1
|
Bar E, Fischer I, Rokach M, Elad-Sfadia G, Shirenova S, Ophir O, Trangle SS, Okun E, Barak B. Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome. Glia 2024; 72:1117-1135. [PMID: 38450767 DOI: 10.1002/glia.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.
Collapse
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Cyto-Genotoxic and Transcriptomic Alterations in Human Liver Cells by Tris (2-Ethylhexyl) Phosphate (TEHP): A Putative Hepatocarcinogen. Int J Mol Sci 2022; 23:ijms23073998. [PMID: 35409358 PMCID: PMC8999606 DOI: 10.3390/ijms23073998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.68%, 49.83%, 58.91% and 29.08%, 47.7% and 57.90%, measured by MTT and NRU assays. TEHP did not induce cytotoxicity at lower concentrations (5, 10, 25, 50 µM) after 24 h and 48 h of exposure. Flow cytometric analysis of TEHP-treated cells elevated intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca++ influx and esterase levels, leading to mitochondrial dysfunction (ΔΨm). DNA damage analysis by comet assay showed 4.67, 9.35, 13.78-fold greater OTM values in TEHP (100, 200, 400 µM)-treated cells. Cell cycle analysis exhibited 23.1%, 29.6%, and 50.8% of cells in SubG1 apoptotic phase after TEHP (100, 200 and 400 μM) treatment. Immunofluorescence data affirmed the activation of P53, caspase 3 and 9 proteins in TEHP-treated cells. In qPCR array of 84 genes, HepG2 cells treated with TEHP (100 µM, 72 h) upregulated 10 genes and downregulated 4 genes belonging to a human cancer pathway. Our novel data categorically indicate that TEHP is an oxidative stressor and carcinogenic entity, which exaggerates mitochondrial functions to induce cyto- and genotoxicity and cell death, implying its hepatotoxic features.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
- Correspondence: or ; Tel.: +966-114-675-768
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Maqsood A. Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Sabiha M. Ansari
- Botany and Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| |
Collapse
|
3
|
Guibon J, Sugier PE, Kulkarni O, Karimi M, Bacq-Daian D, Besse C, Boland A, Adjadj E, Rachédi F, Rubino C, Xhaard C, Mulot C, Laurent-Puig P, Guizard AV, Schvartz C, Ortiz RM, Ren Y, Ostroumova E, Deleuze JF, Boutron-Ruault MC, Kesminiene A, De Vathaire F, Guénel P, Lesueur F, Truong T. Fine-mapping of two differentiated thyroid carcinoma susceptibility loci at 2q35 and 8p12 in Europeans, Melanesians and Polynesians. Oncotarget 2021; 12:493-506. [PMID: 33747362 PMCID: PMC7939525 DOI: 10.18632/oncotarget.27888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Differentiated thyroid carcinoma (DTC) incidence is characterized by wide ethnic and geographic variations, with high incidence rates observed in Oceanian populations. Genome-wide association studies (GWAS) identified mainly four DTC susceptibility loci at 9q22.33, 14q13.3, 2q35 and 8p12. Here we performed fine-mapping of the 2q35 and 8p12 loci in the population of the EPITHYR consortium that includes Europeans, Melanesians and Polynesians to identify likely causal variants for DTC risk. We conducted a colocalization analysis using eQTLs data to determine the SNPs with the highest probability of causality. At 2q35, we highlighted rs16857609 located in DIRC3. This SNP has a high probability of causality in the three populations, and a significant association in Europeans (OR = 1.4, p = 1.9 x 10-10). It is also associated with expression of DIRC3 and of the nearby gene IGFBP5 in thyroid tumour cells. At 8p12, we identified rs7844425 which was significantly associated with DTC in Europeans (OR = 1.32, p = 7.6 x 10-8) and rs2439304, which was highlighted by the colocalization analysis but only moderately associated with DTC in our dataset (OR = 1.2, p = 0.001). These SNPs are linked to the expression of NRG1 in thyroid tissue. Hence, our study identified novel variants at 2q35 and 8p12 to be prioritized for further functional studies.
Collapse
Affiliation(s)
- Julie Guibon
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Pierre-Emmanuel Sugier
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
| | - Om Kulkarni
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Mojgan Karimi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
| | - Delphine Bacq-Daian
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Céline Besse
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Elisabeth Adjadj
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | - Frédérique Rachédi
- Endocrinology Unit, Territorial Hospital Taaone, Papeete, French Polynesia
| | - Carole Rubino
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | - Constance Xhaard
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
- University of Lorraine, INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, Nancy, France
| | - Claire Mulot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, EPIGENETEC, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, EPIGENETEC, Paris, France
| | - Anne-Valérie Guizard
- Registre Général des Tumeurs du Calvados, Centre François Baclesse, Caen, France
- Inserm U1086 -UCN "ANTICIPE", Caen, France
| | - Claire Schvartz
- Registre des Cancers Thyroïdiens, Institut Godinot, Reims, France
| | | | - Yan Ren
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | | | - Jean-François Deleuze
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | | | | | - Florent De Vathaire
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | - Pascal Guénel
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
- These authors contributed equally to this work
| | - Thérèse Truong
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
- These authors contributed equally to this work
| |
Collapse
|
4
|
Tris(2-chloroethyl) Phosphate (TCEP) Elicits Hepatotoxicity by Activating Human Cancer Pathway Genes in HepG2 Cells. TOXICS 2020; 8:toxics8040109. [PMID: 33233533 PMCID: PMC7712049 DOI: 10.3390/toxics8040109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is one of the organophosphorus flame retardants (OPFRs) used in consumer commodities and have been detected in human body fluids. Research on TCEP-induced transcriptomic alterations and toxicological consequences in liver cells is still lacking. Herein, human hepatocellular (HepG2) cells were treated with 100, 200, and 400 μM TCEP for 3 days to quantify hepatotoxicity by MTT, NRU, and comet assays. Apoptosis, mitochondrial membrane potential (ΔΨm), oxidative stress, and Ca2+ influx were measured by flow cytometry. A qPCR array was employed for transcriptomic analysis. MTT and NRU data showed 70.92% and 75.57% reduction in cell survival at 400 μM. In addition, 20-fold greater DNA damage was recorded at 400 μM. Cell cycle data showed 65.96% subG1 apoptotic peak in 400 μM treated cells. An elevated level of oxidative stress, esterase, Ca2+ influx, and ΔΨm dysfunction were recorded in TCEP-treated cells. Out of 84 genes, the qPCR array showed upregulation of 17 genes and downregulation of 10 key genes belonging to human cancer pathways. Our study endorses the fact that TCEP possesses hepatotoxic potential at higher concentrations and prolonged exposure. Hence, TCEP may act as a cancer-inducing entity by provoking the gene network of human cancer pathways.
Collapse
|
5
|
Guan D, Landi V, Luigi-Sierra MG, Delgado JV, Such X, Castelló A, Cabrera B, Mármol-Sánchez E, Fernández-Alvarez J, de la Torre Casañas JLR, Martínez A, Jordana J, Amills M. Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. J Anim Sci Biotechnol 2020; 11:35. [PMID: 32175082 PMCID: PMC7065321 DOI: 10.1186/s40104-020-00435-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background In this study, we aimed to investigate the molecular basis of lactation as well as to identify the genetic factors that influence milk yield and composition in goats. To achieve these two goals, we have analyzed how the mRNA profile of the mammary gland changes in seven Murciano-Granadina goats at each of three different time points, i.e. 78 d (T1, early lactation), 216 d (T2, late lactation) and 285 d (T3, dry period) after parturition. Moreover, we have performed a genome-wide association study (GWAS) for seven dairy traits recorded in the 1st lactation of 822 Murciano-Granadina goats. Results The expression profiles of the mammary gland in the early (T1) and late (T2) lactation were quite similar (42 differentially expressed genes), while strong transcriptomic differences (more than one thousand differentially expressed genes) were observed between the lactating (T1/T2) and non-lactating (T3) mammary glands. A large number of differentially expressed genes were involved in pathways related with the biosynthesis of amino acids, cholesterol, triglycerides and steroids as well as with glycerophospholipid metabolism, adipocytokine signaling, lipid binding, regulation of ion transmembrane transport, calcium ion binding, metalloendopeptidase activity and complement and coagulation cascades. With regard to the second goal of the study, the performance of the GWAS allowed us to detect 24 quantitative trait loci (QTLs), including three genome-wide significant associations: QTL1 (chromosome 2, 130.72-131.01 Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-93.48 Mb) for protein percentage and QTL17 (chromosome 17, 11.20 Mb) for both protein and dry matter percentages. Interestingly, QTL6 shows positional coincidence with the casein genes, which encode 80% of milk proteins. Conclusions The abrogation of lactation involves dramatic changes in the expression of genes participating in a broad array of physiological processes such as protein, lipid and carbohydrate metabolism, calcium homeostasis, cell death and tissue remodeling, as well as immunity. We also conclude that genetic variation at the casein genes has a major impact on the milk protein content of Murciano-Granadina goats.
