face challenges in terms of 2D structure and genomic stability. CRISPR-Cas9 allows for genetic correction but requires high technical skills and resources. These models have provided valuable knowledge regarding cardiac development, disease simulation, and the verification of genetic factors. This review highlights the distinct features of various models with respect to their biological characteristics, vulnerability to developing specific heart diseases, approaches employed to induce particular conditions, and the comparability of these species to humans. Therefore, the selection of appropriate models is based on research objectives, ultimately leading to an enhanced comprehension of disease pathology and therapy.
Collapse
Affiliation(s)
- Ayat Shorbaji
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana R Al-Rasheed
- Experimental Biochemistry Unit, King Fahad research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loubna Siraj Mira
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Abdullah Basabrain
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Alsulami
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Blake JM, Thompson J, HogenEsch H, Ekenstedt KJ. Heritability and genome-wide association study of vaccine-induced immune response in Beagles: A pilot study. Vaccine 2024; 42:3099-3106. [PMID: 38604911 PMCID: PMC11144447 DOI: 10.1016/j.vaccine.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.
Collapse
Affiliation(s)
- Jeanna M Blake
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - James Thompson
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases, West Lafayette, IN, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Soufizadeh P, Mansouri V, Ahmadbeigi N. A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. Lab Anim Res 2024; 40:17. [PMID: 38649954 PMCID: PMC11034049 DOI: 10.1186/s42826-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
Scientific progress heavily relies on rigorous research, adherence to scientific standards, and transparent reporting. Animal models play a crucial role in advancing biomedical research, especially in the field of gene therapy. Animal models are vital tools in preclinical research, allowing scientists to predict outcomes and understand complex biological processes. The selection of appropriate animal models is critical, considering factors such as physiological and pathophysiological similarities, availability, and ethical considerations. Animal models continue to be indispensable tools in preclinical gene therapy research. Advancements in genetic engineering and model selection have improved the fidelity and relevance of these models. As gene therapy research progresses, careful consideration of animal models and transparent reporting will contribute to the development of effective therapies for various genetic disorders and diseases. This comprehensive review explores the use of animal models in preclinical gene therapy studies for approved products up to September 2023. The study encompasses 47 approved gene therapy products, with a focus on preclinical trials. This comprehensive analysis serves as a valuable reference for researchers in the gene therapy field, aiding in the selection of suitable animal models for their preclinical investigations.
Collapse
Affiliation(s)
- Parham Soufizadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Research Institute, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Mao A, Zhao W, Zhu Y, Kong F, Chen D, Si H, Xu C. Gut Bacterial Community Determines the Therapeutic Effect of Ginsenoside on Canine Inflammatory Bowel Disease by Modulating the Colonic Mucosal Barrier. Microorganisms 2023; 11:2616. [PMID: 38004628 PMCID: PMC10672857 DOI: 10.3390/microorganisms11112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) comprises systemic inflammatory conditions primarily affecting the gastrointestinal tract, including Crohn's disease and ulcerative colitis. This research aims to analyze the clinical symptoms and pathogenesis of a Dextran sodium sulfate (DSS)-induced canine IBD model and evaluate the restorative effect of ginsenoside from a pathogenesis perspective. We established the DSS-induced canine IBD model and studied the pathological mechanisms. Additionally, we examined the therapeutic effect of ginsenosides by assessing the Canine Inflammatory Bowel Disease Activity Index (CIBDAI), C-reactive protein (CRP) levels, colonic tissue morphology, protein expression, and mucosal bacterial community analysis. Our findings revealed a total ginsenoside content of 22.7% in the ginsenoside extract. Animal experiments demonstrated that dogs with IBD exhibited decreased mental state, significantly increased CIBDAI and CRP levels, disrupted colonic epithelial tissue structure, decreased expression of mucin, tight junctions, and adherens junctions, as well as reduced diversity of the colonic mucosal bacterial community. Furthermore, correlation analysis highlighted a total of 38 bacterial strains correlated with physiological indices. Significantly, ginsenoside treatment could improve these symptoms and reverse the relative abundance of some bacterial communities. In conclusion, alterations in the properties of the colonic mucus layer or the reduction in MUC2, its core component, in dogs with IBD can lead to bacterial penetration of the mucus layer and subsequent contact with intestinal epithelial cells, resulting in inflammation. Remarkably, ginsenoside intervention showcased the capacity to positively influence the relative abundance of bacteria and impact the colonic mucus layer properties, thereby offering promising prospects for IBD management and recovery.
Collapse
Affiliation(s)
- Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Fantao Kong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Danyang Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| |
Collapse
|
10
|
Kennedy L, Ollier B. Untangling the genetic traits underlying the development of copper toxicosis in Bedlington terriers. Vet Rec 2023; 193:154-156. [PMID: 37594835 DOI: 10.1002/vetr.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Affiliation(s)
- Lorna Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK
| | - Bill Ollier
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Rock KD, Polera ME, Guillette TC, Starnes HM, Dean K, Watters M, Stevens-Stewart D, Belcher SM. Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray's Creek North Carolina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9567-9579. [PMID: 37340551 PMCID: PMC10802174 DOI: 10.1021/acs.est.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Central North Carolina (NC) is highly contaminated with per- and polyfluoroalkyl substances (PFAS), in part due to local fluorochemical production. Little is known about the exposure profiles and long-term health impacts for humans and animals that live in nearby communities. In this study, serum PFAS concentrations were determined using liquid chromatography high-resolution mass spectrometry and diagnostic clinical chemistry endpoints were assessed for 31 dogs and 32 horses that reside in Gray's Creek NC at households with documented PFAS contamination in their drinking water. PFAS were detected in every sample, with 12 of the 20 PFAS detected in ≥50% of samples from each species. The average total PFAS concentrations in horses were lower compared to dogs who had higher concentrations of PFOS (dogs 2.9 ng/mL; horses 1.8 ng/mL), PFHxS (dogs 1.43 ng/mL, horses < LOD), and PFOA (dogs 0.37 ng/mL; horses 0.10 ng/mL). Regression analysis highlighted alkaline phosphatase, glucose, and globulin proteins in dogs and gamma glutamyl transferase in horses as potential biomarkers associated with PFAS exposure. Overall, the results of this study support the utility of companion animal and livestock species as sentinels of PFAS exposure differences inside and outside of the home. As in humans, renal and hepatic health in domestic animals may be sensitive to long-term PFAS exposures.
Collapse
Affiliation(s)
- Kylie D Rock
- Center for Environmental and Health Effects of PFAS, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Madison E Polera
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Theresa C Guillette
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, Tennessee 37831, United States
| | - Hannah M Starnes
- Center for Environmental and Health Effects of PFAS, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kentley Dean
- Southern Oaks Animal Hospital, Hope Mills, North Carolina 28348, United States
| | - Mike Watters
- Gray's Creek Residents United against PFAS in Our Wells & Rivers, Gray's Creek, North Carolina 28348, United States
| | - Debra Stevens-Stewart
- Gray's Creek Residents United against PFAS in Our Wells & Rivers, Gray's Creek, North Carolina 28348, United States
| | - Scott M Belcher
- Center for Environmental and Health Effects of PFAS, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
McCoy BM, Brassington L, Jin K, Dolby GA, Shrager S, Collins D, Dunbar M, Ruple A, Snyder-Mackler N. Social determinants of health and disease in companion dogs: a cohort study from the Dog Aging Project. Evol Med Public Health 2023; 11:187-201. [PMID: 37388194 PMCID: PMC10306367 DOI: 10.1093/emph/eoad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Indexed: 07/01/2023] Open
Abstract
Exposure to social environmental adversity is associated with health and survival across many social species, including humans. However, little is known about how these health and mortality effects vary across the lifespan and may be differentially impacted by various components of the environment. Here, we leveraged a relatively new and powerful model for human aging, the companion dog, to investigate which components of the social environment are associated with dog health and how these associations vary across the lifespan. We drew on comprehensive survey data collected on 21,410 dogs from the Dog Aging Project and identified five factors that together explained 33.7% of the variation in a dog's social environment. Factors capturing financial and household adversity were associated with poorer health and lower physical mobility in companion dogs, while factors that captured social support, such as living with other dogs, were associated with better health when controlling for dog age and weight. Notably, the effects of each environmental component were not equal: the effect of social support was 5× stronger than financial factors. The strength of these associations depended on the age of the dog, including a stronger relationship between the owner's age and the dog's health in younger as compared to older dogs. Taken together, these findings suggest the importance of income, stability and owner's age on owner-reported health outcomes in companion dogs and point to potential behavioral and/or environmental modifiers that can be used to promote healthy aging across species.
