1
|
Yu B, Jia S, Chen Y, Guan R, Chen S, Tang W, Bao T, Tian Z. CXCL4 deficiency limits M4 macrophage infiltration and attenuates hyperoxia-induced lung injury. Mol Med 2024; 30:253. [PMID: 39707183 DOI: 10.1186/s10020-024-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), a chronic lung disease prevalent among premature infants, significantly impacts lifelong respiratory health. Macrophages, as key components of the innate immune system, play a role in lung tissue inflammation and injury, exhibiting diverse and dynamic functionalities. The M4 macrophage, a distinctive subtype primarily triggered by chemokine (C-X-C motif) ligand 4 (CXCL4), has been implicated in pulmonary inflammatory and fibrotic processes. Nonetheless, its contribution to the pathophysiology of BPD remains uncertain. OBJECTIVE This study aimed to elucidate the involvement of CXCL4 in hyperoxia-induced neonatal lung injury and fibrosis, with a particular focus on its influence on M4 macrophages. METHODS A BPD model in neonatal mice was established through continuous exposure to 95% O2 for 7 days. Comparative analyses of lung damage and subsequent regeneration were conducted between wild-type (WT) and CXCL4 knockout (KO) mice. Lung tissue inflammation and fibrosis were assessed using histological and immunofluorescence staining, enzyme-linked immunosorbent assay, Western blot, and real-time quantitative polymerase chain reaction. Differentiation of M0 and M4 macrophages was performed in vitro using macrophage colony-stimulating factor and CXCL4, while expressions of S100A8 and MMP7, along with migration assays, were evaluated. RESULTS Elevated CXCL4 levels and M4 macrophage activation were identified in the lung tissue of BPD model mice. CXCL4 deficiency conferred protection to alveolar type 2 epithelial cells, reduced sphingosine-1-phosphate metabolic activity, mitigated pulmonary fibrosis, and limited M4 macrophage progression. This deletion further enhanced lung matrix remodeling during recovery. In vitro, CXCL4 promoted M4 macrophage differentiation and increased macrophage migration via chemokine (C-C motif) receptor 1. CONCLUSION CXCL4 contributes to hyperoxia-induced lung injury and fibrosis through modulation of cytokine release, alveolar cell proliferation, lipid metabolism, and the regulation of macrophage phenotype and function.
Collapse
Affiliation(s)
- Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Siyuan Jia
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Yu Chen
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Rong Guan
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Shuyu Chen
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Wanwen Tang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
2
|
Zheng S, Gao E, Guo L, Xie L, Zhao B, Hong Q, Li J, Hu X, Tao B. LncRNA MIAT binding to GATA3 activates MAPK signaling pathway and influences bronchopulmonary dysplasia. Int J Biol Macromol 2024; 286:138280. [PMID: 39626812 DOI: 10.1016/j.ijbiomac.2024.138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Bronchopulmonary dysplasia (BPD) manifests in premature neonates with aberrant pulmonary function. Numerous long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of BPD. This study aims to elucidate the impact of the lncRNA myocardial infarction-associated transcript (MIAT) on the initiation and progression of BPD. Initially, BPD murine models were established through hyperoxia induction in newborn mice. Subsequently, MIAT and GATA binding protein 3 (GATA3) expression levels were assessed, and intravenous administration of short hairpin RNAs (shRNAs) targeting MIAT and GATA3 was performed. Pulmonary histological alterations were examined through histological staining. Levels of inflammatory mediators were quantified using enzyme-linked immunosorbent assay (ELISA) kits. The interaction between MIAT and GATA3 was scrutinized through RNA immunoprecipitation, RNA pull-down, and fluorescence in situ hybridization. The downstream mechanisms of GATA3 were explored using bioinformatics analysis. In summary, lncRNA MIAT exhibited elevated expression in the lung tissues of BPD-afflicted mice. MIAT localized to the nucleus and interacted with GATA3, thereby activating the mitogen-activated protein kinase (MAPK) pathway. Knockdown of MIAT or silencing of GATA3 attenuated the inflammatory response, deactivated the MAPK pathway, and ameliorated BPD symptoms in mice, on the other hand, p-Cresyl sulfate potassium can activate the MAPK signaling pathway and attenuates the effects of si-MIAT or si-GAT3. These improvements were characterized by enhanced alveolar differentiation and reduced glycogen and collagen deposition. In conclusion, lncRNA MIAT plays a pivotal role in activating the MAPK pathway and exacerbating hyperoxia-induced BPD in mice through the binding to GATA3. It's an important discovery for the pathogenesis of BPD and may provide some new treatment for infants diagnosed with BPD.
Collapse
Affiliation(s)
- Siqiang Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lei Xie
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Zhao
- Department of Pulmonary Nodule Center, Shandong Public Health Clinical Center, Jinan, Shandong 250100, China
| | - Qi Hong
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning 110044, China
| | - Juanjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xuefei Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
3
|
Hu X, Zheng Y, Fang M, Liang Z, Wen C, Lin J, Lin Z, Chen S. Knockdown of the long noncoding RNA VSIG2-1:1 promotes the angiogenic ability of human pulmonary microvascular endothelial cells by activating the VEGF/PI3K/AKT pathway. Respir Res 2024; 25:412. [PMID: 39568008 PMCID: PMC11577886 DOI: 10.1186/s12931-024-03039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Abnormal pulmonary vascular development poses significant clinical challenges for infants with bronchopulmonary dysplasia (BPD). Although numerous factors have been suggested to control the development of pulmonary blood vessels, the mechanisms underlying the role of long noncoding RNAs (lncRNAs) in this process remain unclear. METHODS A lncRNA array was used to measure the differential expression of lncRNAs in premature infants with and without BPD. The expression of lncRNA-VSIG2-1:1 in patients with BPD and hyperoxia-induced human pulmonary microvascular endothelial cells (HPMECs) was assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Fluorescence in situ hybridization (FISH) assay was performed to detect the subcellular localization of lncRNA-VSIG2-1:1. Pulmonary microvascular endothelial cells were stably transfected with adenoviral vectors to silence or overexpress lncRNA-VSIG2-1:1. The effects of lncRNA-VSIG2-1:1 on the proliferation, migration, and tube formation abilities of HPMECs subjected to hyperoxia were examined by performing Cell Counting Kit-8 (CCK-8), cell migration, and tubule formation assays. RNA sequencing (RNA-seq) was performed to determine the correlation between lncRNA-VSIG2-1:1 and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT). The protein levels of vascular endothelial growth factor (VEGF), p-PI3K, PI3K, p-AKT, and AKT were determined using western blotting. RESULTS The expression of lncRNA-VSIG2-1:1 was upregulated in patients with BPD and hyperoxia-treated HPMECs. Inhibiting lncRNA-VSIG2-1:1 expression promoted the proliferation, migration, and tube-formation abilities of HPMECs, while significantly increasing VEGF, p-PI3K, and p-AKT levels. CONCLUSION Our findings reveal that the suppression of lncRNA-VSIG2-1:1 expression stimulates angiogenesis in vitro by inducing the initiation of the VEGF/PI3K/AKT signaling pathway. This observation may aid the development of novel therapeutic targets for treating BPD.
Collapse
Affiliation(s)
- Xiaoya Hu
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Yihui Zheng
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325000, Zhejiang Province, China
| | - Mingchu Fang
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongjie Liang
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Chao Wen
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Jing Lin
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhenlang Lin
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325000, Zhejiang Province, China.
