1
|
Lax C, Nicolás FE, Navarro E, Garre V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiol Mol Biol Rev 2024; 88:e0018822. [PMID: 38445820 PMCID: PMC10966947 DOI: 10.1128/mmbr.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
2
|
Lee S, Ye Q, Yang H, Lee S, Kim Y, Lee N, Gonzalez-Cox D, Yi DK, Kim SY, Choi S, Choi T, Kim MS, Hong SS, Choi CW, Lee Y, Park YH. Aiouea padiformis extract exhibits anti-inflammatory effects by inhibiting the ATPase activity of NLRP3. Sci Rep 2024; 14:5237. [PMID: 38433281 PMCID: PMC10909851 DOI: 10.1038/s41598-024-55651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammation is implicated as a cause in many diseases. Most of the anti-inflammatory agents in use are synthetic and there is an unmet need for natural substance-derived anti-inflammatory agents with minimal side effects. Aiouea padiformis belongs to the Lauraceae family and is primarily found in tropical regions. While some members of the Aiouea genus are known to possess anti-inflammatory properties, the anti-inflammatory properties of Aiouea padiformis extract (AP) have not been investigated. In this study, we aimed to examine the anti-inflammatory function of AP through the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and elucidate the underlying mechanisms. Treatment with AP inhibited the secretion of interleukin-1 beta (IL-1β) mediated by NLRP3 inflammasome in J774A.1 and THP-1 cells without affecting the viability. In addition, AP treatment did not influence NF-κB signaling, potassium efflux, or intracellular reactive oxygen species (ROS) production-all of which are associated with NLRP3 inflammasome activation. However, intriguingly, AP treatment significantly reduced the ATPase activity of NLRP3, leading to the inhibition of ASC oligomerization and speck formation. Consistent with cellular experiments, the anti-inflammatory property of AP in vivo was also evaluated using an LPS-induced inflammation model in zebrafish, demonstrating that AP hinders NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Qianying Ye
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyeyun Yang
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sojung Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - YeJi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Nahyun Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Darwin Gonzalez-Cox
- Herbarium of National Autonomous University of Nicaragua at Leon, Leon, 21000, Nicaragua
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Taesoo Choi
- Department of Urology, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Man S Kim
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Seong Su Hong
- Natural Product Research Team, Gyeonggi Bio-Center, Suwon, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Bio-Center, Suwon, Republic of Korea.
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Scheler J, Binder U. Alternative in-vivo models of mucormycosis. Front Cell Infect Microbiol 2024; 14:1343834. [PMID: 38362495 PMCID: PMC10867140 DOI: 10.3389/fcimb.2024.1343834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Mucormycosis is still regarded a rare fungal infection, but the high incidences of COVID-associated cases in India and other countries have shown its potential threat to large patient cohorts. In addition, infections by these fast-growing fungi are often fatal and cause disfigurement, badly affecting patients' lives. In advancing our understanding of pathogenicity factors involved in this disease, to enhance the diagnostic toolset and to evaluate novel treatment regimes, animal models are indispensable. As ethical and practical considerations typically favor the use of alternative model systems, this review provides an overview of alternative animal models employed for mucormycosis and discusses advantages and limitations of the respective model.
Collapse
Affiliation(s)
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Tirol, Austria
| |
Collapse
|
4
|
Sebo DJ, Fetsko AR, Phipps KK, Taylor MR. Functional identification of the zebrafish Interleukin-1 receptor in an embryonic model of Il-1β-induced systemic inflammation. Front Immunol 2022; 13:1039161. [PMID: 36389773 PMCID: PMC9643328 DOI: 10.3389/fimmu.2022.1039161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2023] Open
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory cytokine that plays a vital role in the innate immune system. To observe the innate immune response in vivo, several transgenic zebrafish lines have been developed to model IL-1β-induced inflammation and to visualize immune cell migration and proliferation in real time. However, our understanding of the IL-1β response in zebrafish is limited due to an incomplete genome annotation and a lack of functional data for the cytokine receptors involved in the inflammatory process. Here, we use a combination of database mining, genetic analyses, and functional assays to identify zebrafish Interleukin-1 receptor, type 1 (Il1r1). We identified putative zebrafish il1r1 candidate genes that encode proteins with predicted structures similar to human IL1R1. To examine functionality of these candidates, we designed highly effective morpholinos to disrupt gene expression in a zebrafish model of embryonic Il-1β-induced systemic inflammation. In this double transgenic model, ubb:Gal4-EcR, uas:il1βmat , the zebrafish ubiquitin b (ubb) promoter drives expression of the modified Gal4 transcription factor fused to the ecdysone receptor (EcR), which in turn drives the tightly-regulated expression and secretion of mature Il-1β only in the presence of the ecdysone analog tebufenozide (Teb). Application of Teb to ubb:Gal4-EcR, uas:il1βmat embryos causes premature death, fin degradation, substantial neutrophil expansion, and generation of reactive oxygen species (ROS). To rescue these deleterious phenotypes, we injected ubb:Gal4-EcR, uas:il1βmat embryos with putative il1r1 morpholinos and found that knockdown of only one candidate gene prevented the adverse effects caused by Il-1β. Mosaic knockout of il1r1 using the CRISPR/Cas9 system phenocopied these results. Taken together, our study identifies the functional zebrafish Il1r1 utilizing a genetic model of Il-1β-induced inflammation and provides valuable new insights to study inflammatory conditions specifically driven by Il-1β or related to Il1r1 function in zebrafish.
Collapse
Affiliation(s)
- Dylan J. Sebo
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Audrey R. Fetsko
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Kallie K. Phipps
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael R. Taylor
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
5
|
Dave TV, Nair AG, Joseph J, Freitag SK. Immunopathology of COVID-19 and its implications in the development of rhino-orbital-cerebral mucormycosis: a major review. Orbit 2022; 41:670-679. [PMID: 35856238 DOI: 10.1080/01676830.2022.2099428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To present a literature review on various immunopathologic dysfunctions following COVID-19 infection and their potential implications in development of rhino-orbital-cerebral mucormycosis (ROCM). METHODS A literature search was performed via Google Scholar and PubMed with subsequent review of the accompanying references. Analogies were drawn between the immune and physiologic deviations caused by COVID-19 and the tendency of the same to predispose to ROCM. RESULTS Sixty-two articles were reviewed. SARS-CoV-2 virus infection leads to disruption of epithelial integrity in the respiratory passages, which may be a potential entry point for the ubiquitous Mucorales to become invasive. COVID-19 related GRP78 protein upregulation may aid in spore germination and hyphal invasion by Mucorales. COVID-19 causes interference in macrophage functioning by direct infection, a tendency for hyperglycemia, and creation of neutrophil extracellular traps. This affects innate immunity against Mucorales. Thrombocytopenia and reduction in the number of natural killer (NK) cells and infected dendritic cells is seen in COVID-19. This reduces the host immune response to pathogenic invasion by Mucorales. Cytokines released in COVID-19 cause mitochondrial dysfunction and accumulation of reactive oxygen species, which cause oxidative damage to the leucocytes. Hyperferritinemia also occurs in COVID-19 resulting in suppression of the hematopoietic proliferation of B- and T-lymphocytes. CONCLUSIONS COVID-19 has a role in the occurrence of ROCM due to its effects at the entry point of the fungus in the respiratory mucosa, effects of the innate immune system, creation of an environment of iron overload, propagation of hyperglycemia, and effects on the adaptive immune system.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Akshay Gopinathan Nair
- Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye hospital and Institute, Navi Mumbai, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Suzanne K Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses. Cell Discov 2022; 8:31. [PMID: 35379790 PMCID: PMC8979957 DOI: 10.1038/s41421-022-00393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
Collapse
|
7
|
Lanham KA, Nedden ML, Wise VE, Taylor MR. Genetically inducible and reversible zebrafish model of systemic inflammation. Biol Open 2022; 11:274172. [PMID: 35099005 PMCID: PMC8918989 DOI: 10.1242/bio.058559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The inflammatory response is a vital defense mechanism against trauma and pathogen induced damage, but equally important is its appropriate resolution. In some instances of severe trauma or sustained infection, inappropriate and persistent activation of the immune response can occur resulting in a dangerous systemic inflammatory response. Untreated, this systemic inflammatory response can lead to tissue damage, organ shutdown, and death. Replicating this condition in tractable model organisms can provide insight into the mechanisms involved in the induction, maintenance, and resolution of inflammation. To that end, we developed a non-invasive, inducible, and reversible model of systemic inflammation in zebrafish. Using the Gal4-EcR/UAS system activated by the ecdysone analog tebufenozide, we generated transgenic zebrafish that allow for chemically-induced, ubiquitous secretion of the mature form of zebrafish interleukin-1β (Il-1βmat) in both larval and adult developmental stages. To ensure a robust immune response, we attached a strong signal peptide from the Gaussia princeps luciferase enzyme to promote active secretion of the cytokine. We observe a dose-dependent inflammatory response involving neutrophil expansion accompanied by tissue damage and reduced survival. Washout of tebufenozide permits inflammation resolution. We also establish the utility of this model for the identification of small molecule anti-inflammatory compounds by treatment with the immunosuppressant rapamycin. Taken together, these features make this model a valuable new tool that can aid in identifying potential new therapies while broadening our understanding of systemic inflammation, its impact on the immune system and its resolution.