Collapse
Affiliation(s)
- Brianah M McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Layla Brassington
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Greer A Dolby
- Department of Biology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Sandi Shrager
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Devin Collins
- Department of Sociology, University of Washington, Seattle, WA, USA
| | - Matthew Dunbar
- Center for Studies in Demography & Ecology, University of Washington, Seattle, WA, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Furrow E, Tate N, Minor K, Martinson S, Larrabee S, Anttila M, Sleeper M, Henthorn P. An ABCC9 Missense Variant Is Associated with Sudden Cardiac Death and Dilated Cardiomyopathy in Juvenile Dogs. Genes (Basel) 2023; 14:genes14050988. [PMID: 37239348 DOI: 10.3390/genes14050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Sudden cardiac death in the young (SCDY) is a devastating event that often has an underlying genetic basis. Manchester Terrier dogs offer a naturally occurring model of SCDY, with sudden death of puppies as the manifestation of an inherited dilated cardiomyopathy (DCM). We performed a genome-wide association study for SCDY/DCM in Manchester Terrier dogs and identified a susceptibility locus harboring the cardiac ATP-sensitive potassium channel gene ABCC9. Sanger sequencing revealed an ABCC9 p.R1186Q variant present in a homozygous state in all SCDY/DCM-affected dogs (n = 26). None of the controls genotyped (n = 398) were homozygous for the variant, but 69 were heterozygous carriers, consistent with autosomal recessive inheritance with complete penetrance (p = 4 × 10-42 for the association of homozygosity for ABCC9 p.R1186Q with SCDY/DCM). This variant exists at low frequency in human populations (rs776973456) with clinical significance previously deemed uncertain. The results of this study further the evidence that ABCC9 is a susceptibility gene for SCDY/DCM and highlight the potential application of dog models to predict the clinical significance of human variants.
Collapse
Affiliation(s)
- Eva Furrow
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Nicole Tate
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Katie Minor
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | - Shannon Martinson
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE CIA 4P3, Canada
| | - Shannon Larrabee
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA
| | | | - Meg Sleeper
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paula Henthorn
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Delgado L, Brilhante-Simões P, Prada J, Monteiro L. Oral Pathology in Portuguese Dogs: An Eight-Year Biopsy-Based Retrospective Study. J Vet Dent 2023; 40:28-37. [PMID: 35538924 DOI: 10.1177/08987564221098107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The oral cavity of the dog can be the site of several types of pathology including both benign and malignant lesions. The aim of this study was to analyze the frequency and clinical-pathological characteristics of oral lesions present in a cohort of Portuguese dogs. A retrospective observational cross-sectional study on 704 canine oral lesions submitted for histopathological diagnosis to a Veterinary Pathology Center in the north of Portugal from 2010 to 2017 was performed. Gender, age, location of the lesion and the histopathological diagnosis was analysed. From the 704 cases included, 307 (43.6%) were females and 397 (56.4%) males. The mean age was 9.53 ± 3.6 years-old (range 3 to 240 months). The site most frequently affected was the gingiva (n = 283; 40.2%). 342 (48.6%) cases were malignant neoplasms, most represented by oral melanoma (n = 129; 37.7%). 256 (36.4%) cases were benign neoplasms, most represented by fibromatous epulis of periodontal ligament origin/peripheral odontogenic fibroma (FEPLO/POF) (n = 208;81.3%). 106 (15%) were non-neoplastic lesions, most represented by gingival hyperplasia (n = 25, 23.6%). This study provides useful information about frequency and distribution of oral lesions in dogs over a period of eight years allowing valuable comparison with other countries and other species. The most common benign tumours were FEPLO/POF while oral melanoma was the most common malignant tumour.
Collapse
Affiliation(s)
- Leonor Delgado
- Biopathology Unit, University Institute of Health Sciences (IUCS), 92909CESPU, Gandra, Portugal.,UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal.,Pathology Department, INNO Serviços Especializados em Veterinária, Braga, Portugal
| | | | - Justina Prada
- Department of Veterinary Science of the University of Trás-os-Montes and Alto Douro and CECAV -Veterinary and Animal Research Center - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Luis Monteiro
- Biopathology Unit, University Institute of Health Sciences (IUCS), 92909CESPU, Gandra, Portugal.,UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal.,Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS), 92909CESPU, Gandra, Portugal
| |
Collapse
|
15
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
16
|
Donner J, Freyer J, Davison S, Anderson H, Blades M, Honkanen L, Inman L, Brookhart-Knox CA, Louviere A, Forman OP, Chodroff Foran R. Genetic prevalence and clinical relevance of canine Mendelian disease variants in over one million dogs. PLoS Genet 2023; 19:e1010651. [PMID: 36848397 PMCID: PMC9997962 DOI: 10.1371/journal.pgen.1010651] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.
Collapse
Affiliation(s)
- Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Matthew Blades
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Casey A. Brookhart-Knox
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
17
|
Olsson PO, Yeonwoo J, Park K, Yoo YM, Hwang WS. Live births from urine derived cells. PLoS One 2023; 18:e0278607. [PMID: 36696395 PMCID: PMC9876353 DOI: 10.1371/journal.pone.0278607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Here we report urine-derived cell (UDC) culture and subsequent use for cloning which resulted in the successful development of cloned canine pups, which have remained healthy into adulthood. Bovine UDCs were used in vitro to establish comparative differences between cell sources. UDCs were chosen as a readily available and noninvasive source for obtaining cells. We analyzed the viability of cells stored in urine over time and could consistently culture cells which had remained in urine for 48hrs. Cells were shown to be viable and capable of being transfected with plasmids. Although primarily of epithelial origin, cells were found from multiple lineages, indicating that they enter the urine from more than one source. Held in urine, at 4°C, the majority of cells maintained their membrane integrity for several days. When compared to in vitro fertilization (IVF) derived embryos or those from traditional SCNT, UDC derived embryos did not differ in total cell number or in the number of DNA breaks, measured by TUNEL stain. These results indicate that viable cells can be obtained from multiple species' urine, capable of being used to produce live offspring at a comparable rate to other cell sources, evidenced by a 25% pregnancy rate and 2 live births with no losses in the canine UDC cloning trial. This represents a noninvasive means to recover the breeding capacity of genetically important or infertile animals. Obtaining cells in this way may provide source material for human and animal studies where cells are utilized.
Collapse
Affiliation(s)
| | | | - Kyumi Park
- Department of Companion Animal & Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeong-Min Yoo
- Lab of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - W. S. Hwang
- UAE Biotech Research Center, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
18
|
Qin Y, Feng S, Zheng M, Liu X, Zhao J, Zhao Q, Ye J, Mi J, Zhong Y. Progesterone Promotes In Vitro Maturation of Domestic Dog Oocytes Leading to Successful Live Births. Life (Basel) 2022; 12:life12111778. [PMID: 36362933 PMCID: PMC9698205 DOI: 10.3390/life12111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Gene-edited dogs are promising models for biomedical research because they have hundreds of genetic diseases that are similar to humans. A common method for producing gene-edited dogs is assisted reproductive technology (ART) using in vivo oocytes or embryos, but it is much more inefficient and has a higher cost. ART for dogs has lagged mostly because of the lack of an efficient in vitro maturation system. Because early maturation of canine oocytes occurs in follicles with extremely high concentrations of progesterone (P4), we hypothesize that P4 has an important role during maturation. In this study, we obtained ovaries of female dogs and collected cumulus−oocyte complexes, which were cultured in vitro in microdrops containing different P4 concentrations (0, 10, 40, 100 or 200 µg/mL). We found that 40 µg/mL P4 produced the highest oocyte maturation rate (29.7% ± 7.1%, p < 0.05). We also evaluated the quality of in vitro matured oocytes by in vitro fertilization and single-cell RNA sequencing, and both indicated an improvement in oocyte developmental potential. In conclusion, we successfully obtained the first live dogs using in vitro matured oocytes by adding P4 to optimize the in vitro maturation system of canine oocytes, and established a new and low-cost method to produce dogs via in vitro maturation and in vitro fertilization.