| | - Shangqin Chen
- Wenzhou Key Laboratory of Perinatal Medicine, Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| |
Collapse
|
4
|
Ding KL, Smith C, Seedorf G, Abman SH. Nintedanib preserves lung growth and prevents pulmonary hypertension in a hyperoxia-induced lung injury model. Pediatr Res 2024:10.1038/s41390-024-03562-0. [PMID: 39394424 DOI: 10.1038/s41390-024-03562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), the chronic lung disease associated with prematurity, is characterized by poor alveolar and vascular growth, interstitial fibrosis, and pulmonary hypertension (PH). Although multifactorial in origin, the pathophysiology of BPD is partly attributed to hyperoxia-induced postnatal injury, resulting in lung fibrosis. Recent work has shown that anti-fibrotic agents, including Nintedanib (NTD), can preserve lung function in adults with idiopathic pulmonary fibrosis. However, NTD is a non-specific tyrosine kinase receptor inhibitor that can potentially have adverse effects on the developing lung, and whether NTD treatment can prevent or worsen risk for BPD and PH is unknown. HYPOTHESIS We hypothesize that NTD treatment will preserve lung growth and function and prevent PH in an experimental model of hyperoxia-induced BPD in rats. METHODS Newborn rats were exposed to either hyperoxia (90%) or room air (RA) conditions and received daily treatment of NTD or saline (control) by intraperitoneal (IP) injections (1 mg/kg) for 14 days, beginning on postnatal day 1. At day 14, lung mechanics were measured prior to harvesting lung and cardiac tissue. Lung mechanics, including total respiratory resistance and compliance, were measured using a flexiVent system. Lung tissue was evaluated for radial alveolar counts (RAC), mean linear intercept (MLI), pulmonary vessel density (PVD), and pulmonary vessel wall thickness (PVWT). Right ventricular hypertrophy (RVH) was quantified with cardiac weights using Fulton's index (ratio of right ventricle to the left ventricle plus septum). RESULTS When compared with RA controls, hyperoxia exposure reduced RAC by 64% (p < 0.01) and PVD by 65% (p < 0.01) and increased MLI by 108% (p < 0.01) and RVH by 118% (p < 0.01). Hyperoxia increased total respiratory resistance by 94% and reduced lung compliance by 75% (p < 0.01 for each). NTD administration restored RAC, MLI, RVH, PVWT and total respiratory resistance to control values and improved PVD and total lung compliance in the hyperoxia-exposed rats. NTD treatment of control animals did not have adverse effects on lung structure or function at 1 mg/kg. When administered at higher doses of 50 mg/kg, NTD significantly reduced alveolar growth in RA controls, suggesting dose-related effects on normal lung structure. CONCLUSIONS We found that NTD treatment preserved lung alveolar and vascular growth, improved lung function, and reduced RVH in experimental BPD in infant rats without apparent adverse effects in control animals. We speculate that although potentially harmful at high doses, NTD may provide a novel therapeutic strategy for prevention of BPD and PH. IMPACT Anti-fibrotic therapies may be a novel therapeutic strategy for the treatment or prevention of BPD. High-dose anti-fibrotics may have adverse effects on developing lungs, while low-dose anti-fibrotics may treat or prevent BPD. There is very little preclinical and clinical data on the use of anti-fibrotics in the developing lung. Dose timing and duration of anti-fibrotic therapies may be critical for the treatment of neonatal lung disease. Currently, strategies for the prevention and treatment of BPD are lacking, especially in the context of lung fibrosis, so this research has major clinical applicability.
Collapse
Affiliation(s)
- Kathy L Ding
- Medical Student Research Track, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Caroline Smith
- Medical Student Research Track, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gregory Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Millan I, Pérez S, Rius-Pérez S, Asensi MÁ, Vento M, García-Verdugo JM, Torres-Cuevas I. Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice. Pediatr Res 2024:10.1038/s41390-024-03457-0. [PMID: 39317699 DOI: 10.1038/s41390-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Preterm infants frequently require oxygen supplementation at birth. However, preterm lung is especially sensible to structural and functional damage caused by oxygen free radicals. METHODS The adaptive mechanisms implied in the fetal-neonatal transition from a lower to a higher oxygen environment were evaluated in a murine model using a custom-designed oxy-chamber. Pregnant mice were randomly assigned to deliver in 14% (hypoxic preconditioning group) or 21% (normoxic group) oxygen environment. Eight hours after birth FiO2 was increased to 100% for 60 min and then switched to 21% in both groups. A control group remained in 21% oxygen throughout the study. RESULTS Mice in the normoxic group exhibited thinning of the alveolar septa, increased cell death, increased vascular damage, and decreased synthesis of pulmonary surfactant. However, lung histology, lamellar bodies microstructure, and surfactant integrity were preserved in the hypoxic preconditioning group after the hyperoxic insult. CONCLUSION Postnatal hyperoxia has detrimental effects on lung structure and function when preceded by normoxia compared to controls. However, postnatal hypoxic preconditioning mitigates lung damage caused by a hyperoxic insult. IMPACT Hypoxic preconditioning, implemented shortly after birth mitigates lung damage caused by postnatal supplemental oxygenation. The study introduces an experimental mice model to investigate the effects of hypoxic preconditioning and its effects on lung development. This model enables researchers to delve into the intricate processes involved in postnatal lung maturation. Our findings suggest that hypoxic preconditioning may reduce lung parenchymal damage and increase pulmonary surfactant synthesis in reoxygenation strategies during postnatal care.
Collapse
Affiliation(s)
- Iván Millan
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, University of Valencia, Burjassot, Spain
| | - Sergio Rius-Pérez
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain.
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Department of Physiology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
6
|
Saneh H, Wanczyk H, Walker J, Finck C. Stem cell-derived extracellular vesicles: a potential intervention for Bronchopulmonary Dysplasia. Pediatr Res 2024:10.1038/s41390-024-03471-2. [PMID: 39251881 DOI: 10.1038/s41390-024-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among extreme preterm infants. The pathogenesis of BPD is multifactorial, with inflammation playing a central role. There is strong evidence that stem cell therapy reduces inflammatory changes and restores normal lung morphology in animal models of hyperoxia-induced lung injury. These therapeutic effects occur without significant engraftment of the stem cells in the host lung, suggesting more of a paracrine mechanism mediated by their secretome. In addition, there are multiple concerns with stem cell therapy which may be alleviated by administering only the effective vesicles instead of the cells themselves. Extracellular vesicles (EVs) are cell-derived components secreted by most eukaryotic cells. They can deliver their bioactive cargo (mRNAs, microRNAs, proteins, growth factors) to recipient cells, which makes them a potential therapeutic vehicle in many diseases, including BPD. The following review will highlight recent studies that investigate the effectiveness of EVs derived from stem cells in preventing or repairing injury in the preterm lung, and the potential mechanisms of action that have been proposed. Current limitations will also be discussed as well as suggestions for advancing the field and easing the transition towards clinical translation in evolving or established BPD. IMPACT: Extracellular vesicles (EVs) derived from stem cells are a potential intervention for neonatal lung diseases. Their use might alleviate the safety concerns associated with stem cell therapy. This review highlights recent studies that investigate the effectiveness of stem cell-derived EVs in preclinical models of bronchopulmonary dysplasia. It adds to the existing literature by elaborating on the challenges associated with EV research. It also provides suggestions to advance the field and ease the transition towards clinical applications. Optimizing EV research could ultimately improve the quality of life of extreme preterm infants born at vulnerable stages of lung development.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
7
|
Zhang S, Wang J, Xin Z, Sun C, Ju Z, Xue X, Jiang W, Xin Q, Wang J, Zhang Z, Luan Y. Effect of Oridonin on Experimental Animal Model of Bronchopulmonary Dysplasia. J Cell Biochem 2024; 125:e30632. [PMID: 39014931 DOI: 10.1002/jcb.30632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a serious disease that occurs in premature and low-birth-weight infants. In recent years, the incidence of BPD has not decreased, and there is no effective treatment for it. Oridonin (Ori) is a traditional Chinese medicine with a wide range of biological activities, especially pharmacological and anti-inflammatory. It is well known that inflammation plays a key role in BPD. However, the therapeutic effect of Ori on BPD has not been studied. Therefore, in the present study, we will observe the anti-inflammatory activity of Ori in an experimental animal model of BPD. Here, we showed that Ori could significantly decrease hyperoxia-induced alveolar injury, inhibit neutrophil recruitment, myeloperoxidase concentrations, and release inflammatory factors in BPD neonatal rats. Taken together, the experimental results suggested that Ori can significantly improve BPD in neonatal rats by inhibiting inflammatory response.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, China
| | - Junfu Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihong Xin
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Chao Sun
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Zhiye Ju
- Department of Ultrasound, Shandong Provincial Public Health Clinical Center, Jinan, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen Jiang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Qian Xin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Zhaohua Zhang
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Luan
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
- Renal Multidisciplinary Innovation Medical Center, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Zou D, Liao J, Xiao M, Liu L, Xu M. Melatonin alleviates hyperoxia-induced lung injury through elevating MSC exosomal miR-18a-5p expression to repress PUM2 signaling. FASEB J 2024; 38:e70012. [PMID: 39183539 DOI: 10.1096/fj.202400374r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Purcell E, Shah J, Powell C, Nguyen T, Zhou L, McDonald CA, Allison BJ, Malhotra A. Umbilical cord blood-derived therapy for preterm lung injury: a systematic review and meta-analysis. Stem Cells Transl Med 2024; 13:606-624. [PMID: 38819251 PMCID: PMC11227974 DOI: 10.1093/stcltm/szae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Lung injuries, such as bronchopulmonary dysplasia (BPD), remain a major complication of preterm birth, with limited therapeutic options. One potential emerging therapy is umbilical cord blood (UCB)-derived therapy. OBJECTIVES To systematically assess the safety and efficacy of UCB-derived therapy for preterm lung injury in preclinical and clinical studies. METHODS A systematic search of MEDLINE, Embase, CENTRAL, ClinicalTrials.gov, and WHO International Trials Registry Platform was performed. A meta-analysis was conducted with Review Manager (5.4.1) using a random effects model. Data was expressed as standardized mean difference (SMD) for preclinical data and pooled relative risk (RR) for clinical data, with 95% confidence intervals (CI). Potential effect modifiers were investigated via subgroup analysis. Certainty of evidence was assessed using the GRADE system. RESULTS Twenty-three preclinical studies and six clinical studies met eligibility criteria. Statistically significant improvements were seen across several preclinical outcomes, including alveolarization (SMD, 1.32, 95%CI [0.99, 1.65]), angiogenesis (SMD, 1.53, 95%CI [0.87, 2.18]), and anti-inflammatory cytokines (SMD, 1.68, 95%CI [1.03, 2.34]). In clinical studies, 103 preterm infants have received UCB-derived therapy for preterm lung injury and no significant difference was observed in the development of BPD (RR, 0.93, 95%CI [0.73, 1.18]). Across both preclinical and clinical studies, administration of UCB-derived therapy appeared safe. Certainty of evidence was assessed as "low." CONCLUSIONS Administration of UCB-derived therapy was associated with statistically significant improvements across several lung injury markers in preclinical studies. Early clinical studies demonstrated the administration of UCB-derived therapy as safe and feasible but lacked data regarding efficacy.