Collapse
Affiliation(s)
- Kevin A Lanham
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Megan L Nedden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Virginia E Wise
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Michael R Taylor
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
8
|
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021; 7:616. [PMID: 34436155 PMCID: PMC8400165 DOI: 10.3390/jof7080616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19)-associated mucormycosis (CAM) is an emerging threat globally, especially in India. More than 40,000 CAM cases have been reported in India. The emergence of CAM cases in India has been attributed to environmental, host, and iatrogenic factors. Mucorales spore burden has been reported globally; however, their presence is higher in tropical countries such as India, contributing to the emergence of CAM. Before the COVID-19 pandemic, patients with diabetes mellitus, haematological malignancies, solid organ transplants, corticosteroid therapy and neutropenia were more prone to mucormycosis, whereas in COVID-19 patients, virus-induced endothelial dysfunction, hyperglycaemia, and immune dysfunction following corticosteroid use increase the risk of acquiring mucormycosis. The interaction of Mucorales spores with the epithelial cells, followed by endothelial invasion, is a crucial step in the pathogenesis of mucormycosis. Endothelial damage and increased endothelial receptor expression induced by COVID-19 infection may predispose patients to CAM. COVID-19 infection may directly induce hyperglycaemia by damaging beta cells of the pancreas or by corticosteroid therapy, which may contribute to CAM pathogenesis. Iron acquisition from the host, especially in diabetic ketoacidosis (DKA) or deferoxamine therapy, is an important virulence trait of Mucorales. Similarly, the hyperferritinaemia caused by COVID-19 may act as a source of iron for Mucorales growth and invasion. In addition, corticosteroid treatment reduces or abolishes the innate immune functions of phagocytic cells contributing to the pathogenesis of CAM. This review aims to discuss primarily the host and iatrogenic factors shared between COVID-19 and mucormycosis that could explain the emergence of CAM.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Medical Microbiology, Department of Public Health, International Higher School of Medicine, Issyk-Kul Regional Campus, Cholpon-Ata 722125, Kyrgyzstan;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Shivaprakash Mandya Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| |
Collapse
|
9
|
Phelps DW, Fletcher AA, Rodriguez-Nunez I, Balik-Meisner MR, Tokarz DA, Reif DM, Germolec DR, Yoder JA. In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. J Immunotoxicol 2021; 17:94-104. [PMID: 32407153 DOI: 10.1080/1547691x.2020.1748772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Collapse
Affiliation(s)
- Drake W Phelps
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ashley A Fletcher
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Sullivan C, Soos BL, Millard PJ, Kim CH, King BL. Modeling Virus-Induced Inflammation in Zebrafish: A Balance Between Infection Control and Excessive Inflammation. Front Immunol 2021; 12:636623. [PMID: 34025644 PMCID: PMC8138431 DOI: 10.3389/fimmu.2021.636623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied in vivo using animal models. In this review, we describe how the zebrafish (Danio rerio) has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with in vivo imaging of transparent embryos and larvae. The innate immune system has an essential role in the initial inflammatory response to viral infection. Focused studies of the innate immune response to viral infection are possible using the zebrafish model as there is a 4-6 week timeframe during development where they have a functional innate immune system dominated by neutrophils and macrophages. During this timeframe, zebrafish lack a functional adaptive immune system, so it is possible to study the innate immune response in isolation. Sequencing of the zebrafish genome has revealed significant genetic conservation with the human genome, and multiple studies have revealed both functional conservation of genes, including those critical to host cell infection and host cell inflammatory response. In addition to studying several fish viruses, zebrafish infection models have been developed for several human viruses, including influenza A, noroviruses, chikungunya, Zika, dengue, herpes simplex virus type 1, Sindbis, and hepatitis C virus. The development of these diverse viral infection models, coupled with the inherent strengths of the zebrafish model, particularly as it relates to our understanding of macrophage and neutrophil biology, offers opportunities for far more intensive studies aimed at understanding conserved host responses to viral infection. In this context, we review aspects relating to the evolution of innate immunity, including the evolution of viral pattern recognition receptors, interferons and interferon receptors, and non-coding RNAs.
Collapse
Affiliation(s)
- Con Sullivan
- College of Arts and Sciences, University of Maine at Augusta, Bangor, ME, United States
| | - Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Paul J. Millard
- Department of Environmental and Sustainable Engineering, University at Albany, Albany, NY, United States
| | - Carol H. Kim
- Department of Biomedical Sciences, University at Albany, Albany, NY, United States
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
11
|
Cooperative epithelial phagocytosis enables error correction in the early embryo. Nature 2021; 590:618-623. [PMID: 33568811 DOI: 10.1038/s41586-021-03200-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/24/2020] [Indexed: 01/31/2023]
Abstract
Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development.
Collapse
|
12
|
Machikhin AS, Volkov MV, Burlakov AB, Khokhlov DD, Potemkin AV. Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development. Diagnostics (Basel) 2020; 10:diagnostics10110886. [PMID: 33143148 PMCID: PMC7692510 DOI: 10.3390/diagnostics10110886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The zebrafish (Danio rerio) is an increasingly popular animal model biological system. In cardiovascular research, it has been used to model specific cardiac phenomena as well as to identify novel therapies for human cardiovascular disease. While the zebrafish cardiovascular system functioning is well examined at larval stages, the mechanisms by which vessel activity is initiated remain a subject of intense investigation. In this research, we report on an in vivo stain-free blood vessel imaging technique at pre-larval stages of zebrafish embryonic development. We have developed the algorithm for the enhancement, alignment and spatiotemporal analysis of bright-field microscopy images of zebrafish embryos. It enables the detection, mapping and quantitative characterization of cardiac activity across the whole specimen. To validate the proposed approach, we have analyzed multiple data cubes, calculated vessel images and evaluated blood flow velocity and heart rate dynamics in the absence of any anesthesia. This non-invasive technique may shed light on the mechanism of vessel activity initiation and stabilization as well as the cardiovascular system’s susceptibility to environmental stressors at early developmental stages.