Collapse
Affiliation(s)
- Yumin Qin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shenjiong Feng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Min Zheng
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
| | - Xiaojuan Liu
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
| | - Jianping Zhao
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
| | - Qintao Zhao
- Nanchang Police-dog Base of the Ministry of Public Security of PRC, Nanchang 330100, China
| | - Junhua Ye
- Nanchang Police-dog Base of the Ministry of Public Security of PRC, Nanchang 330100, China
- Correspondence: (J.Y.); (J.M.); (Y.Z.)
| | - Jidong Mi
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
- Correspondence: (J.Y.); (J.M.); (Y.Z.)
| | - Yougang Zhong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (J.Y.); (J.M.); (Y.Z.)
| |
Collapse
|
19
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
20
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
21
|
Schulte E, Arlt SP. What Kinds of Dogs Are Used in Clinical and Experimental Research? Animals (Basel) 2022; 12:ani12121487. [PMID: 35739824 PMCID: PMC9219481 DOI: 10.3390/ani12121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the signalment of dogs used in veterinary research in six different specialties. In total, 150 randomly chosen clinical studies (25 studies per specialty) published between 2007 and 2019 were evaluated for the breed, sex, neuter status, age, and weight information of the dogs used. Breed information was given for 5.7% of the included animals. Beagles were used 1.9% of the time, which was a less significant role in research than we expected. Information about the sex of the dogs was lacking for 16.2% of the included animals, while age and weight information were missing for 22.7 and 32.7%, respectively. The neuter status was not given in 38.7% of the clinical studies. The results show deficits in the reporting of demographic data for the dogs. The need for an improvement in the documentation and/or reporting of animal signalment is obvious and should be addressed by authors, reviewers, and journal editors in the future. Abstract Background: Dogs are widely used in research to answer questions about canine or human conditions. For the latter, research dogs are often used as models, since they are physiologically more similar to humans than other species used in research and they share similar environmental conditions. From a veterinary perspective, research findings are widely based on academic research, and thus are generated under experimental conditions. In that regard, the question arises: do the dogs used for research adequately represent the dog population seen in veterinary practice? It may, for example, be assumed that Beagle dogs are often used as experimental animals. The objective of this study was to evaluate the signalment of dogs used in veterinary research. Furthermore, we aimed to assess other relevant criteria regarding the validity of clinical trials in the context of six different veterinary medicine specialties: cardiology, internal medicine, neurology, orthopaedics, reproduction, and surgery. Methods: A literature search was conducted and 25 studies per specialty were randomly selected. The breed, sex, neuter status, median age, and median weight of the dogs used for clinical studies (n = 150) published between 2007 and 2019 were evaluated. Results: In total, 596,542 dogs were used in the 150 trials. Breed information was given for 33,835 of these dogs (5.7%). Of the latter, 1.9% were Beagles. Nine clinical trials exclusively used Beagles. The most frequently used breeds were German Shepherds (7.3%), Labrador Retrievers (6.7%), and Golden Retrievers (4.7%). The major reporting deficits found were missing breed specification in 25.3% of the articles; missing information about the sex of the dogs in 16.2%; missing age and weight information in 22.7 and 32.7%, respectively; and missing neuter status in 38.7% of the clinical studies. The median sample size was 56 (Q1:29; Q3:365) dogs. Conclusions: The presented project revealed that Beagle dogs represent only a small proportion of dogs in veterinary research. Based on the evaluated publications, it seems that some relevant dog attributes differ between the specialties. The results, however, show deficits in the reporting of demographic data for the dogs. The need for an improvement in the documentation and/or reporting of animal signalment is obvious and should be addressed by authors, reviewers, and journal editors in the future.
Collapse
|
22
|
Genomic and Transcriptomic Characterization of Atypical Recurrent Flank Alopecia in the Cesky Fousek. Genes (Basel) 2022; 13:genes13040650. [PMID: 35456456 PMCID: PMC9033119 DOI: 10.3390/genes13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Non-inflammatory alopecia is a frequent skin problem in dogs, causing damaged coat integrity and compromised appearance of affected individuals. In this study, we examined the Cesky Fousek breed, which displays atypical recurrent flank alopecia (aRFA) at a high frequency. This type of alopecia can be quite severe and is characterized by seasonal episodes of well demarcated alopecic areas without hyperpigmentation. The genetic component responsible for aRFA remains unknown. Thus, here we aimed to identify variants involved in aRFA using a combination of histological, genomic, and transcriptomic data. We showed that aRFA is histologically similar to recurrent flank alopecia, characterized by a lack of anagen hair follicles and the presence of severely shortened telogen or kenogen hair follicles. We performed a genome-wide association study (GWAS) using 216 dogs phenotyped for aRFA and identified associations on chromosomes 19, 8, 30, 36, and 21, highlighting 144 candidate genes, which suggests a polygenic basis for aRFA. By comparing the skin cell transcription pattern of six aRFA and five control dogs, we identified 236 strongly differentially expressed genes (DEGs). We showed that the GWAS genes associated with aRFA are often predicted to interact with DEGs, suggesting their joint contribution to the development of the disease. Together, these genes affect four major metabolic pathways connected to aRFA: collagen formation, muscle structure/contraction, lipid metabolism, and the immune system.
Collapse
|
23
|
Sándor S, Jónás D, Tátrai K, Czeibert K, Kubinyi E. Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience 2022; 44:1269-1293. [PMID: 35288843 PMCID: PMC9213612 DOI: 10.1007/s11357-022-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs may possess a unique translational potential to investigate neural aging and dementia because they are prone to age-related cognitive decline, including an Alzheimer’s disease–like pathological condition. Yet very little is known about the molecular mechanisms underlying canine cognitive decline. The goal of the current study was to explore the transcriptomic differences between young and old dogs’ frontal cortex, which is a brain region often affected by various forms of age-related dementia in humans. RNA isolates from the frontal cortical brain area of 13 pet dogs, which represented 7 different breeds and crossbreds, were analyzed. The dogs were euthanized for medical reasons, and their bodies had been donated by their owners for scientific purposes. The poly(A) tail RNA subfraction of the total transcriptome was targeted in the sequencing analysis. Cluster analyses, differential gene expression analyses, and gene ontology analyses were carried out to assess which genes and genetic regulatory mechanisms were mostly affected by aging. Age was the most prominent factor in the clustering of the animals, indicating the presence of distinct gene expression patterns related to aging in a genetically variable population. A total of 3436 genes were found to be differentially expressed between the age groups, many of which were linked to neural function, immune system, and protein synthesis. These findings are in accordance with previous human brain aging RNA sequencing studies. Some genes were found to behave more similarly to humans than to rodents, further supporting the applicability of dogs in translational aging research.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.
| | - Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kálmán Czeibert
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| |
Collapse
|
24
|
Sarver AL, Makielski KM, DePauw TA, Schulte AJ, Modiano JF. Increased risk of cancer in dogs and humans: a consequence of recent extension of lifespan beyond evolutionarily-determined limitations? AGING AND CANCER 2022; 3:3-19. [PMID: 35993010 PMCID: PMC9387675 DOI: 10.1002/aac2.12046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is among the most common causes of death for dogs (and cats) and humans in the developed world, even though it is uncommon in wildlife and other domestic animals. We provide a rationale for this observation based on recent advances in our understanding of the evolutionary basis of cancer. Over the course of evolutionary time, species have acquired and fine-tuned adaptive cancer protective mechanisms that are intrinsically related to their energy demands, reproductive strategies, and expected lifespan. These cancer protective mechanisms are general across species and/or specific to each species and their niche, and they do not seem to be limited in diversity. The evolutionarily acquired cancer-free longevity that defines a species' life history can explain why the relative cancer risk, rate, and incidence are largely similar across most species in the animal kingdom despite differences in body size and life expectancy. The molecular, cellular, and metabolic events that promote malignant transformation and cancerous growth can overcome these adaptive, species-specific protective mechanisms in a small proportion of individuals, while independently, some individuals in the population might achieve exceptional longevity. In dogs and humans, recent dramatic alterations in healthcare and social structures have allowed increasing numbers of individuals in both species to far exceed their species-adapted longevities (by 2-4 times) without allowing the time necessary for compensatory natural selection. In other words, the cancer protective mechanisms that restrain risk at comparable levels to other species for their adapted lifespan are incapable of providing cancer protection over this recent, drastic and widespread increase in longevity.