Collapse
Affiliation(s)
- Dailu Guan
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vincenzo Landi
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Gracia Luigi-Sierra
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Xavier Such
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Castelló
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Betlem Cabrera
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier Fernández-Alvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340 Granada, Spain
| | | | - Amparo Martínez
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Jordi Jordana
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
6
|
Al-Salem AM, Saquib Q, Siddiqui MA, Ahmad J, Wahab R, Al-Khedhairy AA. Organophosphorus flame retardant (tricresyl phosphate) trigger apoptosis in HepG2 cells: Transcriptomic evidence on activation of human cancer pathways. CHEMOSPHERE 2019; 237:124519. [PMID: 31549646 DOI: 10.1016/j.chemosphere.2019.124519] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Tricresyl phosphate (TCP) is one of the organophosphorus flame retardants (OPFRs) used as plasticizer in consumer products and mixed as a lubricant in commercial jet engine oil, reportedly induce neurotoxicity and aerodynamic syndrome. No studies have been attempted so far on TCP to induce hepatotoxicity in human cells. This study for the first time confirms the hepatotoxic potential and activation of cancer pathways in TCP treated human hepatocellular cells (HepG2). MTT and NRU data showed 39.3% and 49.85% decline in HepG2 survival when exposed to the highest concentration of TCP (400 μM) for 3 days. Comet assay showed 27.1-fold greater DNA damage in cells treated with TCP (400 μM). Flow cytometric analysis revealed an upsurge in the intracellular reactive oxygen species (ROS) and nitric oxide (NO) production in cells, affirming oxidative stress. TCP (400 μM) exposure resulted in 27% reduction in Rh123 fluorescence, indicating dysfunction of mitochondrial membrane potential (ΔΨm). Cell cycle analysis exhibited 62.53% cells in the subG1 apoptotic phase after TCP (400 μM) treatment, also a massive increase in Ca2+ influx validate the on-set of apoptosis in cells. Immunofluorescence of TCP exposed cells showed activation of p53, caspase3, caspase9 reaffirming the involvement of mitochondrial-dependent intrinsic apoptotic signaling. qPCR array of 84 genes unravel the transcriptomic alterations in HepG2 cells after TCP treatment. mRNA transcripts of ATP5A1, GADD45A, IGFBP5, SOD1, STMN1 genes were prominently upregulated providing candid evidence on TCP mediated activation of human cancer pathways to orchestrate the apoptotic death of HepG2 cells, specifying hepatotoxic potential of TCP.
Collapse
Affiliation(s)
- Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Maqsood A Siddiqui
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Javed Ahmad
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rizwan Wahab
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Kim N, Yu L, Dawe R, Petyuk VA, Gaiteri C, De Jager PL, Schneider JA, Arfanakis K, Bennett DA. Microstructural changes in the brain mediate the association of AK4, IGFBP5, HSPB2, and ITPK1 with cognitive decline. Neurobiol Aging 2019; 84:17-25. [PMID: 31479860 DOI: 10.1016/j.neurobiolaging.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
The associations of 4 proteins-AK4, ITPK1, HSPB2, and IGFBP5-with cognitive function in older adults were largely unexplained by known brain pathologies. We examined the extent to which individual protein associations with cognitive decline were attributable to microstructural changes in the brain. This study included 521 participants (mean age 90.3, 65.9-108.3) with the postmortem reciprocal of transverse relaxation time (R2) magnetic resonance image. All participants came from one of the 2 ongoing longitudinal cohorts of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project. Higher abundance of AK4, HSPB2, and IGFBP5 was associated with faster cognitive decline and mediated through lower postmortem R2 in the frontal and temporal white matter regions. In contrast, higher abundance of ITPK1 was associated with slower cognitive decline and mediated through higher postmortem R2 in the frontal and temporal white matter regions. The associations of 4 proteins-AK4, ITPK1, IGFBP5, and HSPB2-with cognition in late life were explained via microstructural changes in the brain.
Collapse
Affiliation(s)
- Namhee Kim
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert Dawe
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Hada M, Oh H, Pfeiffer RM, Falk RT, Fan S, Mullooly M, Pollak M, Geller B, Vacek PM, Weaver D, Shepherd J, Wang J, Fan B, Mahmoudzadeh AP, Malkov S, Herschorn S, Brinton LA, Sherman ME, Gierach GL. Relationship of circulating insulin-like growth factor-I and binding proteins 1-7 with mammographic density among women undergoing image-guided diagnostic breast biopsy. Breast Cancer Res 2019; 21:81. [PMID: 31337427 PMCID: PMC6651938 DOI: 10.1186/s13058-019-1162-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic density (MD) is a strong breast cancer risk factor that reflects fibroglandular and adipose tissue composition, but its biologic underpinnings are poorly understood. Insulin-like growth factor binding proteins (IGFBPs) are markers that may be associated with MD given their hypothesized role in breast carcinogenesis. IGFBPs sequester IGF-I, limiting its bioavailability. Prior studies have found positive associations between circulating IGF-I and the IGF-I:IGFBP-3 ratio and breast cancer risk. We evaluated the associations of IGF-I, IGFBP-3, and six other IGFBPs with MD. Methods Serum IGF measures were quantified in 296 women, ages 40–65, undergoing diagnostic image-guided breast biopsy. Volumetric density measures (MD-V) were assessed in pre-biopsy digital mammograms using single X-ray absorptiometry. Area density measures (MD-A) were estimated by computer-assisted thresholding software. Age, body mass index (BMI), and BMI2-adjusted linear regression models were used to examine associations of serum IGF measures with MD. Effect modification by BMI was also assessed. Results IGF-I and IGFBP-3 were not strongly associated with MD after BMI adjustment. In multivariable analyses among premenopausal women, IGFBP-2 was positively associated with both percent MD-V (β = 1.49, p value = 0.02) and MD-A (β = 1.55, p value = 0.05). Among postmenopausal women, positive relationships between IGFBP-2 and percent MD-V (β = 2.04, p = 0.003) were observed; the positive associations between IGFBP-2 and percent MD-V were stronger among lean women (BMI < 25 kg/m2) (β = 5.32, p = 0.0002; p interaction = 0.0003). Conclusions In this comprehensive study of IGFBPs and MD, we observed a novel positive association between IGFBP-2 and MD, particularly among women with lower BMI. In concert with in vitro studies suggesting a dual role of IGFBP-2 on breast tissue, promoting cell proliferation as well as inhibiting tumorigenesis, our findings suggest that further studies assessing the role of IGFBP-2 in breast tissue composition, in addition to IGF-1 and IGFBP-3, are warranted. Electronic supplementary material The online version of this article (10.1186/s13058-019-1162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manila Hada
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hannah Oh
- Division of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Ruth M Pfeiffer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roni T Falk
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shaoqi Fan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Berta Geller
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Pamela M Vacek
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Donald Weaver
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | | | - Jeff Wang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Bo Fan
- University of California San Francisco, San Francisco, CA, USA
| | | | - Serghei Malkov
- University of California San Francisco, San Francisco, CA, USA
| | - Sally Herschorn
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Louise A Brinton
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gretchen L Gierach
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Zhao X, Ponchon B, Lanctôt S, Lacasse P. Invited review: Accelerating mammary gland involution after drying-off in dairy cattle. J Dairy Sci 2019; 102:6701-6717. [PMID: 31202662 DOI: 10.3168/jds.2019-16377] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/22/2019] [Indexed: 01/20/2023]
Abstract
Bovine mammary gland involution, as a part of the reproductive cycle in dairy cows, is a very important remodeling transformation of the mammary gland for the subsequent lactation. There is considerable incentive to accelerate mammary gland involution to improve udder health, shorten the dry period, and simplify the management process by reducing dietary changes. The complex process of mammary involution is characterized by morphological changes in the epithelial cells and mammary tissue, changes in the composition of mammary secretions, and changes in the integrity of tight junctions. Involution is facilitated by elements of the immune system and several types of proteases and is coordinated by various types of hormones. This review first describes the involution process and then argues for the need to accelerate it. Last, this review focuses on various intervention methods for accelerating involution. Our aim is to provide a comprehensive overview of bovine mammary gland involution as well as potential techniques and new opinions for dry cow management.
Collapse
Affiliation(s)
- X Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9.