Collapse
Affiliation(s)
- Alexander S. Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
| | - Mikhail V. Volkov
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| | - Alexander B. Burlakov
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Demid D. Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
- Correspondence:
| | - Andrey V. Potemkin
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| |
Collapse
|
13
|
Nicolás FE, Murcia L, Navarro E, Navarro-Mendoza MI, Pérez-Arques C, Garre V. Mucorales Species and Macrophages. J Fungi (Basel) 2020; 6:E94. [PMID: 32604972 PMCID: PMC7344864 DOI: 10.3390/jof6020094] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an emerging fungal infection caused by Mucorales with an unacceptable high mortality rate. Mucorales is a complex fungal group, including eleven different genera that can infect humans. This heterogeneity is associated with species-specific invasion pathways and responses to the host defense mechanisms. The host innate immune system plays a major role in preventing Mucorales growth and host invasion. In this system, macrophages are the main immune effector cells in controlling these fungi by rapid and efficient phagocytosis of the spores. However, Mucorales have evolved mechanisms to block phagosomal maturation and species-specific mechanisms to either survive as dormant spores inside the macrophage, as Rhizopus species, or geminate and escape, as Mucor species. Classical fungal models of mucormycosis, mostly Rhizopus, have made important contributions to elucidate key aspects of the interaction between Mucorales and macrophages, but they lack robust tools for genetic manipulation. The recent introduction of the genetically tractable Mucor circinelloides as a model of mucormycosis offers the possibility to analyze gene function. This has allowed the identification of regulatory pathways that control the fungal response to phagocytosis, including a non-canonical RNAi pathway (NCRIP) that regulates the expression of most genes regulated by phagocytosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (F.E.N.); (L.M.); (E.N.); (M.I.N.-M.); (C.P.-A.)
| |
Collapse
|
14
|
Illuminating Macrophage Contributions to Host-Pathogen Interactions In Vivo: the Power of Zebrafish. Infect Immun 2020; 88:IAI.00906-19. [PMID: 32179583 DOI: 10.1128/iai.00906-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages are a key cell type in innate immunity. Years of in vitro cell culture studies have unraveled myriad macrophage pathways that combat pathogens and demonstrated how pathogen effectors subvert these mechanisms. However, in vitro cell culture studies may not accurately reflect how macrophages fit into the context of an innate immune response in whole animals with multiple cell types and tissues. Larval zebrafish have emerged as an intermediate model of innate immunity and host-pathogen interactions to bridge the gap between cell culture studies and mammalian models. These organisms possess an innate immune system largely conserved with that of humans and allow state-of-the-art genetic and imaging techniques, all in the context of an intact organism. Using larval zebrafish, researchers are elucidating the function of macrophages in response to many different infections, including both bacterial and fungal pathogens. The goal of this review is to highlight studies in zebrafish that utilized live-imaging techniques to analyze macrophage activities in response to pathogens. Recent studies have explored the roles of specific pathways and mechanisms in macrophage killing ability, explored how pathogens subvert these responses, identified subsets of macrophages with differential microbicidal activities, and implicated macrophages as an intracellular niche for pathogen survival and trafficking. Research using this model continues to advance our understanding of how macrophages, and specific pathways inside these cells, fit into complex multicellular innate immune responses in vivo, providing important information on how pathogens evade these pathways and how we can exploit them for development of treatments against microbial infections.
Collapse
|
15
|
Bailone RL, Fukushima HCS, Ventura Fernandes BH, De Aguiar LK, Corrêa T, Janke H, Grejo Setti P, Roça RDO, Borra RC. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 2020; 36:13. [PMID: 32382525 PMCID: PMC7203993 DOI: 10.1186/s42826-020-00042-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Much of medical research relies on animal models to deepen knowledge of the causes of animal and human diseases, as well as to enable the development of innovative therapies. Despite rodents being the most widely used research model worldwide, in recent decades, the use of the zebrafish (Danio rerio) model has exponentially been adopted among the scientific community. This is because such a small tropical freshwater teleost fish has crucial genetic, anatomical and physiological homology with mammals. Therefore, zebrafish constitutes an excellent experimental model for behavioral, genetic and toxicological studies which unravels the mechanism of various human diseases. Furthermore, it serves well to test new therapeutic agents, such as the safety of new vaccines. The aim of this review was to provide a systematic literature review on the most recent studies carried out on the topic. It presents numerous advantages of this type of animal model in tests of efficacy and safety of both animal and human vaccines, thus highlighting gains in time and cost reduction of research and analyzes.
Collapse
Affiliation(s)
- Ricardo Lacava Bailone
- Ministry of Agriculture, Livestock and Supply, Federal Inspection Service, São Carlos, SP Brazil
- São Paulo State University, Botucatu, SP Brazil
| | - Hirla Costa Silva Fukushima
- Health and Biological Sciences Center, Federal University, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Luís Kluwe De Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Newport, UK
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Princia Grejo Setti
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The availability of organs for transplant fails to meet the demand and this shortage is growing worse every year. As the cost of not getting a suitable donor organ can mean death for patients, new tools and approaches that allows us to make advances in transplantation faster and provide a different vantage point are required. To address this need, we introduce the concept of using the zebrafish (Danio rerio) as a new model system in organ transplantation. The zebrafish community offers decades of research experience in disease modeling and a rich toolbox of approaches for interrogating complex pathological states. We provide examples of how already existing zebrafish assays/tools from cancer, regenerative medicine, immunology, and others, could be leveraged to fuel new discoveries in pursuit of solving the organ shortage. RECENT FINDINGS Important innovations have enabled several types of transplants to be successfully performed in zebrafish, including stem cells, tumors, parenchymal cells, and even a partial heart transplant. These innovations have been performed against a backdrop of an expansive and impressive list of tools designed to uncover the biology of complex systems that include a wide array of fluorescent transgenic fish that label specific cell types and mutant lines that are transparent, immune-deficient. Allogeneic transplants can also be accomplished using immune suppressed and syngeneic fish. Each of these innovations within the zebrafish community would provide several helpful tools that could be applied to transplant research. SUMMARY We highlight some examples of existing tools and assays developed in the zebrafish community that could be leveraged to overcome barriers in organ transplantation, including ischemia-reperfusion, short preservation durations, regeneration of marginal grafts, and acute and chronic rejection.