Collapse
Affiliation(s)
- Elisha Purcell
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Jainam Shah
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Cameron Powell
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, VIC 3168, Melbourne, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, VIC 3168, Melbourne, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, VIC 3168, Melbourne, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, VIC 3168, Melbourne, Australia
| |
Collapse
|
10
|
Philpot P, Graumuller F, Melchiorre N, Prahaladan V, Takada X, Chandran S, Guillermo M, Dickler D, Aghai ZH, Das P, Bhandari V. Hyperoxia-Induced miR-195 Causes Bronchopulmonary Dysplasia in Neonatal Mice. Biomedicines 2024; 12:1208. [PMID: 38927415 PMCID: PMC11201213 DOI: 10.3390/biomedicines12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Exposure to hyperoxia is an important factor in the development of bronchopulmonary dysplasia (BPD) in preterm newborns. MicroRNAs (miRs) have been implicated in the pathogenesis of BPD and provide a potential therapeutic target. Methods: This study was conducted utilizing a postnatal animal model of experimental hyperoxia-induced murine BPD to investigate the expression and function of miR-195 as well as its molecular signaling targets within developing mouse lung tissue. Results: miR-195 expression levels increased in response to hyperoxia in male and female lungs, with the most significant elevation occurring in 40% O2 (mild) and 60% O2 (moderate) BPD. The inhibition of miR-195 improved pulmonary morphology in the hyperoxia-induced BPD model in male and female mice with females showing more resistance to injury and better recovery of alveolar chord length, septal thickness, and radial alveolar count. Additionally, we reveal miR-195-dependent signaling pathways involved in BPD and identify PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) as a novel specific target protein of miR-195. Conclusions: Our data demonstrate that high levels of miR-195 in neonatal lungs cause the exacerbation of hyperoxia-induced experimental BPD while its inhibition results in amelioration. This finding suggests a therapeutic potential of miR-195 inhibition in preventing BPD.
Collapse
Affiliation(s)
- Patrick Philpot
- Division of Neonatology, Department of Pediatrics, Thomas Jefferson University, Nemours, Philadelphia, PA 19107, USA; (P.P.); (Z.H.A.)
- Division of Neonatology, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (V.P.); (P.D.)
| | - Fred Graumuller
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Nicole Melchiorre
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Varsha Prahaladan
- Division of Neonatology, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (V.P.); (P.D.)
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Xander Takada
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Srinarmadha Chandran
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Melissa Guillermo
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - David Dickler
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Zubair H. Aghai
- Division of Neonatology, Department of Pediatrics, Thomas Jefferson University, Nemours, Philadelphia, PA 19107, USA; (P.P.); (Z.H.A.)
| | - Pragnya Das
- Division of Neonatology, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (V.P.); (P.D.)
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (V.P.); (P.D.)
- Division of Neonatology, The Children’s Regional Hospital at Cooper, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (F.G.); (N.M.); (X.T.); (S.C.); (M.G.); (D.D.)
| |
Collapse
|
11
|
Ellis LV, Bywaters JD, Chen J. Endothelial deletion of p53 generates transitional endothelial cells and improves lung development during neonatal hyperoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593014. [PMID: 38766251 PMCID: PMC11100739 DOI: 10.1101/2024.05.07.593014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bronchopulmonary dysplasia (BPD), a prevalent and chronic lung disease affecting premature newborns, results in vascular rarefaction and alveolar simplification. Although the vasculature has been recognized as a main player in this disease, the recently found capillary heterogeneity and cellular dynamics of endothelial subpopulations in BPD remain unclear. Here, we show Cap2 cells are damaged during neonatal hyperoxic injury, leading to their replacement by Cap1 cells which, in turn, significantly decline. Single-cell RNA-seq identifies the activation of numerous p53 target genes in endothelial cells, including Cdkn1a (p21). While global deletion of p53 results in worsened vasculature, endothelial-specific deletion of p53 reverses the vascular phenotype and improves alveolar simplification during hyperoxia. This recovery is associated with the emergence of a transitional EC state, enriched for oxidative stress response genes and growth factors. These findings implicate the p53 pathway in EC type transition during injury-repair and highlights the endothelial contributions to BPD.
Collapse
Affiliation(s)
- Lisandra Vila Ellis
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jonathan D Bywaters
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Langyue H, Ying Z, Jianfeng J, Yue Z, Huici Y, Hongyan L. IRF4-mediated Treg phenotype switching can aggravate hyperoxia-induced alveolar epithelial cell injury. BMC Pulm Med 2024; 24:130. [PMID: 38491484 PMCID: PMC10941512 DOI: 10.1186/s12890-024-02940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.
Collapse
Affiliation(s)
- He Langyue
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhu Ying
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiang Jianfeng
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhu Yue
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yao Huici
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Lu Hongyan
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
13
|
Saneh H, Wanczyk H, Walker J, Finck C. Effectiveness of extracellular vesicles derived from hiPSCs in repairing hyperoxia-induced injury in a fetal murine lung explant model. Stem Cell Res Ther 2024; 15:80. [PMID: 38486338 PMCID: PMC10941466 DOI: 10.1186/s13287-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
14
|
Chen D, Zhao HM, Deng XH, Li SP, Zhou MH, Wu YX, Tong Y, Yu RQ, Pang QF. BCL6 attenuates hyperoxia-induced lung injury by inhibiting NLRP3-mediated inflammation in fetal mouse. Exp Lung Res 2024; 50:25-41. [PMID: 38419581 DOI: 10.1080/01902148.2024.2320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.
Collapse
Affiliation(s)
- Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Min Zhao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xian-Hui Deng
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sheng-Peng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mei-Hui Zhou
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Tong
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ren-Qiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Hasan MM, Sekiya R, Zhang X, Yassouf MY, Li TS. Comparison of hypoxia- and hyperoxia-induced alteration of epigene expression pattern in lungs of Pleurodeles waltl and Mus musculus. PLoS One 2024; 19:e0299661. [PMID: 38416753 PMCID: PMC10901355 DOI: 10.1371/journal.pone.0299661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Epigenetics is an emerging field of research because of its involvement in susceptibility to diseases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysiologies. Here, we compared the differential epigene expression pattern between Pleurodeles waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively) exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not significantly change the expression of any gene in either newts or mice. The differential epigene expression pattern in response to hypoxia between newts and mice may provide novel insights into the prevention and treatment of disorders developed due to hypoxia exposure.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
16
|
Filippi L, Nardini P, Zizi V, Molino M, Fazi C, Calvani M, Carrozzo F, Cavallaro G, Giuseppetti G, Calosi L, Crociani O, Pini A. β3 Adrenoceptor Agonism Prevents Hyperoxia-Induced Colonic Alterations. Biomolecules 2023; 13:1755. [PMID: 38136626 PMCID: PMC10741994 DOI: 10.3390/biom13121755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Oxygen level is a key regulator of organogenesis and its modification in postnatal life alters the maturation process of organs, including the intestine, which do not completely develop in utero. The β3-adrenoreceptor (β3-AR) is expressed in the colon and has an oxygen-dependent regulatory mechanism. This study shows the effects of the β3-AR agonist BRL37344 in a neonatal model of hyperoxia-driven colonic injury. For the first 14 days after birth, Sprague-Dawley rat pups were exposed to ambient oxygen levels (21%) or hyperoxia (85%) and treated daily with BRL37344 at 1, 3, 6 mg/kg or untreated. At the end of day 14, proximal colon samples were collected for analysis. Hyperoxia deeply influences the proximal colon development by reducing β3-AR-expressing cells (27%), colonic length (26%) and mucin production (47%), and altering the neuronal chemical coding in the myenteric plexus without changes in the neuron number. The administration of BRL37344 at 3 mg/kg, but not at 1 mg/kg, significantly prevented these alterations. Conversely, it was ineffective in preventing hyperoxia-induced body weight loss. BRL37344 at 6 mg/kg was toxic. These findings pave the way for β3-AR pharmacological targeting as a therapeutic option for diseases caused by hyperoxia-impaired development, typical prematurity disorders.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (L.C.); (O.C.)
