1
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
2
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
3
|
Anti-Vimentin Nanobody Decreases Glioblastoma Cell Invasion In Vitro and In Vivo. Cancers (Basel) 2023; 15:cancers15030573. [PMID: 36765531 PMCID: PMC9913279 DOI: 10.3390/cancers15030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is the most common primary brain tumour and one of the deadliest cancers. In addition to late diagnosis and inadequate treatment, the extremely low survival rate is also due to the lack of appropriate therapeutic biomarkers and corresponding therapeutic agents. One of the potential therapeutic biomarkers is the intermediate filament vimentin, which is associated with epithelial-mesenchymal transition (EMT). The purpose of this study was to analyse the effect of the anti-vimentin nanobody Nb79 on cell invasion in vitro and in vivo. To further our understanding of the mechanism of action, we investigated the association between Nb79 and EMT in GBM and GBM stem cells by analysing the expression levels of key EMT-related proteins. METHODS The expression of vimentin in glioma tissues and cells was determined by RT-qPCR. An invasion assay was performed on differentiated glioblastoma cell line U-87 MG and stem cell line NCH421k in vitro as well as in vivo in zebrafish embryos. The effect of Nb79 on expression of EMT biomarkers beta-catenin, vimentin, ZEB-1 and ZO1 was determined by Western blot and immunocytochemistry. RESULTS Our study shows that vimentin is upregulated in glioblastoma tissue compared to lower grade glioma and non-tumour brain tissue. We demonstrated that treatment with Nb79 reduced glioblastoma cell invasion by up to 64% in vitro and up to 21% in vivo. In addition, we found that the tight junction protein ZO-1 had higher expression on the cell membrane, when treated with inhibitory anti-vimentin Nb79 compared to control. CONCLUSION In conclusion, our results suggest that anti-vimentin nanobody Nb79 is a promising tool to target glioblastoma cell invasion.
Collapse
|
4
|
Dolmans MM, Donnez J. Emerging Drug Targets for Endometriosis. Biomolecules 2022; 12:biom12111654. [PMID: 36359004 PMCID: PMC9687824 DOI: 10.3390/biom12111654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease causing distressing symptoms and requiring a life-long management strategy. The objective of this review is to evaluate endometriosis-related pathways and identify novel therapies to treat it. We focused on the crucial role of inflammation and inflammatory molecules in order to define new perspectives for non-hormonal treatment of the disease by targeting inflammation, nuclear factor kappa B and cytokines, or reactive oxygen species, apoptotic and autophagic pathways, regulators of epithelial-mesenchymal transition, and angiogenesis and neuroangiogenesis. Novel non-steroidal therapies targeting these pathways for endometriosis were explored, but multiple challenges remain. While numerous agents have been investigated in preclinical trials, few have reached the clinical testing stage because of use of inappropriate animal models, with no proper study design or reporting of preclinical strategies. Targeting estrogens is still the best way to control endometriosis progression and inflammation.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Gynecology Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200 Brussels, Belgium
| | - Jacques Donnez
- Department of Gynaecology, Université Catholique de Louvain, 1200 Brussels, Belgium
- Société de Recherche pour l’Infertilité (SRI), 143 Avenue Grandchamp, 1150 Brussels, Belgium
- Correspondence:
| |
Collapse
|
5
|
A low-molecular-weight chitosan fluorometric-based assay for evaluating antiangiogenic drugs. Int J Biol Macromol 2022; 224:927-937. [DOI: 10.1016/j.ijbiomac.2022.10.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
6
|
LaChance J, Suh K, Clausen J, Cohen DJ. Learning the rules of collective cell migration using deep attention networks. PLoS Comput Biol 2022; 18:e1009293. [PMID: 35476698 PMCID: PMC9106212 DOI: 10.1371/journal.pcbi.1009293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/13/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Collective, coordinated cellular motions underpin key processes in all multicellular organisms, yet it has been difficult to simultaneously express the ‘rules’ behind these motions in clear, interpretable forms that effectively capture high-dimensional cell-cell interaction dynamics in a manner that is intuitive to the researcher. Here we apply deep attention networks to analyze several canonical living tissues systems and present the underlying collective migration rules for each tissue type using only cell migration trajectory data. We use these networks to learn the behaviors of key tissue types with distinct collective behaviors—epithelial, endothelial, and metastatic breast cancer cells—and show how the results complement traditional biophysical approaches. In particular, we present attention maps indicating the relative influence of neighboring cells to the learned turning decisions of a ‘focal cell’–the primary cell of interest in a collective setting. Colloquially, we refer to this learned relative influence as ‘attention’, as it serves as a proxy for the physical parameters modifying the focal cell’s future motion as a function of each neighbor cell. These attention networks reveal distinct patterns of influence and attention unique to each model tissue. Endothelial cells exhibit tightly focused attention on their immediate forward-most neighbors, while cells in more expansile epithelial tissues are more broadly influenced by neighbors in a relatively large forward sector. Attention maps of ensembles of more mesenchymal, metastatic cells reveal completely symmetric attention patterns, indicating the lack of any particular coordination or direction of interest. Moreover, we show how attention networks are capable of detecting and learning how these rules change based on biophysical context, such as location within the tissue and cellular crowding. That these results require only cellular trajectories and no modeling assumptions highlights the potential of attention networks for providing further biological insights into complex cellular systems. Collective behaviors are crucial to the function of multicellular life, with large-scale, coordinated cell migration enabling processes spanning organ formation to coordinated skin healing. However, we lack effective tools to discover and cleanly express collective rules at the level of an individual cell. Here, we employ a carefully structured neural network to extract collective information directly from cell trajectory data. The network is trained on data from various systems, including canonical collective cell systems (HUVEC and MDCK cells) which display visually distinct forms of collective motion, and metastatic cancer cells (MDA-MB-231) which are highly uncoordinated. Using these trained networks, we can produce attention maps for each system, which indicate how a cell within a tissue takes in information from its surrounding neighbors, as a function of weights assigned to those neighbors. Thus for a cell type in which cells tend to follow the path of the cell in front, the attention maps will display high weights for cells spatially forward of the focal cell. We present results in terms of additional metrics, such as accuracy plots and number of interacting cells, and encourage future development of improved metrics.