| | - B Ponchon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - S Lanctôt
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - P Lacasse
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| |
Collapse
|
10
|
Wang D, Cai J, Zhao F, Liu J. Low-quality rice straw forage increases the permeability of mammary epithelial tight junctions in lactating dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2037-2041. [PMID: 30142692 DOI: 10.1002/jsfa.9330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is known that milking frequency and plasma hormones play important roles in regulating mammary permeability. However, it is still not known whether nutritional factors can influence udder permeability. DESIGN This study was conducted to investigate mammary epithelial tight-junction permeability in lactating dairy cows fed different forage-based diets. Twenty mid-lactating dairy cows were allocated to ten blocks based on their parity and milk yield and then randomly assigned into rice straw-based diet and alfalfa-based diet groups. Both diets contained 15% corn silage and 55% concentrate (dry matter basis). In terms of forage sources, rice straw-based diets (RS) contained 30% rice straw, whereas alfalfa-based diets (AH) contained 23% alfalfa hay plus 7% Chinese wild rye hay. RESULTS The concentrations of Na+ , Na+ /K+ ratio, bovine serum albumin, and plasmin in the milk, the plasma lactose concentration, and the mRNA abundance of BCL2 associated agonist of cell death, phosphatase and tensin homolog, and insulin like growth factor binding protein 5 in the mammary gland were greater in RS-fed cows than in AH-fed animals. Mammary expression of proliferating cell nuclear antigen and occludin was lower in RS-fed cows compared with the AH-fed group. The expressions of growth hormone receptor, claudin-1, -3, -4, and ZO-1 were similar in the two diet groups. CONCLUSION The cows fed RS showed higher mammary alveolar permeability, likely due to its effect on proliferation/apoptosis rates of mammary epithelial cells. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diming Wang
- MoE Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jie Cai
- MoE Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Fengqi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
11
|
Yu L, Petyuk VA, Gaiteri C, Mostafavi S, Young-Pearse T, Shah RC, Buchman AS, Schneider JA, Piehowski PD, Sontag RL, Fillmore TL, Shi T, Smith RD, De Jager PL, Bennett DA. Targeted brain proteomics uncover multiple pathways to Alzheimer's dementia. Ann Neurol 2018; 84:78-88. [PMID: 29908079 PMCID: PMC6119500 DOI: 10.1002/ana.25266] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Previous gene expression analysis identified a network of coexpressed genes that is associated with β-amyloid neuropathology and cognitive decline in older adults. The current work targeted influential genes in this network with quantitative proteomics to identify potential novel therapeutic targets. METHODS Data came from 834 community-based older persons who were followed annually, died, and underwent brain autopsy. Uniform structured postmortem evaluations assessed the burden of β-amyloid and other common age-related neuropathologies. Selected reaction monitoring quantified cortical protein abundance of 12 genes prioritized from a molecular network of aging human brain that is implicated in Alzheimer's dementia. Regression and linear mixed models examined the protein associations with β-amyloid load and other neuropathological indices as well as cognitive decline over multiple years preceding death. RESULTS Average age at death was 88.6 years. Overall, 349 participants (41.9%) had Alzheimer's dementia at death. A higher level of PLXNB1 abundance was associated with more β-amyloid load (p = 1.0 × 10-7 ) and higher PHFtau tangle density (p = 2.3 × 10-7 ), and the association of PLXNB1 with cognitive decline is mediated by these known Alzheimer's disease pathologies. On the other hand, higher IGFBP5, HSPB2, and AK4 and lower ITPK1 levels were associated with faster cognitive decline, and, unlike PLXNB1, these associations were not fully explained by common neuropathological indices, suggesting novel mechanisms leading to cognitive decline. INTERPRETATION Using targeted proteomics, this work identified cortical proteins involved in Alzheimer's dementia and begins to dissect two different molecular pathways: one affecting β-amyloid deposition and another affecting resilience without a known pathological footprint. Ann Neurol 2018;83:78-88.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - Chris Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sara Mostafavi
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Tracy Young-Pearse
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA
| | - Raj C. Shah
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Department of Family Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | | | - Ryan L. Sontag
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Tujin Shi
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA,Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
12
|
Wyszynski A, Hong CC, Lam K, Michailidou K, Lytle C, Yao S, Zhang Y, Bolla MK, Wang Q, Dennis J, Hopper JL, Southey MC, Schmidt MK, Broeks A, Muir K, Lophatananon A, Fasching PA, Beckmann MW, Peto J, Dos-Santos-Silva I, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Nordestgaard BG, González-Neira A, Benitez J, Neuhausen SL, Brenner H, Dieffenbach AK, Meindl A, Schmutzler RK, Brauch H, Nevanlinna H, Khan S, Matsuo K, Ito H, Dörk T, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Wu AH, Van Den Berg D, Lambrechts D, Wildiers H, Chang-Claude J, Rudolph A, Radice P, Peterlongo P, Couch FJ, Olson JE, Giles GG, Milne RL, Haiman CA, Henderson BE, Dumont M, Teo SH, Wong TY, Kristensen V, Zheng W, Long J, Winqvist R, Pylkäs K, Andrulis IL, Knight JA, Devilee P, Seynaeve C, García-Closas M, Figueroa J, Klevebring D, Czene K, Hooning MJ, van den Ouweland AMW, Darabi H, Shu XO, Gao YT, Cox A, Blot W, Signorello LB, Shah M, Kang D, Choi JY, Hartman M, Miao H, Hamann U, Jakubowska A, Lubinski J, Sangrajrang S, McKay J, Toland AE, Yannoukakos D, Shen CY, Wu PE, Swerdlow A, Orr N, Simard J, Pharoah PDP, Dunning AM, Chenevix-Trench G, Hall P, Bandera E, Amos C, Ambrosone C, Easton DF, Cole MD. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet 2016; 25:3863-3876. [PMID: 27402876 PMCID: PMC5216618 DOI: 10.1093/hmg/ddw223] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/11/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following oestrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR = 0.68 95%CI 0.55-0.83, P = 0.0002; replication OR = 0.77 95% CI 0.73-0.82, P = 2.1 × 10-19) and identify 13 additional linked variants (r2 > 0.8) in the 20Kb linkage block containing the enCNV (P = 3.2 × 10-15 - 5.6 × 10-17). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5.
Collapse
Affiliation(s)
- Asaf Wyszynski
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Christian Lytle
- Molecular Biology Core Facility, Dartmouth College, Hanover, NH 03755 USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, 1066 CX Amsterdam, The Netherlands
| | - Annegien Broeks
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, OX3 7BN, UK
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical school, Warwick University, Coventry, CV4 7AL, UK
- Institute of Population Health, University of Manchester, Manchester, M13 9PL, UK
| | - Artitaya Lophatananon
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Matthias W Beckmann
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Elinor J Sawyer
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, OX3 7BN, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, 94807 Villejuif, France
- University Paris-Sud, UMRS 1018, 94807 Villejuif, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, 94807 Villejuif, France
- University Paris-Sud, UMRS 1018, 94807 Villejuif, France
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Børge G Nordestgaard
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, 81675 Munich, Germany
| | - Rita K Schmutzler
- Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, 50931 Cologne, Germany
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Integrated Oncology (CIO), University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, FI-70211 Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, FI-70211 Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Hans Wildiers
- Multidisciplinary Breast Center, Department of General Medical Oncology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Martine Dumont
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, QC, G1V 4G2, Canada
| | - Soo Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, 47500 Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre (UMMC), 59100 Kuala Lumpur, Malaysia
| | - Tien Y Wong
- Singapore Eye Research Institute, National University of Singapore, Singapore 168751
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, N-0310 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo (UiO), 0450 Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo (UiO), 0450 Oslo, Norway
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu/Oulu University Hospital, FI-90220 Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu/Oulu University Hospital, FI-90220 Oulu, Finland
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter Devilee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Caroline Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, 3075 EA Rotterdam, The Netherlands
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel Klevebring
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus University Medical Center, 3075 EA Rotterdam, The Netherlands
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus University Medical Center, 3075 EA Rotterdam, The Netherlands
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Xuhui, Shanghai, China
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- International Epidemiology Institute, Rockville, MD 20850, USA
| | - Lisa B Signorello
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597
| | - Hui Miao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | | | - James McKay
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08, France
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, 153 10 Athens, Greece
| | - Chen-Yang Shen
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- School of Public Health, China Medical University, Taichung 404, Taiwan
| | - Pei-Ei Wu
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
- Division of Breast Cancer Research, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, QC, G1V 4G2, Canada
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK
| | - Georgia Chenevix-Trench
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Elisa Bandera
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901 USA
| | - Chris Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael D Cole
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
13
|
Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments. Genes (Basel) 2015; 6:1201-14. [PMID: 26569312 PMCID: PMC4690035 DOI: 10.3390/genes6041201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.
Collapse
|
14
|
Beattie J, Hawsawi Y, Alkharobi H, El-Gendy R. IGFBP-2 and -5: important regulators of normal and neoplastic mammary gland physiology. J Cell Commun Signal 2015; 9:151-8. [PMID: 25645979 DOI: 10.1007/s12079-015-0260-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/12/2015] [Indexed: 01/16/2023] Open
Abstract
The insulin-like growth factor (IGF) axis plays an important role in mammary gland physiology. In addition, dysregulation of this molecular axis may have a causal role in the aetiology and development of breast cancer (BC). This report discusses the IGF axis in normal and neoplastic mammary gland with special reference to IGF binding proteins (IGFBPs) -2 and -5. We describe how these high affinity binders of IGF-1 and IGF-2 may regulate local actions of growth factors in an autocrine and/or paracrine manner and how they also have IGF-independent effects in mammary gland. We discuss clinical studies which investigate both the prognostic value of IGFBP-2 and -5 expression in BC and possible involvement of these genes in the development of resistance to adjuvant endocrine therapies.
Collapse
Affiliation(s)
- James Beattie
- Department of Oral Biology, School of Dentistry, St James University Hospital, Level 7, Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK,
| | | | | | | |
Collapse
|
15
|
Comparative expression profiling of insulin-like growth factor binding protein-5 in milk of Bos indicus and Bubalus bubalis during lactation. Animal 2015; 9:643-9. [DOI: 10.1017/s1751731114002985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. NUCLEAR RECEPTOR SIGNALING 2014; 12:e004. [PMID: 25422594 PMCID: PMC4242291 DOI: 10.1621/nrs.12004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in
breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary
gland tumorigenesis through remodeling of the stromal compartment and activation of
cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic
activity is specific to ERBB2-induced tumors, or whether it influences the initiation and
progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement
of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related
integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that
compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in
Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth
rate. Ablation of Rarb altered the composition of the stroma, repressed the
activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and
angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway
contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the
absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of
epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1
oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent
retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
Collapse
Affiliation(s)
- Xingxing Liu
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| |
Collapse
|
17
|
Qiao D, Xu J, Le C, Huang E, Liu C, Qiu P, Lin Z, Xie WB, Wang H. Insulin-like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis. Toxicol Lett 2014; 230:444-53. [DOI: 10.1016/j.toxlet.2014.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 01/28/2023]
|
18
|
Gajewska M, Zielniok K, Debski B, Motyl T. IGF-I retards proper development of acinar structures formed by bovine mammary epithelial cells via sustained activation of Akt kinase. Domest Anim Endocrinol 2013; 45:111-21. [PMID: 23932581 DOI: 10.1016/j.domaniend.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor-I is involved in mammary gland development, promoting proliferation and inhibiting apoptosis of mammary epithelial cells (MECs). Mitogenic actions of IGF-I are mainly mediated by the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. We have found that in the presence of IGF-I bovine BME-UV1 MECs cultured on reconstituted basement membrane form large spheroids with disrupted polarity and no cavity in the center. These cells showed enhanced phosphorylation of Akt, decreased level of cleaved caspase-3, and sustained proliferative activity throughout the 16-d period of 3-dimensional culture. Inhibition of the PI3K/Akt pathway by a specific inhibitor of PI3K, LY294002, resulted in the restoration of the normal acinar phenotype. However, this effect was noted only when LY294002 was added in the second week of 3-dimensional culture, which corresponded with the time of cell cycle arrest and polarity formation under control conditions. Normal development of acini was also obtained when BME-UV1 cells were treated simultaneously with IGF-I and 17β-estradiol. The addition of 17β-estradiol regulated Akt activation, enabling the subsequent initiation of polarization processes. 17β-Estradiol also increased the level of IGFBP-3 protein in MECs cultured on Matrigel in the presence of IGF-I. The presented results indicate important interactions between signaling pathways activated by estrogen and IGF-I, which regulate alveologenesis in bovine mammary gland.