- Imaging Platform, Department Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Virginia Zizi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (L.C.); (O.C.)
| | - Marta Molino
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (L.C.); (O.C.)
| | - Camilla Fazi
- Department of Pediatric, Meyer Children’s University Hospital, 50139 Florence, Italy;
| | - Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (F.C.)
| | - Francesco Carrozzo
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (F.C.)
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giorgia Giuseppetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (L.C.); (O.C.)
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (L.C.); (O.C.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (L.C.); (O.C.)
- Imaging Platform, Department Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
17
|
Zhao ZW, Lin XX, Guo YZ, He X, Zhang XT, Huang Y. Irisin alleviates hyperoxia-induced bronchopulmonary dysplasia through activation of Nrf2/HO-1 pathway. Peptides 2023; 170:171109. [PMID: 37804931 DOI: 10.1016/j.peptides.2023.171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common pulmonary injury among premature infants, which is often caused by hyperoxia exposure. Irisin is a novel hormone-like myokine derived mainly from skeletal muscles as well as adipose tissues. Many studies have indicated that Irisin exert a variety of properties against hyperoxia-induced inflammation and oxidative stress (OS). We aimed to evaluate the effects of irisin on hyperoxia-induced lung injury explore the underlying mechanisms. METHODS BPD model was established after exposing newborn mouse to 85% oxygen. BPD mouse received continuous intraperitoneal injection of irisin at a dose of 25 μg/kg/day. Lung tissues were collected for histological examination at 7 and 14 days after birth. The alveolarization and alveolar vascularization of each animal was assessed. Levels of oxidative stress indicators, and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in lung tissues were detected at 14 days after birth. RESULTS Hyperoxia exposure induced a markedly alveolar simplification and a disrupted alveolar angiogenesis, which was ameliorated by irisin treatment. The hyperoxia-induced increase in these oxidative stress indicators was significantly reversed by irisin treatment. The Nrf2/HO-1 pathway is inducted in the hyperoxia-induced BPD mouse model, which is further activated by irisin treatment. CONCLUSION Our results demonstrated the beneficial effects of irisin in reducing the OS, enhancing alveolarization, and promoting vascular development through activation of Nrf2/HO-1 axis in a hyperoxia-induced experimental model of BPD.
Collapse
Affiliation(s)
- Zi-Wen Zhao
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Xiao-Xia Lin
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Yong-Zhe Guo
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Xi He
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Xin-Tao Zhang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China
| | - Yu Huang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
18
|
Singh C. Systems levels analysis of lipid metabolism in oxygen-induced retinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568200. [PMID: 38045301 PMCID: PMC10690220 DOI: 10.1101/2023.11.21.568200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hyperoxia induces glutamine-fueled anaplerosis in the Muller cells, endothelial cells, and retinal explants. Anaplerosis takes away glutamine from the biosynthetic pathway to the energy-producing TCA cycle. This process depletes biosynthetic precursors from newly proliferating endothelial cells. The induction of anaplerosis in the hyperoxic retina is a compensatory response, either to decreased glycolysis or decreased flux from glycolysis to the TCA cycle. We hypothesized that by providing substrates that feed into TCA, we could reverse or prevent glutamine-fueled anaplerosis, thereby abating the glutamine wastage for energy generation. Using an oxygen-induced retinopathy (OIR) mouse model, we first compared the difference in fatty acid metabolism between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains to understand if these strains exhibit metabolic difference that protects BALB/cByJ from the hyperoxic conditions and prevents their vasculature in oxygen-induced retinopathy model. Based on our findings from the metabolic comparison between two mouse strains, we hypothesized that the medium-chain fatty acid, octanoate, can feed into the TCA and serve as an alternative energy source in response to hyperoxia. Our systems levels analysis of OIR model shows that the medium chain fatty acid can serve as an alternative source to feed TCA. We here, for the first time, demonstrate that the retina can use medium-chain fatty acid octanoate to replenish TCA in normoxic and at a higher rate in hyperoxic conditions.
Collapse
|
19
|
Cantu A, Cantu Gutierrez M, Zhang Y, Dong X, Lingappan K. Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable. Physiol Genomics 2023; 55:345-354. [PMID: 37395632 PMCID: PMC10625841 DOI: 10.1152/physiolgenomics.00037.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by an arrest in alveolarization, abnormal vascular development, and variable interstitial fibroproliferation in the premature lung. Endothelial to mesenchymal transition (EndoMT) may be a source of pathological fibrosis in many organ systems. Whether EndoMT contributes to the pathogenesis of BPD is not known. We tested the hypothesis that pulmonary endothelial cells will show increased expression of EndoMT markers upon exposure to hyperoxia and that sex as a biological variable will modulate differences in expression. Wild-type (WT) and Cdh5-PAC CreERT2 (endothelial reporter) neonatal male and female mice (C57BL6) were exposed to hyperoxia (0.95 [Formula: see text]) either during the saccular stage of lung development (95% [Formula: see text]; postnatal day 1-5 [PND1-5]) or through the saccular and early alveolar stages of lung development (75% [Formula: see text]; PND1-14). Expression of EndoMT markers was measured in whole lung and endothelial cell mRNA. Sorted lung endothelial cells (from room air- and hyperoxia-exposed lungs) were subjected to bulk RNA-Seq. We show that exposure of the neonatal lung to hyperoxia leads to upregulation of key markers of EndoMT. Furthermore, using lung sc-RNA-Seq data from neonatal lung we were able to show that all endothelial cell subpopulations including the lung capillary endothelial cells show upregulation of EndoMT-related genes. Markers related to EndoMT are upregulated in the neonatal lung upon exposure to hyperoxia and show sex-specific differences. Mechanisms mediating EndoMT in the injured neonatal lung can modulate the response of the neonatal lung to hyperoxic injury and need further investigation.NEW & NOTEWORTHY We show that neonatal hyperoxia exposure increased EndoMT markers in the lung endothelial cells and this biological process exhibits sex-specific differences.
Collapse
Affiliation(s)
- Abiud Cantu
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Manuel Cantu Gutierrez
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Yuhao Zhang
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Xiaoyu Dong
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| |
Collapse
|
20
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. ETS1 Ameliorates Hyperoxia-Induced Bronchopulmonary Dysplasia in Mice by Activating Nrf2/HO-1 Mediated Ferroptosis. Lung 2023; 201:425-441. [PMID: 37490064 PMCID: PMC10444662 DOI: 10.1007/s00408-023-00639-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is associated with hyperoxia-induced oxidative stress-associated ferroptosis. This study examined the effect of E26 oncogene homolog 1 (ETS1) on oxidative stress-associated ferroptosis in BPD. METHODS Hyperoxia-induced A549 cells and neonatal mice were used to establish BPD models. The effects of ETS1 on hyperoxia-induced ferroptosis-like changes in A549 cells were investigated by overexpression of ETS1 plasmid transfection and erastin treatment. Glucose consumption, lactate production, and NADPH levels were assessed by the glucose, lactate, and NADP+/NADPH assay kits, respectively. The potential regulatory relationship between ETS1 and Nrf2/HO-1 was examined by treating hyperoxia-induced A549 cells with the Nrf2 inhibitor ML385. ETS1 effect on the Nrf2 promoter was explored by dual-luciferase reporter and chromatin immunoprecipitation assay. The effect of ETS1 on the symptoms of BPD mice was examined by injecting an adenovirus overexpressing ETS1. RESULTS ETS1 overexpression increased hyperoxia-induced cell viability, glucose consumption, lactate production, and NADPH levels and reduced inflammation and apoptosis in A549 cells. In animal experiments, ETS1 overexpression prevented weight loss, airway enlargement, and reductions in radial alveolar counts in BPD mice, while reducing the mean linear intercept, mean alveolar diameter and inflammation. ETS1 overexpression suppressed PTGS2 and CHAC1 expression, reduced ROS, MDA and ferrous iron (Fe2+) production and increased GSH levels in hyperoxia-induced A549 cells and BPD mice. In addition, ETS1 can bind to the Nrf2 promoter region and thus promote Nrf2 transcription. ETS1 overexpression increased the mRNA and protein levels of Nrf2, HO-1, xCT, and GPX4 in hyperoxia-induced A549 cells and BPD mice. In hyperoxia-induced A549 cells, erastin and ML385 treatment abolished the effect of ETS1 overexpression. CONCLUSION ETS1 is important in oxidative stress-related ferroptosis in a hyperoxia-induced BPD model, and the effect is partially mediated by the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
21
|
Chen W, Wang R, Chen C. Cerebral Myelination in a Bronchopulmonary Dysplasia Murine Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1321. [PMID: 37628321 PMCID: PMC10453924 DOI: 10.3390/children10081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) is a devastating disease in preterm infants concurrent with neurodevelopmental disorders. Chronic hyperoxia exposure might also cause brain injury, but the evidence was insufficient. METHODS Neonatal C57BL/6J mice were exposed to hyperoxia from P0 to induce a BPD disease model. Lung histopathological morphology analyses were performed at P10, P15, and P20. Cerebral myelination was assessed using MBP (myelin basic protein, a major myelin protein), NfH (neurofilament heavy chain, a biomarker of neurofilament heavy chain), and GFAP (glial fibrillary acidic protein, a marker of astrocytes) as biomarkers by western blot and immunofluorescence. RESULTS Mice exposed to hyperoxia exhibited reduced and enlarged alveoli in lungs. During hyperoxia exposure, MBP declined at P10, but then increased to a comparable level to the air group at P15 and P20. Meanwhile, GFAP elevated significantly at P10, and the elevation sustained to P15 and P20. CONCLUSION Neonatal hyperoxia exposure caused an arrest of lung development, as well as an obstacle of myelination process in white matter of the immature brain, with a decline of MBP in the generation period of myelin and persistent astrogliosis.