Collapse
Affiliation(s)
- Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Institute for Health Informatics, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN
| | - Kelly M. Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Taylor A DePauw
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Ashley J. Schulte
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN,Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN,Center for Immunology, University of Minnesota, Minneapolis, MN,Stem Cell Institute, University of Minnesota, Minneapolis, MN,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
25
|
Whittaker DE, Volk HA, De Decker S, Fenn J. Clinical characterisation of a novel paroxysmal dyskinesia in Welsh terrier dogs. Vet J 2022; 281:105801. [PMID: 35150842 DOI: 10.1016/j.tvjl.2022.105801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Breed specific paroxysmal dyskinesias are increasingly recognised in veterinary medicine. We aimed to characterise the phenomenology, clinical course and prevalence of a previously unreported paroxysmal dyskinesia in the Welsh terrier breed. Clinical records of five Welsh terriers with paroxysmal episodes were reviewed. Additionally, owners of Welsh terriers were invited to complete a questionnaire with the aim of characterising paroxysmal episodes in the wider breed population. Clinical examinations (n = 5) and diagnostic investigations (n = 2) of affected Welsh terriers were within normal limits, apart from mild-moderate ventriculomegaly on cranial magnetic resonance imaging (n = 3). The survey of Welsh terrier owners revealed episodes consistent with a paroxysmal dyskinesia in 41 (22.8%) of 177 respondents. Median age of onset was 59 months. Episodes were predominantly characterised by sustained hypertonicity with periods of limb flexion, abnormal head and body posture, with preserved consciousness. Episode duration ranged from 30 s to 30 min (median, 3 min 30 s), with frequency varying widely between dogs. Affected dogs demonstrated a stable to improving clinical course in most cases. This study investigated a previously unreported paroxysmal dyskinesia in Welsh terriers. Similar clinical signs within the breed were potentially consistent with an inherited cause, worthy of further investigation.
Collapse
Affiliation(s)
- D E Whittaker
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, AL9 7TA, UK.
| | - H A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S De Decker
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - J Fenn
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, AL9 7TA, UK
| |
Collapse
|
26
|
Wise CF, Hammel SC, Herkert NJ, Ospina M, Calafat AM, Breen M, Stapleton HM. Comparative Assessment of Pesticide Exposures in Domestic Dogs and Their Owners Using Silicone Passive Samplers and Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1149-1161. [PMID: 34964617 PMCID: PMC10150270 DOI: 10.1021/acs.est.1c06819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pesticides are used extensively in residential settings for lawn maintenance and in homes to control household pests including application directly on pets to deter fleas and ticks. Pesticides are commonly detected in the home environment where people and pets can be subject to chronic exposure. Due to increased interest in using companion animals as sentinels for human environmental health studies, we conducted a comparative pesticide exposure assessment in 30 people and their pet dogs to determine how well silicone wristbands and silicone dog tags can predict urinary pesticide biomarkers of exposure. Using targeted gas chromatography-mass spectrometry analyses, we quantified eight pesticides in silicone samplers and used a suspect screening approach for additional pesticides. Urine samples were analyzed for 15 pesticide metabolite biomarkers. Several pesticides were detected in >70% of silicone samplers including permethrin, N,N-diethyl-meta-toluamide (DEET), and chlorpyrifos. Significant and positive correlations were observed between silicone sampler levels of permethrin and DEET with their corresponding urinary metabolites (rs = 0.50-0.96, p < 0.05) in both species. Significantly higher levels of fipronil were observed in silicone samplers from participants who reported using flea and tick products containing fipronil on their dog. This study suggests that people and their dogs have similar pesticide exposures in a home environment.
Collapse
Affiliation(s)
- Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MSS103-2, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MSS103-2, Atlanta, Georgia 30341, United States
| | - Matthew Breen
- Duke Cancer Institute, Durham, North Carolina 27710, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina 27710, United States
| |
Collapse
|
27
|
Xue YJ, Cui SS, Guo DC, Liu JS, Yang MF, Kang HT, Jiang Q, Qu LD. Development of a method for the isolation and culture of astrocytes from the canine cerebral cortex. J Neurosci Methods 2022; 370:109476. [PMID: 35007653 DOI: 10.1016/j.jneumeth.2022.109476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Astrocytes are considered key players in neuroimmunopathological processes, and they play a certain role in neuroinflammation. Rodent primary astrocyte cultures are commonly used in the study of human neuroinflammation. However, gene sequence homologies are closer between humans and dogs than between humans and rodents. NEW METHOD We established protocols to isolate astrocytes from the canine forebrain. Cerebral hemispheres of 3-4-week-old dogs were used. The isolation procedure included the use of the Neural Tissue Dissociation Kit P, demyelination by the magnetic bead method, and separation and preparation by differential adhesion. RESULTS We found a 96% astrocyte purification rate after isolation by differential adhesion. Purified canine astrocytes increased the secretion of interleukin-1β, interleukin-6, and tumor necrosis factor-alpha, and increased the expression of glial fibrillary acidic protein after lipopolysaccharide stimulation. We sequenced the transcriptome of the purified canine astrocytes and analyzed the differentially expressed genes among the rodent, human, and canine astrocytes. Transcriptome profiling and gene ontology analysis of the genes co-expressed in humans and canines indicate that human and canine astrocytes may be different from their rodent counterparts in terms of mediated interactions with metals. COMPARED WITH THE EXISTING METHODS The cells prepared by our method allow for the rapid separation of astrocytes with a relatively small resource scheme. The method also retains the cell phenotype and has an in vitro culture lifetime of approximately 2 to 3 months. CONCLUSION We established a method for preparing canine astrocytes with high purity, which can be used to study the biological function of astrocytes in vitro.
Collapse
Affiliation(s)
- Yu-Jia Xue
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China
| | - Sai-Sai Cui
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China
| | - Dong-Chun Guo
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China
| | - Jia-Sen Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China
| | - Ming-Fa Yang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China
| | - Hong-Tao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China
| | - Qian Jiang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China.
| | - Lian-Dong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, China.
| |
Collapse
|
28
|
Shiel RE, Nolan CM, Nally JE, Refsal KR, Mooney CT. Qualitative and semiquantitative assessment of thyroid hormone binding proteins in greyhounds and other dog breeds. Domest Anim Endocrinol 2021; 76:106623. [PMID: 33774426 DOI: 10.1016/j.domaniend.2021.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Total thyroxine (T4) concentrations are lower in healthy greyhounds compared to most other non-sighthound breeds. In humans, variations in the structure or concentration of the major thyroid hormone binding proteins are responsible for most reported differences between total T4 concentrations in healthy individuals from different ethnic groups or other subpopulations. The aim of this study was to determine if such variations are also responsible for the lower total T4 concentrations in greyhounds. The predicted protein sequences of thyroxine-binding globulin (TBG), transthyretin and albumin were determined in liver tissue from a euthyroid greyhound with decreased T4 concentration and a Jack Russell terrier using reverse-transcriptase PCR. Sequences were compared to each other and online reference sequences. Serum proteins from 21 greyhounds and 21 non-sighthound dogs were separated by denaturing electrophoresis and immunoblots probed with polyclonal antibodies to human TBG and transthyretin. Reactive bands were quantified by densitrometry, expressed relative to the mean of reference samples included in each gel. Serum albumin concentrations were measured using a commercially-available assay. Several SNPs were identified but none was thought likely to explain the lower total T4 concentrations in greyhounds. There was no significant difference between the quantity of any of the binding proteins in serum from greyhounds and non-sighthound dogs. However, total T4 and transthyretin concentrations were highly correlated in the greyhound group (r = 0.73, P = 0.0002). Variation in the sequence of thyroid hormone binding proteins is not responsible for low greyhound total T4 concentrations. Further evaluation of the role of transthyretin is warranted.