Collapse
Affiliation(s)
- M Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
19
|
Intramammary infusion of Panax ginseng extract in the bovine mammary gland at cessation of milking modifies components of the insulin-like growth factor system during involution. Res Vet Sci 2013; 94:462-70. [DOI: 10.1016/j.rvsc.2013.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/10/2012] [Accepted: 01/10/2013] [Indexed: 02/07/2023]
|
20
|
Sureshbabu A, Okajima H, Yamanaka D, Tonner E, Shastri S, Maycock J, Szymanowska M, Shand J, Takahashi SI, Beattie J, Allan G, Flint D. IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. J Cell Sci 2012; 125:1693-705. [PMID: 22328518 DOI: 10.1242/jcs.092882] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Maintenance of tissue boundaries is crucial for control of metastasis. We describe a new signalling pathway in which epithelial cell disruption can be minimised and thereby restricts epithelial-mesenchymal transgressions. This involves the release of insulin-like growth factor (IGF)-binding protein 5 (IGFBP5) from apoptotic cells, which increases the adhesion of epithelial cells on mesenchymal but not epithelial extracellular matrix (ECM), and involves the direct interaction of IGFBP5 and α2β1 integrins. IGFBP5 also induced cell adhesion to vitronectin in the absence of αVβ3 integrin, the vitronectin receptor, again through an α2β1-integrin-dependent action, suggesting that IGFBP5 can induce spreading on matrices, even in the absence of the integrins normally used in this process. Using IGFBP5 mutants we demonstrate that the effect is IGF-independent but requires the heparin-binding domain in the C-terminus of IGFBP5. A truncated mutant containing only the C-terminal of IGFBP5 also induced adhesion. Adhesion induced by IGFBP5 was dependent on Cdc42 and resulted in activation of integrin-linked kinase (ILK) and Akt. Consistent with these changes, IGFBP5 facilitated prolonged cell survival in nutrient-poor conditions and decreased phosphorylation of the stress-activated kinase p38 MAPK (MAPK14). Whereas IGFBP5 enhanced adhesion, it inhibited cell migration, although this was not evident using the truncated C-terminal mutant, suggesting that effects of IGFBP5 on adhesion and migration involve different mechanisms. We anticipate that these responses to IGFBP5 would reduce the metastatic potential of cells.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu BY, Soloviev I, Huang X, Chang P, Ernst JA, Polakis P, Sakanaka C. Mammary tumor regression elicited by Wnt signaling inhibitor requires IGFBP5. Cancer Res 2012; 72:1568-78. [PMID: 22307840 DOI: 10.1158/0008-5472.can-11-3668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wnt ligand-driven tumor growth is inhibited by the soluble Wnt inhibitor Fzd8CRD, but the mechanism through which this effect is mediated is unknown. In the MMTV-Wnt1 mouse model, regression of mammary tumors by Fzd8CRD treatment coincides with an acute and strong induction of insulin-like growth factor (IGF)-binding protein IGFBP5, an antagonist of IGF signaling that mediates involution of mammary gland in females after offspring are weaned. In this study, we show that repression of this IGF inhibitory pathway is crucial for Wnt-driven growth of mammary tumors. We found that IGFBP5 regulation was mediated by the β-catenin-dependent Wnt pathway. Wnt, in addition to IGF ligands, facilitated tumor growth by paracrine communication among tumor cells. In addition, Fzd8CRD caused precocious induction of IGFBP5 in normal mammary glands undergoing involution, implying an acceleration of the involution process by inhibition of Wnt signaling. The molecular and phenotypic parallel between tumor regression and mammary gland involution suggests that Wnt-driven mammary tumors use the same growth mechanism as proliferating normal mammary glands.
Collapse
Affiliation(s)
- Bob Y Liu
- Department of Cancer Targets, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol 2011; 344:1-24. [PMID: 21782884 DOI: 10.1016/j.mce.2011.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417, NVP-AEW541, NVP-ADW742, AG1024, potent quinolinyl-derived imidazo (1,5-a)pyrazine PQIP, picropodophyllin PPP, nordihydroguaiaretic acid Insm-18/NDGA). And the other end point is to yield an overview on the recent progress about usage of this receptor as a novel anticancer agent of targeted therapies in treatment of prostate carcinoma.
Collapse
Affiliation(s)
- Emine Elif Ozkan
- OSM Middle East Health Center, Department of Radiation Oncology, Sanliurfa 63000, Turkey.
| |
Collapse
|
23
|
Polanco TA, Crismale-Gann C, Reuhl KR, Sarkar DK, Cohick WS. Fetal alcohol exposure increases mammary tumor susceptibility and alters tumor phenotype in rats. Alcohol Clin Exp Res 2011; 34:1879-87. [PMID: 20662802 DOI: 10.1111/j.1530-0277.2010.01276.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Altered fetal programming because of a suboptimal in utero environment has been shown to increase susceptibility to many diseases later in life. This study examined the effect of alcohol exposure in utero on N-nitroso-N-methylurea (NMU)-induced mammary cancer risk during adulthood. METHODS Study 1: Pregnant Sprague Dawley rats were fed a liquid diet containing 6.7% ethanol (alcohol-fed), an isocaloric liquid diet (pair-fed), or rat chow ad libitum (ad lib-fed) from day 11 to 21 of gestation. At birth, female pups were cross-fostered to ad lib-fed control dams. Adult offspring were given an I.P. injection of NMU at a dose of 50 mg/kg body weight. Mammary glands were palpated for tumors twice a week, and rats were euthanized at 23 weeks postinjection. Study 2: To investigate the role of estradiol (E2), animals were exposed to the same in utero treatments but were not given NMU. Serum was collected during the preovulatory phase of the estrous cycle. RESULTS At 16 weeks postinjection, overall tumor multiplicity was greater in the offspring from the alcohol-fed group compared to the control groups, indicating a decrease in tumor latency. At study termination, 70% of all animals possessed tumors. Alcohol-exposed animals developed more malignant tumors and more estrogen receptor-α-negative tumors relative to the control groups. In addition, IGF-binding protein-5 (IGFBP-5) mRNA and protein were decreased in tumors of alcohol-exposed animals. Study 2 showed that alcohol-fed animals had significantly increased circulating E2 when compared to either control group. CONCLUSIONS These data indicate that alcohol exposure in utero increases susceptibility to mammary tumorigenesis in adulthood and suggest that alterations in the IGF and E2 systems may play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Tiffany A Polanco
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
24
|
Littlejohn MD, Walker CG, Ward HE, Lehnert KB, Snell RG, Verkerk GA, Spelman RJ, Clark DA, Davis SR. Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland. Physiol Genomics 2009; 41:21-32. [PMID: 19996161 DOI: 10.1152/physiolgenomics.00108.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Regulation of milk synthesis and secretion is controlled mostly through local (intramammary) mechanisms. To gain insight into the molecular pathways comprising this response, an analysis of mammary gene expression was conducted in 12 lactating cows shifted from twice daily to once daily milking. Tissues were sampled by biopsy from adjacent mammary quarters of these animals during the two milking frequencies, allowing changes in gene expression to be assessed within each animal. Using bovine-specific, oligonucleotide arrays representing 21,495 unique transcripts, a range of differentially expressed genes were found as a result of less frequent milk removal, constituting transcripts and pathways related to apoptotic signaling (NF-kappaB, JUN, ATF3, IGFBP5, TNFSF12A) mechanical stress and epithelial tight junction synthesis (CYR61, CTGF, THBS1, CLDN4, CLDN8), and downregulated milk synthesis (LALBA, B4GALT1, UGP2, CSN2, GPAM, LPL). Quantitative real-time PCR was used to assess the expression of 13 genes in the study, and all 13 of these were correlated (P < 0.05) with values derived from array analysis. It can be concluded that the physiological changes that occur in the bovine mammary gland as a result of reduced milk removal frequency likely comprise the earliest stages of the involution response and that mechano-signal transduction cascades associated with udder distension may play a role in triggering these events.