Collapse
|
17
|
Lax C, Pérez-Arques C, Navarro-Mendoza MI, Cánovas-Márquez JT, Tahiri G, Pérez-Ruiz JA, Osorio-Concepción M, Murcia-Flores L, Navarro E, Garre V, Nicolás FE. Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes (Basel) 2020; 11:E317. [PMID: 32188171 PMCID: PMC7140881 DOI: 10.3390/genes11030317] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
The order Mucorales is a group of ancient fungi with limited tools for gene manipulation. The main consequence of this manipulation unwillingness is the limited knowledge about its biology compared to other fungal groups. However, the emerging of mucormycosis, a fungal infection caused by Mucorales, is attracting the medical spotlight in recent years because the treatments available are not efficient in reducing the high mortality associated with this disease. The result of this renewed interest in Mucorales and mucormycosis is an extraordinarily productive effort to unveil their secrets during the last decade. In this review, we describe the most compelling advances related to the genetic study of virulence factors, pathways, and molecular mechanisms developed in these years. The use of a few genetic study models has allowed the characterization of virulence factors in Mucorales that were previously described in other pathogens, such as the uptake iron systems, the mechanisms of dimorphism, and azole resistances. More importantly, recent studies are identifying new genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, offering new alternatives to develop specific strategies against mucormycosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.L.); (C.P.-A.); (M.I.N.-M.); (J.T.C.-M.); (G.T.); (J.A.P.-R.); (M.O.-C.); (L.M.-F.); (V.G.)
| |
Collapse
|
18
|
Shen H, Nibona E, Xu G, Al Hafiz MA, Ke X, Liang X, Yao Q, Zhong X, Zhou Q, Zhao H. Identification, expression pattern, and immune response of Tim-1 and Tim-4 in embryos and adult medaka (Oryzias latipes). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:235-244. [PMID: 32150339 DOI: 10.1002/jez.b.22939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 11/09/2022]
Abstract
T-cell immunoglobulin (Ig) and mucin domain-containing 1 (Tim-1) and Tim-4 are two members of the Tim family. In mammals, Tim-1 and Tim-4 are proteins mainly expressed in immune cells and are associated with immune response. In the present study, medaka Oryzias latipes' Tim-1 (OlTim-1) and OlTim-4 were identified and characterized using bioinformatics analyses. With the use of reverse-transcription polymerase chain reaction, the expression profiles of OlTim-1 and OlTim-4 were examined in embryos and adult fish and in immune tissues following the intraperitoneal injection of stimulants. The results revealed that OlTim-1 possesses a cytoplasmic region, a transmembrane region, a mucin domain, and an Ig-like domain, while OlTim-4 is composed of two Ig-like domains and a mucin domain, but without the transmembrane region and cytoplasmic region. OlTim-1 and OlTim-4 expressions are detectable from the gastrula stage on, indicating that they are zygotic genes. Furthermore, OlTim-1 and OlTim-4 are expressed ubiquitously in the adult. Administration of immune stimulants, namely lipopolysaccharides and polyinosinic:polycytidylic acid, significantly increased the expression levels of OlTim-1 and OlTim-4 in the liver and intestine within 1 day and in the head, kidney, and spleen within 3 to 4 days postinjection. These results suggest that OlTim-1 and OlTim-4 are possibly involved in both innate and adaptive immunities.
Collapse
Affiliation(s)
- Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Md Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xiaoting Liang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Shibata-Germanos S, Goodman JR, Grieg A, Trivedi CA, Benson BC, Foti SC, Faro A, Castellan RFP, Correra RM, Barber M, Ruhrberg C, Weller RO, Lashley T, Iliff JJ, Hawkins TA, Rihel J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol 2020; 139:383-401. [PMID: 31696318 PMCID: PMC6989586 DOI: 10.1007/s00401-019-02091-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish. Here we identify a structurally and functionally similar cell type in the mammalian leptomeninges that we name Leptomeningeal Lymphatic Endothelial Cells (LLEC). As in zebrafish, LLECs express multiple lymphatic markers, containing very large, spherical inclusions, and develop independently from the meningeal macrophage lineage. Mouse LLECs also internalize macromolecules from the cerebrospinal fluid, including Amyloid-β, the toxic driver of Alzheimer's disease progression. Finally, we identify morphologically similar cells co-expressing LLEC markers in human post-mortem leptomeninges. Given that LLECs share molecular, morphological, and functional characteristics with both lymphatics and macrophages, we propose they represent a novel, evolutionary conserved cell type with potential roles in homeostasis and immune organization of the meninges.
Collapse
Affiliation(s)
| | - James R Goodman
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Alan Grieg
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Chintan A Trivedi
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Bridget C Benson
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | - Roy O Weller
- Clinical Neurosciences (Neuropathology), Faculty of Medicine, Southampton University Hospitals, Southampton, SO16 6YD, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jeffrey J Iliff
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Xie L, Tao Y, Wu R, Ye Q, Xu H, Li Y. Congenital asplenia due to a tlx1 mutation reduces resistance to Aeromonas hydrophila infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 95:538-545. [PMID: 31678534 DOI: 10.1016/j.fsi.2019.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
It is documented that tlx1, an orphan homeobox gene, plays critical roles in the regulation of early spleen developmental in mammalian species. However, there is no direct evidence supporting the functions of tlx1 in non-mammalian species, especially in fish. In this study, we demonstrated that tlx1 is expressed in the splenic primordia as early as 52 hours post-fertilization (hpf) in zebrafish. A tlx1-/- homozygous mutant line was generated via CRISPR/Cas9 to elucidate the roles of tlx1 in spleen development in zebrafish. In the tlx1-/- background, tlx1-/- cells persisted in the splenic primordia until 52 hpf but were no longer detectable after 53 hpf, suggesting perturbation of early spleen development. The zebrafish also exhibited congenital asplenia caused by the tlx1 mutation. Asplenic zebrafish can survive and breed normally under standard laboratory conditions, but the survival rate of animals infected with Aeromonas hydrophila was significantly lower than that of wild-type (WT) zebrafish. In asplenic zebrafish, the mononuclear phagocyte system was partially impaired, as demonstrated by retarded b7r expression and reduced ccr2 expression after injection with an inactivated A. hydrophila vaccine. Furthermore, the expression of MHCII/IgM was significantly reduced in the congenitally asplenic fish compared with that of the WT zebrafish. Taken together, our data suggest that tlx1 is a crucial regulator of spleen development in fish, as it is in mammals. We have also provided a new perspective for studying the role of the spleen during pathogen challenge in fish.
Collapse
Affiliation(s)
- Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yixi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Ronghua Wu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Qin Ye
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Sheean ME, Malikova E, Duarte D, Capovilla G, Fregonese L, Hofer MP, Magrelli A, Mariz S, Mendez-Hermida F, Nistico R, Leest T, Sipsas NV, Tsigkos S, Vitezic D, Larsson K, Sepodes B, Stoyanova-Beninska V. Nonclinical data supporting orphan medicinal product designations in the area of rare infectious diseases. Drug Discov Today 2019; 25:274-291. [PMID: 31704277 DOI: 10.1016/j.drudis.2019.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
Abstract
This review provides an overview of nonclinical in vivo models that can be used to support orphan designation in selected rare infectious diseases in Europe, with the aim to inform and stimulate the planning of nonclinical development in this area of often neglected diseases.