Collapse
Affiliation(s)
- R E Shiel
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
| | - C M Nolan
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - J E Nally
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - K R Refsal
- Michigan State University Veterinary Diagnostic Laboratory, Lansing, MI, USA
| | - C T Mooney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
29
|
Yoshizaki K, Hirata A, Nishii N, Kawabe M, Goto M, Mori T, Sakai H. Familial adenomatous polyposis in dogs: hereditary gastrointestinal polyposis in Jack Russell Terriers with germline APC mutations. Carcinogenesis 2021; 42:70-79. [PMID: 32445578 DOI: 10.1093/carcin/bgaa045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Many hereditary disorders in dogs have equivalents in humans and thus attract attention as natural animal models. Breed predisposition to certain diseases often provides promising clues to explore novel hereditary disorders in dogs. Recently, cases of gastrointestinal (GI) polyps in Jack Russell Terriers (JRTs) have increased in Japan. In 21 affected JRTs, polyps were found in either or both the stomach and colorectum, with a predilection for the gastric antrum and rectum. Multiple polyps were found in 13 of 21 examined dogs, including 5 dogs with both gastric and colorectal polyps. Some dogs were found to have GI polyps at an early age, with the youngest case being 2.3 years old. Histopathologically, 43 of 46 GI polyps (93.5%) were diagnosed as adenomas or adenocarcinomas. Immunohistochemical analysis revealed cytoplasmic and nuclear accumulation of β-catenin in the tumor cells. As in the case of human patients with familial adenomatous polyposis, all examined JRTs with GI polyps (n = 21) harbored the identical heterozygous germline APC mutations, represented by a 2-bp substitution (c.[462A>T; 463A>T]). The latter substitution was a non-sense mutation (p.K155X) resulting in a truncated APC protein, thus suggesting a strong association with this cancer-prone disorder. Somatic mutation and loss of the wild-type APC allele were detected in the GI tumors of JRTs, suggesting that biallelic APC inactivation was involved in tumor development. This study demonstrated that despite differences in the disease conditions between human and dog diseases, germline APC mutation confers a predisposition to GI neoplastic polyps in both dogs and humans.
Collapse
Affiliation(s)
- Kyoko Yoshizaki
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan.,Division of Animal Experiment, Life Science Research Center, Gifu University, Yanagido, Gifu, Japan
| | - Naohito Nishii
- Laboratory of Veterinary Internal Medicine, Gifu University, Yanagido, Gifu, Japan
| | - Mifumi Kawabe
- Laboratory of Veterinary Clinical Radiology, Gifu University, Yanagido, Gifu, Japan
| | - Minami Goto
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Yanagido, Gifu, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Yanagido, Gifu, Japan
| |
Collapse
|
30
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
31
|
Abstract
Dogs and humans have coexisted together for thousands of years, but it was not until the Victorian Era that humans practiced selective breeding to produce the modern standards we see today. Strong artificial selection during the breed formation period has simplified the genetic architecture of complex traits and caused an enrichment of identity-by-descent (IBD) segments in the dog genome. This study demonstrates the value of IBD segments and utilizes them to infer the recent demography of canids, predict case-control status for complex traits, locate regions of the genome potentially linked to inbreeding depression, and to identify understudied breeds where there is potential to discover new disease-associated variants. Domestic dogs have experienced population bottlenecks, recent inbreeding, and strong artificial selection. These processes have simplified the genetic architecture of complex traits, allowed deleterious variation to persist, and increased both identity-by-descent (IBD) segments and runs of homozygosity (ROH). As such, dogs provide an excellent model for examining how these evolutionary processes influence disease. We assembled a dataset containing 4,414 breed dogs, 327 village dogs, and 380 wolves genotyped at 117,288 markers and data for clinical and morphological phenotypes. Breed dogs have an enrichment of IBD and ROH, relative to both village dogs and wolves, and we use these patterns to show that breed dogs have experienced differing severities of bottlenecks in their recent past. We then found that ROH burden is associated with phenotypes in breed dogs, such as lymphoma. We next test the prediction that breeds with greater ROH have more disease alleles reported in the Online Mendelian Inheritance in Animals (OMIA). Surprisingly, the number of causal variants identified correlates with the popularity of that breed rather than the ROH or IBD burden, suggesting an ascertainment bias in OMIA. Lastly, we use the distribution of ROH across the genome to identify genes with depletions of ROH as potential hotspots for inbreeding depression and find multiple exons where ROH are never observed. Our results suggest that inbreeding has played a large role in shaping genetic and phenotypic variation in dogs and that future work on understudied breeds may reveal new disease-causing variation.
Collapse
|
32
|
Wu Y, Luo J, Garden OA. Immunoregulatory Cells in Myasthenia Gravis. Front Neurol 2020; 11:593431. [PMID: 33384654 PMCID: PMC7769807 DOI: 10.3389/fneur.2020.593431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B-cell mediated autoimmune disease caused by antibodies against the nicotinic acetylcholine receptor or other components of the post-synaptic muscle endplate at the neuromuscular junction. These specific antibodies serve as excellent biomarkers for diagnosis, but do not adequately substitute for clinical evaluations to predict disease severity or treatment response. Several immunoregulatory cell populations are implicated in the pathogenesis of MG. The immunophenotype of these populations has been well-characterized in human peripheral blood. CD4+FoxP3+ regulatory T cells (Tregs) are functionally defective in MG, but there is a lack of consensus on whether they show numerical perturbations. Myeloid-derived suppressor cells (MDSCs) have also been explored in the context of MG. Adoptive transfer of CD4+FoxP3+ Tregs or MDSCs suppresses ongoing experimental autoimmune MG (EAMG), a rodent model of MG, suggesting a protective role of both populations in this disease. An imbalance between follicular Tregs and follicular T helper cells is found in untreated MG patients, correlating with disease manifestations. There is an inverse correlation between the frequency of circulating IL-10–producing B cells and clinical status in MG patients. Taken together, both functional and numerical defects in various populations of immunoregulatory cells in EAMG and human MG have been demonstrated, but how they relate to pathogenesis and whether these cells can serve as biomarkers of disease activity in humans deserve further exploration.
Collapse
Affiliation(s)
- Ying Wu
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jie Luo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Oliver A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Lee NN, Kramer JS, Stoker AM, Bozynski CC, Cook CR, Stannard JT, Choma TJ, Cook JL. Canine models of spine disorders. JOR Spine 2020; 3:e1109. [PMID: 33392448 PMCID: PMC7770205 DOI: 10.1002/jsp2.1109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neck and low back pain are common among the adult human population and impose large social and economic burdens on health care and quality of life. Spine-related disorders are also significant health concerns for canine companions with etiopathogeneses, clinical presentations, and diagnostic and therapeutic options that are very similar to their human counterparts. Historically, induced and spontaneous pathology in laboratory rodents, dogs, sheep, goats, pigs, and nonhuman primates have been used for study of human spine disorders. While each of these can serve as useful preclinical models, they all have inherent limitations. Spontaneously occurring spine disorders in dogs provide highly translatable data that overcome many of the limitations of other models and have the added benefit of contributing to veterinary healthcare as well. For this scoping review, peer-reviewed manuscripts were selected from PubMed and Google Scholar searches using keywords: "intervertebral disc," "intervertebral disc degeneration," "biomarkers," "histopathology," "canine," and "mechanism." Additional keywords such as "injury," "induced model," and "nucleus degeneration" were used to further narrow inclusion. The objectives of this review were to (a) outline similarities in key features of spine disorders between dogs and humans; (b) describe relevant canine models; and (c) highlight the applicability of these models for advancing translational research and clinical application for mechanisms of disease, diagnosis, prognosis, prevention, and treatment, with a focus on intervertebral disc degeneration. Best current evidence suggests that dogs share important anatomical, physiological, histological, and molecular components of spinal disorders in humans, such that induced and spontaneous canine models can be very effective for translational research. Taken together, the peer-reviewed literature supports numerous advantages for use of canine models for study of disorders of the spine when the potential limitations and challenges are addressed.