Collapse
|
25
|
Punj V, Matta H, Schamus S, Chaudhary PM. Integrated microarray and multiplex cytokine analyses of Kaposi's Sarcoma Associated Herpesvirus viral FLICE Inhibitory Protein K13 affected genes and cytokines in human blood vascular endothelial cells. BMC Med Genomics 2009; 2:50. [PMID: 19660139 PMCID: PMC2732924 DOI: 10.1186/1755-8794-2-50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 08/06/2009] [Indexed: 11/10/2022] Open
Abstract
Background Kaposi's sarcoma (KS) associated herpesvirus (KSHV) is the etiological agent of KS, a neoplasm characterized by proliferating spindle cells, extensive neoangiogenesis and a prominent inflammatory infiltrate. Infection of blood vascular endothelial cells with KSHV in vitro results in their spindle cell transformation, which is accompanied by increased expression of inflammatory chemokines and cytokines, and acquisition of lymphatic endothelial markers. Mimicking the effect of viral infection, ectopic expression of KSHV-encoded latent protein vFLIP K13 is sufficient to induce spindle transformation of vascular endothelial cells. However, the effect of K13 expression on global gene expression and induction of lymphatic endothelial markers in vascular endothelial cells has not been studied. Methods We used gene array analysis to determine change in global gene expression induced by K13 in human vascular endothelial cells (HUVECs). Results of microarray analysis were validated by quantitative RT-PCR, immunoblotting and a multiplex cytokine array. Results K13 affected the expression of several genes whose expression is known to be modulated by KSHV infection, including genes involved in immune and inflammatory responses, anti-apoptosis, stress response, and angiogenesis. The NF-κB pathway was the major signaling pathway affected by K13 expression, and genetic and pharmacological inhibitors of this pathway effectively blocked K13-induced transcriptional activation of the promoter of CXCL10, one of the chemokines whose expression was highly upregulated by K13. However, K13, failed to induce expression of lymphatic markers in blood vascular endothelial cells. Conclusion While K13 may account for change in the expression of a majority of genes observed following KSHV infection, it is not sufficient for inducing lymphatic reprogramming of blood vascular endothelial cells.
Collapse
Affiliation(s)
- Vasu Punj
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
26
|
Tripathi G, Salih DAM, Drozd AC, Cosgrove RA, Cobb LJ, Pell JM. IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J 2009; 23:2616-26. [PMID: 19332648 DOI: 10.1096/fj.08-114124] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IGF activity is regulated tightly by a family of IGF binding proteins (IGFBPs). IGFBP-5 is the most conserved of these and is up-regulated significantly during differentiation of several key lineages and in some cancers. The function of IGFBP-5 in these physiological and pathological situations is unclear, however, several IGFBP-5 sequence motifs and studies in vitro suggest IGF-independent actions. Therefore, we aimed to compare the phenotypes of mice overexpressing wild-type Igfbp5 or an N-terminal mutant Igfbp5 with negligible IGF binding affinity. Both significantly inhibited growth, even at low expression levels. Even though wild-type IGFBP-5 severely disrupted the IGF axis, we found no evidence for interaction of mutant IGFBP-5 with the IGF system. Further, overexpression of wild-type IGFBP-5 rescued the lethal phenotype induced by "excess" IGF-II in type 2 receptor-null mice; mutant IGFBP-5 overexpression could not. Therefore, wild-type IGFBP-5 provides a very effective mechanism for the inhibition of IGF activity and a powerful in vivo mechanism to inhibit IGF activity in pathologies such as cancer. This study is also the first to suggest significant IGF-independent actions for IGFBP-5 during development.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | |
Collapse
|
27
|
Colitti M, Farinacci M. Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue Cell 2009; 41:326-33. [PMID: 19328511 DOI: 10.1016/j.tice.2009.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/12/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Mammary glands are special tissue characterized by proliferation of the epithelium, during puberty and pregnancy and by programmed cell death, during involution. In this study, apoptosis was identified by TUNEL staining and then related to cell proliferation, as determined by Ki-67 staining. The apoptotic index was at its highest at 8 days of involution, whereas the proliferation index was at its highest during lactation. Caspase-3 was immunolocalised only in mast cells and along the basal membrane in the mammary tissue at -10 days from lambing, 150 days of lactation and at 8 days of involution. This finding could indicate that caspase-3 is not involved in sheep mammary gland apoptosis, but that other proteins - such as apoptosis inducing factor (AIF) - can trigger apoptosis, through the mitochondrial pathway, in a caspase-independent manner. The expression of genes involved in the regulation of lactation and apoptosis was also investigated and determined relatively to -10 days from lambing. The relative expression level of LALBA, reached its maximum during lactation, whereas the expressions of BCL2, BCL2L1, BAX, STAT5A, STAT3, IGFBP5 and FOXO3A, increased significantly during involution in correlation with apoptotic index. This work shows for the first time the turnover of mammary cells and the interaction of their signals during the complete lactation cycle in sheep. The data on gene expression can contribute to elucidate the mechanisms controlling milk production and cell turnover in this species.
Collapse
Affiliation(s)
- M Colitti
- Dipartimento di Scienze Animali, University of Udine, via delle Scienze, Udine 208-33100, Italy.
| | | |
Collapse
|
28
|
Flint DJ, Tonner E, Beattie J, Allan GJ. Role of insulin-like growth factor binding proteins in mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:443-53. [PMID: 18998203 DOI: 10.1007/s10911-008-9095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/28/2008] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factors (IGFs) play an important role in mammary gland development and their effects are, in turn, influenced by a family of 6 IGF-binding proteins (IGFBPs). The IGFBPs are expressed in time- and tissue-specific fashion during the periods of rapid growth and involution of the mammary gland. The precise roles of these proteins in vivo have, however, been difficult to determine. This review examines the indirect evidence (evolution, chromosomal location and roles in lower life-forms) the evidence from in vitro studies and the attempts to examine their roles in vivo, using IGFBP-deficient and over-expression models. Evidence exists for a role of the IGFBPs in inhibition of the survival effects of IGFs as well as in IGF-enhancing effects from in vitro studies. The location of the IGFBPs, often associated with the extracellular matrix, suggests roles as a reservoir of IGFs or as a potential barrier, restricting access of IGFs to distinct cellular compartments. We also discuss the relative importance of IGF-dependent versus IGF-independent effects. IGF-independent effects include nuclear localization, activation of proteases and interaction with a variety of extracellular matrix and cell surface proteins. Finally, we examine the increasing evidence for the IGFBPs to be considered as part of a larger family of extracellular matrix proteins involved in morphogenesis and tissue re-modeling.
Collapse
Affiliation(s)
- D J Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0NR, UK.
| | | | | | | |
Collapse
|
29
|
Akkiprik M, Feng Y, Wang H, Chen K, Hu L, Sahin A, Krishnamurthy S, Ozer A, Hao X, Zhang W. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res 2008; 10:212. [PMID: 18710598 PMCID: PMC2575530 DOI: 10.1186/bcr2116] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics.
Collapse
Affiliation(s)
- Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, 34668 Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hung PS, Kao SY, Shih YH, Chiou SH, Liu CJ, Chang KW, Lin SC. Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J Pathol 2008; 214:368-76. [PMID: 18085517 DOI: 10.1002/path.2280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a global malignancy. The insulin-like growth factor (IGF) signalling axis plays a critical role in tumourigenesis. This study defined the clinical and functional roles of insulin-like growth factor binding protein-5 (IGFBP-5) in HNSCC. Down-regulation of IGFBP-5 mRNA expression was found during the progression from pre-cancer to HNSCC. The down-regulation in HNSCC was associated with a higher propensity to nodal metastasis. SAS and OECM-1 are HNSCC cells that do, or do not, express IGFBP-5, respectively. Recombinant IGFBP-5 reduced the proliferation of OECM-1 cells and this was exerted mainly through blockade of the IGF pathways. Either IGFBP-5 or IGF-I treatment alone promoted OECM-1 migration, but a combination of treatments generated antagonistic effects. Overexpression of IGFBP-5 reduced the proliferation and anchorage-independent growth of both OECM-1 and SAS cells. Conversely, knockdown of IGFBP-5 expression significantly induced the proliferation and anchorage-independent growth of SAS cells. It also induced the growth of xenografted SAS tumours. SAS transfectants that expressed mutant or truncated IGFBP-5, which lack IGF binding activity, exhibited significantly lower anchorage-independent growth than vector control. This suggests that IGFBP-5 possesses an IGF-independent suppressor function. The suppressive effects of IGFBP-5 on the tumourigenesis of HNSCC might be invaluable to future neoplastic intervention.