Collapse
Affiliation(s)
- Julienne LaChance
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Jens Clausen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Daniel J. Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
7
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Ranjan G, Sehgal P, Sharma D, Scaria V, Sivasubbu S. Functional long non-coding and circular RNAs in zebrafish. Brief Funct Genomics 2021:elab014. [PMID: 33755040 DOI: 10.1093/bfgp/elab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
The utility of model organisms to understand the function of a novel transcript/genes has allowed us to delineate their molecular mechanisms in maintaining cellular homeostasis. Organisms such as zebrafish have contributed a lot in the field of developmental and disease biology. Attributable to advancement and deep transcriptomics, many new transcript isoforms and non-coding RNAs such as long noncoding RNA (lncRNA) and circular RNAs (circRNAs) have been identified and cataloged in multiple databases and many more are yet to be identified. Various methods and tools have been utilized to identify lncRNAs/circRNAs in zebrafish using deep sequencing of transcriptomes as templates. Functional analysis of a few candidates such as tie1-AS, ECAL1 and CDR1as in zebrafish provides a prospective outline to approach other known or novel lncRNA/circRNA. New genetic alteration tools like TALENS and CRISPRs have helped in probing for the molecular function of lncRNA/circRNA in zebrafish. Further latest improvements in experimental and computational techniques offer the identification of lncRNA/circRNA counterparts in humans and zebrafish thereby allowing easy modeling and analysis of function at cellular level.
Collapse
|
9
|
Koenig JA, Acon Chen C, Shih TM. Development of a Larval Zebrafish Model for Acute Organophosphorus Nerve Agent and Pesticide Exposure and Therapeutic Evaluation. TOXICS 2020; 8:toxics8040106. [PMID: 33213094 PMCID: PMC7712847 DOI: 10.3390/toxics8040106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023]
Abstract
Organophosphorus compound exposure remains a present threat through agricultural accidents, warfare, or terrorist activity. The primary mechanism of organophosphorus toxicity is through inhibition of the enzyme acetylcholinesterase, with current emergency treatment including anticholinergics, benzodiazepines, and oxime reactivators. However, a need for more effective and broadly acting countermeasures remains. This study aimed to develop larval zebrafish as a high-throughput model for evaluating novel therapeutics against acute organophosphorus exposure. Larval zebrafish at six days post-fertilization were exposed to acute concentrations of seven organophosphorus compounds and treated with one of three oximes. Lethality studies indicated similar relative toxicity to that seen in the established rodent model, with chemical warfare agents proving more lethal than organophosphorus pesticides. Additionally, the organophosphorus-specific response for oxime reactivation of acetylcholinesterase was comparable to what has been previously reported. Behavioral studies measuring the visual motor response demonstrated greater efficacy for centrally acting oxime compounds than for those that are contained to the peripheral tissue. Overall, these results support the use of this larval zebrafish model as a high-throughput screening platform for evaluating novel treatments following acute organophosphorus exposure.