Collapse
Affiliation(s)
- Naomi N. Lee
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
- Comparative Medicine ProgramUniversity of MissouriColumbiaMissouriUSA
| | - Jacob S. Kramer
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Aaron M. Stoker
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Chantelle C. Bozynski
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Cristi R. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James T. Stannard
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Theodore J. Choma
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James L. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
34
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
35
|
Optimized Approaches for the Induction of Putative Canine Induced Pluripotent Stem Cells from Old Fibroblasts Using Synthetic RNAs. Animals (Basel) 2020; 10:ani10101848. [PMID: 33050577 PMCID: PMC7601034 DOI: 10.3390/ani10101848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary A non-integrating and self-replicating Venezuelan equine encephalitis RNA replicon system can potentially make a great contribution to the generation of clinically applicable canine induced pluripotent stem cells. Our study shows a new method to utilize the synthetic RNA-based approach for canine somatic cell reprogramming regarding transfection and reprogramming efficiency. Abstract Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The purpose of this study was to investigate the optimal strategy using this approach and characterize the transition stage of ciPSCs. In this study, fibroblasts obtained from a 13-year-old dog were reprogrammed using a non-integrating Venezuelan equine encephalitis (VEE) RNA virus replicon, which has four reprogramming factors (collectively referred to as T7-VEE-OKS-iG and comprised of hOct4, hKlf4, hSox2, and hGlis1) and co-transfected with the T7-VEE-OKS-iG RNA and B18R mRNA for 4 h. One day after the final transfection, the cells were selected with puromycin (0.5 µg/mL) until day 10. After about 25 days, putative ciPSC colonies were identified showing TRA-1-60 expression and alkaline phosphatase activity. To determine the optimal culture conditions, the basic fibroblast growth factor in the culture medium was replaced with a modified medium supplemented with murine leukemia inhibitory factor (mLIF) and two kinase inhibitors (2i), PD0325901(MEK1/2 inhibitor) and CHIR99021 (GSK3β inhibitor). The derived colonies showed resemblance to naïve iPSCs in their morphology (dome-shaped) and are dependent on mLIF and 2i condition to maintain an undifferentiated phenotype. The expression of endogenous pluripotency markers such as Oct4, Nanog, and Rex1 transcripts were confirmed, suggesting that induced ciPSCs were in the late intermediate stage of reprogramming. In conclusion, the non-integrating and self-replicating VEE RNA replicon system can potentially make a great contribution to the generation of clinically applicable ciPSCs, and the findings of this study suggest a new method to utilize the VEE RNA approach for canine somatic cell reprogramming.
Collapse
|
36
|
Abstract
The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
37
|
Wise CF, Hammel SC, Herkert N, Ma J, Motsinger-Reif A, Stapleton HM, Breen M. Comparative Exposure Assessment Using Silicone Passive Samplers Indicates That Domestic Dogs Are Sentinels To Support Human Health Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7409-7419. [PMID: 32401030 PMCID: PMC7655112 DOI: 10.1021/acs.est.9b06605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silicone wristbands are promising passive samplers to support epidemiological studies in characterizing exposure to organic contaminants; however, investigating associated health risks remains challenging because of the latency period for many chronic diseases that take years to manifest. Dogs provide valuable insights as sentinels for exposure-related human disease because they share similar exposures in the home, have shorter life spans, share many clinical/biological features, and have closely related genomes. Here, we evaluated exposures among pet dogs and their owners using silicone dog tags and wristbands to determine if contaminant levels were correlated with validated exposure biomarkers. Significant correlations between measures on dog tags and wristbands were observed (rs = 0.38-0.90; p < 0.05). Correlations with their respective urinary biomarkers were stronger in dog tags compared to that in human wristbands (rs = 0.50-0.71; p < 0.01) for several organophosphate esters. This supports the value of using silicone bands with dogs to investigate health impacts on humans from shared exposures.
Collapse
Affiliation(s)
- Catherine F. Wise
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
| | - Stephanie C. Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Jun Ma
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27607, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina, United States
| | - Matthew Breen
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Duke Cancer Institute, Durham, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
38
|
Mizukami K, Uchiyama J, Igarashi H, Murakami H, Osumi T, Shima A, Ishiahra G, Nasukawa T, Une Y, Sakaguchi M. Age-related analysis of the gut microbiome in a purebred dog colony. FEMS Microbiol Lett 2020; 366:5484838. [PMID: 31049554 DOI: 10.1093/femsle/fnz095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
Dogs are model animals that can be used to study the gut microbiome. Although the gut microbiome is assumed to be closely related to aging, information pertaining to this relationship in dogs is limited. Here, we examined the association between the canine gut microbiome and age via a bacterial 16S rRNA gene amplicon sequence analysis in a colony of 43 Japanese purebred Shiba Inu dogs. We found that microbial diversity tended to decrease with aging. A differential abundance analysis showed an association of a single specific microbe with aging. The age-related coabundance network analysis showed that two microbial network modules were positively and negatively associated with aging, respectively. These results suggest that the dog gut microbiome is likely to vary with aging.
Collapse
Affiliation(s)
- Keijiro Mizukami
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan
| | - Jumpei Uchiyama
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan
| | - Hirotaka Igarashi
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan
| | - Takafumi Osumi
- Animal Medical Center, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Ayaka Shima
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku 8-17-1, Shinjuku, Tokyo 160-0023, Japan
| | - Genki Ishiahra
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku 8-17-1, Shinjuku, Tokyo 160-0023, Japan
| | - Tadahiro Nasukawa
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan
| | - Yumi Une
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Ikoinooka 1-3, Imabari, Ehime 794-8555, Japan
| | - Masahiro Sakaguchi
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-0206, Japan
| |
Collapse
|
39
|
Association of Common Genetic Variants in the CPSF7 and SDHAF2 Genes with Canine Idiopathic Pulmonary Fibrosis in the West Highland White Terrier. Genes (Basel) 2020; 11:genes11060609. [PMID: 32486318 PMCID: PMC7349241 DOI: 10.3390/genes11060609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 01/19/2023] Open
Abstract
Canine idiopathic pulmonary fibrosis (CIPF) is a chronic fibrotic lung disease that is observed at a higher frequency in the West Highland White Terrier dog breed (WHWT) and may have molecular pathological overlap with human lung fibrotic disease. We conducted a genome-wide association study (GWAS) in the WHWT using whole genome sequencing (WGS) to discover genetic variants associated with CIPF. Saliva-derived DNA samples were sequenced using the Riptide DNA library prep kit. After quality controls, 28 affected, 44 unaffected, and 1,843,695 informative single nucleotide polymorphisms (SNPs) were included in the GWAS. Data were analyzed both at the single SNP and gene levels using the GEMMA and GATES methods, respectively. We detected significant signals at the gene level in both the cleavage and polyadenylation specific factor 7 (CPSF7) and succinate dehydrogenase complex assembly factor 2 (SDHAF2) genes (adjusted p = 0.016 and 0.024, respectively), two overlapping genes located on chromosome 18. The top SNP for both genes was rs22669389; however, it did not reach genome-wide significance in the GWAS (adjusted p = 0.078). Our studies provide, for the first time, candidate loci for CIPF in the WHWT. CPSF7 was recently associated with lung adenocarcinoma, further highlighting the potential relevance of our results because IPF and lung cancer share several pathological mechanisms.