Collapse
Affiliation(s)
- P-S Hung
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Annen EL, Stiening CM, Crooker BA, Fitzgerald AC, Collier RJ. Effect of continuous milking and prostaglandin E2 on milk production and mammary epithelial cell turnover, ultrastructure, and gene expression. J Anim Sci 2008; 86:1132-44. [PMID: 18272860 DOI: 10.2527/jas.2007-0726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammary epithelial cell (MEC) growth is reduced in continuously milked (CM) mammary glands, and administration of a mammogenic compound such as prostaglandin E(2) (PGE(2)) at parturition might improve MEC growth in CM tissue. The objectives were to 1) compare MEC turnover, ultrastructure, and gene expression in CM and involuting mammary tissue, and 2) evaluate the effects of CM and intramammary infusion of PGE(2) on early lactation MEC turnover, ultrastructure, mammary gene expression, milk yield, and composition. First- and second-lactation cows (n = 8) were used in a half-udder model, in which one-half was dry for 60 d (CTL) and the other was CM. Udder halves (n = 16) were assigned to a postpartum (PP) treatment of PGE(2) (+PGE(2); 875 mug/10 mL of medium-chain triglyceride oil) or no PGE(2) (-PGE(2)) treatment at parturition and at 72 h PP. Biopsies of CM and CTL quarters were obtained during milk stasis (MS) of the CTL half at 3 and 7 d after dry-off of the CTL half (3d-MS; 7d-MS) and postpartum (PP) at 2 and 4 d (2d-PP; 4d-PP). Milk yield was reduced (P < 0.01) in CM udder halves compared with CTL halves (13.2 vs. 22.1 kg/d), but reductions were less in second-lactation cows. The apoptotic index was greater (P < 0.05) in CTL glands than in CM glands (3d-MS, 0.52 vs. 0.11% and 7d-MS, 0.24 vs. 0.12, respectively). Proliferation of MEC was unchanged at 3d-MS, but was increased (P = 0.01) in CTL halves at 7d-MS compared with CM halves (3.10 vs. 0.93%). At 2d-PP, MEC proliferation was increased (P = 0.05) in CM halves compared with CTL halves (1.3 vs. 0.6%), but was unaffected by PGE(2) (P > 0.2). Apoptosis was elevated in early lactation regardless of treatment. Ultrastructure was unchanged by dry period length or PGE(2). In prepartum tissue, involution in CTL halves increased (P < 0.05) the expression of the proapoptotic genes Bcl-2-associated x protein (bax) and IGFBP5 and decreased (P < 0.05) alpha-lactalbumin expression compared with CM tissue. In PP mammary tissue, CTL halves expressed greater (P < 0.05) levels of ATP-binding cassette 1 (ABC1) and IGFBP5. Treatment with PGE(2) did not alter (P > 0.1) gene expression. The results confirm that CM reduced milk yield of cows with a mammary growth requirement. Reduced MEC turnover and milk yield were not alleviated by IMI of PGE(2), which indicates that peripartum PGE(2) concentrations in CM glands are not limiting mammary growth or milk synthesis.
Collapse
Affiliation(s)
- E L Annen
- Department of Animal Sciences, University of Arizona, Tucson 85721, USA
| | | | | | | | | |
Collapse
|
32
|
Genetic variation in IGFBP2 and IGFBP5 is associated with breast cancer in populations of African descent. Hum Genet 2008; 123:247-55. [PMID: 18210156 DOI: 10.1007/s00439-008-0468-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 01/11/2008] [Indexed: 01/21/2023]
Abstract
The insulin-like growth factor (IGF) signaling pathway is thought to play a major role in the etiology of breast cancer. Although incidence rates of breast cancer overall are lower in African Americans than in Caucasians, African-American women have a higher incidence under age 40 years, are diagnosed with more advanced disease, and have poorer prognosis. We investigated the association of breast cancer and genetic variants in genes in the IGF signaling pathway in a population-based case-control study of African-American women. We found significant associations at a locus encompassing parts of the IGFBP2 and IGFBP5 genes on chromosome 2q35, which we then replicated in a case-control study of Nigerian women. Based on those initial findings, we genotyped a total of 34 single nucleotide polymorphisms (SNPs) across the region in both study populations. Statistically significant associations with breast cancer were observed across approximately 50 kb of DNA sequence encompassing three exons in the 3' end of IGFBP2 and three exons in the 3' end of IGFBP5. SNPs were associated with breast cancer risk with P values as low as P = 0.0038 and P = 0.01 in African-Americans and Nigerians, respectively. This study is the first to report associations between genetic variants in IGFBP2 and IGFBP5 and breast cancer risk.
Collapse
|
33
|
Jurgeit A, Berlato C, Obrist P, Ploner C, Massoner P, Schmölzer J, Haffner MC, Klocker H, Huber LA, Geley S, Doppler W. Insulin-like growth factor-binding protein-5 enters vesicular structures but not the nucleus. Traffic 2007; 8:1815-1828. [PMID: 17892529 DOI: 10.1111/j.1600-0854.2007.00655.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to its extracellular function as a secreted protein, IGF-binding protein (IGFBP)-5 has been postulated to act as a signaling molecule in the nucleus. This study aims to assess the significance of this postulated nuclear localization. By confocal immunofluorescence microscopy, we detected IGFBP-5 in the vesicular compartment of mammary epithelial cells in culture, while no nuclear staining was observed. Immunohistochemistry performed on paraffin sections of the involuting mammary gland revealed IGFBP-5 positive staining of epithelial cells only outside the nucleus. To evaluate the contribution of reuptake of extracellular IGFBP-5, T47D cells were incubated with Alexa Fluor 647-labeled IGFBP-5. The protein was taken up into intracellular vesicles and again was neither detectable in the cytoplasm outside of vesicular structures nor in the nucleus. Quantification of the time and concentration dependence of uptake by immunoblotting revealed that the process was saturable at IGFBP-5 concentrations between 1 and 2 mum and partially reversible with 30% remaining in the cell after a 1-h chase. The observation of nuclear uptake of IGFBP-5 was restricted to artificial conditions such as expression of non-secreted forms of IGFBP-5 or selective permeabilization of the plasma membrane by digitonin.
Collapse
Affiliation(s)
- Andreas Jurgeit
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
- Present address: Institute of Zoology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chiara Berlato
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Peter Obrist
- Department of Pathology, St. Vinzenz Hospital Zams, 6511 Zams, Austria
| | - Christian Ploner
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Petra Massoner
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Judith Schmölzer
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Michael C Haffner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Wolfgang Doppler
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, Kim JR. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 2007; 18:4543-52. [PMID: 17804819 PMCID: PMC2043568 DOI: 10.1091/mbc.e07-03-0280] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway plays a crucial role in the regulation of cell growth, differentiation, apoptosis, and aging. IGF-binding proteins (IGFBPs) are important members of the IGF axis. IGFBP-5 is up-regulated during cellular senescence in human dermal fibroblasts and endothelial cells, but the function of IGFBP-5 in cellular senescence is unknown. Here we show that IGFBP-5 plays important roles in the regulation of cellular senescence. Knockdown of IGFBP-5 in old human umbilical endothelial cells (HUVECs) with IGFBP-5 micro-RNA lentivirus caused partial reduction of a variety of senescent phenotypes, such as changes in cell morphology, increases in cell proliferation, and decreases in senescence-associated beta-galactosidase (SA-beta-gal) staining. In addition, treatment with IGFBP-5 protein or up-regulation of IGFBP-5 in young cells accelerates cellular senescence, as confirmed by cell proliferation and SA-beta-gal staining. Premature senescence induced by IGFBP-5 up-regulation in young cells was rescued by knockdown of p53, but not by knockdown of p16. Furthermore, atherosclerotic arteries exhibited strong IGFBP-5-positive staining along intimal plaques. These results suggest that IGFBP-5 plays a role in the regulation of cellular senescence via a p53-dependent pathway and in aging-associated vascular diseases.
Collapse
Affiliation(s)
- Kwang Seok Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Young Bae Seu
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Suk-Hwan Baek
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| | - Mi Jin Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Keuk Jun Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Jung Hye Kim
- *Department of Biochemistry and Molecular Biology
| | - Jae-Ryong Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| |
Collapse
|
35
|
Le Dily F, Métivier R, Guéguen MM, Le Péron C, Flouriot G, Tas P, Pakdel F. COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells. Breast Cancer Res Treat 2007; 110:69-83. [PMID: 17674191 DOI: 10.1007/s10549-007-9693-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
We previously showed that COUP-TFI interacts with the Estrogen Receptor alpha (ER alpha) to recruit Extracellular signal Regulated Kinases (ERKs) in an Estradiol (E2)-independent manner, resulting in an enhancement of ER alpha transcriptional activity. However, the involvement of COUP-TFI in physiologically relevant functions of ER alpha, such as the mitogenic activity that E2 has on breast cancer cells, remains poorly understood. Here, we first showed that the amounts of COUP-TFI protein are higher in dedifferentiated mammary cell lines (MDA-MB-231) and tumor breast cells as compared to the differentiated MCF-7 cell line and normal breast cells. To evaluate the functional relevance of the COUP-TFI/ER alpha interplay in mammary cells, we generated MCF-7 cells that stably over-express COUP-TFI. We found that the over-expression of COUP-TFI enhances motility and invasiveness of MCF-7 cells. COUP-TFI also promotes the proliferation of MCF-7 cells through ER alpha-dependent mechanisms that target cell cycle progression and cell survival. To further investigate the mechanisms underlying these effects of COUP-TFI, we evaluated the expression of known E2-target genes in breast cancer, and found that COUP-TFI differentially regulated genes involved in cell proliferation, apoptosis, and migration/invasion. Notably, Cathepsin D (CTSD) transcript and protein levels were significantly higher in presence and absence of E2 in MCF-7 over-expressing COUP-TFI. Chromatin Immunoprecipitation assays showed that ER alpha, phospho-RNA Polymerase II, as well as p68 RNA Helicase, a phospho-Serine 118 dependent co-activator of ER alpha, were preferentially recruited onto the CTSD gene proximal promoter in COUP-TFI over-expressing cells. These results suggest that COUP-TFI selectively regulates the expression of endogenous E2-target genes and consequently modifies ER alpha positive mammary cells response to E2.