Collapse
Affiliation(s)
| | | | - Tsung-Ming Shih
- Correspondence: ; Tel.: +1-410-436-3414; Fax: +1-410-436-2690
| |
Collapse
|
10
|
Hughes GL, Lones MA, Bedder M, Currie PD, Smith SL, Pownall ME. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. Dis Model Mech 2020; 13:dmm045815. [PMID: 32859696 PMCID: PMC7578351 DOI: 10.1242/dmm.045815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Animal models of human disease provide an in vivo system that can reveal molecular mechanisms by which mutations cause pathology, and, moreover, have the potential to provide a valuable tool for drug development. Here, we have developed a zebrafish model of Parkinson's disease (PD) together with a novel method to screen for movement disorders in adult fish, pioneering a more efficient drug-testing route. Mutation of the PARK7 gene (which encodes DJ-1) is known to cause monogenic autosomal recessive PD in humans, and, using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-function zebrafish with molecular hallmarks of PD. To establish whether there is a human-relevant parkinsonian phenotype in our model, we adapted proven tools used to diagnose PD in clinics and developed a novel and unbiased computational method to classify movement disorders in adult zebrafish. Using high-resolution video capture and machine learning, we extracted novel features of movement from continuous data streams and used an evolutionary algorithm to classify parkinsonian fish. This method will be widely applicable for assessing zebrafish models of human motor diseases and provide a valuable asset for the therapeutics pipeline. In addition, interrogation of RNA-seq data indicate metabolic reprogramming of brains in the absence of Dj-1, adding to growing evidence that disruption of bioenergetics is a key feature of neurodegeneration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gideon L Hughes
- Department of Biology, University of York, York YO10 5DD, UK
| | - Michael A Lones
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Matthew Bedder
- Department of Biology, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Stephen L Smith
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
| | - Mary Elizabeth Pownall
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| |
Collapse
|
11
|
Sailem HZ, Al Haj Zen A. Morphological landscape of endothelial cell networks reveals a functional role of glutamate receptors in angiogenesis. Sci Rep 2020; 10:13829. [PMID: 32796870 PMCID: PMC7428010 DOI: 10.1038/s41598-020-70440-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis plays a key role in several diseases including cancer, ischemic vascular disease, and Alzheimer's disease. Chemical genetic screening of endothelial tube formation provides a robust approach for identifying signalling components that impact microvascular network morphology as well as endothelial cell biology. However, the analysis of the resulting imaging datasets has been limited to a few phenotypic features such as the total tube length or the number of branching points. Here we developed a high content analysis framework for detailed quantification of various aspects of network morphology including network complexity, symmetry and topology. By applying our approach to a high content screen of 1,280 characterised drugs, we found that drugs that result in a similar phenotype share the same mechanism of action or common downstream signalling pathways. Our multiparametric analysis revealed that a group of glutamate receptor antagonists enhances branching and network connectivity. Using an integrative meta-analysis approach, we validated the link between these receptors and angiogenesis. We further found that the expression of these genes is associated with the prognosis of Alzheimer's patients. In conclusion, our work shows that detailed image analysis of complex endothelial phenotypes can reveal new insights into biological mechanisms modulating the morphogenesis of endothelial networks and identify potential therapeutics for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Heba Z Sailem
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7LF, UK.
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Wang J, Zhang XH, Xu X, Zhu Q, Yao B, Liang S, Chen Z, Wang Y, He MF, Wu M. Pro-angiogenic activity of Tongnao decoction on HUVECs in vitro and zebrafish in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112737. [PMID: 32147480 DOI: 10.1016/j.jep.2020.112737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongnao Decoction (TND) is a Chinese decoction approved and used in Jiangsu Province Hospital for the treatment of ischemic stroke. It shows conclusive efficiency in the improvement of neurologic impairment and activities of daily living of the patients. AIM OF THE STUDY Recently, angiogenesis has been recognized as a potential therapeutic strategy for treating cerebral ischemia. This study was aimed to provide comprehensive evidence for the pro-angiogenic effect of TND and characterize the underlying mechanism. MATERIALS AND METHODS We firstly established the chemical fingerprinting of TND. Then, the in vitro pro-angiogenic activities of TND were tested on human umbilical vein endothelial cells (HUVECs) through cell viability, wound healing and tube formation assays. The in vivo pro-angiogenic effects were evaluated on transgenic zebrafish embryos [Tg (fli-1: EGFP)] through the formation of intersegmental vessels (ISVs), subintestinal vessels (SIVs) and central arteries (CtAs). Lastly, the potential mechanisms of TND were analyzed by a blocking assay with eight pathways-specific kinase inhibitors. RESULTS TND promoted the proliferation, migration and tube formation of HUVECs. TND also rescued the impairment of ISVs, SIVs and CtAs caused by VRI in a dose-dependent manner in zebrafish embryos. TND could activate vascular endothelial growth factor receptor-2 (VEGFR-2), phosphoinositide 3-kinase (PI3K) - protein kinase B (Akt) and Raf - mitogen-activated protein kinase1/2 (MEK1/2) - extracellular regulated kinase 1/2 (ERK1/2) signaling pathways. CONCLUSION Our study firstly demonstrated the pro-angiogenic activities of TND. Our work provided evidences for the clinical usage of TND in restoring neurovascular function through promoting angiogenesis in the ischemic cerebral microvascular.
Collapse
Affiliation(s)
- Jianli Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao-Huan Zhang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyu Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Beibei Yao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Seng Liang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhaoyao Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yuxuan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Minghua Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
13
|
Nakayama J, Makinoshima H. Zebrafish-Based Screening Models for the Identification of Anti-Metastatic Drugs. Molecules 2020; 25:E2407. [PMID: 32455810 PMCID: PMC7287578 DOI: 10.3390/molecules25102407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a leading contributor to the morbidity of cancer patients, occurs through a multi-step process: invasion, intravasation, extravasation, colonization, and metastatic tumor formation. Each process is not only promoted by cancer cells themselves but is also affected by their microenvironment. Given this complexity, drug discovery for anti-metastatic drugs must consider the interaction between cancer cells and their microenvironments. The zebrafish is a suitable vertebrate animal model for in vivo high-throughput screening studies with physiological relevance to humans. This review covers the zebrafish model used to identify anti-metastatic drugs.