Collapse
|
40
|
Switonski M. Impact of gene therapy for canine monogenic diseases on the progress of preclinical studies. J Appl Genet 2020; 61:179-186. [PMID: 32189222 PMCID: PMC7148265 DOI: 10.1007/s13353-020-00554-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Rapid progress in knowledge of the organization of the dog genome has facilitated the identification of the mutations responsible for numerous monogenic diseases, which usually present a breed-specific distribution. The majority of these diseases have clinical and molecular counterparts in humans. The affected dogs have thus become valuable models for preclinical studies of gene therapy for problems such as eye diseases, immunodeficiency, lysosomal storage diseases, hemophilia, and muscular dystrophy. Successful gene therapies in dogs have significantly contributed to decisions to run clinical trials for several human diseases, such as Leber's congenital amaurosis 2-LCA2 (caused by a mutation of RPE65), X-linked retinitis pigmentosa-XLRP (caused by mutation RPGR), and achromatopsia (caused by mutation of CNGB3). Promising results were also obtained for canine as follows: hemophilia (A and B), mucopolysaccharidoses (MPS I, MPS IIIB, MPS VII), leukocyte adhesion deficiency (CLAD), and muscular dystrophy (a counterpart of human Duchenne dystrophy). Present knowledge on molecular background of canine monogenic diseases and their successful gene therapies prove that dogs have an important contribution to preclinical studies.
Collapse
Affiliation(s)
- Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
| |
Collapse
|
41
|
Kramer N, Pratscher B, Meneses AMC, Tschulenk W, Walter I, Swoboda A, Kruitwagen HS, Schneeberger K, Penning LC, Spee B, Kieslinger M, Brandt S, Burgener IA. Generation of Differentiating and Long-Living Intestinal Organoids Reflecting the Cellular Diversity of Canine Intestine. Cells 2020; 9:cells9040822. [PMID: 32231153 PMCID: PMC7226743 DOI: 10.3390/cells9040822] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Functional intestinal disorders constitute major, potentially lethal health problems in humans. Consequently, research focuses on elucidating the underlying pathobiological mechanisms and establishing therapeutic strategies. In this context, intestinal organoids have emerged as a potent in vitro model as they faithfully recapitulate the structure and function of the intestinal segment they represent. Interestingly, human-like intestinal diseases also affect dogs, making canine intestinal organoids a promising tool for canine and comparative research. Therefore, we generated organoids from canine duodenum, jejunum and colon, and focused on simultaneous long-term expansion and cell differentiation to maximize applicability. Following their establishment, canine intestinal organoids were grown under various culture conditions and then analyzed with respect to cell viability/apoptosis and multi-lineage differentiation by transcription profiling, proliferation assay, cell staining, and transmission electron microscopy. Standard expansion medium supported long-term expansion of organoids irrespective of their origin, but inhibited cell differentiation. Conversely, transfer of organoids to differentiation medium promoted goblet cell and enteroendocrine cell development, but simultaneously induced apoptosis. Unimpeded stem cell renewal and concurrent differentiation was achieved by culturing organoids in the presence of tyrosine kinase ligands. Our findings unambiguously highlight the characteristic cellular diversity of canine duodenum, jejunum and colon as fundamental prerequisite for accurate in vitro modelling.
Collapse
Affiliation(s)
- Nina Kramer
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
- Correspondence:
| | - Barbara Pratscher
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andre M. C. Meneses
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Waltraud Tschulenk
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Ingrid Walter
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Alexander Swoboda
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Hedwig S. Kruitwagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Matthias Kieslinger
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology, Equine Surgery, Department of Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Iwan A. Burgener
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
42
|
Validation of Bartonella henselae Western Immunoblotting for Serodiagnosis of Bartonelloses in Dogs. J Clin Microbiol 2020; 58:JCM.01335-19. [PMID: 31941695 DOI: 10.1128/jcm.01335-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/21/2019] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are etiological agents of life-threatening zoonotic diseases in dogs worldwide. Due to the poor sensitivity of immunofluorescent-antibody assays (IFAs), a reliable serodiagnostic test for canine bartonelloses is of clinical importance. The utility of Western blotting (WB) for the serodiagnosis of canine bartonelloses has not been critically investigated. The objective of this study was to characterize WB immunodominant proteins that could be used to confirm a serodiagnosis of bartonelloses. Using agar-grown Bartonella henselae San Antonio type 2 (SA2) whole-cell proteins, sera derived from four dog groups were tested by WB to assess immunodominant protein recognition patterns: group I consisted of 92 serum samples (10 preexposure and 82 postexposure serum samples) from 10 adult beagles experimentally inoculated with Bartonella spp., group II consisted of 36 serum samples from Bartonella PCR-positive naturally infected dogs, group III consisted of 26 serum samples from Bartonella PCR-negative and IFA-negative dogs, and group IV consisted of serum samples from 8 Brucella canis IFA-positive and 10 Rickettsia rickettsii IFA-positive dogs. Following experimental inoculation, 9 (90%) group I dogs were variably seroreactive to one or more of six specific immunodominant proteins (13, 17, 29, 50, 56, and 150 kDa). There was a strong but variable recognition of these proteins among 81% of group II dogs. In contrast, 24/26 group III dogs were not reactive to any immunodominant protein. In this study, the sensitivity and diagnostic accuracy of B. henselae SA2 WB were higher than those of B. henselae SA2 IFA testing. Some B. henselae SA2 immunodominant proteins were recognized by dogs experimentally and naturally infected with Bartonella spp. other than B. henselae Additional research is necessary to more fully define the utility of WB for the serodiagnosis of canine bartonelloses.
Collapse
|
43
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
44
|
Human Leukocyte Antigen (HLA) and Islet Autoantibodies Are Tools to Characterize Type 1 Diabetes in Arab Countries: Emphasis on Kuwait. DISEASE MARKERS 2019; 2019:9786078. [PMID: 31827651 PMCID: PMC6886320 DOI: 10.1155/2019/9786078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
The incidence rate of type 1 diabetes in Kuwait had been increasing exponentially and has doubled in children ≤ 14 years old within almost two decades. Therefore, there is a dire need for a careful systematic familial cohort study. Several immunogenetic factors affect the pathogenesis of the disease. The human leukocyte antigen (HLA) accounts for the major genetic susceptibility to the disease. The triggering agents initiate disease onset by type 1 destruction of pancreatic β-cells. Both HLA and anti-islet antibodies can be used to characterize, predict susceptibility to the disease, innovate, or delay the β-cell destruction. Evidence from prospective longitudinal studies suggested that the underlying disease process represents a continuum that begins before the symptoms are clinically evident. Autoimmunity of the functional pancreatic β-cells results in symptomatic type 1 diabetes and lifelong insulin dependence. The autoantibodies against glutamic acid decarboxylase (GADA), insulinoma antigen-2 (IA-2A), insulin (IAA), and zinc transporter-8 (ZnT-8A) comprise the most reliable biomarkers for type 1 diabetes in both children and adults. Although Kuwait is the second among the top 10 countries with a high incidence rate of type 1 diabetes, there have been no proper diagnostic and prediction tools as per the World Health Organization. The Kuwaiti Type 1 Diabetes Study (KADS) was initiated to understand the disease pathogenesis as well as the HLA and anti-islet autoantibody profile of type 1 diabetes in Kuwait. Understanding the disease sequela in a homogenous gene pool and highly consanguineous population of Kuwaitis could help solve the challenges and pathogenesis, as well as hasten the prevention, of type 1 diabetes.