Collapse
Affiliation(s)
- Maria E Sheean
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands; Max-Delbrück Center for Molecular Medicine in Helmholz Association, Berlin, Germany.
| | - Eva Malikova
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; State Institute for Drug Control, Bratislava, Slovak Republic; Comenius University, Department of Pharmacology and Toxicology, Bratislava, Slovak Republic
| | - Dinah Duarte
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; INFARMED - Autoridade Nacional do Medicamento, Lisbon, Portugal
| | - Giuseppe Capovilla
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; C. Poma Hospital, Mantova, Italy; Fondazione Poliambulanza, Brescia, Italy
| | - Laura Fregonese
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Matthias P Hofer
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Armando Magrelli
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Segundo Mariz
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Fernando Mendez-Hermida
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Robert Nistico
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Malta Medicines Authority, San Ġwann, Malta
| | - Tim Leest
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; The Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Nikolaos V Sipsas
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Tsigkos
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Dinko Vitezic
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; University of Rijeka Medical School and University Hospital Centre Rijeka, Rijeka, Croatia
| | - Kristina Larsson
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Bruno Sepodes
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; INFARMED - Autoridade Nacional do Medicamento, Lisbon, Portugal; Universidade de Lisboa - Faculdade de Farmácia, Lisbon, Portugal
| | - Violeta Stoyanova-Beninska
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| |
Collapse
|
22
|
Koch BEV, Hajdamowicz NH, Lagendijk E, Ram AFJ, Meijer AH. Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination. Sci Rep 2019; 9:12791. [PMID: 31488879 PMCID: PMC6728357 DOI: 10.1038/s41598-019-49284-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2019] [Indexed: 11/14/2022] Open
Abstract
Among opportunistically pathogenic filamentous fungi of the Aspergillus genus, Aspergillus fumigatus stands out as a drastically more prevalent cause of infection than others. Utilizing the zebrafish embryo model, we applied a combination of non-invasive real-time imaging and genetic approaches to compare the infectious development of A. fumigatus with that of the less pathogenic A. niger. We found that both species evoke similar immune cell migratory responses, but A. fumigatus is more efficiently phagocytized than A. niger. Though efficiently phagocytized, A. fumigatus conidia retains the ability to germinate and form hyphae from inside macrophages leading to serious infection even at relatively low infectious burdens. By contrast, A. niger appears to rely on extracellular germination, and rapid hyphal growth to establish infection. Despite these differences in the mechanism of infection between the species, galactofuranose mutant strains of both A. fumigatus and A. niger display attenuated pathogenesis. However, deficiency in this cell wall component has a stronger impact on A. niger, which is dependent on rapid extracellular hyphal growth. In conclusion, we uncover differences in the interaction of the two fungal species with innate immune cells, noticeable from very early stages of infection, which drive a divergence in their route to establishing infections.
Collapse
Affiliation(s)
- Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Ellen Lagendijk
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
23
|
Kousser C, Clark C, Sherrington S, Voelz K, Hall RA. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep 2019; 9:5714. [PMID: 30952923 PMCID: PMC6450908 DOI: 10.1038/s41598-019-42175-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/26/2019] [Indexed: 01/24/2023] Open
Abstract
Rhizopus spp are the most common etiological agents of mucormycosis, causing over 90% mortality in disseminated infection. Key to pathogenesis is the ability of fungal spores to swell, germinate, and penetrate surrounding tissues. Antibiotic treatment in at-risk patients increases the probability of the patient developing mucormycosis, suggesting that bacteria have the potential to control the growth of the fungus. However, research into polymicrobial relationships involving Rhizopus spp has not been extensively explored. Here we show that co-culturing Rhizopus microsporus and Pseudomonas aeruginosa results in the inhibition of spore germination. This inhibition was mediated via the secretion of bacterial siderophores, which induced iron stress on the fungus. Addition of P. aeruginosa siderophores to R. microsporus spores in the zebrafish larval model of infection resulted in inhibition of fungal germination and reduced host mortality. Therefore, during infection antibacterial treatment may relieve bacterial imposed nutrient restriction resulting in secondary fungal infections.
Collapse
Affiliation(s)
- Courtney Kousser
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Callum Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah Sherrington
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Hassan MIA, Voigt K. Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors. Med Mycol 2019; 57:S245-S256. [PMID: 30816980 PMCID: PMC6394756 DOI: 10.1093/mmy/myz011] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fungi of the basal lineage order Mucorales are able to cause infections in animals and humans. Mucormycosis is a well-known, life-threatening disease especially in patients with a compromised immune system. The rate of mortality and morbidity caused by mucormycosis has increased rapidly during the last decades, especially in developing countries. The systematic, phylogenetic, and epidemiological distributions of mucoralean fungi are addressed in relation to infection in immunocompromised patients. The review highlights the current achievements in (i) diagnostics and management of mucormycosis, (ii) the study of the interaction of Mucorales with cells of the innate immune system, (iii) the assessment of the virulence of Mucorales in vertebrate and invertebrate infection models, and (iv) the determination of virulence factors that are key players in the infection process, for example, high-affinity iron permease (FTR1), spore coat protein (CotH), alkaline Rhizopus protease enzyme (ARP), ADP-ribosylation factor (ARF), dihydrolipoyl dehydrogenase, calcineurin (CaN), serine and aspartate proteases (SAPs). The present mini-review attempts to increase the awareness of these difficult-to-manage fungal infections and to encourage research in the detection of ligands and receptors as potential diagnostic parameters and drug targets.
Collapse
Affiliation(s)
- Mohamed I Abdelwahab Hassan
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Faculty of Biological Sciences, University of Jena, Neugasse 25, 07743 Jena, Germany
- Pests and Plant Protection Department, National Research Centre, 33rd El Buhouth Street (Postal code: 12622) Dokki, Giza, Egypt
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Faculty of Biological Sciences, University of Jena, Neugasse 25, 07743 Jena, Germany
| |
Collapse
|
25
|
Animal Models to Study Mucormycosis. J Fungi (Basel) 2019; 5:jof5020027. [PMID: 30934788 PMCID: PMC6617025 DOI: 10.3390/jof5020027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Mucormycosis is a rare but often fatal or debilitating infection caused by a diverse group of fungi. Animal models have been crucial in advancing our knowledge of mechanisms influencing the pathogenesis of mucormycoses, and to evaluate therapeutic strategies. This review describes the animal models established for mucormycosis, summarizes how they have been applied to study mucormycoses, and discusses the advantages and limitations of the different model systems.
Collapse
|
26
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, Nicolás FE, Garre V. Mucor circinelloides Thrives inside the Phagosome through an Atf-Mediated Germination Pathway. mBio 2019; 10:e02765-18. [PMID: 30723131 PMCID: PMC6428757 DOI: 10.1128/mbio.02765-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection-the germination of Mucor circinelloides spores inside phagocytic cells-from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1 These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets.IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.
Collapse
Affiliation(s)
- Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | | | - Laura Murcia
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
27
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
|
29
|
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018; 3:e00403-18. [PMID: 30258038 PMCID: PMC6158513 DOI: 10.1128/msphere.00403-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Voelz
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
López-Muñoz A, Nicolás FE, García-Moreno D, Pérez-Oliva AB, Navarro-Mendoza MI, Hernández-Oñate MA, Herrera-Estrella A, Torres-Martínez S, Ruiz-Vázquez RM, Garre V, Mulero V. An Adult Zebrafish Model Reveals that Mucormycosis Induces Apoptosis of Infected Macrophages. Sci Rep 2018; 8:12802. [PMID: 30143654 PMCID: PMC6109148 DOI: 10.1038/s41598-018-30754-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022] Open
Abstract
Mucormycosis is a life-threatening fungal infection caused by various ubiquitous filamentous fungi of the Mucorales order, although Rhizopus spp. and Mucor spp. are the most prevalent causal agents. The limited therapeutic options available together with a rapid progression of the infection and a difficult early diagnosis produce high mortality. Here, we developed an adult zebrafish model of Mucor circinelloides infection which allowed us to confirm the link between sporangiospore size and virulence. Transcriptomic studies revealed a local, strong inflammatory response of the host elicited after sporangiospore germination and mycelial tissue invasion, while avirulent and UV-killed sporangiospores failed to induce inflammation and were rapidly cleared. Of the 857 genes modulated by the infection, those encoding cytokines, complement factors, peptidoglycan recognition proteins, and iron acquisition are particularly interesting. Furthermore, neutrophils and macrophages were similarly recruited independently of sporangiospore virulence and viability, which results in a robust depletion of both cell types in the hematopoietic compartment. Strikingly, our model also reveals for the first time the ability of mucormycosis to induce the apoptosis of recruited macrophages but not neutrophils. The induction of macrophage apoptosis, therefore, might represent a key virulence mechanism of these fungal pathogens, providing novel targets for therapeutic intervention in this lethal infection.