Collapse
Affiliation(s)
- Joji Nakayama
- Shonai Regional Industry Promotion Center, Tsuruoka, Yamagata 997-0052, Japan
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 975-0052, Japan;
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 975-0052, Japan;
- Division of Translational Research, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
14
|
Liu K, Petree C, Requena T, Varshney P, Varshney GK. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front Cell Dev Biol 2019; 7:13. [PMID: 30886848 PMCID: PMC6409501 DOI: 10.3389/fcell.2019.00013] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The study of model organisms has revolutionized our understanding of the mechanisms underlying normal development, adult homeostasis, and human disease. Much of what we know about gene function in model organisms (and its application to humans) has come from gene knockouts: the ability to show analogous phenotypes upon gene inactivation in animal models. The zebrafish (Danio rerio) has become a popular model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. The RNA-guided CRISPR/Cas9-mediated targeted mutagenesis approaches have provided powerful tools to manipulate the genome toward developing new disease models and understanding the pathophysiology of human diseases. CRISPR-based approaches are being used for the generation of both knockout and knock-in alleles, and also for applications including transcriptional modulation, epigenome editing, live imaging of the genome, and lineage tracing. Currently, substantial effort is being made to improve the specificity of Cas9, and to expand the target coverage of the Cas9 enzymes. Novel types of naturally occurring CRISPR systems [Cas12a (Cpf1); engineered variants of Cas9, such as xCas9 and SpCas9-NG], are being studied and applied to genome editing. Since the majority of pathogenic mutations are single point mutations, development of base editors to convert C:G to T:A or A:T to G:C has further strengthened the CRISPR toolbox. In this review, we provide an overview of the increasing number of novel CRISPR-based tools and approaches, including lineage tracing and base editing.
Collapse
Affiliation(s)
| | | | | | | | - Gaurav K. Varshney
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
15
|
Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev 2019; 140:68-77. [PMID: 29944904 DOI: 10.1016/j.addr.2018.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
The vascular system is one of the first to develop during embryogenesis and is essential for all organs and tissues in our body to develop and function. It has many essential roles including controlling the absorption, distribution and excretion of compounds and therefore determines the pharmacokinetics of drugs and therapeutics. Vascular homeostasis is under tight physiological control which is essential for maintaining tissues in a healthy state. Consequently, disruption of vascular homeostasis plays an integral role in many disease processes, making cells of the vessel wall attractive targets for therapeutic intervention. Experimental models of blood vessels can therefore contribute significantly to drug development and aid in predicting the biological effects of new drug entities. The increasing availability of human induced pluripotent stem cells (hiPSC) derived from healthy individuals and patients have accelerated advances in developing experimental in vitro models of the vasculature: human endothelial cells (ECs), pericytes and vascular smooth muscle cells (VSMCs), can now be generated with high efficiency from hiPSC and used in 'microfluidic chips' (also known as 'organ-on-chip' technology) as a basis for in vitro models of blood vessels. These near physiological scaffolds allow the controlled integration of fluid flow and three-dimensional (3D) co-cultures with perivascular cells to mimic tissue- or organ-level physiology and dysfunction in vitro. Here, we review recent multidisciplinary developments in these advanced experimental models of blood vessels that combine hiPSC with microfluidic organ-on-chip technology. We provide examples of their utility in various research areas and discuss steps necessary for further integration in biomedical applications so that they can be contribute effectively to the evaluation and development of new drugs and other therapeutics as well as personalized (patient-specific) treatments.
Collapse
|
16
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Gordon HB, Lusk S, Carney KR, Wirick EO, Murray BF, Kwan KM. Hedgehog signaling regulates cell motility and optic fissure and stalk formation during vertebrate eye morphogenesis. Development 2018; 145:dev.165068. [PMID: 30333214 PMCID: PMC6262791 DOI: 10.1242/dev.165068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
Abstract
Establishment of precise three-dimensional tissue structure is vital for organ function. In the visual system, optic fissure and stalk morphogenesis is a crucial yet poorly understood process, disruptions of which can lead to coloboma, a birth defect causing visual impairment. Here, we use four-dimensional imaging, cell tracking, and molecular genetics in zebrafish to define the cell movements underlying normal optic fissure and stalk formation. We determine how these events are disrupted in a coloboma model in which the Hedgehog (Hh) receptor ptch2 is lost, resulting in overactive Hh signaling. In the ptch2 mutant, cells exhibit defective motile behaviors and morphology. Cells that should contribute to the fissure do not arrive at their correct position, and instead contribute to an ectopically large optic stalk. Our results suggest that overactive Hh signaling, through overexpression of downstream transcriptional targets, impairs cell motility underlying optic fissure and stalk formation, via non-cell-autonomous and cell-autonomous mechanisms. More broadly, our cell motility and morphology analyses provide a new framework for studying other coloboma-causing mutations that disrupt optic fissure or stalk formation. Summary: Multidimensional imaging of ptch2 mutant zebrafish uncovers a role for the Hh signaling pathway in regulating the cell and tissue dynamics underlying early eye morphogenesis.