Collapse
Affiliation(s)
- Wenwen Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
- Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Ran Wang
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
| | - Chao Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
| |
Collapse
|
22
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 230.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Zhu Y, Mi L, Lu H, Ju H, Hao X, Xu S. ILC2 regulates hyperoxia-induced lung injury via an enhanced Th17 cell response in the BPD mouse model. BMC Pulm Med 2023; 23:188. [PMID: 37254088 DOI: 10.1186/s12890-023-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUD Recent research has focused on the role of immune cells and immune responses in the pathogenesis of bronchopulmonary dysplasia (BPD), but the exact mechanisms have not yet been elucidated. Previously, the key roles of type 2 innate lymphoid cells (ILC2) in the lung immune network of BPD were explored. Here, we investigated the role Th17 cell response in hyperoxia-induced lung injury of BPD, as well as the relationship between ILC2 and Th17 cell response. METHODS A hyperoxia-induced BPD mouse model was constructed and the pathologic changes of lung tissues were evaluated by Hematoxylin-Eosin staining. Flow cytometry analysis was conducted to determine the levels of Th17 cell, ILC2 and IL-6+ILC2. The expression levels of IL-6, IL-17 A, IL-17 F, and IL-22 in the blood serum and lung tissues of BPD mice were measured by ELISA. To further confirm the relationship between ILC2 and Th17 cell differentiation, ILC2 depletion was performed in BPD mice. Furthermore, we used immunomagnetic beads to enrich ILC2 and then flow-sorted mouse lung CD45+Lin-CD90.2+Sca-1+ILC2. The sorted ILC2s were injected into BPD mice via tail vein. Following ILC2 adoptive transfusion, the changes of Th17 cell response and lung injury were detected in BPD mice. RESULTS The expression levels of Th17 cells and Th17 cell-related cytokines, including IL-17 A, IL-17 F, and IL-22, were significantly increased in BPD mice. Concurrently, there was a significant increase in the amount of ILC2 and IL-6+ILC2 during hyperoxia-induced lung injury, which was consistent with the trend for Th17 cell response. Compared to the control BPD group, ILC2 depletion was found to partially abolish the Th17 cell response and had protective effects against lung injury after hyperoxia. Furthermore, the adoptive transfer of ILC2 enhanced the Th17 cell response and aggravated lung injury in BPD mice. CONCLUSIONS This study found that ILC2 regulates hyperoxia-induced lung injury by targeting the Th17 cell response in BPD, which shows a novel strategy for BPD immunotherapy.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| | - Lanlan Mi
- Department of Neonatology, Shanghai Children's Medical Center, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China.
| | - Huimin Ju
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| | - Xiaobo Hao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| | - Suqing Xu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, No.438 Jiefang Road, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
24
|
Lee CH, Su TC, Lee MS, Hsu CS, Yang RC, Kao JK. Heat shock protein 70 protects the lungs from hyperoxic injury in a neonatal rat model of bronchopulmonary dysplasia. PLoS One 2023; 18:e0285944. [PMID: 37200358 PMCID: PMC10194897 DOI: 10.1371/journal.pone.0285944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
Hyperoxia plays a significant role in the pathogenesis of lung injury, such as bronchopulmonary dysplasia (BPD), in premature infants or newborns. BPD management aims to minimize further injury, provide an optimal environment to support growth and recovery. In clinic neonatal care, we need a new therapy for BPD. Heat shock protein 70 (Hsp70) inhibit cell apoptosis and promote cell repair allowing cells to survive lethal injury. We hypothesized that Hsp70 could be used to prevent hyperoxia related BPD in the neonatal rat model through its anti-apoptotic and anti-inflammatory effects. In this study, we explored the effect of Hsp70 on hyperoxia-induced lung injury using neonatal rats. Neonatal Wistar rats were delivered naturally at full term of gestation and were then pooled and randomly assigned to several groups to receive heat stimulation (41°C for 20 min) or room temperature conditions. The Hsp70 group received recombinant Hsp70 intraperitoneally (200 μg/kg, daily). All newborn rats were placed under hyperoxic conditions (85% oxygen) for 21 days. Survival rates in both heat-hyperoxia and Hsp70-hyperoxia groups were higher than those in the hyperoxia group (p < 0.05). Both endogenous and exogenous Hsp70 could reduce early apoptosis of alveolar cells under hyperoxia. Additionally, there were less macrophage infiltration in the lung of the Hsp70 groups (p < 0.05). Heat stress, heat shock proteins, and exogenous recombinant Hsp70 significantly increased the survival rate and reduced pathological hyperoxia induced lung injuries in the development of BPD. These results suggest that treating hyperoxia-induced lung injury with Hsp70 may reduce the risk of developing BPD.
Collapse
Affiliation(s)
- Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Chien-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung City, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
25
|
Zhong XQ, Wang D, Chen S, Zheng J, Hao TF, Li XH, Luo LH, Gu J, Lian CY, Li XS, Chen DJ. Umbilical cord blood-derived exosomes from healthy term pregnancies protect against hyperoxia-induced lung injury in mice. Clin Transl Sci 2023. [PMID: 36869608 DOI: 10.1111/cts.13502] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic, devastating disease primarily occurring in premature infants. To date, intervention strategies to prevent or treat BPD are limited. We aimed to determine the effects of umbilical cord blood-derived exosomes (UCB-EXOs) from healthy term pregnancies on hyperoxia-induced lung injury and to identify potential targets for BPD intervention. A mouse model of hyperoxia-induced lung injury was created by exposing neonatal mice to hyperoxia after birth until the 14th day post birth. Age-matched neonatal mice were exposed to normoxia as the control. Hyperoxia-induced lung injury mice were intraperitoneally injected with UCB-EXO or vehicle daily for 3 days, starting on day 4 post birth. Human umbilical vein endothelial cells (HUVECs) were insulted with hyperoxia to establish an in vitro model of BPD to investigate angiogenesis dysfunction. Our results showed that UCB-EXO alleviated lung injuries in hyperoxia-insulted mice by reducing histopathological grade and collagen contents in the lung tissues. UCB-EXO also promoted vascular growth and increased miR-185-5p levels in the lungs of hyperoxia-insulted mice. Additionally, we found that UCB-EXO elevated miR-185-5p levels in HUVECs. MiR-185-5p overexpression inhibited cell apoptosis, whereas promoted cell migration in HUVECs exposed to hyperoxia. The luciferase reporter assay results revealed that miR-185-5p directly targeted cyclin-dependent kinase 6 (CDK6), which was downregulated in the lungs of hyperoxia-insulted mice. Together, these data suggest that UCB-EXO from healthy term pregnancies protect against hyperoxia-induced lung injuries via promoting neonatal pulmonary angiogenesis partially by elevating miR-185-5p.
Collapse
Affiliation(s)
- Xin-Qi Zhong
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Disease of Guangdong Province, Guangzhou, China
| | - Ding Wang
- Key Laboratory for Major Obstetric Disease of Guangdong Province, Guangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Chen
- Center for Translational Medicine, Institute of Precision Medicine, Department of Medical Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tao-Fang Hao
- Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, China
| | - Xiu-Hong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Hua Luo
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Gu
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang-Yu Lian
- Department of Neonatology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Sa Li
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dun-Jin Chen
- Key Laboratory for Major Obstetric Disease of Guangdong Province, Guangzhou, China.,Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Molecular Mechanisms of Hyperoxia-Induced Neonatal Intestinal Injury. Int J Mol Sci 2023; 24:ijms24054366. [PMID: 36901800 PMCID: PMC10002283 DOI: 10.3390/ijms24054366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Oxygen therapy is important for newborns. However, hyperoxia can cause intestinal inflammation and injury. Hyperoxia-induced oxidative stress is mediated by multiple molecular factors and leads to intestinal damage. Histological changes include ileal mucosal thickness, intestinal barrier damage, and fewer Paneth cells, goblet cells, and villi, effects which decrease the protection from pathogens and increase the risk of necrotizing enterocolitis (NEC). It also causes vascular changes with microbiota influence. Hyperoxia-induced intestinal injuries are influenced by several molecular factors, including excessive nitric oxide, the nuclear factor-κB (NF-κB) pathway, reactive oxygen species, toll-like receptor-4, CXC motif ligand-1, and interleukin-6. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and some antioxidant cytokines or molecules including interleukin-17D, n-acetylcysteine, arginyl-glutamine, deoxyribonucleic acid, cathelicidin, and health microbiota play a role in preventing cell apoptosis and tissue inflammation from oxidative stress. NF-κB and Nrf2 pathways are essential to maintain the balance of oxidative stress and antioxidants and prevent cell apoptosis and tissue inflammation. Intestinal inflammation can lead to intestinal damage and death of the intestinal tissue, such as in NEC. This review focuses on histologic changes and molecular pathways of hyperoxia-induced intestinal injuries to establish a framework for potential interventions.