Collapse
Affiliation(s)
- Azucena López-Muñoz
- Department of Cell Biology and Histology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Francisco E Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Diana García-Moreno
- Department of Cell Biology and Histology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Ana B Pérez-Oliva
- Department of Cell Biology and Histology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - María I Navarro-Mendoza
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | | - Santiago Torres-Martínez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Rosa M Ruiz-Vázquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| | - Victoriano Mulero
- Department of Cell Biology and Histology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain.
| |
Collapse
|
31
|
Andrianaki AM, Kyrmizi I, Thanopoulou K, Baldin C, Drakos E, Soliman SSM, Shetty AC, McCracken C, Akoumianaki T, Stylianou K, Ioannou P, Pontikoglou C, Papadaki HA, Tzardi M, Belle V, Etienne E, Beauvais A, Samonis G, Kontoyiannis DP, Andreakos E, Bruno VM, Ibrahim AS, Chamilos G. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat Commun 2018; 9:3333. [PMID: 30127354 PMCID: PMC6102248 DOI: 10.1038/s41467-018-05820-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
Mucormycosis is a life-threatening respiratory fungal infection predominantly caused by Rhizopus species. Mucormycosis has incompletely understood pathogenesis, particularly how abnormalities in iron metabolism compromise immune responses. Here we show how, as opposed to other filamentous fungi, Rhizopus spp. establish intracellular persistence inside alveolar macrophages (AMs). Mechanistically, lack of intracellular swelling of Rhizopus conidia results in surface retention of melanin, which induces phagosome maturation arrest through inhibition of LC3-associated phagocytosis. Intracellular inhibition of Rhizopus is an important effector mechanism, as infection of immunocompetent mice with swollen conidia, which evade phagocytosis, results in acute lethality. Concordantly, AM depletion markedly increases susceptibility to mucormycosis. Host and pathogen transcriptomics, iron supplementation studies, and genetic manipulation of iron assimilation of fungal pathways demonstrate that iron restriction inside macrophages regulates immunity against Rhizopus. Our findings shed light on the pathogenetic mechanisms of mucormycosis and reveal the role of macrophage-mediated nutritional immunity against filamentous fungi. Mucormycosis is a life-threatening respiratory fungal infection that typically occurs in patients with abnormalities in iron metabolism. Here the authors show that iron restriction inside the phagosome of macrophages is an essential component of the host defense against Rhizopus, the main species causing mucormycosis.
Collapse
Affiliation(s)
- Angeliki M Andrianaki
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Irene Kyrmizi
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Kalliopi Thanopoulou
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Clara Baldin
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, 1124 West Carson Street, St. John's Cardiovascular Research Center, Torrance, CA, 90502, USA
| | - Elias Drakos
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Sameh S M Soliman
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tonia Akoumianaki
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Kostas Stylianou
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Petros Ioannou
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Helen A Papadaki
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Maria Tzardi
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Valerie Belle
- CNRS, BIP (UMR 7281), IMM (FR 3479), Aix-Marseille Université, 31 chemin J. Aiguier, 13402, Marseille, France
| | - Emilien Etienne
- CNRS, BIP (UMR 7281), IMM (FR 3479), Aix-Marseille Université, 31 chemin J. Aiguier, 13402, Marseille, France
| | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
| | - George Samonis
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, 1124 West Carson Street, St. John's Cardiovascular Research Center, Torrance, CA, 90502, USA. .,David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Georgios Chamilos
- Department of Medicine, University of Crete, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece. .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece.
| |
Collapse
|
32
|
Rosowski EE, Raffa N, Knox BP, Golenberg N, Keller NP, Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog 2018; 14:e1007229. [PMID: 30071103 PMCID: PMC6091969 DOI: 10.1371/journal.ppat.1007229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/14/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence. Immunocompromised patients are susceptible to invasive fungal infections, including aspergillosis. However, healthy humans inhale spores of the fungus Aspergillus fumigatus from the environment every day without becoming sick, and how the immune system clears this infection is still obscure. Additionally, there are many different strains of A. fumigatus, and whether the pathogenesis of these different strains varies is also largely unknown. To investigate these questions, we infected larval zebrafish with A. fumigatus spores derived from two genetically diverse strains. Larval zebrafish allow for visualization of fungal growth and innate immune cell behavior in live, intact animals. We find that differences in the rate of growth between strains directly affect fungal persistence. In both wild-type and macrophage-deficient zebrafish larvae, a fast-germinating strain is actually cleared better than a slow-germinating strain. This fungal killing is driven primarily by neutrophils while macrophages promote fungal persistence by inhibiting spore germination. Our experiments underline different mechanisms of virulence that pathogens can utilize—rapid growth versus dormancy and persistence—and inform future strategies for fighting fungal infections in susceptible immunocompromised patients.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin P. Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ellett F, Pazhakh V, Pase L, Benard EL, Weerasinghe H, Azabdaftari D, Alasmari S, Andrianopoulos A, Lieschke GJ. Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathog 2018; 14:e1007063. [PMID: 29883484 PMCID: PMC6010348 DOI: 10.1371/journal.ppat.1007063] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/20/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Neutrophils and macrophages provide the first line of cellular defence against pathogens once physical barriers are breached, but can play very different roles for each specific pathogen. This is particularly so for fungal pathogens, which can occupy several niches in the host. We developed an infection model of talaromycosis in zebrafish embryos with the thermally-dimorphic intracellular fungal pathogen Talaromyces marneffei and used it to define different roles of neutrophils and macrophages in infection establishment. This system models opportunistic human infection prevalent in HIV-infected patients, as zebrafish embryos have intact innate immunity but, like HIV-infected talaromycosis patients, lack a functional adaptive immune system. Importantly, this new talaromycosis model permits thermal shifts not possible in mammalian models, which we show does not significantly impact on leukocyte migration, phagocytosis and function in an established Aspergillus fumigatus model. Furthermore, the optical transparency of zebrafish embryos facilitates imaging of leukocyte/pathogen interactions in vivo. Following parenteral inoculation, T. marneffei conidia were phagocytosed by both neutrophils and macrophages. Within these different leukocytes, intracellular fungal form varied, indicating that triggers in the intracellular milieu can override thermal morphological determinants. As in human talaromycosis, conidia were predominantly phagocytosed by macrophages rather than neutrophils. Macrophages provided an intracellular niche that supported yeast morphology. Despite their minor role in T. marneffei conidial phagocytosis, neutrophil numbers increased during infection from a protective CSF3-dependent granulopoietic response. By perturbing the relative abundance of neutrophils and macrophages during conidial inoculation, we demonstrate that the macrophage intracellular niche favours infection establishment by protecting conidia from a myeloperoxidase-dependent neutrophil fungicidal activity. These studies provide a new in vivo model of talaromycosis with several advantages over previous models. Our findings demonstrate that limiting T. marneffei's opportunity for macrophage parasitism and thereby enhancing this pathogen's exposure to effective neutrophil fungicidal mechanisms may represent a novel host-directed therapeutic opportunity.