Collapse
Affiliation(s)
- Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Keith R Carney
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily O Wirick
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Jiang X, Zhou J, Lin Q, Gong G, Sun H, Liu W, Guo Q, Feng F, Qu W. Anti-angiogenic and anticancer effects of baicalein derivatives based on transgenic zebrafish model. Bioorg Med Chem 2018; 26:4481-4492. [PMID: 30098912 DOI: 10.1016/j.bmc.2018.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/10/2023]
Abstract
Angiogenesis leads to tumor neovascularization by promoting tumor growth and metastatic spread, therefore, angiogenesis is considered as an attractive target for potential small molecule anticancer drug discovery. Herein, we report the structural modification and biological evaluation of baicalein derivatives, among which compound 42 had potent in vivo anti-angiogenic activity and wide security treatment window in transgenic zebrafish model. Further, 42 exhibited the most potent inhibitory activity on HUVEC proliferation, migration and tube formation in vitro. Moreover, 42 significantly inhibited growth of human lung cancer A549 cells and weak influence on human normal fibroblast L929 cells. The present research demonstrated that the significant anti-angiogenic and anticancer effects, which provided the supportive evidence for 42 could be used as a potential compound of cancer therapy.
Collapse
Affiliation(s)
- Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Junting Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Guiyi Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Powers N, Srivastava A. The Air Sac Primordium of Drosophila: A Model for Invasive Development. Int J Mol Sci 2018; 19:ijms19072074. [PMID: 30018198 PMCID: PMC6073991 DOI: 10.3390/ijms19072074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
The acquisition of invasive properties preceding tumor metastasis is critical for cancer progression. This phenomenon may result from mutagenic disruption of typical cell function, but recent evidence suggests that cancer cells frequently co-opt normal developmental programs to facilitate invasion as well. The signaling cascades that have been implicated present an obstacle to identifying effective therapeutic targets because of their complex nature and modulatory capacity through crosstalk with other pathways. Substantial efforts have been made to study invasive behavior during organogenesis in several organisms, but another model found in Drosophilamelanogaster has not been thoroughly explored. The air sac primordium (ASP) appears to be a suitable candidate for investigating the genes and morphogens required for invasion due to the distinct overlap in the events that occur during its normal growth and the development of metastatic tumor cells. Among these events are the conversion of larval cells in the trachea into a population of mitotically active cells, reduced cell–cell contact along the leading edge of the ASP, and remodeling of the extracellular matrix (ECM) that surrounds the structure. Here, we summarize the development of ASPs and invasive behavior observed therein.
Collapse
Affiliation(s)
- Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| |
Collapse
|
20
|
Saydmohammed M, Vollmer LL, Onuoha EO, Maskrey TS, Gibson G, Watkins SC, Wipf P, Vogt A, Tsang M. A High-Content Screen Reveals New Small-Molecule Enhancers of Ras/Mapk Signaling as Probes for Zebrafish Heart Development. Molecules 2018; 23:molecules23071691. [PMID: 29997348 PMCID: PMC6099644 DOI: 10.3390/molecules23071691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Zebrafish is the preferred vertebrate model for high throughput chemical screens to discover modulators of complex biological pathways. We adapted a transgenic zebrafish line, Tg(dusp6:EGFP), which reports on fibroblast growth factor (Fgf)/Ras/Mapk activity, into a quantitative, high-content chemical screen to identify novel Fgf hyperactivators as chemical probes for zebrafish heart development and regeneration. We screened 10,000 compounds from the TimTec ActiProbe library, and identified several structurally distinct classes of molecules that enhanced Fgf/Ras/Mapk signaling. We chose three agents—ST020101, ST011282, and ST006994—for confirmatory and functional studies based on potency, repeatability with repurchased material, favorable whole organism toxicity, and evidence of structure–activity relationships. Functional follow-up assays confirmed that all three compounds induced the expression of Fgf target genes during zebrafish embryonic development. Moreover, these compounds increased cardiac progenitor populations by effecting a fate change from endothelial to cardiac progenitors that translated into increased numbers of cardiomyocytes. Interestingly, ST006994 augmented Fgf/Ras/Mapk signaling without increasing Erk phosphorylation, suggesting a molecular mechanism of action downstream of Erk. We posit that the ST006994 pharmacophore could become a unique chemical probe to uncover novel mechanisms of Fgf signaling during heart development and regeneration downstream of the Mapk signaling node.