Collapse
Affiliation(s)
- François Le Dily
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026-Interactions Cellulaires et Moléculaires, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Graham ME, Kilby DM, Firth SM, Robinson PJ, Baxter RC. The in vivo phosphorylation and glycosylation of human insulin-like growth factor-binding protein-5. Mol Cell Proteomics 2007; 6:1392-405. [PMID: 17496250 DOI: 10.1074/mcp.m700027-mcp200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry is often used to determine post-translational modifications by analysis of tryptic digests of proteins. Here we demonstrate that the analysis of tryptic peptides together with analysis of the full-length protein provided optimal characterization of insulin-like growth factor-binding protein-5 (IGFBP-5) phosphorylation and glycosylation. IGFBP-5 binds insulin-like growth factors with high affinity and has important roles in cell survival, differentiation, and apoptosis. Until now, the primary structure of IGFBP-5 has been incompletely defined. We analyzed human IGFBP-5 from T47D cells by mass spectrometry to determine all of the in vivo post-translational modifications. In full-length IGFBP-5, 31% of the protein was unmodified, 37% was monophosphorylated, and 4% was diphosphorylated with no other modification. The remaining 27% was glycosylated, more than half of which was also monophosphorylated. The major phosphorylation site was Ser(96) in the central domain, and a minor phosphorylation site was Ser(248) near the C terminus. Neither site was phosphorylated in vitro by casein kinase 2, ruling it out as the in vivo kinase. An in vivo phosphorylation site was also found in IGFBP-2 at an analogous position, Ser(106). IGFBP-5 was heterogeneously O-glycosylated mainly by sialylated core 1 type glycans. The most abundant structure contained N-acetylhexosamine, hexose, and two N-acetylneuraminic acid carbohydrates. A small amount of sialylated core 2 type glycan was also present. Phosphorylation and O-glycosylation both affected IGFBP-5 binding to heparin but not insulin-like growth factor binding or ternary complex formation with the acid-labile subunit. The results reveal the first description of the in vivo phosphorylation of IGFBP-5 and its glycan composition.
Collapse
Affiliation(s)
- Mark E Graham
- Cell Signalling Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | |
Collapse
|
37
|
Sakamoto K, Yano T, Kobayashi T, Hagino A, Aso H, Obara Y. Growth hormone suppresses the expression of IGFBP-5, and promotes the IGF-I-induced phosphorylation of Akt in bovine mammary epithelial cells. Domest Anim Endocrinol 2007; 32:260-72. [PMID: 16698222 DOI: 10.1016/j.domaniend.2006.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 11/25/2022]
Abstract
Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Kazuhito Sakamoto
- Laboratory of Animal Physiology, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Sutherland KD, Lindeman GJ, Visvader JE. The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia 2007; 12:15-23. [PMID: 17323120 DOI: 10.1007/s10911-007-9034-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammary gland involution, characterized by extensive apoptosis and structural remodelling of the gland, is the process by which the gland is returned to the pre-pregnant state. A key advantage of the mammary gland is the ability to synchronize involution through forced weaning, thus allowing the dissection of biochemical pathways involved in the involution process. Over the past few years, significant advances have been made in understanding the signaling pathways and downstream effectors that regulate epithelial cell apoptosis in the first phase of involution, and the importance of matrix metalloproteinases and their inhibitors in both phases of involution. The precise nature of the triggers for apoptosis, however, and the ultimate perpetrators of cell death are not yet clear. This review focuses on genes whose perturbation, either by targeted deletion or overexpression in transgenic mouse models, leads to precocious involution. The accumulating data point to a complex network of signal transduction pathways that synergize to regulate apoptosis in the involuting mammary gland.
Collapse
Affiliation(s)
- Kate D Sutherland
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | | | | |
Collapse
|
39
|
Suzuki A, Urushitani H, Watanabe H, Sato T, Iguchi T, Kobayashi T, Ohta Y. Comparison of Estrogen Responsive Genes in the Mouse Uterus, Vagina and Mammary Gland. J Vet Med Sci 2007; 69:725-31. [PMID: 17675804 DOI: 10.1292/jvms.69.725] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Female reproductive organs are mainly regulated by estrogen and progesterone. Specifically, the uterus, vagina and mammary gland show organ-specific mitosis and morphological changes during proliferative events, such as estrous cycle, gestation and lactation. The mechanism underlying these organ-specific estrogen-dependent events is still unknown. We examined, therefore, global gene expression in the mature uterus, vagina and mammary gland of ovariectomized adult mice 6 hr after an injection of 5 microg/kg 17beta-estradiol (E2) using a microarray method in order to identify primary E2-responsive genes. Half of the E2 up-regulated genes in the uterus were similar to those in the vagina. E2 up-regulated the expression of Insulin-like growth factor 1 (Igf-1) genes in the uterus and vagina. In the vagina, E2 up-regulated the expression of IGF binding proteins (Igfbp2 and Igfbp5). In the mammary gland, unlike the uterus and vagina, no gene showed altered expression 6 hr after the E2 exposure. These results suggest that expression of Igf-1 and morphogenesis genes is regulated by E2 in an organ-specific manner, and it is supported by the results of BrdU labeling showing E2-induced mitosis in the uterus and vagina except the mammary gland. The differences in organ specificity in response to E2 may be attributed by differences in gene expression regulated by E2 in female reproductive organs. The candidate estrogen-responsive genes in the uterus and vagina identified by profiling provide an important foundation understanding functional mechanisms of estrogen regulating morphogenesis and maintenance of each reproductive organ.
Collapse
Affiliation(s)
- Atsuko Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida 753-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Insulin-like growth factors and breast cancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 608:101-12. [PMID: 17993235 DOI: 10.1007/978-0-387-74039-3_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite improvements in breast cancer therapy in recent years, additional therapies need to be developed. New therapies may have activity by themselves or may have utility in combination with other agents. Population, preclinical, and basic data suggest the insulin-like growth factor (IGF) system functions to maintain the malignant phenotype in breast cancer. Since the IGFs act via transmembrane tyrosine kinase receptors, targeting of the key receptors could provide a new pathway in breast cancer. In addition, IGF action enhances cell survival, so combination of anti-IGF therapy with conventional cytotoxic drugs could lead to synergistic effects. In this review, we will discuss the rationale for targeting the IGF system, potential methods to disrupt IGF signaling, and identify potential interactions between IGF inhibitors and other anti-tumor strategies. We will also identify important issues to consider when designing clinical trials.
Collapse
|
41
|
Lochrie JD, Phillips K, Tonner E, Flint DJ, Allan GJ, Price NC, Beattie J. Insulin-like growth factor binding protein (IGFBP)-5 is upregulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J Cell Physiol 2006; 207:471-9. [PMID: 16419030 DOI: 10.1002/jcp.20587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells. To test this hypothesis further, we have used a phenotypically differentiated model, which comprises primary cultures of mouse mammary epithelial cells grown on a layer of EHS (Engelbreth-Holm-Swarm) extracellular matrix. We show that lactogenic hormone treatment (hydrocortisone, insulin, and prolactin-HIP) of these cultures induces the upregulation of IGFBP-5 thus replicating the results obtained with the HC11 cell line. In addition, following the induction of apoptosis in primary cultures of mammary epithelial cells by treatment with TGFbeta-3, IGFBP-5 expression is also upregulated. In parallel with this upregulation of IGFBP-5, there is also an increase in the levels of cleaved caspase-3, a well-characterized marker of cellular apoptosis. These findings confirm previous in vivo work demonstrating an increase in IGFBP-5 expression during involution of the mouse mammary gland. When HC11 cells are cultured under serum-free conditions (a well-characterized apoptotic insult in cell culture), there is also an increase in cleaved caspase-3 levels. Unexpectedly, in the presence of TGFbeta-3, caspase-3 levels are attenuated. In the presence of DIP, caspase-3 levels are also decreased in HC11 cells. As described previously, TGFbeta-3 inhibits beta-casein synthesis in HC11 cells. In the HC11 cell line (in contrast to primary cultures of mammary epithelial cells), there is no evidence for TGFbeta-3 induction of IGFBP-5 under either serum-free or DIP-supplemented conditions. We believe our data with primary cultures of mammary epithelial cells support the hypothesis of dual regulation of IGFBP-5 expression during both differentiation and apoptosis in the mammary gland and emphasizes the importance of using appropriate cell culture models to investigate such phenomena in this tissue. We discuss the possible implications of our observations in relation to the physiological processes of pregnancy, lactation, and involution in the mammary gland and the associated changes in mammary epithelial cell function.
Collapse
|
42
|
Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, D'Cruz CM, Chodosh LA. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res 2006; 66:6421-31. [PMID: 16778221 DOI: 10.1158/0008-5472.can-05-4235] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.
Collapse
Affiliation(s)
- Collin M Blakely
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Beattie J, Allan GJ, Lochrie JD, Flint DJ. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 2006; 395:1-19. [PMID: 16526944 PMCID: PMC1409685 DOI: 10.1042/bj20060086] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.