Collapse
Affiliation(s)
- Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Erica L. Benard
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Denis Azabdaftari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Inglesfield S, Jasiulewicz A, Hopwood M, Tyrrell J, Youlden G, Mazon-Moya M, Millington OR, Mostowy S, Jabbari S, Voelz K. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo. mBio 2018; 9:e02010-17. [PMID: 29588406 PMCID: PMC5874920 DOI: 10.1128/mbio.02010-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivoIn silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients.IMPORTANCE Mucormycosis is a dramatic fungal infection frequently leading to the death of patients. We know little about the immune response to the fungus causing this infection, although evidence points toward defects in early immune events after infection. Here, we dissect this early immune response to infectious fungal spores. We show that specialized white blood cells (phagocytes) rapidly respond to these spores and accumulate around the fungus. However, we demonstrate that the mechanisms that enable phagocytes to kill the fungus fail, allowing for survival of spores. Instead a cluster of phagocytes resembling an early granuloma is formed around spores to control the latent infection. This study is the first detailed analysis of early granuloma formation during a fungal infection highlighting a latent stage that needs to be considered for clinical management of patients.
Collapse
Affiliation(s)
- Sarah Inglesfield
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Aleksandra Jasiulewicz
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Hopwood
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - James Tyrrell
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - George Youlden
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Maria Mazon-Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Owain R Millington
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sara Jabbari
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Development of the Swimbladder Surfactant System and Biogenesis of Lysosome-Related Organelles Is Regulated by BLOS1 in Zebrafish. Genetics 2018; 208:1131-1146. [PMID: 29339408 DOI: 10.1534/genetics.117.300621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 01/02/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a human autosomal recessive disorder that is characterized by oculocutaneous albinism and a deficiency of the platelet storage pool resulting from defective biogenesis of lysosome-related organelles (LROs). To date, 10 HPS genes have been identified, three of which belong to the octamer complex BLOC-1 (biogenesis of lysosome-related organelles complex 1). One subunit of the BLOC-1 complex, BLOS1, also participates in the BLOC-1-related complex (BORC). Due to lethality at the early embryo stage in BLOS1 knockout mice, the function of BLOS1 in the above two complexes and whether it has a novel function are unclear. Here, we generated three zebrafish mutant lines with a BLOC-1 deficiency, in which melanin and silver pigment formation was attenuated as a result of mutation of bloc1s1, bloc1s2, and dtnbp1a, suggesting that they function in the same complex. In addition, mutations of bloc1s1 and bloc1s2 caused an accumulation of clusters of lysosomal vesicles at the posterior part of the tectum, representing a BORC-specific function in zebrafish. Moreover, bloc1s1 is highly expressed in the swimbladder during postembryonic stages and is required for positively regulating the expression of the genes, which is known to govern surfactant production and lung development in mammals. Our study identified BLOS1 as a crucial regulator of the surfactant system. Thus, the zebrafish swimbladder might be an easy system to screen and study genetic modifiers that control surfactant production and homeostasis.
Collapse
|
36
|
Ibrahim AS, Voelz K. The mucormycete-host interface. Curr Opin Microbiol 2017; 40:40-45. [PMID: 29107938 PMCID: PMC5733727 DOI: 10.1016/j.mib.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 01/28/2023]
Abstract
Mucormycosis is a fungal infection with fulminant angioinvasion leading to high morbidity and mortality in susceptible individuals. The major predisposing conditions are uncontrolled diabetes, neutropenia, malignancies, receipt of a transplant and traumatic injury [1]. Over the past decade, mucormycosis has become an emerging fungal infection due to the increase in patient groups presenting with these pre-disposing conditions and our medical advances in diagnosing the infection [2-4]. Yet, we currently lack clinical interventions to treat mucormycosis effectively. This in turn is due to a lack of understanding of mucormycosis pathogenesis. Here, we discuss our current understanding of selected aspects of interactions at the mucormycete-host interface. We will highlight open questions that might guide future research directions for investigations into the pathogenesis of mucormycosis and potential innovative therapeutic approaches.
Collapse
Affiliation(s)
- Ashraf S Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and David Geffen School of Medicine, Harbor - University of California, Los Angeles, UCLA Medical Center, Torrance, Los Angeles, CA, USA
| | - Kerstin Voelz
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
37
|
Yoshida N, Frickel EM, Mostowy S. Macrophage-Microbe Interactions: Lessons from the Zebrafish Model. Front Immunol 2017; 8:1703. [PMID: 29250076 PMCID: PMC5717010 DOI: 10.3389/fimmu.2017.01703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages provide front line defense against infections. The study of macrophage-microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio) larvae provide a unique platform to study macrophage-microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.
Collapse
Affiliation(s)
- Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Ghuman H, Voelz K. Innate and Adaptive Immunity to Mucorales. J Fungi (Basel) 2017; 3:jof3030048. [PMID: 29371565 PMCID: PMC5715954 DOI: 10.3390/jof3030048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 01/09/2023] Open
Abstract
Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.
Collapse
Affiliation(s)
- Harlene Ghuman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Kerstin Voelz
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
39
|
Control of Mucosal Candidiasis in the Zebrafish Swim Bladder Depends on Neutrophils That Block Filament Invasion and Drive Extracellular-Trap Production. Infect Immun 2017; 85:IAI.00276-17. [PMID: 28607100 DOI: 10.1128/iai.00276-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is a ubiquitous mucosal commensal that is normally prevented from causing acute or chronic invasive disease. Neutrophils contribute to protection in oral infection but exacerbate vulvovaginal candidiasis. To dissect the role of neutrophils during mucosal candidiasis, we took advantage of a new, transparent zebrafish swim bladder infection model. Intravital microscopic tracking of individual animals revealed that the blocking of neutrophil recruitment leads to rapid mortality in this model through faster disease progression. Conversely, artificial recruitment of neutrophils during early infection reduces disease pressure. Noninvasive longitudinal tracking showed that mortality is a consequence of C. albicans breaching the epithelial barrier and invading surrounding tissues. Accordingly, we found that a hyperfilamentous C. albicans strain breaches the epithelial barrier more frequently and causes mortality in immunocompetent zebrafish. A lack of neutrophils at the infection site is associated with less fungus-associated extracellular DNA and less damage to fungal filaments, suggesting that neutrophil extracellular traps help to protect the epithelial barrier from C. albicans breach. We propose a homeostatic model where C. albicans disease pressure is balanced by neutrophil-mediated damage of fungi, maintaining this organism as a commensal while minimizing the risk of damage to host tissue. The unequaled ability to dissect infection dynamics at a high spatiotemporal resolution makes this zebrafish model a unique tool for understanding mucosal host-pathogen interactions.