Collapse
Affiliation(s)
- Manush Saydmohammed
- Department of Developmental Biology, University of Pittsburgh, BST3, 3501 5th Avenue, Pittsburgh, PA 15213, USA.
| | - Laura L Vollmer
- The University of Pittsburgh Drug Discovery Institute, 200 Lothrop Street, Pittsburgh, PA 15260, USA.
| | - Ezenwa O Onuoha
- Department of Developmental Biology, University of Pittsburgh, BST3, 3501 5th Avenue, Pittsburgh, PA 15213, USA.
| | - Taber S Maskrey
- Department of Chemistry, 219 University Drive, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Gregory Gibson
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Peter Wipf
- Department of Chemistry, 219 University Drive, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Andreas Vogt
- The University of Pittsburgh Drug Discovery Institute, 200 Lothrop Street, Pittsburgh, PA 15260, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, BST3, 3501 5th Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Abstract
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Avery Sum-Yu Wong
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Yin Tam
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Samuel Yung-Kin Tsui
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Dittman Lai-Shun Chung
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Guangdong 510530, China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
22
|
Strange K. Drug Discovery in Fish, Flies, and Worms. ILAR J 2017; 57:133-143. [PMID: 28053067 DOI: 10.1093/ilar/ilw034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies.
Collapse
Affiliation(s)
- Kevin Strange
- Kevin Strange, Ph.D., is President and CEO of the MDI Biological Laboratory and CEO of Novo Biosciences, Inc
| |
Collapse
|
23
|
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway. Proc Natl Acad Sci U S A 2017; 114:E9280-E9289. [PMID: 29078376 DOI: 10.1073/pnas.1712560114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway.
Collapse
|
24
|
Kirchberger S, Sturtzel C, Pascoal S, Distel M. Quo natas, Danio? -Recent Progress in Modeling Cancer in Zebrafish. Front Oncol 2017; 7:186. [PMID: 28894696 PMCID: PMC5581328 DOI: 10.3389/fonc.2017.00186] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, zebrafish has proven to be a powerful model in cancer research. Zebrafish form tumors that histologically and genetically resemble human cancers. The live imaging and cost-effective compound screening possible with zebrafish especially complement classic mouse cancer models. Here, we report recent progress in the field, including genetically engineered zebrafish cancer models, xenotransplantation of human cancer cells into zebrafish, promising approaches toward live investigation of the tumor microenvironment, and identification of therapeutic strategies by performing compound screens on zebrafish cancer models. Given the recent advances in genome editing, personalized zebrafish cancer models are now a realistic possibility. In addition, ongoing automation will soon allow high-throughput compound screening using zebrafish cancer models to be part of preclinical precision medicine approaches.
Collapse
Affiliation(s)
- Stefanie Kirchberger
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Caterina Sturtzel
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Susana Pascoal
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| |
Collapse
|
25
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
26
|
Philip AM, Wang Y, Mauro A, El-Rass S, Marshall JC, Lee WL, Slutsky AS, dos Santos CC, Wen XY. Development of a zebrafish sepsis model for high-throughput drug discovery. Mol Med 2017; 23:134-148. [PMID: 28598490 PMCID: PMC5522968 DOI: 10.2119/molmed.2016.00188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a leading cause of death worldwide. Current treatment modalities remain largely supportive. Intervention strategies focused on inhibiting specific mediators of the inflammatory host response have been largely unsuccessful, a consequence of an inadequate understanding of the complexity and heterogeneity of the innate immune response. Moreover, the conventional drug development pipeline is time consuming and expensive and the low success rates associated with cell-based screens underline the need for whole organism screening strategies, especially for complex pathological processes. Here, we established an LPS-induced zebrafish endotoxemia model, which exhibits the major hallmarks of human sepsis including, edema and tissue/organ damage, increased vascular permeability and vascular leakage accompanied by an altered expression of cellular junction proteins, increased cytokine expression, immune cell activation and ROS production, reduced circulation and increased platelet aggregation. We tested the suitability of the model for phenotype-based drug screening using three primary readouts: mortality, vascular leakage, and ROS production. Preliminary screening identified fasudil, a drug known to protect against vascular leakage in murine models, as a lead hit thereby validating the utility of our model for sepsis drug screens. This zebrafish sepsis model has the potential to rapidly analyze sepsis associated pathologies and cellular processes in the whole organism, as well as to screen and validate large numbers of compounds that can modify sepsis pathology in vivo.
Collapse
Affiliation(s)
- Anju M Philip
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Physiology, Toronto, Ontario, Canada
| | - Youdong Wang
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Antonio Mauro
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C Marshall
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, Toronto, Ontario, Canada
| | - Warren L Lee
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
| | - Arthur S Slutsky
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, Toronto, Ontario, Canada
| | - Claudia C dos Santos
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, Toronto, Ontario, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Physiology, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Utilizing Zebrafish Visual Behaviors in Drug Screening for Retinal Degeneration. Int J Mol Sci 2017; 18:ijms18061185. [PMID: 28574477 PMCID: PMC5486008 DOI: 10.3390/ijms18061185] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a popular vertebrate model in drug discovery. They produce a large number of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a visual-motor response that can potentially expedite discovery of new RD drugs.