Collapse
|
27
|
Abstract
Bronchopulmonary dysplasia (BPD) in neonates is the most common pulmonary disease that causes neonatal mortality, has complex pathogenesis, and lacks effective treatment. It is associated with chronic obstructive pulmonary disease, pulmonary hypertension, and right ventricular hypertrophy. The occurrence and development of BPD involve various factors, of which premature birth is the most crucial reason for BPD. Under the premise of abnormal lung structure and functional product, newborns are susceptible to damage to oxides, free radicals, hypoxia, infections and so on. The most influential is oxidative stress, which induces cell death in different ways when the oxidative stress balance in the body is disrupted. Increasing evidence has shown that programmed cell death (PCD), including apoptosis, necrosis, autophagy, and ferroptosis, plays a significant role in the molecular and biological mechanisms of BPD and the further development of the disease. Understanding the mode of PCD and its signaling pathways can provide new therapeutic approaches and targets for the clinical treatment of BPD. This review elucidates the mechanism of BPD, focusing on the multiple types of PCD in BPD and their molecular mechanisms, which are mainly based on experimental results obtained in rodents.
Collapse
|
28
|
Ragionieri L, Scalera E, Zoboli M, Ciccimarra R, Petracco G, Gazza F, Cacchioli A, Storti M, Catozzi C, Ricci F, Ravanetti F. Preterm rabbit-derived Precision Cut Lung Slices as alternative model of bronchopulmonary dysplasia in preclinical study: a morphological fine-tuning approach. Ann Anat 2023; 246:152039. [PMID: 36436720 DOI: 10.1016/j.aanat.2022.152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm delivery, with significant morbidity and mortality in a neonatal intensive care setting. Research in this field aims to identify the mechanisms of late lung development with possible therapeutic targets and the improvement of medical management. Rabbits represent a suitable lab preclinical tool for mimicking the clinical BPD phenotype. Rabbits are born at term in the alveolar phase as occurs in large animals and humans and in addition, they can be delivered prematurely in contrast to mice and rats. Continuous exposure to high oxygen concentration (95% O2) for 7 days induces functional and morphological lung changes in preterm rabbits that resemble those observed in BPD-affected babies. The preclinical research pays great attention to optimize the experimental procedures, reduce the number of animals used in experiments and, where possible, replace animal models with alternative assays, following the principle of the 3 Rs (Replace, Reduce and Refine). The use of in vitro assays based on the ex vivo culture of Precision Cut Lung Slices (PCLS) goes in this direction, representing a good compromise between controlled and flexible in vitro models and the more physiologically relevant in vivo ones. This work aims to set up morphological analyses to be applied in preclinical tests using preterm rabbits derived PCLS, cultured up to 7 days in different oxygen conditions, as a model. After a preliminary optimization of both lung preparation and histological processing methods of the lung slices of 300 µm, the morphological analysis was conducted evaluating a series of histomorphometric parameters derived from those widely used to follow the phases of lung development and its alterations in vivo. Our histomorphometric results demonstrated that the greatest differences from pseudo-normoxia and hyperoxia exposed samples at day 0, used as starting points to compare changes due to treatments and time, are detectable after 4 days of in vitro culture, representing the most suitable time point for analysis in preclinical screening. The combination of parameters suitable for evaluating PCLS morphology in vitro resulted to be Tissue Density and Septal Thickness. Shape Factor and Roughness, evaluated to highlight the increasing complexity of the airspaces, due to the formation of septal crests, gave useful information, however, without significant differences up to day 4. Other parameters like Mean Linear Intercept and Septal Density did not allow to highlight significant differences between different oxygen conditions and time points. Instead, Radial Alveolar Count, could not be applied to PCLS, due to the tissue changes following agar infusion and culture conditions.
Collapse
Affiliation(s)
- Luisa Ragionieri
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Enrica Scalera
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Largo Belloli, 11/A, 43122 Parma, Italy
| | - Matteo Zoboli
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Roberta Ciccimarra
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Giulia Petracco
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Largo Belloli, 11/A, 43122 Parma, Italy
| | - Ferdinando Gazza
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Antonio Cacchioli
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Matteo Storti
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Largo Belloli, 11/A, 43122 Parma, Italy
| | - Chiara Catozzi
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Largo Belloli, 11/A, 43122 Parma, Italy
| | - Francesca Ricci
- Corporate R&D Preclinical Department, Chiesi Farmaceutici S.p.A, Largo Belloli, 11/A, 43122 Parma, Italy
| | - Francesca Ravanetti
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
29
|
SIRT3 improves alveolar epithelial cell damage caused by bronchopulmonary dysplasia through deacetylation of FOXO1. Allergol Immunopathol (Madr) 2023; 51:191-204. [PMID: 36916106 DOI: 10.15586/aei.v51i2.710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a serious and long-term lung condition commonly observed in premature babies. Sirtuin 3 (SIRT3) has been reported to reduce pulmonary injury and pulmonary fibrosis. OBJECTIVE The present study investigated the specific role of SIRT3 in BPD by establishing hyperoxia-induced BPD rat and cell models. Hematoxylin and eosin staining was used to observe pathological changes in lung tissues. MATERIALS AND METHODS The expression levels of SIRT3 and forkhead box protein O1 (FOXO1), as well as its acetylation levels, were detected in hyperoxia-induced lung tissues and cells by Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Levels of reactive oxygen species, superoxide dismutase, and malondialdehyde were assessed by using biochemical kits. Following SIRT3 overexpression, the levels of inflammatory cytokines were assessed by RT-qPCR. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nickend labeling (TUNEL) and Western blot analysis. Upon FOXO1 knockout, cell inflammation, oxidative stress and apoptosis were evaluated again. RESULTS Compared to the control group, the SIRT3 and FOXO1 expression levels were decreased and the FOXO1 acetylation levels were increased in hyperoxia-induced lung tissues and cells. In addition, SIRT3 reduced hyperoxia-induced inflammation, oxidative stress, and apoptosis in A549 cells, and inhibited FOXO1 acetylation to activate FOXO1. However, FOXO1 knockdown reversed the effects of SIRT3 overexpression in hyperoxia-induced A549 cells. CONCLUSION SIRT3 relieved alveolar epithelial cell damage caused by BPD via deacetylation of FOXO1, suggesting that SIRT3 could be a therapeutic target in BPD.
Collapse
|
30
|
Green EA, Metz D, Galinsky R, Atkinson R, Skuza EM, Clark M, Gunn AJ, Kirkpatrick CM, Hunt RW, Berger PJ, Nold-Petry CA, Nold MF. Anakinra Pilot - a clinical trial to demonstrate safety, feasibility and pharmacokinetics of interleukin 1 receptor antagonist in preterm infants. Front Immunol 2022; 13:1022104. [PMID: 36389766 PMCID: PMC9647081 DOI: 10.3389/fimmu.2022.1022104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), its complication pulmonary hypertension (BPD-PH) and preterm brain and gut injury lead to significant morbidity and mortality in infants born extremely prematurely. There is extensive evidence that the pro-inflammatory cytokine interleukin 1 (IL-1) plays a key role in the pathophysiology of these illnesses. Two decades of clinical use in paediatric and adult medicine have established an excellent safety and efficacy record for IL-1 blockade with IL-1 receptor antagonist (IL-1Ra, medication name anakinra). Building on robust pre-clinical evidence, the Anakinra Pilot trial aims to demonstrate safety and feasibility of administering anakinra to preterm infants, and to establish pharmacokinetics in this population. Its ultimate goal is to facilitate large studies that will test whether anakinra can ameliorate early-life inflammation, thus alleviating multiple complications of prematurity. METHODS AND ANALYSIS Anakinra Pilot is an investigator-initiated, single arm, safety and feasibility dose-escalation trial in extremely preterm infants born between 24 weeks 0 days (240) and 276 weeks of gestational age (GA). Enrolled infants will receive anakinra intravenously over the first 21 days after birth, starting in the first 24 h after birth. In the first phase, dosing is 1 mg/kg every 48 h, and dosage will increase to 1.5 mg/kg every 24 h in the second phase. Initial anakinra dosing was determined through population pharmacokinetic model simulations. During the study, there will be a interim analysis to confirm predictions before undertaking dose assessment. Anakinra therapy will be considered safe if the frequency of adverse outcomes/events does not exceed that expected in infants born at 240-276 weeks GA. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/, identifier NCT05280340.