Collapse
|
45
|
Imputation of canine genotype array data using 365 whole-genome sequences improves power of genome-wide association studies. PLoS Genet 2019; 15:e1008003. [PMID: 31525180 PMCID: PMC6762211 DOI: 10.1371/journal.pgen.1008003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/26/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic resources for the domestic dog have improved with the widespread adoption of a 173k SNP array platform and updated reference genome. SNP arrays of this density are sufficient for detecting genetic associations within breeds but are underpowered for finding associations across multiple breeds or in mixed-breed dogs, where linkage disequilibrium rapidly decays between markers, even though such studies would hold particular promise for mapping complex diseases and traits. Here we introduce an imputation reference panel, consisting of 365 diverse, whole-genome sequenced dogs and wolves, which increases the number of markers that can be queried in genome-wide association studies approximately 130-fold. Using previously genotyped dogs, we show the utility of this reference panel in identifying potentially novel associations, including a locus on CFA20 significantly associated with cranial cruciate ligament disease, and fine-mapping for canine body size and blood phenotypes, even when causal loci are not in strong linkage disequilibrium with any single array marker. This reference panel resource will improve future genome-wide association studies for canine complex diseases and other phenotypes. Complex traits are controlled by more than one gene and as such are difficult to map. For complex trait mapping in the domestic dog, researchers use the current array of 173,000 variants, with only minimal success. Here, we use a method called imputation to increase the number of variants–from 173,000 to 24 million–that can be queried in canine association studies. We use sequence data from the whole genomes of 365 dogs and wolves to accurately predict variants, in a separate cohort of dogs, that are not present on the array. Using dog body size, blood phenotypes, and a common orthopedic disease that involves rupture of the cranial cruciate ligament, we show that the increase in variants results in an increase in mapping power, through the identification of new associations and the narrowing of regions of interest. This imputation panel is particularly important because of its usefulness in improving complex trait mapping in the dog, which has significant implications for discovery of variants in humans with similar diseases.
Collapse
|
46
|
Kim S, Mun S, Kim T, Lee KH, Kang K, Cho JY, Han K. Transposable element-mediated structural variation analysis in dog breeds using whole-genome sequencing. Mamm Genome 2019; 30:289-300. [PMID: 31414176 DOI: 10.1007/s00335-019-09812-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Naturally occurring diseases in dogs provide an important animal model for studying human disease including cancer, heart disease, and autoimmune disorders. Transposable elements (TEs) make up ~ 31% of the dog (Canis lupus familiaris) genome and are one of main drivers to cause genomic variations and alter gene expression patterns of the host genes, which could result in genetic diseases. To detect structural variations (SVs), we conducted whole-genome sequencing of three different breeds, including Maltese, Poodle, and Yorkshire Terrier. Genomic SVs were detected and visualized using BreakDancer program. We identified a total of 2328 deletion SV events in the three breeds compared with the dog reference genome of Boxer. The majority of the genetic variants were found to be TE insertion polymorphism (1229) and the others were TE-mediated deletion (489), non-TE-mediated deletion (542), simple repeat-mediated deletion (32), and other indel (36). Among the TE insertion polymorphism, 286 elements were full-length LINE-1s (L1s). In addition, the 49 SV candidates located in the genic regions were experimentally verified and their polymorphic rates within each breed were examined using PCR assay. Polymorphism analysis of the genomic variants revealed that some of the variants exist polymorphic in the three dog breeds, suggesting that their SV events recently occurred in the dog genome. The findings suggest that TEs have contributed to the genomic variations among the three dog breeds of Maltese, Poodle, and Yorkshire Terrier. In addition, the polymorphic events between the dog breeds indicate that TEs were recently retrotransposed in the dog genome.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
47
|
Jankowska U, Jagielski D, Czopowicz M, Sapierzyński R. Epidemiology, clinical and cytological features of lymphoma in Boxer dogs. Acta Vet Hung 2019; 67:224-240. [PMID: 31238736 DOI: 10.1556/004.2019.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the epidemiology, clinical and laboratory characteristics of canine lymphomas as well as some aspects of treatment outcomes. The study was conducted on Boxer dogs with lymphoma diagnosed by cytology and immunocytochemistry (CD3 and CD79 alpha). During the study period, lymphoma was diagnosed in 63 Boxers; 86.8% were T-cell (based on the Kiel classification: small clear cell lymphoma, pleomorphic small cell lymphoma, pleomorphic mixed T-cell lymphoma, pleomorphic large T-cell lymphoma, lymphoblastic lymphoma/acute lymphoblastic leukaemia) and 13.2% were B-cell lymphomas (according to the Kiel classification: B-cell chronic lymphocytic leukaemia, centroblastic/centroblastic polymorphic lymphoma). Overall survival (OS) was significantly longer in dogs with low-grade than with high-grade lymphoma (median OS of 6.8 and 4.7 months, respectively; P = 0.024). OS was not influenced by WHO clinical stage, WHO clinical substage, presence of splenomegaly, early administration of glucocorticoids or the time from the first presentation to the beginning of chemotherapy. There are no significant differences in clinical and laboratory parameters between low-grade and high-grade lymphomas. Boxer dogs are predisposed to T-cell lymphoma, with a predominance of high-grade tumour, especially pleomorphic, mixed small and large T-cell subtype. It is possible that Boxer dogs may respond less favourably to chemotherapy than patients of other breeds.
Collapse
Affiliation(s)
| | | | - Michał Czopowicz
- 2Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Rafał Sapierzyński
- 3Division of Animal Pathomorphology, Department of Pathology and Veterinary Diagnostics and Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska str. 166, 02-787 Warsaw, Poland
| |
Collapse
|
48
|
What can we learn from the hair of the dog? Complex effects of endogenous and exogenous stressors on canine hair cortisol. PLoS One 2019; 14:e0216000. [PMID: 31116735 PMCID: PMC6530888 DOI: 10.1371/journal.pone.0216000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/11/2019] [Indexed: 01/02/2023] Open
Abstract
Hair is an emerging biological matrix in which to measure chronic HPA axis activity, offering a longer term view into an animal’s life. We explored effects of exogenous (e.g. lifestyle, medications, social environment) and endogenous (e.g. disease, behaviour) stressors on hair cortisol concentration (HCC) in a population of Border Collies (BCs). Owners of BCs were recruited and reported their dog’s lifestyle, clinical history, anxiety-related behaviour, and collected a white hair sample from their dog’s dorsal neck region. HCC was determined using established methods with a commercial cortisol assay kit. Samples from 135 BCs were analysed, with 91 healthy controls and 44 diagnosed with epilepsy as a model disease. Factors associated with higher HCC included psychosocial stressors (living with three or more other dogs) and lifestyle (engaging in competitive flyball); while factors associated with lower HCC included anxiety (stranger-directed and non-social), health (epilepsy diagnosis, with number of seizures to date negatively correlated with HCC) and medication (certain anti-epileptic drugs were associated with elevated or reduced HCC). These novel results highlight the potential of chronic stress with frequent or persisting HPA-axis hyperactivity leading to a state of hypocortisolism, and the need to consider stressor recency and recurrence when interpreting HCC data.
Collapse
|
49
|
Menon DV, Patel D, Joshi CG, Kumar A. The road less travelled: The efficacy of canine pluripotent stem cells. Exp Cell Res 2019; 377:94-102. [DOI: 10.1016/j.yexcr.2019.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
|
50
|
Behrens AJ, Duke RM, Petralia LM, Harvey DJ, Lehoux S, Magnelli PE, Taron CH, Foster JM. Glycosylation profiling of dog serum reveals differences compared to human serum. Glycobiology 2019; 28:825-831. [PMID: 30137320 PMCID: PMC6192460 DOI: 10.1093/glycob/cwy070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of serum proteins, and changes in the type and abundance of glycans in human serum have been correlated with a growing number of human diseases. While the glycosylation pattern of human serum is well studied, little is known about the profiles of other mammalian species. Here, we report detailed glycosylation profiling of canine serum by hydrophilic interaction chromatography-ultraperformance liquid chromatography (HILIC-UPLC) and mass spectrometry. The domestic dog (Canis familiaris) is a widely used model organism and of considerable interest for a large veterinary community. We found significant differences in the serum N-glycosylation profile of dogs compared to that of humans, such as a lower abundance of galactosylated and sialylated glycans. We also compare the N-glycan profile of canine serum to that of canine IgG – the most abundant serum glycoprotein. Our data will serve as a baseline reference for future studies when performing serum analyses of various health and disease states in dogs.
Collapse
Affiliation(s)
| | - Rebecca M Duke
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | | | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus.,Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, University Road, Southampton, UK
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | | | | | | |
Collapse
|