Collapse
|
28
|
Seo HH, Kim SW, Lee CY, Lim KH, Lee J, Lim S, Lee S, Hwang KC. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways. Eur J Pharmacol 2017; 798:35-42. [PMID: 28185804 DOI: 10.1016/j.ejphar.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/26/2022]
Abstract
Excessive vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury significantly contributes to the development of occlusive vascular disease. Therefore, inhibiting the proliferation and migration of VSMCs is a validated therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. In the present study, we screened chemical compounds for their anti-proliferative effects on VSMCs using multiple approaches, such as MTT assays, wound healing assays, and trans-well migration assays. Our data indicate that 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine, a lymphocyte-specific protein tyrosine kinase (Lck) inhibitor, significantly inhibited both VSMC proliferation and migration. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine suppresses VSMC proliferation and migration via down-regulating the protein kinase B (Akt) and extracellular signal regulated kinase (ERK) pathways, and it significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and, the phosphorylation of retinoblastoma protein (pRb). Additionally, 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine suppressed the migration of VSMCs from endothelium-removed aortic rings, as well as neointima formation following rat carotid balloon injury. The present study identified 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its more detailed molecular mechanisms, such as its primary target, and to further validate its in vivo efficacy as a therapeutic agent for pathologic vascular conditions, such as restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Kyu Hee Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeollabuk-Do, Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea.
| |
Collapse
|
29
|
Abstract
The allure of phenotypic screening, combined with the industry preference for target-based approaches, has prompted the development of innovative chemical biology technologies that facilitate the identification of new therapeutic targets for accelerated drug discovery. A chemogenomic library is a collection of selective small-molecule pharmacological agents, and a hit from such a set in a phenotypic screen suggests that the annotated target or targets of that pharmacological agent may be involved in perturbing the observable phenotype. In this Review, we describe opportunities for chemogenomic screening to considerably expedite the conversion of phenotypic screening projects into target-based drug discovery approaches. Other applications are explored, including drug repositioning, predictive toxicology and the discovery of novel pharmacological modalities.
Collapse
|
30
|
Baxendale S, van Eeden F, Wilkinson R. The Power of Zebrafish in Personalised Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:179-197. [PMID: 28840558 DOI: 10.1007/978-3-319-60733-7_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The goal of personalised medicine is to develop tailor-made therapies for patients in whom currently available therapeutics fail. This approach requires correlating individual patient genotype data to specific disease phenotype data and using these stratified data sets to identify bespoke therapeutics. Applications for personalised medicine include common complex diseases which may have multiple targets, as well as rare monogenic disorders, for which the target may be unknown. In both cases, whole genome sequence analysis (WGS) is discovering large numbers of disease associated mutations in new candidate genes and potential modifier genes. Currently, the main limiting factor is the determination of which mutated genes are important for disease progression and therefore represent potential targets for drug discovery. Zebrafish have gained popularity as a model organism for understanding developmental processes, disease mechanisms and more recently for drug discovery and toxicity testing. In this chapter, we will examine the diverse roles that zebrafish can make in the expanding field of personalised medicine, from generating humanised disease models to xenograft screening of different cancer cell lines, through to finding new drugs via in vivo phenotypic screens. We will discuss the tools available for zebrafish research and recent advances in techniques, highlighting the advantages and potential of using zebrafish for high throughput disease modeling and precision drug discovery.
Collapse
Affiliation(s)
- Sarah Baxendale
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Freek van Eeden
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert Wilkinson
- The Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, Beech Hill Rd, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
31
|
Wiley DS, Redfield SE, Zon LI. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 2016; 138:651-679. [PMID: 28129862 DOI: 10.1016/bs.mcb.2016.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Zebrafish chemical screening allows for an in vivo assessment of small molecule modulation of biological processes. Compound toxicities, chemical alterations by metabolism, pharmacokinetic and pharmacodynamic properties, and modulation of cell niches can be studied with this method. Furthermore, zebrafish screening is straightforward and cost effective. Zebrafish provide an invaluable platform for novel therapeutic discovery through chemical screening.
Collapse
Affiliation(s)
- D S Wiley
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - S E Redfield
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - L I Zon
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Abstract
As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic.
Collapse
Affiliation(s)
- Kathryn Bambino
- Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jaime Chu
- Icahn School of Medicine at Mount Sinai, New York, United States.
| |
Collapse
|
33
|
Breyer MD, Look AT, Cifra A. From bench to patient: model systems in drug discovery. Dis Model Mech 2016; 8:1171-4. [PMID: 26438689 PMCID: PMC4610244 DOI: 10.1242/dmm.023036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Model systems, including laboratory animals, microorganisms, and cell- and tissue-based systems, are central to the discovery and development of new and better drugs for the treatment of human disease. In this issue, Disease Models & Mechanisms launches a Special Collection that illustrates the contribution of model systems to drug discovery and optimisation across multiple disease areas. This collection includes reviews, Editorials, interviews with leading scientists with a foot in both academia and industry, and original research articles reporting new and important insights into disease therapeutics. This Editorial provides a summary of the collection's current contents, highlighting the impact of multiple model systems in moving new discoveries from the laboratory bench to the patients' bedsides. Drug Discovery Collection: This Editorial introduces the new DMM Special Collection entitled ‘From bench to patient: model systems in drug discovery’, providing a summary of its contents and highlighting the impact of multiple model systems in moving new discoveries from bench to patient.