Collapse
Affiliation(s)
- Elys A. Green
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - David Metz
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Rebecka Atkinson
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Elizbeth M. Skuza
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Megan Clark
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
- Faculty of Pharmacy and Pharmaceutical Science, Monash University, Melbourne, VIC, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Carl M. Kirkpatrick
- Monash Institute for Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Rod W. Hunt
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Philip J. Berger
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Claudia A. Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Marcel F. Nold
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Phoenix KN, Yue Z, Yue L, Cronin CG, Liang BT, Hoeppner LH, Claffey KP. PLCβ2 Promotes VEGF-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2022; 42:1229-1241. [PMID: 35861069 PMCID: PMC9492642 DOI: 10.1161/atvbaha.122.317645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) β2. RESULTS Global knock-out of PLCβ2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCβ2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCβ2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCβ2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS The results implicate PLCβ2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCβ2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.
Collapse
Affiliation(s)
- Kathryn N. Phoenix
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Zhichao Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Lixia Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Chunxia G. Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Bruce T. Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Luke H. Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kevin P. Claffey
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
32
|
Manapurath RM, Kumar M, Pathak BG, Chowdhury R, Sinha B, Choudhary T, Chandola N, Mazumdar S, Taneja S, Bhandari N, Upadhyay RP. Enteral Low-Dose Vitamin A Supplementation in Preterm or Low Birth Weight Infants to Prevent Morbidity and Mortality: a Systematic Review and Meta-analysis. Pediatrics 2022; 150:188635. [PMID: 35921666 DOI: 10.1542/peds.2022-057092l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To assess effects of enteral "low" dose (daily doses of ≤10 000 international unit) vitamin A supplementation compared with no vitamin A supplementation in human milk-fed preterm and low birth weight (LBW) infants. DATA SOURCES Cochrane Central Register of Controlled Trials; Medline, Embase, Scopus, Web of Science, CINAHL from inception to 16 March 2021. STUDY SELECTION Randomized trials were screened. Primary outcomes were mortality, morbidity, growth, neurodevelopment. Secondary outcomes were feed intolerance and duration of hospitalization. We also assessed the dose and timing of vitamin A supplementation. Data were extracted and pooled with fixed and random-effects models. RESULTS Four trials including 800 very LBW <1.5 kg or <32 weeks' gestation infants were found. At latest follow-up, we found little or no effect on: mortality, sepsis, bronchopulmonary dysplasia, retinopathy of prematurity, duration of hospitalisation. However, we found a increased level of serum retinol mean difference of 4.7 μg/ml (95% CI 1.2 to 8.2, I2 =0.00%, one trial, 36 participants,). Evidence ranged from very low to moderate certainty. There were no outcomes reported for length, head circumference or neurodevelopment. LIMITATIONS Heterogeneity and small sample size in the included studies. CONCLUSIONS Low-dose vitamin A increased serum retinol concentration among very LBW and very preterm infants but had no effect on other outcomes. More trials are needed to assess effects on clinical outcomes and to assess effects in infants 1.5 to 2.4 kg or 32 to 26 weeks' gestation.
Collapse
Affiliation(s)
- Rukman M Manapurath
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Mohan Kumar
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Barsha Gadapani Pathak
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Ranadip Chowdhury
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India.,DBT/Wellcome India Alliance Clinical and Public Health Fellow, Hyderabad, India
| | - Bireshwar Sinha
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India.,DBT/Wellcome India Alliance Clinical and Public Health Fellow, Hyderabad, India
| | - Tarun Choudhary
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Naro Chandola
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Sarmila Mazumdar
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Sunita Taneja
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Nita Bhandari
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Ravi Prakash Upadhyay
- Center for Health Research and Development, Society for Applied Studies, New Delhi, India.,DBT/Wellcome India Alliance Clinical and Public Health Fellow, Hyderabad, India
| |
Collapse
|
33
|
LncRNA SNHG6 accelerates hyperoxia-induced lung cell injury via regulating miR-335 to activate KLF5/NF-κB pathway. Cytokine 2022; 157:155914. [PMID: 35809451 DOI: 10.1016/j.cyto.2022.155914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants, and its pathogenesis has not been clarified. Long non-coding RNAs (lncRNA) have important functions in cell bioactivity. However, their role in developmental lung disease remains unclear. OBJECTIVE The aim of this study was to demonstrate the role of lncRNA SNHG6 (SNHG6) in BPD and its underlying mechanisms. METHODS The blood of patients with BPD were collected, and BPD model of BEAS-2B cells was established by hyperoxia method. SNHG6, miR-335 and KLF5 mRNA expression were detected by RT-qPCR. Western blot was conducted to measure the levels of apoptosis-related proteins' expression and NF-κB pathway related proteins. BEAS-2B cell viability and apoptosis were assessed by CCK-8 and flow cytometry, respectively. Assay Kit was applied to detect ROS, MDA and SOD levels, respectively. ELISA was performed to assess the levels of inflammatory factors. The binding site of miR-335 with SNHG6 or KLF5 were predicted by using DIANA or TargetScan, and which was verified by double luciferase reporter assay. RESULTS Firstly, SNHG6 was highly expressed and miR-335 was lowly expressed in BPD model, SNHG6 knockdown and miR-335 mimics both alleviated hyperoxia-induced lung cell injury, and SNHG6 targeted miR-335. Subsequently, KLF5 was targeted by miR-335, and KLF5 promoted lung cell injury via activating NF-κB pathway. Furthermore, SNHG6 mediated lung cell injury via regulating the miR-335/KLF5/NF-κB pathway. CONCLUSION Our research confirmed that SNHG6 mediated hyperoxia-induced lung cell injury via regulating the miR-335/KLF5/NF-κB pathway. These findings suggest that SNHG6 serves as promising targets for the treatment of newborns with BPD.
Collapse
|
34
|
Strashun S, Seliga-Siwecka J, Chioma R, Zielińska K, Włodarczyk K, Villamor E, Philip RK, Assaf NA, Pierro M. Steroid use for established bronchopulmonary dysplasia: study protocol for a systematic review and meta-analysis. BMJ Open 2022; 12:e059553. [PMID: 35705335 PMCID: PMC9204409 DOI: 10.1136/bmjopen-2021-059553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Postnatal steroids during the first few weeks of life have been demonstrated to be effective in decreasing the incidence of bronchopulmonary dysplasia (BPD), a serious chronic respiratory condition affecting preterm infants. However, this preventive option is limited by the concern of neurological side effects. Steroids are used to treat established BPD in an attempt to reduce mortality, and length of stay and home oxygen therapy, both of which associated with high levels of parental stress and healthcare costs. Moreover, a late timing for steroid treatment may show a more favourable safety profile in terms of neurodevelopment outcomes, considering the added postnatal brain maturation of these infants. Here, we report a protocol for a systematic review, which aims to determine the efficacy and long-term safety of postnatal steroids for the treatment of established BPD in preterm infants. METHODS AND ANALYSIS MEDLINE, Embase, Cochrane databases and sources of grey literature for conference abstracts and trial registrations will be searched with no time or language restriction. We will include case-control studies, cohort studies and non-randomised or randomised trials that evaluate postnatal steroids for infants diagnosed with moderate or severe established BPD at 36 weeks' postmenstrual age. We will pool data from studies that are sufficiently similar to make this appropriate. Data extraction forms will be developed a priori. Observational studies and non-randomised and randomised clinical trials will be analysed separately. We will combine OR with 95% CI for dichotomous outcomes and the mean difference (95% CI) for continuous outcomes. We will account for the expected heterogeneity by using a random-effects model. We will perform subgroup analysis based on the a priori determined covariate of interest. ETHICS AND DISSEMINATION Systematic reviews are exempted from approval by an ethics committee. Attempts will be sought to publish all results. PROSPERO REGISTRATION NUMBER CRD42021218881.