Collapse
|
40
|
Sullivan C, Lage CR, Yoder JA, Postlethwait JH, Kim CH. Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts. PLoS One 2017; 12:e0179517. [PMID: 28658311 PMCID: PMC5489176 DOI: 10.1371/journal.pone.0179517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Comparative functional genomic studies require the proper identification of gene orthologs to properly exploit animal biomedical research models. To identify gene orthologs, comprehensive, conserved gene synteny analyses are necessary to unwind gene histories that are convoluted by two rounds of early vertebrate genome duplication, and in the case of the teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome duplication, was sequenced and applied as an orthology bridge to facilitate the identification of teleost orthologs to human genes and to enhance the power of teleosts as biomedical models. In this study, we apply the spotted gar orthology bridge to help describe the gene history of the vertebrate TNFAIP8 family. Members of the TNFAIP8 gene family have been linked to regulation of immune function and homeostasis and the development of multiple cancer types. Through a conserved gene synteny analysis, we identified zebrafish orthologs to human TNFAIP8L1 and TNFAIP8L3 genes and two co-orthologs to human TNFAIP8L2, but failed to identify an ortholog to human TNFAIP8. Through the application of the orthology bridge, we determined that teleost orthologs to human TNFAIP8 genes were likely lost in a genome inversion event after their divergence from their common ancestor with spotted gar. These findings demonstrate the value of this enhanced approach to gene history analysis and support the development of teleost models to study complex questions related to an array of biomedical issues, including immunity and cancer.
Collapse
Affiliation(s)
- Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Christopher R. Lage
- Program in Biology, University of Maine - Augusta, Augusta, Maine, United States of America
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Carol H. Kim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
41
|
Abstract
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville 3010 VIC, Australia
| |
Collapse
|
42
|
Morin-Sardin S, Nodet P, Coton E, Jany JL. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Masud S, Torraca V, Meijer AH. Modeling Infectious Diseases in the Context of a Developing Immune System. Curr Top Dev Biol 2016; 124:277-329. [PMID: 28335862 DOI: 10.1016/bs.ctdb.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
44
|
Sullivan C, Matty MA, Jurczyszak D, Gabor KA, Millard PJ, Tobin DM, Kim CH. Infectious disease models in zebrafish. Methods Cell Biol 2016; 138:101-136. [PMID: 28129840 DOI: 10.1016/bs.mcb.2016.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, the zebrafish (Danio rerio) has developed as an important alternative to mammalian models for the study of hostpathogen interactions. Because they lack a functional adaptive immune response during the first 4-6weeks of development, zebrafish rely upon innate immune responses to protect against injuries and infections. During this early period of development, it is possible to isolate and study mechanisms of infection and inflammation arising from the innate immune response without the complications presented by the adaptive immune response. Zebrafish possess several inherent characteristics that make them an attractive option to study hostpathogen interactions, including extensive sequence and functional conservation with the human genome, optical clarity in larvae that facilitates the high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, robust forward and reverse genetic tools and techniques (e.g., CRISPR-Cas9 and TALENs), and amenability to chemical studies and screens. Here, we describe methods for studying hostpathogen interactions both through systemic infections and through localized infections that allow analysis of host cell response, migration patterns, and behavior. Each of the methods described can be modified for use in downstream applications that include ecotoxicant studies and chemical screens.
Collapse
Affiliation(s)
- C Sullivan
- University of Maine, Orono, ME, United States
| | - M A Matty
- Duke University School of Medicine, Durham, NC, United States
| | | | - K A Gabor
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - P J Millard
- University of Maine, Orono, ME, United States
| | - D M Tobin
- Duke University School of Medicine, Durham, NC, United States
| | - C H Kim
- University of Maine, Orono, ME, United States
| |
Collapse
|
45
|
Zhang Y, Liu H, Yao J, Huang Y, Qin S, Sun Z, Xu Y, Wan S, Cheng H, Li C, Zhang X, Ke Y. Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury. Cell Death Dis 2016; 7:e2470. [PMID: 27831560 PMCID: PMC5260887 DOI: 10.1038/cddis.2016.365] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), are life-threatening diseases that are associated with high mortality rates due to treatment limitations. Neutrophils play key roles in the pathogenesis of ALI/ARDS by promoting the inflammation and injury of the alveolar microenvironment. To date, in vivo functional approaches have been limited by the inaccessibility to the alveolar sacs, which are located at the anatomical terminal of the respiratory duct in mammals. We are the first to characterize the swim bladder of the zebrafish larva, which is similar to the mammalian lung, as a real-time in vivo model for examining pulmonary neutrophil infiltration during ALI. We observed that the delivery of exogenous materials, including lipopolysaccharide (LPS), Poly IC and silica nanoparticles, by microinjection triggered significant time- and dose-dependent neutrophil recruitment into the swim bladder. Neutrophils infiltrated the LPS-injected swim bladder through the blood capillaries around the pneumatic duct or a site near the pronephric duct. An increase in the post-LPS inflammatory cytokine mRNA levels coincided with the in vivo neutrophil aggregation in the swim bladder. Microscopic examinations of the LPS-injected swim bladders further revealed in situ injuries, including epithelial distortion, endoplasmic reticulum swelling and mitochondrial injuries. Inhibitor screening assays with this model showed a reduction in neutrophil migration into the LPS-injected swim bladder in response to Shp2 inhibition. Moreover, the pharmacological suppression and targeted disruption of Shp2 in myeloid cells alleviated pulmonary inflammation in the LPS-induced ALI mouse model. Additionally, we used this model to assess pneumonia-induced neutrophil recruitment by microinjecting bronchoalveolar lavage fluid from patients into swim bladders; this injection enhanced neutrophil aggregation relative to the control. In conclusion, our findings highlight the swim bladder as a promising and powerful model for mechanistic and drug screening studies of alveolar injuries.
Collapse
Affiliation(s)
- Yuefei Zhang
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Hongcui Liu
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Junlin Yao
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanfeng Huang
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Shenlu Qin
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Zheng Sun
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yingchun Xu
- Department of Pulmonology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shu Wan
- Department of Neurosurgery, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Hongqiang Cheng
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Chunqi Li
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Xue Zhang
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yuehai Ke
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
46
|
Wu SY, Wang LD, Li JL, Xu GM, He ML, Li YY, Huang R. Salmonella spv locus suppresses host innate immune responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 58:387-396. [PMID: 27666190 DOI: 10.1016/j.fsi.2016.09.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is globally distributed and causes massive morbidity and mortality in humans and animals. S. typhimurium carries Salmonella plasmid virulence (spv) locus, which is highly conserved and closely related to bacterial pathogenicity, while its exact role in host immune responses during infection remains to be elucidated. To counteract the invaders, the host has evolved numerous strategies, among which the innate immunity and autophagy act as the first defense. Recently, zebrafish has been universally accepted as a valuable and powerful vertebrate model in analyzing bacteria-host interactions. To investigate whether spv locus enhances the virulence of Salmonella by exerting an effect on the host early defense, zebrafish larvae were employed in this study. LD50 of S. typhimurium to zebrafish larvae and bacterial dissemination were analyzed. Sudan black B and neutral red staining were performed to detect the responses of neutrophils and macrophages to Salmonella infection. Autophagy agonist Torin1 and inhibitor Chloroquine were used to interfere in autophagic flux, and the protein level of Lc3 and p62 were measured by western blotting. Results indicated that spv locus could decrease the LD50 of S. typhimurium to zebrafish larvae, accelerate the reproduction and dissemination of bacteria by inhibiting the function of neutrophils and macrophages. Moreover, spv locus restrained the formation of autophagosomes in the earlier stage of autophagy. These findings suggested the virulence of spv locus involving in suppressing host innate immune responses for the first time, which shed new light on the role of spv operon in Salmonella pathogenicity.
Collapse
Affiliation(s)
- Shu-Yan Wu
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Li-Dan Wang
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Jin-Ling Li
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Guang-Mei Xu
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Mei-Ling He
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Yuan-Yuan Li
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Rui Huang
- Medical College of Soochow University, Department of Medical Microbiology, No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|