Collapse
Affiliation(s)
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 01864, USA
| | - Alessandra Cifra
- Disease Models & Mechanisms, The Company of Biologists, Bidder Building, Station Road, Histon, Cambridgeshire, CB24 9LF, UK
| |
Collapse
|
34
|
Fraser C, Dawson JC, Dowling R, Houston DR, Weiss JT, Munro AF, Muir M, Harrington L, Webster SP, Frame MC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase. J Med Chem 2016; 59:4697-710. [PMID: 27115835 PMCID: PMC4885109 DOI: 10.1021/acs.jmedchem.6b00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Novel
pyrazolopyrimidines displaying high potency and selectivity
toward SRC family kinases have been developed by combining ligand-based
design and phenotypic screening in an iterative manner. Compounds
were derived from the promiscuous kinase inhibitor PP1 to search for
analogs that could potentially target a broad spectrum of kinases
involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma
cells generated target-agnostic structure–activity relationships
that biased subsequent designs toward breast cancer treatment rather
than to a particular target. This strategy led to the discovery of
two potent antiproliferative leads with phenotypically distinct anticancer
mode of actions. Kinase profiling and further optimization resulted
in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration
to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal
DMPK profile and oral bioavailability, halts SRC-associated neuromast
migration in zebrafish embryos without inducing life-threatening heart
defects, and inhibits SRC phosphorylation in tumor xenografts in mice.
Collapse
Affiliation(s)
| | | | | | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | | | | | | - Lea Harrington
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique , Montreal, Quebec H3T 1J4, Canada
| | - Scott P Webster
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Spikol ED, Laverriere CE, Robnett M, Carter G, Wolfe E, Glasgow E. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics. Diseases 2016; 4. [PMID: 27857842 PMCID: PMC5110251 DOI: 10.3390/diseases4010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.
Collapse
|
36
|
Gonzalez-Munoz AL, Minter RR, Rust SJ. Phenotypic screening: the future of antibody discovery. Drug Discov Today 2015; 21:150-156. [PMID: 26440132 DOI: 10.1016/j.drudis.2015.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Most antibody therapeutics have been isolated from high throughput target-based screening. However, as the number of validated targets diminishes and the target space becomes increasingly competitive, alternative strategies, such as phenotypic screening, are gaining momentum. Here, we review successful phenotypic screens, including those used to isolate antibodies against cancer and infectious agents. We also consider exciting advances in the expression and phenotypic screening of antibody repertoires in single cell autocrine systems. As technologies continue to develop, we believe that antibody phenotypic screening will increase further in popularity and has the potential to provide the next generation of therapeutic antibodies.
Collapse
Affiliation(s)
- Andrea L Gonzalez-Munoz
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Steven J Rust
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
37
|
Abstract
The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine and Network Medicine Divisions, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Randall T Peterson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
Martinez NJ, Titus SA, Wagner AK, Simeonov A. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models. Expert Opin Drug Discov 2015; 10:1347-61. [PMID: 26394277 DOI: 10.1517/17460441.2015.1091814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-resolution microscopy using fluorescent probes is a powerful tool to investigate individual cell structure and function, cell subpopulations and mechanisms underlying cellular responses to drugs. Additionally, responses to drugs more closely resemble those seen in vivo when cells are physically connected in three-dimensional (3D) systems (either 3D cell cultures or whole organisms), as opposed to traditional monolayer cultures. Combined, the use of imaging-based 3D models in the early stages of drug development has the potential to generate biologically relevant data that will increase the likelihood of success for drug candidates in human studies. AREAS COVERED The authors discuss current methods for the culturing of cells in 3D as well as approaches for the imaging of whole-animal models and 3D cultures that are amenable to high-throughput settings and could be implemented to support drug discovery campaigns. Furthermore, they provide critical considerations when discussing imaging these 3D systems for high-throughput chemical screenings. EXPERT OPINION Despite widespread understanding of the limitations imposed by the two-dimensional versus the 3D cellular paradigm, imaging-based drug screening of 3D cellular models is still limited, with only a few screens found in the literature. Image acquisition in high throughput, accurate interpretation of fluorescent signal, and uptake of staining reagents can be challenging, as the samples are in essence large aggregates of cells. The authors recognize these shortcomings that need to be overcome before the field can accelerate the utilization of these technologies in large-scale chemical screens.
Collapse
Affiliation(s)
- Natalia J Martinez
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Steven A Titus
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Amanda K Wagner
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Anton Simeonov
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| |
Collapse
|
39
|
The promise of zebrafish as a chemical screening tool in cancer therapy. Future Med Chem 2015; 7:1395-405. [DOI: 10.4155/fmc.15.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cancer progression in zebrafish recapitulates many aspects of human cancer and as a result, zebrafish have been gaining popularity for their potential use in basic and translational cancer research. Human cancer can be modeled in zebrafish by induction using chemical mutagens, xenotransplantation or by genetic manipulation. Chemical screens based on zebrafish cancer models offer a rapid, powerful and inexpensive means of evaluating the potential of suppression or prevention on cancer. The identification of small molecules through such screens will serve as ideal entry points for novel chemical therapies for cancer treatment. This article outlines advances that have been made within the growing field of zebrafish cancer models and presents their advantages for chemical drug screening.
Collapse
|