Collapse
Affiliation(s)
- Sabina Strashun
- University of Limerick Graduate Entry Medical School, Limerick, Ireland
| | - Joanna Seliga-Siwecka
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warszawa, Poland
| | - Roberto Chioma
- Dipartimento di Scienze Mediche e Chirurgiche, Policlinico Universitario Agostino Gemelli, Roma, Italy
| | - Kinga Zielińska
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warszawa, Poland
| | | | - Eduardo Villamor
- Department of Pediatrics, Maastricht UMC+, Maastricht, The Netherlands
| | - Roy K Philip
- University Maternity Hospital Limerick, University of Limerick Graduate Entry Medical School, Limerick, Ireland
| | - Niazy Al Assaf
- University Maternity Hospital Limerick, University of Limerick Graduate Entry Medical School, Limerick, Ireland
| | | |
Collapse
|
35
|
Lee CH, Lee MS, Yang RC, Hsu CS, Su TC, Chang PS, Lin PT, Kao JK. Using a neonatal rat model to explore the therapeutic potential of coenzyme Q10 in prematurity under hyperoxia. ENVIRONMENTAL TOXICOLOGY 2022; 37:1472-1482. [PMID: 35212449 DOI: 10.1002/tox.23499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Hyperoxia, is often used in preterm supportive care, leading to high oxygen exposure in neonates. Coenzyme Q10 (CoQ10) is a free radical scavenger that has been studied in older children but never be investigated for its role in preterm care. We hypothesize that the administration of exogenous CoQ10 would raise serum concentrations of CoQ10 and mitigate the adverse effects of hyperoxia on the organs by reducing oxygen-free radicals and inflammation. The aim of this study was to evaluate the effects of oxidative stress, inflammatory response, and survival in neonatal rats after CoQ10 treatment. Neonatal rats delivered from four pregnant Wistar rats were randomly divided into four groups: (a) control, (b) CoQ10, (c) hyperoxia (O2 group), and (d) treatment (CoQ10 + O2 ) groups. The dose of CoQ10 injected was 30 mg/kg. The CoQ9, CoQ10, cytokines, oxidative stress, and antioxidant enzyme activity were measured. Tissue samples were histologically examined and mortality was monitored for 16 days. The level of CoQ9 significantly increased in the liver, kidney, and plasma, while the level of CoQ10 significantly increased in most organ tissues in the CoQ10 + O2 group. Additionally, CoQ10 decrease oxidative stress in the liver, increase antioxidant enzyme activity in the heart, kidney, and brain, and reverse an inclined level of hematopoietic growth factors. However, CoQ10 had no effect on inflammation, organ damage, or mortality. Therefore, the use of CoQ10 in potential adjuvant therapy for neonatal hyperoxia requires further research.
Collapse
Affiliation(s)
- Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
36
|
Fan T, Lu L, Jin R, Sui A, Guan R, Cui F, Qu Z, Liu D. Change of intestinal microbiota in mice model of bronchopulmonary dysplasia. PeerJ 2022; 10:e13295. [PMID: 35469197 PMCID: PMC9034698 DOI: 10.7717/peerj.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gut microbiota has been proposed to be related to the pathogenesis of pulmonary diseases such as asthma and lung cancer, according to the gut-lung axis. However, little is known about the roles of gut microbiota in the pathogenesis of bronchopulmonary dysplasia (BPD). This study was designed to investigate the changes of gut microbiota in neonatal mice with BPD. Methods BPD model was induced through exposure to high concentration of oxygen. Hematoxylin and eosin (H&E) staining was utilized to determine the modeling efficiency. Stool samples were collected from the distal colon for the sequencing of V3-V4 regions of 16S rRNA, in order to analyze the gut microbiota diversity. Results Alpha diversity indicated that there were no statistical differences in the richness of gut microbiota between BPD model group and control group on day 7, 14 and 21. Beta diversity analysis showed that there were statistical differences in the gut microbiota on day 14 (R = 0.368, p = 0.021). Linear discriminant analysis effect size (LEfSe) showed that there were 22 markers with statistical differences on day 14 (p < 0.05), while those on day 7 and 21 were 3 and 4, respectively. Functional prediction analysis showed that the top three metabolic pathways were signal transduction (PFDR = 0.037), glycan biosynthesis and metabolism (PFDR = 0.032), and metabolism of terpenoids and polyketides (PFDR = 0.049). Conclusions BPD mice showed disorder of gut microbiota, which may involve specific metabolic pathways in the early stage. With the progression of neonatal maturity, the differences of the gut microbiota between the two groups would gradually disappear.
Collapse
Affiliation(s)
- Tianqun Fan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Lu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rong Jin
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aihua Sui
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Renzheng Guan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengjing Cui
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongyun Liu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Campion S, Inselman A, Hayes B, Casiraghi C, Joseph D, Facchinetti F, Salomone F, Schmitt G, Hui J, Davis-Bruno K, Van Malderen K, Morford L, De Schaepdrijver L, Wiesner L, Kourula S, Seo S, Laffan S, Urmaliya V, Chen C. The benefits, limitations and opportunities of preclinical models for neonatal drug development. Dis Model Mech 2022; 15:dmm049065. [PMID: 35466995 PMCID: PMC9066504 DOI: 10.1242/dmm.049065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.
Collapse
Affiliation(s)
- Sarah Campion
- Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA
| | - Amy Inselman
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR 72079, USA
| | - Belinda Hayes
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Costanza Casiraghi
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - David Joseph
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Georg Schmitt
- Pharma Research and Early Development, Roche Innovation Center Basel, Pharmaceutical Sciences, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julia Hui
- Bristol Myers Squibb, Nonclinical Research and Development, Summit, NJ 07901, USA
| | - Karen Davis-Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Karen Van Malderen
- Federal Agency for Medicines and Health Products (FAMHP), Department DG PRE authorization, 1210 Brussels, Belgium
| | - LaRonda Morford
- Eli Lilly, Global Regulatory Affairs, Indianapolis, IN 46285, USA
| | | | - Lutz Wiesner
- Federal Institute for Drugs and Medical Devices, Clinical Trials, 53175 Bonn, Germany
| | - Stephanie Kourula
- Janssen R&D, Drug Metabolism & Pharmacokinetics, 2340 Beerse, Belgium
| | - Suna Seo
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Susan Laffan
- GlaxoSmithKline, Non-Clinical Safety, Collegeville, PA 19406, USA
| | | | - Connie Chen
- Health and Environmental Sciences Institute, Washington, DC 20005, USA
| |
Collapse
|
38
|
Jin R, Gao Q, Yin C, Zou M, Lu K, Liu W, Zhu Y, Zhang M, Cheng R. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. J Transl Med 2022; 102:794-804. [PMID: 35306530 PMCID: PMC9309096 DOI: 10.1038/s41374-022-00773-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 11/09/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common challenge in preterm neonates. Retardation of alveolar development characterizes the pulmonary pathology in BPD. In the present study, we explored the roles of the CD146-HIF-1α axis in BPD. We demonstrated that the levels of reactive oxygen species (ROS) and soluble CD146 (sCD1146) were increased in the peripheral blood of preterm neonates with BPD. In alveolar epithelial cells, hyperoxia promoted the expression of HIF-1α and CD146, which reinforced each other. In a mouse model of BPD, by exposing pups to 65% hyperoxia, HIF-1α and CD146 were increased in the pulmonary tissues. Mechanistically, CD146 hindered the migration of alveolar epithelial cells; in contrast, movement was significantly enhanced in CD146-knockout alveolar epithelial cells. As expected, CD146-knockout ameliorated alveolarization and improved BPD disease severity. Taken together, our findings imply that the CD146-HIF-1α axis contributes to alveolarization and that CD146 may be a novel candidate in BPD therapy.
Collapse
Affiliation(s)
- Rui Jin
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China ,Department of Neonatal Medical Center, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| | - Qianqian Gao
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyu Yin
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengjia Zou
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Keyu Lu
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- grid.89957.3a0000 0000 9255 8984Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yuting Zhu
- Department of Neonatology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, China. .,NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Rui Cheng
- Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Zhong Y, Zhang Z, Chen X. Inhibition of miR-21 improves pulmonary vascular responses in bronchopulmonary dysplasia by targeting the DDAH1/ADMA/NO pathway. Open Med (Wars) 2022; 17:1949-1964. [PMID: 36561848 PMCID: PMC9743197 DOI: 10.1515/med-2022-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
miR-21 has been confirmed to be overexpressed in neonatal rat lungs with hyperoxia-mediated bronchopulmonary dysplasia (BPD). The specific function of miR-21 in BPD is still unclear. We established the hyperoxia-induced BPD rat model in vivo and the hyperoxia-induced pulmonary microvascular endothelial cells (PMVECs) model in vitro. Transwell assay was utilized to detect the migratory capability of PMVECs. Tube formation assay was utilized to measure angiogenesis ability. ELISA was utilized to test nitric oxide (NO) production and the intracellular and extracellular Asymmetric Dimethylarginine (ADMA) concentration. Furthermore, the interaction between miR-21 and dimethylarginine dimethylaminohydrolase 1 (DDAH1) was evaluated using luciferase reporter assay. We found that miR-21 expression in PMVECs was increased by hyperoxia stimulation. Inhibition of miR-21 improved the migratory and angiogenic activities of PMVECs and overexpression of miR-21 exerted the opposite effects. Furthermore, knockdown of miR-21 increased NO production and decreased intracellular and extracellular ADMA concentration in hyperoxia-treated PMVECs. Next we proved that miR-21 could bind to DDAH1 and negatively regulate its expression. Rescues assays showed that DDAH1 knockdown reversed the effects of miR-21 depletion on hyperoxia-mediated PMVEC functions, NO production, and ADMA concentration. Importantly, miR-21 downregulation restored alveolarization and vascular density in BPD rats. This study demonstrates that inhibition of miR-21 improves pulmonary vascular responses in BPD by targeting the DDAH1/ADMA/NO pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210036, Jiangsu, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, Jiangsu, China
| |
Collapse
|