Collapse
Key Words
- extracellular matrix (ecm)
- glycosaminoglycan
- insulin-like growth factor-i (igf-i)
- insulin-like growth factor-binding protein 5 (igfbp-5)
- mammary gland
- proteolysis
- adam, adisintegrin and metalloprotease
- ap-2, activator protein 2
- cat, chloramphenicol acetyltransferase
- cbp-4, c-terminus of insulin-like growth factor-binding protein 4 (residues 151–232)
- c/ebp, ccaat/enhancer-binding protein
- ecm, extracellular matrix
- er, oestrogen receptor
- erk1/2, extracellular-signal-regulated protein kinase 1/2
- fhl-2, four-and-a-half lim domain 2
- gag, glycosaminoglycan
- gh, growth hormone
- igf, insulin-like growth factor
- igfbp, igf-binding protein
- igf-ir, igf-i receptor
- igf-iir, igf-ii receptor
- ir, insulin receptor
- irs, ir substrate
- mapk, mitogen-activated protein kinase
- nbp-4, n-terminus of igfbp-4 (residues 3–82)
- oe2, oestradiol
- op-1, osteogenic protein-1
- opn, osteopontin
- pai-1, plasminogen activator inhibitor-1
- papp, pregnancy-associated plasma protease
- pge2, prostaglandin e2
- psmc, porcine smooth-muscle cell
- ra, retinoic acid
- rassf1c, isoform c of the ras association family 1 protein group
- rt, reverse transcription
- spr, surface plasmon resonance
- tpa, tissue plasminogen activator
- tsp-1, thrombospondin-1
- vn, vitronectin
Collapse
Affiliation(s)
- James Beattie
- Hannah Research Institute, Ayr KA6 5HL, Scotland, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
A hallmark feature of cancer is resistance to anoikis, apoptosis induced when cells either lose contact with or encounter an inappropriate extracellular matrix. Melanoma is inherently associated with a high degree of resistance to apoptosis. Mutations in B-RAF are prevalent in melanoma and promote constitutive MEK-ERK1/2 signaling and cell transformation. Acquisition of B-RAF mutations correlates with vertical phase growth when melanoma cells invade into the dermis, a collagen-rich environment that also contains fibronectin matrix. In addition, alterations in phosphoinositide-3 kinase (PI-3 kinase) signaling that lead to activation of AKT are detected in advanced melanomas. Here we show that knockdown of B-RAF expression by siRNA or pharmacological inhibition of MEK rendered melanoma cells susceptible to anoikis. Furthermore, adhesion to fibronectin but not collagen protected melanoma cells from anoikis through a PI-3 kinase-dependent pathway. Therefore, melanoma cells require either B-RAF or PI-3 kinase activation for protection from anoikis. Notably, AKT signaling in melanoma cells is substrate specific. These findings demonstrate that melanoma cells utilize multiple signaling pathways to provide resistance to apoptosis.
Collapse
Affiliation(s)
- K Boisvert-Adamo
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|
45
|
Sorrell AM, Shand JH, Tonner E, Gamberoni M, Accorsi PA, Beattie J, Allan GJ, Flint DJ. Insulin-like growth factor-binding protein-5 activates plasminogen by interaction with tissue plasminogen activator, independently of its ability to bind to plasminogen activator inhibitor-1, insulin-like growth factor-I, or heparin. J Biol Chem 2006; 281:10883-9. [PMID: 16505491 DOI: 10.1074/jbc.m508505200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor-1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death. IGFBP-5 could in turn prevent the effects of PAI-1. IGFBP-5 mutants with reduced affinity for IGF-I (N-term) or deficient in heparin binding (HEP- and C-term E and F) were also effective. This was surprising because IGFBP-5 reportedly interacts with PAI-1 via its heparin-binding domain. Biosensor analysis confirmed that, although wild-type IGFBP-5 and N-term both bound to PAI-1, the C-term E had greatly decreased interaction with PAI-1. This suggests that IGFBP-5 does not antagonize the actions of PAI-1 by a direct molecular interaction. In a cell-free system, using tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) to activate plasminogen, PAI-1 inhibited plasmin generation induced by both activators, whereas IGFBP-5 prevented the effects of PAI-1 on tPA but not uPA. Furthermore, we noted that IGFBP-5 activated plasminogen to a greater extent than could be explained solely by inhibition of PAI-1, suggesting that IGFBP-5 could directly activate tPA. Indeed, IGFBP-5 and the C-term E and F were all able to enhance the activity of tPA but not uPA. These data demonstrate that IGFBP-5 can enhance the activity of tPA and that this can result in cell death induced by cleavage of focal adhesions. Thus IGFBP-5 can induce cell death by both sequestering IGF-I and enhancing plasmin generation.
Collapse
|
46
|
|
47
|
Abstract
Matrix degradation and tissue remodelling directed by matrix-degrading proteases are activated in physiological situations such as wound healing and involution of the prostate, ovaries and uterus. Recently, other activities, in addition to the cleavage of matrix proteins, have been attributed to matrix proteases including the release of growth factors from the extracellular matrix and roles in the maturation of adipocytes. This review describes extracellular proteases, including MMPs, plasminogen and cathepsins involved in the tissue remodelling processes that occur in the breast during pubertal mammary development and the mammary cycle of pregnancy, lactation and weaning. It particularly focuses on development and weaning, termed mammary gland involution, when the majority of remodelling occurs. It also brings together recent findings on the exciting new functions of matrix-degrading proteases.
Collapse
|
48
|
Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L, Huang AM, Sterneck E. C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 2005; 132:4675-85. [PMID: 16192306 DOI: 10.1242/dev.02050] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The STAT3 transcription factor is an important initiator of mammary gland involution in the mouse. This work shows that the STAT3 target gene CCAAT/enhancer binding protein delta (C/EBPdelta) is a crucial mediator of pro-apoptotic gene expression events in mammary epithelial cells. In the absence of C/EBPdelta, involution is delayed, the pro-apoptotic genes encoding p53, BAK, IGFBP5 and SGP2/clusterin are not activated, while the anti-apoptotic genes coding for BFL1 and Cyclin D1 are not repressed. Consequently, p53 targets such as survivin, BRCA1, BRCA2 and BAX are not regulated appropriately and protease activation is delayed. Furthermore, expression of MMP3 and C/EBPdelta during the second phase of involution is perturbed in the absence of C/EBPdelta. In HC11 cells, C/EBPdelta alone is sufficient to induce IGFBP5 and SGP2. It also suppresses Cyclin D1 expression and cooperates with p53 to elicit apoptosis. This study places C/EBPdelta between STAT3 and several pro- and anti-apoptotic genes promoting the physiological cell death response in epithelial cells at the onset of mammary gland involution.
Collapse
Affiliation(s)
- Muthusamy Thangaraju
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Amaar YG, Baylink DJ, Mohan S. Ras-association domain family 1 protein, RASSF1C, is an IGFBP-5 binding partner and a potential regulator of osteoblast cell proliferation. J Bone Miner Res 2005; 20:1430-9. [PMID: 16007340 PMCID: PMC2897826 DOI: 10.1359/jbmr.050311] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/22/2005] [Accepted: 03/10/2005] [Indexed: 02/07/2023]
Abstract
UNLABELLED The goal of this study was to identify downstream signaling molecules involved in mediating the IGF-independent effects of IGFBP-5 in osteoblasts. We identified RASSF1C, a member of the RASSF1 gene products, as a IGFBP-5 binding partner and as a potential mediator of IGFBP-5 effects on ERK phosphorylation and cell proliferation. INTRODUCTION It has been predicted that the intrinsic growth factor action of insulin-like growth factor binding protein (IGFBP)-5 involves either the binding of IGFBP-5 to a putative receptor to induce downstream signaling pathways and/or intracellular translocation of IGFBP-5 to bind to potential signaling molecules involved in osteoblast cell regulation. This study reports the characterization of isoform C of the Ras association family 1 (RASSF1C) gene as an interacting partner of IGFBP-5. MATERIALS AND METHODS IGFBP-5 was used as bait in a yeast two-hybrid screen of a human osteosarcoma cDNA library. Expression levels of RASSF1C were measured by RT-PCR and/or Northern blot. IGFBP-5 effects on ERK phosphorylation were evaluated by immunoblot analysis. The effect of RASSF1C siRNA on cell proliferation was measured by the AlamarBlue assay. RESULTS One of the clones that interacted strongly with the bait under high stringency conditions corresponded to RASSF1C. The interaction between RASSF1C and IGFBP-5 was confirmed by in vitro co-immunoprecipitation studies. Northern blot and RT-PCR analysis showed that RASSF1C was expressed in a variety of osteoblast cell types that produce IGFBP-5. Addition of synthetic RASSF1C-specific small interfering (si) RNA duplex or use of a RASSF1C-specific si-hairpin plasmid caused a decrease in cell number and abolished IGFBP-5-induced extracellular signal-regulated kinase (ERK)-1/2 phosphorylation but had no effect on IGFBP-5-induced increases in alkaline phosphatase (ALP) activity. CONCLUSIONS We have shown a novel interaction between IGFBP-5 and RASSF1C. Our findings that silencing of RASSF1C results in the reduction of osteoblast cell proliferation and that IGFBP-5 treatment increases phosphorylation of ERK-1/2 raise the possibility that RASSF1C, a Ras effector, could, in part, contribute to mediating the effects of IGFBP-5 on ERK phosphorylation and, consequently, cell proliferation.
Collapse
Affiliation(s)
- Yousef G Amaar
- Musculoskeletal Disease Center, Jerry L. Pettis Veterans Administration Medical Center, Loma Linda, California, USA
| | - David J Baylink
- Musculoskeletal Disease Center, Jerry L. Pettis Veterans Administration Medical Center, Loma Linda, California, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Veterans Administration Medical Center, Loma Linda, California, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Physiology, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
50
|
Flint DJ, Boutinaud M, Tonner E, Wilde CJ, Hurley W, Accorsi PA, Kolb AF, Whitelaw CBA, Beattie J, Allan GJ. Insulin-like growth factor binding proteins initiate cell death and extracellular matrix remodeling in the mammary gland. Domest Anim Endocrinol 2005; 29:274-82. [PMID: 15998501 DOI: 10.1016/j.domaniend.2005.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 02/09/2005] [Accepted: 02/19/2005] [Indexed: 11/22/2022]
Abstract
We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue remodeling processes. The ability to separate these properties, using mutant IGFBPs, is currently under investigation.
Collapse
Affiliation(s)
- D J Flint
- Hannah Research Institute, Ayr KA6 5HL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|